微分方程及其分类
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论的基本方法是一样的.
两个自变量(x, y)的二阶线性偏微分方程所具有的普遍形式为
(10.2.1) 其中 为 的已知函数.
定理10.2.1 如果
是方程
(10.2.2)
的一般积分,则
是方程
(10.2.3)
的一个特解.
在具体求解方程(10.2.10)时,需要分三种情况讨论判别式
1. 当判别式 以求得两个实函数解
3.微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数。
例2 判断下列方程是否为微分方程?若是,是几阶
的微分方程?
(1) y x 2 y sinx
(3) y y 0
(2) xydx (1 x 2 )dy 0
(4) y 3 y x 1
时,从方程(10.2.10)可
也就是说,偏微分方程(10.2.ቤተ መጻሕፍቲ ባይዱ)有两条实的特征线.于是,令
即可使得
.同时,根据(10.2.4)式,就可以断定
.所以,方程(10.2.6) 即为
(10.2.4)
或者进一步作变换
于是有
所以
又可以进一步将方程(10.2.11)化为
这种类型的方程称为双曲型方程.我们前面建立的波动方 程就属于此类型. 2.当判别式 时:这时方程
可以进一步化简.下面按三种类型分别介绍化简的方法
1.双曲型
对于下列含常系数的第一种标准形式的双曲型标准方程还 可进一步化简
注:上式中用小写字母 大写字母代表某函数区别开来, 例如
代表常系数,以便与 .为了化简,
我们不妨令
从而有
(10.4.2)
其中
由第二种标准形式的双曲型偏微分方程(含常系数)可以进 一步化简
注:上式中的“*”号不代表共轭,仅说明是另外的函数。如
与
是两个不同的函数。
2.抛物型偏微分方程
因为抛物型偏微分方程的判别式 线是一族实函数曲线. 其特征方程的解为
,所以特征曲
(10.3.5)
因此令 进行自变量变换,则原偏微分方程变为
(10.3.6)
上式称为抛物型偏微分方程的标准形式.
3.椭圆型偏微分方程
一、微分方程的概念
为了便于阐述微分方程的有关概念,先看下面例子:
例1 一曲线通过点 (1, 2)
,且在该曲线上任一点
M ( x, y ) 切线的斜率为 2 x ,求这曲线的方程。
解
设所求曲线为 y y( x )。则有 y 2 x
y x2 C 对上式两边积分有
由于所求曲线通过点 (1, 2) 即满 足 y
1.双曲型偏微分方程
因为双曲型方程对应的判别式
所以特征曲线是两族不同的实函数曲线,
设特征方程的解为
令
(10.3.2)
进行自变量变换,则原偏微分方程变为下列形式
(10.3.3) 上式称为双曲型偏微分方程的第一种标准形式,再作变量 代换,令
或
则偏微分方程又变为
(10.3.4) 上式称为双曲型偏微分方程的第二种形式.
泊松(Poisson)方程和Helmholtz 方程都属于这种类型. 综上所述,要判断二阶线性偏微分方程属于何种类型,只
需讨论判别式 即可.
10.3 二阶线性偏微分方程标准化
对于二阶线性偏微分方程
(10.3.1) 若判别式为 线性偏微分方程分为三类: ,则二阶
时,方程称为双曲型;
时,方程称为抛物型; 时,方程称为椭圆型;
1 C1 , 2
因此方程满足初始条件的特解为
1 y sin2 x cos 2 x 2
二阶线性偏微分方程的分类
本章将介绍二阶线性偏微分方程的基本概念、分类方
法和偏微分方程的标准化. 特别对于常系数的二阶线性偏
微分方程的化简方法也进行了详细讨论,这对后面的偏微
分方程求解是十分有用的.
解
dy 2C 1 cos 2 x 2C 2 sin2 x, dx
d2y dx
2
4C1 sin2 x 4C 2 cos 2 x
代入原方程 ,有
4C1 sin2 x 4C 2 cos2 x 4C1 sin2 x 4C 2 cos2 x 0.
故函数 y C1 sin2 x C 2 cos2 x, 是原方程的解。
确定通解中的任意常数的附加条件。 5.微分方程解的几何意义
通解的图象:
特解的图象:
积分曲线族.
微分方程的积分曲线.
d2y 4y 0 2 dx
验证: y C1 sin2 x C 2 cos2 x 是 例3 的解, 并求满足初始条件 y x 0 0 , y x 0 1 的特解.
(10.4.3)
式中
均为常系数.若令
(10.4.4)
则有 (10.4.5)
其中
2.抛物型
对于含常系数的抛物型偏微分标准方程(含常系数)
(10.4.6)
还可以进一步化简.上式中小写字母
均为常系数.
为了化简,不妨令
从而有
(10.4.7)
3.椭圆型
对于下列第一种标准形式的椭圆型标准方程(含常系数)
(10.4.8)
) 2 x 2 1 (5) x( y
解 (1)是,1阶; (3)是,2阶; (5)是,1阶;
(6) y 3 y 2 x 4
3
(2)是,1阶; (4)是,3阶; (6)不是。
4.微分方程的解 任何代入微分方程后使微分方程恒成立的函数。 (1)微分方 程的通解 如果在微分方程的解中,所含的独立的常数的个数与 微分方程的阶数相同,这样的解就叫微分方程的通解 (2)微分方程的特解 当微分方程的通解中各任意常数都取定值时所得的解 (3) 微分方程的初始条件
又因为这个解中含有两个独立的任意常数 C 1 ,C 2 , 而方程为二阶微分方程,所以
函数 y C1 sin2 x C 2 cos2 x, 是原方程的通解。
把条件y x 0 0 代入 y C1 sin2 x C 2 cos2 x, 得
C2 1
把条件y x 0 1 代入 y 2C1 cos2 x 2C 2 sin2 x, 得
1.齐次的线性偏微分方程的解有以下特性:
(1).当 (2)若 也是方程的解; 2.非齐次的线性偏微分方程的解具有如下特性: 为方程的解时,则 为方程的解,则 也为方程的解;
(1)若
为非齐次方程的特解, 为非齐次方程的通解;
为齐次方程的通解,则
(2) 若
则
3.线性偏微分方程的叠加原理 需要指出:线性偏微分方程具有一个非常重要的特性,称为叠
微分方程及其解法
一、 微分方程的概念 二、二阶线性偏微分方程的分类
函数是研究客观事物运动规律的一个重要工具 ,因此寻求客观事物运动变化过程中的函数关系是 十分重要的,然而,在许多问题中,往往不能直接 找出所需的函数关系。但根据问题所给的条件,有
时可以列出含有要找的函数及其导数的关系式,这
样的关系式就是所谓的微分方程。
椭圆型偏微分方程的判别式 一组共轭复变函数族.其特征方程的解为 ,所以特征曲线是
(10.3.7) 若令
(10.3.8)
作自变量变换,则偏微分方程变为
(10.3.9) 上式称为椭圆型偏微分方程的标准形式.
10.4 二阶线性常系数偏微分方程的进一步 化简
如果二阶偏微分方程的系数是常数,则标准形式的方程还
则 C 1. 所求曲线方程为 y x 1 .
2
x 1
2
1.微分方程的定义 凡含有未知函数以及未知函数的导数(或微分)的方 程叫微分方程。 例 y xy ,
y 2 y 3 y e x ,
(t 2 x)dt xdx 0.
2.微分方程的分类
未知函数是一元函数的 微分方程。 常微分方程: 偏微分方程: 未知函数是多元函数的 微分方程。
10.2 数学物理方程的分类
在数学物理方程的建立过程中,我们主要讨论了三种类型的
偏微分方程:波动方程;热传导方程;稳定场方程.这三类方
程描写了不同物理现象及其过程,后面我们将会看到它们的解
也表现出各自不同的特点. 我们在解析几何中知道对于二次实曲线
其中
为常数,且设
则当
时,上述二次曲线分别为双
曲线、抛物线和椭圆.受此启发,下面我们来对二阶线性偏 微分方程进行分类. 下面主要以含两个自变量的二阶线性偏微分方程为例,进行 理论分析.而对于更多个自变量的情形尽管要复杂一些,但讨
(10.2.10)一定有重根
因而只能求得一个解,例如,
,特征线为
一条实特征线.作变换
就可以使
由(10.2.4)式可以得出,一定有
,故可推出
.这样就可以任意选取另一个变换,
只要它和
彼此独立,即雅可俾式
即可.这样,方程(10.2.6)就化为
此类方程称为抛物型方程.热传导(扩散)方程就属于 这种类型.
3. 当判别式
时:这时,可以重复上
和
面的讨论,只不过得到的
是一
对共轭的复函数,或者说,偏微分方程(10.2.1)的两条特征线是
一对共轭复函数族.于是
是一对共轭的复变量.进一步引进两个新的实变量
于是
所以
方程(10.2.11)又可以进一步化为
这种类型的方程称为椭圆型方程.拉普拉斯(Laplace)方程、
还可以进一步进行化简.上式中小写字母的 为常系数.
为了化简,不妨令
从而有
(10.4.9)
其中
10.5 线性偏微分方程解的特征
含有两个自变量的线性偏微分方程的一般形式也可以写成下 面的形式: 其中 L 是二阶线性偏微分算符,G是x,y的函数. 线性偏微分算符有以下两个基本特征:
其中
均为常数.进一步有如下结论:
加原理,即若
是方程
(其中 L 是二阶线性偏微分算符)的解.如果级数
收敛,且二阶偏导数存在(其中
为任意常数),则 的解(当然要假定这个方
一定是方程 程右端的级数是收敛的).