四年级奥数习题及答案:速算与巧算

合集下载

四年级奥数第一讲-速算与巧算含答案

四年级奥数第一讲-速算与巧算含答案

第一讲 速算与巧算一、 知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。

2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。

3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。

二、典例剖析:例(1) 19199199919999199999++++分析:运用凑整法来解十分方便,也不容易出错误。

解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练一练:898998999899998999998+++++=答案:1111098例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。

解:原式100(9998)(9796)(32)1=+-+-++-+ 100491=++150=练一练:989796959493929190894321+--++--++---++答案:99例(3) 1111111111⨯分析:111,1111121,11111112321⨯=⨯=⨯= 解:1111111111123454321⨯=练一练:2222222222⨯答案:493817284例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、十位、百位、千位上均各出现一次。

解:原式1111222233334444=+++ 1111(1234)=⨯+++ 111110=⨯ 11110=练一练:5678967895789568956795678++++答案:388885例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。

四年级奥数 速算与巧算,带答案

四年级奥数 速算与巧算,带答案

1.。

A.B.C.D.答案:B解析:2.计算:,结果是( )。

A.B.C.D.答案:C解析:通过观察都是接近的数,所以把这些数都表⽰为加减⼀个数:3.计算,结果是( )。

A.B.C.D.答案:C解析:计算:222×33+889×66=空类2600006600010000011000222×33+889×66=111×2×33+889×66=111×66+889×66=(111+889)×66=1000×66=66000109+91+97+101+99+107+102700690706696100100109+91+97+101+99+107+102=100+9+100−9+100−3+100+1+100−1+100+7+100+2=100+100+100+100+100+100+100+9−9−3+1−1+7+2=100×7+6=700+6=70698+101+797+298+199−305128812001188110098+101+797+298+199−305=100+100+800+300+200−300−2+1−3−2−1−5=1200−12=11884.简便计算:。

A.B.C.答案:A解析:加括号时注意除号变乘号。

5.计算:。

A.B.C.答案:C解析:6.计算:。

A.B.C.D.答案:C 解析:7.计算A.B.C.答案:C5000÷125÷8=空类258105000÷125÷8=5000÷(125×8)=5000÷1000=525×96×125=空类230000003000030000025×96×125=25×(4×3×8)×125=(25×4)×3×(8×125)=100×3×1000=30000098+998+9998+99998=99999811111211109211100298+998+9998+99998=(100−2)+(1000−2)+(10000−2)+(100000−2)=111100−8=111092125×64×25×5100001000001000000解析:8.计算:,结果是。

奥数小学四年级奥数题及答案完整版

奥数小学四年级奥数题及答案完整版

奥数小学四年级奥数题及答案完整版小学四年级数学上册每日一道思考题:速算与巧算1、9 + 99 + 999 + 9999 + =。

2、 + + 1999 + 199 + 19 =。

3、(1 + 3 + 5 + … + 1989) - (2 + 4 + 6 + … + 1988) =。

4、389 + 387 + 383 + 385 + 384 + 386 + 388 =。

5、(4942 + 4943 + 4938 + 4939 + 4941 + 4943) ÷ 6 =。

速算与巧算-答案1、解答:在涉及所有数字都是9的计算中,常使用凑整法。

例如将XXX1000-1去计算。

这是小学数学中常用的一种技巧。

9 + 99 + 999 + 9999 + = (10 - 1) + (100 - 1) + (1000 - 1) + ( - 1) + ( - 1) = 10 + 100 + 1000 + + - 5 = - 5 = .2、解答:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。

不过这里是加1凑整。

(如199 + 1 = 200) + + 1999 + 199 + 19 = ( + 1) + ( + 1) + (1999 + 1) + (199 + 1) + (19+ 1) - 5 = + + 2000 + 200 + 20 - 5 = - 5 = .3、此题已被删除。

4、解答:解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数。

389 + 387 + 383 + 385 + 384 + 386 + 388 = 390 × 7 - 1 - 3 - 7 - 5 - 6 - 4 = 2730 - 28 = 2702.解法2:也可以选380为基准数,则有389 + 387 + 383 + 385 + 384 + 386 + 388 = 380 × 7 + 9 + 7 + 3 + 5 + 4 + 6 + 8 = 2660 + 42 = 2702.5、解答:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数。

四年级奥数 速算与巧算(1)

四年级奥数 速算与巧算(1)

第1讲速算与巧算(一)【例1】计算9+99+999+9999+99999思路点拨:凑整(答案:111105)【例2】计算199999+19999+1999+199+19思路点拨:凑整(答案:222215)【例3】计算(1+3+5+...+1989)-(2+4+6+ (1988)思路点拨:配对、打包(答案:995)【例4】计算389+387+383+385+384+386+388思路点拨:基准数(答案:2702)【例5】计算(4942+4943+4938+4939+4941+4943)÷6思路点拨:基准数(答案:4941)【例6】计算54+99×99+45思路点拨:观察数的特征(答案:9900)【例7】计算9999×2222+3333×3334思路点拨:等积变形(答案:33330000)【例8】计算1999+999×999思路点拨:多9数的特征(答案:1000000)思路点拨:多9数的特征(答案:)巩固练习1:1.计算899998+89998+8998+898+88(答案:999980)2.计算799999+79999+7999+799+79(答案:888875)3.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)(答案:994)4.计算1-2+3-4+5-6+…+1991-1992+1993(答案:997)5.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推。

从1点到12点这12个小时内时钟共敲了多少下?(答案:78)6.求出从1→25的全体自然数之和。

(答案:325)7.计算1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101(答案:900)8.计算92+94+89+93+95+88+94+96+87(答案:828)9.计算(125×99+125)×16(答案:200000)10.计算3×999+3+99×8+8+2×9+2+9(答案:3829)11.计算999999×78053(答案:78052921947)12.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?(答案:11111111108888888889)13.已知被乘数是888…8,乘数是999…9,它们的积是多少?(答案:888…87111…12)。

小学四年级《速算与巧算》奥数试题及答案

小学四年级《速算与巧算》奥数试题及答案

小学四年级《速算与巧算》奥数试题及答案这一周,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。

这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。

例1:计算236×37×27分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。

例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。

236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764练习一计算下面各题:132×37×27 315×77×13 6666×6666例2:计算333×334+999×222分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。

333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000练习二计算下面各题:9999×2222+3333×3334 37×18+27×42 46×28+24×63例3:计算20012001×2002-20022002×2001分析与解答:这道题如果直接计算,显得比较麻烦。

根据题中的数的特点,如果把20012001变形为2001×10001,把20022002变形为2002×10001,那么计算起来就非常方便。

(完整版)四年级奥数专题速算与巧算

(完整版)四年级奥数专题速算与巧算

四年级奥数专题:速算与巧算【试题1】计算9+99+999+9999+99999【试题2】计算199999+19999+1999+199+19【试题3】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)【试题4】计算9999×2222+3333×3334【试题5】56×3+56×27+56×96-56×57+56【试题6】计算98766×98768-98765×98769四年级奥数专题:速算与巧算答案【解析1】在涉及所有数字都是9的计算中,常使用凑整法。

例如将999化成1000—1去计算。

这是小学数学中常用的一种技巧。

9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105【解析2】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。

不过这里是加1凑整。

(如199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225【分析3】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。

但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。

解:解法一、分组法(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)=1+1+1+…+1+1+1(500个1)=500解法二、等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500【分析4】此题如果直接乘,数字较大,容易出错。

四年级下册奥数-速算与巧算 全国通用 (含答案)

四年级下册奥数-速算与巧算   全国通用 (含答案)

速算与巧算计算(1)9+99+999+9999+99999 (2)489+487+485+484+486+488 (3)632-156-232 (4)128+186+72-86(5)248+(152-127)(6)325÷25(7)25×125×4×8 (8)(360+108)÷36(9)(450-75)÷15 (10)158×61÷79×3(11)123×96÷16 (12)200÷(25÷4)(13)19×25×64×125 (14)26×25(15)5×64×25×125×2009 (16)2004×25 (17)125×792 (18)125×16-111×9 (19)256×9999(20)5÷(7÷11)÷(11÷15)÷(15÷21)【答案】1.【解析】这四个加数分别接近10、100、1000、10000.在计算这类题目时,常使用减整法,例如将99转化为100-1.这是小学数学计算中常用的一种技巧.9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=111062.【解析】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数.489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=34023.【解析】在没有括号的算式里,如果只有第一级运算,计算时可根据减法的运算性质来做.632-156-232=632-232-156=400-156=2444.【解析】在没有括号的算式里,如果只有第一级运算,计算时可根据运算定律来做.128+186+72-86=128+72+186-86=(128+72)+(186-86)=200+100=3005.【解析】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号.计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号.248+(152-127)= 324124+97= 200+97= 2976.【解析】在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变.利用这一性质,可以使这道计算题简便.325÷25=(325×4)÷(25×4)= 1300÷100= 137.【解析】经过仔细观察可以发现:在这道连乘算式中,如果先把25与4相乘,可以得到100;同时把125与8相乘,可以得到1000;再把100与1000相乘就简便了.这就启发我们运用乘法交换律和结合律使计算简便.25×125×4×8=(25×4)×(125×8)= 1000008.【解析】两个数的和除以一个数,可以用这个数分别去除这两个数,再求出两个商的和.(360+108)÷36=360÷36+108÷36=10+3=139.【解析】两个数的差除以一个数,可以用这个数分别去除这两个数,再求出两个商的差.(450-75)÷15=450÷15-75÷15=30-5=2510.【解析】在乘除法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位置.158×61÷79×3=158÷79×61×3=2×61×3=36611.【解析】采用加括号或去括号的方法,使计算简便.括号前是乘号,添、去括号不变号.123×96÷16=123×(96÷16)=123×6=73812.【解析】采用加括号或去括号的方法,使计算简便.括号前是除号,添、去括号要变号.200÷(25÷4)=200÷25×4=8×4=3213.【解析】把64分成4×8×2,采用乘法结合律便可速算.19×25×64×125=(25×4)×(125×8)×(19×2)=100×1000×38=380000014.【解析】26不能被4整除,但26可以拆成6×4+2.26×25=(6×4+2)×25=6×4×25+2×25=600+50=65015.【解析】把64分成4×8×2,采用乘法结合律便可速算.5×64×25×125×2009=5×(2×4×8)×25×125×2009=(5×2)×(4×25)×(8×125)×2009=10×100×1000×2009=200900000016.【解析】把2004拆成2000+4,便可简便计算.2004×25=(2000+4)×25=2000×25+4×25=50000+100=5010017.【解析】把792拆成800-8,便可简便计算.125×792=125×(800-8)=125×800-125×8=100000-1000=9900018.【解析】根据乘法凑整原则可求125×16-111×9=125×8×2-999=2000-(1000-1)=2000-1000+1=100119.【解析】把9999拆成10000-1,便可简便计算.256×9999=256×(10000-1)=2560000-256=255974420.【解析】采用加括号或去括号的方法,使计算简便.括号前是除号,添、去括号要变号.5÷(7÷11)÷(11÷15)÷(15÷21)=5÷7×11÷11×15÷15×21=5×(11÷11)×(15÷15)×(21÷7)=5×3=15。

四年级奥数题及答案:速算与巧算

四年级奥数题及答案:速算与巧算

四年级奥数题及答案:速算与巧算
四年级奥数题及答案:速算与巧算
速算与巧算
(4942+4943+4938+4939+4941+4943)÷6
查看答案
完整版下载:奥数专题:计数问题试题及详解.doc
解答:认真观察可知此题关键是求括号中6个相接近的.数之和,故可选4940为基准数.
(4942+4943+4938+4939+4941+4943)÷6
=(4940×6+2+3-2-1+1+3)÷6
=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运用了除法中的巧算方法)
=4940×6÷6+6÷6
=4940+1
=4941.
计算:(1234+2341+3421+4123)÷(1+2+3+4)的值是多少?
解答:(第五届希望杯2试试题)在1234,2341,3412,4123中,数字1,2,3,4分别在各个数位上出现过一次,(1234+2341+3421+4123)÷(1+2+3+4)=1111这是属于位值原理的题目,从题目我们观察到数字1,2,3,4分别在各个数位上出现过一次,在接着类题目的时候我们可以把所有的数加起来然后除以各个数字之和。

四年级奥数《速算与巧算》专项练习题及答案

四年级奥数《速算与巧算》专项练习题及答案

四年级奥数《速算与巧算》专项练习题及答案1. 数的速算法2. 快速计算3. 小学奥数加减乘除练习4. 常见乘法口诀5. 方便的除法计算技巧6. 巧妙的加减法运算7. 优化的百分数计算方法8. 实用的几何图形计算技巧9. 实战的生活中的计算题目10. 视觉记忆的速算训练答案:1. 数的速算法答案:速算法指的是运用一些简便的技巧与方法来快速计算的方法。

例如用9段样条线来表示数字1,将数字的表达与视觉形象结合在一起,可以达到快速计算的效果。

2. 快速计算答案:快速计算技巧包括了加减乘除各个方面,如加法有凑数法、抵数法等;减法有加倍数法、分解数法等;乘法有竖式运算方法,交叉相乘计算法等;除法有竖式运算法、分解分子分母法等。

3. 小学奥数加减乘除练习答案:加减乘除是小学奥数的基础,掌握了这些基础的数学运算能力,才能在学习高阶数学知识时更加游刃有余。

可以通过刻意而有目的地训练来提高计算速度和准确度。

4. 常见乘法口诀答案:小学奥数中最为基础的技能之一就是乘法口诀,通过熟练掌握乘法口诀,可以极大地方便我们的计算。

如:1×8=8,2×8=16,3×8=24,8的下一个是9,所以 4×8=32,5×8=40,等等。

5. 方便的除法计算技巧答案:除法相对而言更为复杂一些,但我们可以通过一些简单易行的技巧来提高计算效率。

如:除法的大小关系可以和乘法相互转换,而某些数字的约数和倍数也可以有助于除法的计算。

6. 巧妙的加减法运算答案:加减法其实是一种递归的过程。

一旦我们掌握了这些技巧,就可以通过这些技巧来递归计算出较为复杂的问题。

例如,在求两个小数的相加时,我们可以把两个小数的小数位数统一,然后相加即可。

7. 优化的百分数计算方法答案:百分数在日常生活中也很常见,要精通百分数计算,通常需要对常用的百分数进行速算。

例如:50%等于1/2,25%等于1/4,10%等于1/10,更高级的百分数转化可以运用推导法来操作。

速算与巧算四年级奥数习题及答案

速算与巧算四年级奥数习题及答案

速算与巧算四年级奥数习题及答案速算与巧算四年级奥数习题及答案奥数对于开拓学生的`思维能力,动脑能力有着非常大的帮助,店铺准备了一些四年级奥数习题及答案,快来练习一下吧!习题1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984++6+4+2)-(1+3+5++1983+1985+1987)4.计算12+34+56++19911992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时内时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算1000+999998997+996+995994993++108+107106105+104+10 31021018.计算92+94+89+93+95+88+94+96+879.计算(12599+125)1610.计算 3999+3+998+8+29+2+911.计算9999997805312.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?习题解答1.利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984++6+4+2)-(1+3+5++1983+1985+1987)=1988+1986+1984++6+4+2-1-3-5-1983-1985-1987=(1988-1987)+(1986-1985)++(6-5)+(4-3)+(2-1)=994.4.1-2+34+5-6++1991-1992+1993=1+(3-2)+(5-4)++(1991-1990)+(1993-1992)= 1+1996=997.5.1+2+3+4+5+6+7+8+9+10+11+12=136=78(下).6.1+2+3++24+25=(1+25)+(2+24)+(3+23)++(11+15)+(12+14)+13=2612+13=325.7.解法1:1000+999998997+996+995994-993++108+107106105+104+103102101=(1000+999998997)+( 996+995994-993)++(108+107106105)+(104+103102101) 解法 2:原式=(1000998)+(999997)+(104102)+(103101)=2450=900.解法 3:原式=1000+(999998997+996)+(995994-993+992)++(107106105+104)+(103102101+100)-100=1000100=900.9.(12599+125)16=125(99+1)16= 12510082=12581002=200000.10.3999+3+998+8+29+2+9= 3(999+1)+8(99+1)+2(9+1)+9=31000+8100+210+9=3829.11.99999978053=(10000001)78053=7805300000078053=78052921947.12.11111111119999999999=1111111111(100000000001)=111111111100000000001111111111 =11111111108888888889.这个积有10个数字是奇数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档