第二章.半导体测试基础

合集下载

半导体测试原理

半导体测试原理

半导体测试公司简介Integrated Device Manufacturer (IDM):半导体公司,集成了设计和制造业务。

IBM:(International Business Machines Corporation)国际商业机器公司,总部在美国纽约州阿蒙克市。

Intel:英特尔,全球最大的半导体芯片制造商,总部位于美国加利弗尼亚州圣克拉拉市。

Texas Instruments:简称TI,德州仪器,全球领先的数字信号处理与模拟技术半导体供应商。

总部位于美国得克萨斯州的达拉斯。

Samsung:三星,韩国最大的企业集团,业务涉及多个领域,主要包括半导体、移动电话、显示器、笔记本、电视机、电冰箱、空调、数码摄像机等。

STMicroelectronics:意法半导体,意大利SGS半导体公司和法国Thomson半导体合并后的新企业,公司总部设在瑞士日内瓦。

是全球第五大半导体厂商。

Strategic Outsourcing Model(战略外包模式):一种新的业务模式,使IDM厂商外包前沿的设计,同时保持工艺技术开发Motorola:摩托罗拉。

总部在美国伊利诺斯州。

是全球芯片制造、电子通讯的领导者。

ADI:(Analog Devices, Inc)亚德诺半导体技术公司,公司总部设在美国,高性能模拟集成电路(IC)制造商,产品广泛用于模拟信号和数字信号处理领域。

Fabless:是半导体集成电路行业中无生产线设计公司的简称。

专注于设计与销售应用半导体晶片,将半导体的生产制造外包给专业晶圆代工制造厂商。

一般的fabless公司至少外包百分之七十五的晶圆生产给别的代工厂。

Qualcomm:高通,公司总部在美国。

以CDMA(码分多址)数字技术为基础,开发并提供富于创意的数字无线通信产品和服务。

如今,美国高通公司正积极倡导全球快速部署3G网络、手机及应用。

Broadcom:博通,总部在美国,全球领先的有线和无线通信半导体公司。

半导体测试与表征技术基础[详细讲解]

半导体测试与表征技术基础[详细讲解]

半导体测试与表征技术基础第一章概述(编写人陆晓东)第一节半导体测试与表征技术概述主要包括:发展历史、现状和在半导体产业中的作用第二节半导体测试与表征技术分类及特点主要包括:按测试与表征技术的物理效应分类、按芯片生产流程分类及测试对象分类(性能、材料、制备、成分)等。

第三节半导体测试与表征技术的发展趋势主要包括:结合自动化和计算机技术的发展,重点论述在线测试、结果输出和数据处理功能的变化;简要介绍最新出现的各类新型测试技术。

第二章半导体工艺质量测试技术第一节杂质浓度分布测试技术(编写人:吕航)主要介绍探针法,具体包括:PN结结深测量;探针法测量半导体扩散层的薄层电阻(探针法测试电阻率的基本原理、四探针法的测试设备、样品制备及测试过程注意事项、四探针测试的应用和实例);要介绍扩展电阻测试系统,具体包括:扩展电阻测试的基本原理、扩展电阻的测试原理、扩展电阻测试系统、扩展电阻测试的样品、扩展电阻法样品的磨角、扩展电阻法样品的制备、扩展电阻测试的影响因素、扩展电阻法测量过程中应注意的问题、扩展电阻法测量浅结器件结深和杂质分布时应注意的问题、扩展电阻测试的应用和实例。

第二节少数载流子寿命测试技术(编写人:钟敏)主要介绍直流光电导衰退法、高频光电导衰退法,具体包括:非平衡载流子的产生、非平衡载流子寿命、少数载流子寿命测试的基本原理和技术、少数载流子寿命的测试。

以及其它少子寿命测试方法,如表面光电压法、少子脉冲漂移法。

第三节表面电场和空间电荷区测量(编写人:吕航)主要包括:表面电场和空间电荷区的测量,金属探针法测量PN结表面电场的分布、激光探针法测试空间电荷区的宽度;容压法测量体内空间电荷区展宽。

第四节杂质补偿度的测量(编写人:钟敏)包括:霍尔效应的基本理论、范德堡测试技术、霍尔效应的测试系统、霍尔效应测试仪的结构、霍尔效应仪的灵敏度、霍尔效应的样品和测试、霍尔效应测试的样品结构、霍尔效应测试的测准条件、霍尔效应测试步骤、霍尔效应测试的应用和实例、硅的杂质补偿度测量、znO的载流子浓度、迁移率和补偿度测量、硅超浅结中载流子浓度的深度分布测量第五节氧化物、界面陷阱电荷及氧化物完整性测量(编写人:钟敏)包括:固定氧化物陷阱和可动电荷、界面陷阱电荷、氧化物完整性测试技术等。

《The-Fundamentals-Of-Digital-Semiconductor-Testing》-中文版C

《The-Fundamentals-Of-Digital-Semiconductor-Testing》-中文版C

图 2-1.通用测试系统内部结构
DC 子系统包含有 DPS(Device Power Supplies,器件供电单元) 、RVS(Reference Voltage Supplies,参考电压源) 、PMU(Precision Measurement Unit,精密测量单元) 。DPS 为被测器件 的电源管脚提供电压和电流;RVS 为系统内部管脚测试单元的驱动和比较电路提供逻辑 0 和逻 辑 1 电平提供参考电压,这些电压设置包括:VIL、VIH、VOL 和 VOH。性能稍逊的或者老一 点的测试系统只有有限的 RVS,因而同一时间测试程序只能提供少量的输入和输出电平。这里 先提及一个概念, “tester pin” ,也叫做“tester channel” ,它是一种探针,和 Loadboard 背面的 Pad 接触为被测器件的管脚提供信号。当测试机的 pins 共享某一资源,比如 RVS,则此资源称 为“Shared Resource” 。一些测试系统称拥有“per pin”的结构,就是说它们可以为每一个 pin 独立地设置输入及输出信号的电平和时序。 DC 子系统还包含 PMU(精密测量单元,Precision Measurement Unit)电路以进行精确的 DC 参数测试,一些系统的 PMU 也是 per pin 结构,安装在测试头(Test Head)中。 (PMU 我们 将在后面进行单独的讲解) 每个测试系统都有高速的存储器——称为“pattern memory”或“vector memory”——去存 储测试向量(vector 或 pattern) 。Test pattern(注:本人驽钝,一直不知道这个 pattern 的准确翻 译,很多译者将其直译为“模式” ,我认为有点欠妥,实际上它就是一个二维的真值表;将“test pattern”翻译成“测试向量”吧,那“vector”又如何区别?呵呵,还想听听大家意见)描绘了 器件设计所期望的一系列逻辑功能的输入输出的状态,测试系统从 pattern memory 中读取输入 信号或者叫驱动信号(Drive)的 pattern 状态,通过 tester pin 输送给待测器件的相应管脚;再 从器件输出管脚读取相应信号的状态,与 pattern 中相应的输出信号或者叫期望(Expect)信号 进行比较。进行功能测试时,pattern 为待测器件提供激励并监测器件的输出,如果器件输入与 期望不相符,则一个功能失效产生了。有两种类型的测试向量——并行向量和扫描向量,大多 数测试系统都支持以上两种向量。 Timing 分区存储有功能测试需要用到的格式、掩盖(mask)和时序设置等数据和信息,信 号格式(波形)和时间沿标识定义了输入信号的格式和对输出信号进行采样的时间点。Timing 分区从 pattern memory 那里接收激励状态( “0”或者“1” ) ,结合时序及信号格式等信息,生成 格式化的数据送给电路的驱动部分,进而输送给待测器件。 Special Tester Options 部分包含一些可配置的特殊功能,如向量生成器、存储器测试,或者 模拟电路测试所需要的特殊的硬件结构。 The Systen Clocks 为测试系统提供同步的时钟信号,这些信号通常运行在比功能测试要高 得多的频率范围;这部分还包括许多测试系统都包含的时钟校验电路。 其他的小模块这里不再赘述,大家基本上可以望文生义,呵呵。

ic半导体测试基础(中文版)

ic半导体测试基础(中文版)

本章节我们来说说最基本的测试——开短路测试(Open-Short Test),说说测试的目的和方法。

一.测试目的Open-Short Test也称为ContinuityTest或Contact Test,用以确认在器件测试时所有的信号引脚都与测试系统相应的通道在电性能上完成了连接,并且没有信号引脚与其他信号引脚、电源或地发生短路。

测试时间的长短直接影响测试成本的高低,而减少平均测试时间的一个最好方法就是尽可能早地发现并剔除坏的芯片。

Open-Short测试能快速检测出DUT是否存在电性物理缺陷,如引脚短路、bond wire缺失、引脚的静电损坏、以及制造缺陷等。

另外,在测试开始阶段,Open-Short测试能及时告知测试机一些与测试配件有关的问题,如ProbeCard或器件的Socket没有正确的连接。

二.测试方法Open-Short测试的条件在器件的规格数或测试计划书里通常不会提及,但是对大多数器件而言,它的测试方法及参数都是标准的,这些标准值会在稍后给出。

基于PMU的Open-Short测试是一种串行(Serial)静态的DC测试。

首先将器件包括电源和地的所有管脚拉低至“地”(即我们常说的清0),接着连接PMU到单个的DUT管脚,并驱动电流顺着偏置方向经过管脚的保护二极管——一个负向的电流会流经连接到地的二极管(图3-1),一个正向的电流会流经连接到电源的二极管(图3-2),电流的大小在100uA到500uA之间就足够了。

大家知道,当电流流经二极管时,会在其P-N 结上引起大约0.65V的压降,我们接下来去检测连接点的电压就可以知道结果了。

既然程序控制PMU去驱动电流,那么我们必须设置电压钳制,去限制Open管脚引起的电压。

Open-Short测试的钳制电压一般设置为3V——当一个Open的管脚被测试到,它的测试结果将会是3V。

串行静态Open-Short测试的优点在于它使用的是DC测试,当一个失效(failure)发生时,其准确的电压测量值会被数据记录(datalog)真实地检测并显示出来,不管它是Open引起还是Short导致。

ic半导体测试基础(中文版)

ic半导体测试基础(中文版)

本章节我们来说说最基本的测试——开短路测试(Open-Short Test),说说测试的目的和方法。

一.测试目的Open-Short Test也称为ContinuityTest或Contact Test,用以确认在器件测试时所有的信号引脚都与测试系统相应的通道在电性能上完成了连接,并且没有信号引脚与其他信号引脚、电源或地发生短路。

测试时间的长短直接影响测试成本的高低,而减少平均测试时间的一个最好方法就是尽可能早地发现并剔除坏的芯片。

Open-Short测试能快速检测出DUT是否存在电性物理缺陷,如引脚短路、bond wire缺失、引脚的静电损坏、以及制造缺陷等。

另外,在测试开始阶段,Open-Short测试能及时告知测试机一些与测试配件有关的问题,如ProbeCard或器件的Socket没有正确的连接。

二.测试方法Open-Short测试的条件在器件的规格数或测试计划书里通常不会提及,但是对大多数器件而言,它的测试方法及参数都是标准的,这些标准值会在稍后给出。

基于PMU的Open-Short测试是一种串行(Serial)静态的DC测试。

首先将器件包括电源和地的所有管脚拉低至“地”(即我们常说的清0),接着连接PMU到单个的DUT管脚,并驱动电流顺着偏置方向经过管脚的保护二极管——一个负向的电流会流经连接到地的二极管(图3-1),一个正向的电流会流经连接到电源的二极管(图3-2),电流的大小在100uA到500uA之间就足够了。

大家知道,当电流流经二极管时,会在其P-N结上引起大约0.65V的压降,我们接下来去检测连接点的电压就可以知道结果了。

既然程序控制PMU去驱动电流,那么我们必须设置电压钳制,去限制Open管脚引起的电压。

Open-Short测试的钳制电压一般设置为3V——当一个Open的管脚被测试到,它的测试结果将会是3V。

串行静态Open-Short测试的优点在于它使用的是DC测试,当一个失效(failure)发生时,其准确的电压测量值会被数据记录(datalog)真实地检测并显示出来,不管它是Open引起还是Short导致。

半导体C-V测量基础(精)

半导体C-V测量基础(精)

半导体C-V测量基础吉时利仪器公司C-V测量为人们提供了有关器件和材料特征的大量信息通用测试电容-电压(C-V)测试广泛用于测量半导体参数,尤其是MOSCAP和MOSFET 结构。

此外,利用C-V测量还可以对其他类型的半导体器件和工艺进行特征分析,包括双极结型晶体管(BJT)、JFET、III-V族化合物器件、光伏电池、MEMS器件、有机TFT显示器、光电二极管、碳纳米管(CNT)和多种其他半导体器件。

这类测量的基本特征非常适用于各种应用和培训。

大学的研究实验室和半导体厂商利用这类测量评测新材料、新工艺、新器件和新电路。

C-V测量对于产品和良率增强工程师也是极其重要的,他们负责提高工艺和器件的性能。

可靠性工程师利用这类测量评估材料供货,监测工艺参数,分析失效机制。

采用一定的方法、仪器和软件,可以得到多种半导体器件和材料的参数。

从评测外延生长的多晶开始,这些信息在整个生产链中都会用到,包括诸如平均掺杂浓度、掺杂分布和载流子寿命等参数。

在圆片工艺中,C-V测量可用于分析栅氧厚度、栅氧电荷、游离子(杂质)和界面阱密度。

在后续的工艺步骤中也会用到这类测量,例如光刻、刻蚀、清洗、电介质和多晶硅沉积、金属化等。

当在圆片上完全制造出器件之后,在可靠性和基本器件测试过程中可以利用C-V测量对阈值电压和其他一些参数进行特征分析,对器件性能进行建模。

半导体电容的半导体电容的物理特性MOSCAP结构是在半导体制造过程中形成的一种基本器件结构(如图1所示)。

尽管这类器件可以用于真实电路中,但是人们通常将其作为一种测试结构集成在制造工艺中。

由于这种结构比较简单而且制造过程容易控制,因此它们是评测底层工艺的一种方便的方法。

金属二氧化硅电容计(交流信号)P型图1. P型衬底上形成的MOSCAP结构的C-V测量电路图1中的金属/多晶层是电容的一极,二氧化硅是绝缘层。

由于绝缘层下面的衬底是一种半导体材料,因此它本身并不是电容的另一极。

IC测试经典课程

IC测试经典课程

IC测试经典课程第⼀章.认识半导体和测试设备本章节包括以下内容,⾃动测试设备(ATE)的总体认识模拟、数字和存储器测试等系统的介绍负载板(Load boards)、探测机(Probers)、机械⼿(Handlers)和温度控制单元(Temperature units)⼆、⾃动测试设备随着集成电路复杂度的提⾼,其测试的复杂度也随之⽔涨船⾼,⼀些器件的测试成本甚⾄占到了芯⽚成本的⼤部分。

⼤规模集成电路会要求⼏百次的电压、电流和时序的测试,以及百万次的功能测试步骤以保证器件的完全正确。

要实现如此复杂的测试,靠⼿⼯是⽆法完成的,因此要⽤到⾃动测试设备(ATE,Automated Test Equipment)。

ATE是⼀种由⾼性能计算机控制的测试仪器的集合体,是由测试仪和计算机组合⽽成的测试系统,计算机通过运⾏测试程序的指令来控制测试硬件。

测试系统最基本的要求是可以快速且可靠地重复⼀致的测试结果,即速度、可靠性和稳定性。

为保持正确性和⼀致性,测试系统需要进⾏定期校验,⽤以保证信号源和测量单元的精度。

当⼀个测试系统⽤来验证⼀⽚晶圆上的某个独⽴的Die的正确与否,需要⽤Probe Card来实现测试系统和Die之间物理的和电⽓的连接,⽽Probe Card和测试系统内部的测试仪之间的连接则通过⼀种叫做“Load board”或“Performance board”的接⼝电路板来实现。

在CP测试中,Performance board和Probe card ⼀起使⽤构成回路使电信号得以在测试系统和Die之间传输。

当Die封装出来后,它们还要经过FT测试,这种封装后的测试需要⼿⼯将⼀个个这些独⽴的电路放⼊负载板(Load board)上的插座(Socket)⾥,这叫⼿⼯测试(hand test)。

⼀种快速进⾏FT测试的⽅法是使⽤⾃动化的机械⼿(Handler),机械⼿上有⼀种接触装置实现封装引脚到负载板的连接,这可以在测试机和封装内的Die之间提供完整的电路。

半导体测试基础

半导体测试基础

试基础——术语括一下内容:测试目的测试术语测试工程学基本原则基本测试系统组成PMU(精密测量单元)及引脚测试卡样片及测试程序术语半导体测试的专业术语很多,这里只例举部分基础的:被实施测试的半导体器件通常叫做DUT(Device Under Test,我们常简称“被测器件”),或者叫UUT(Unit Unde 我们来看看关于器件引脚的常识,数字电路期间的引脚分为“信号”、“电源”和“地”三部分。

脚,包括输入、输出、三态和双向四类,输入:在外部信号和器件内部逻辑之间起缓冲作用的信号输入通道;输入管脚感应其上的电压并将它转化为内部逻辑输出:在芯片内部逻辑和外部环境之间起缓冲作用的信号输出通道;输出管脚提供正确的逻辑“0”或“1”的电压,并流)。

三态:输出的一类,它有关闭的能力(达到高电阻值的状态)。

双向:拥有输入、输出功能并能达到高阻态的管脚。

脚,“电源”和“地”统称为电源脚,因为它们组成供电回路,有着与信号引脚不同的电路结构。

VCC:TTL器件的供电输入引脚。

VDD:CMOS器件的供电输入引脚。

VSS:为VCC或VDD提供电流回路的引脚。

GND:地,连接到测试系统的参考电位节点或VSS,为信号引脚或其他电路节点提供参考0电位;对于单一供电的器程序体测试程序的目的是控制测试系统硬件以一定的方式保证被测器件达到或超越它的那些被具体定义在器件规格书里的程序通常分为几个部分,如DC测试、功能测试、AC测试等。

DC测试验证电压及电流参数;功能测试验证芯片内AC测试用以保证芯片能在特定的时间约束内完成逻辑操作。

控制测试系统的硬件进行测试,对每个测试项给出pass或fail的结果。

Pass指器件达到或者超越了其设计规格;Fail 不能用于最终应用。

测试程序还会将器件按照它们在测试中表现出的性能进行相应的分类,这个过程叫做“Binning 个微处理器,如果可以在150MHz下正确执行指令,会被归为最好的一类,称之为“Bin 1”;而它的某个兄弟,只能比不上它,但是也不是一无是处应该扔掉,还有可以应用的领域,则也许会被归为“Bin 2”,卖给只要求100M 还要有控制外围测试设备比如Handler 和Probe 的能力;还要搜集和提供摘要性质(或格式)的测试结果或数据,给测试或生产工程师,用于良率(Yield)分析和控制。

ic半导体测试基础(中文版)

ic半导体测试基础(中文版)

本章节我们来说说最基本的测试——开短路测试(Open-Short Test),说说测试的目的和方法。

一.测试目的Open-Short Test也称为ContinuityTest或Contact Test,用以确认在器件测试时所有的信号引脚都与测试系统相应的通道在电性能上完成了连接,并且没有信号引脚与其他信号引脚、电源或地发生短路。

测试时间的长短直接影响测试成本的高低,而减少平均测试时间的一个最好方法就是尽可能早地发现并剔除坏的芯片。

Open-Short测试能快速检测出DUT是否存在电性物理缺陷,如引脚短路、bond wire缺失、引脚的静电损坏、以及制造缺陷等。

另外,在测试开始阶段,Open-Short测试能及时告知测试机一些与测试配件有关的问题,如ProbeCard或器件的Socket没有正确的连接。

二.测试方法Open-Short测试的条件在器件的规格数或测试计划书里通常不会提及,但是对大多数器件而言,它的测试方法及参数都是标准的,这些标准值会在稍后给出。

基于PMU的Open-Short测试是一种串行(Serial)静态的DC测试。

首先将器件包括电源和地的所有管脚拉低至“地”(即我们常说的清0),接着连接PMU到单个的DUT管脚,并驱动电流顺着偏置方向经过管脚的保护二极管——一个负向的电流会流经连接到地的二极管(图3-1),一个正向的电流会流经连接到电源的二极管(图3-2),电流的大小在100uA到500uA之间就足够了。

大家知道,当电流流经二极管时,会在其P-N结上引起大约0.65V的压降,我们接下来去检测连接点的电压就可以知道结果了。

既然程序控制PMU去驱动电流,那么我们必须设置电压钳制,去限制Open管脚引起的电压。

Open-Short测试的钳制电压一般设置为3V——当一个Open的管脚被测试到,它的测试结果将会是3V。

串行静态Open-Short测试的优点在于它使用的是DC测试,当一个失效(failure)发生时,其准确的电压测量值会被数据记录(datalog)真实地检测并显示出来,不管它是Open引起还是Short导致。

半导体测试基础

半导体测试基础

第1章半导体测试基础第1节基础术语描述半导体测试得专业术语很多,这里只例举部分基础得:1.DUT需要被实施测试得半导体器件通常叫做DUT (De viceUnderTest,我们常简称“被测器件”),或者叫u UT(Unit Unde r Test) <>首先我们来瞧瞧关于器件引脚得常识,数字电路期间得引脚分为“信号”、“电源”与“地”三部分。

信号脚,包括输入、输出、三态与双向四类,输入:在外部信号与器件内部逻辑之间起缓冲作用得信号输入通道;输入管脚感应其上得电压并将它转化为内部逻辑识别得“0"与电平.输出:在芯片内部逻辑与外部环境之间起缓冲作用得信号输岀通道;输出管脚提供正确得逻辑“ o ”或“r得电压,并提供合适得驱动能力(电流)。

三态:输岀得一类,它有关闭得能力(达到高电阻值得状态).双向:拥有输入、输出功能并能达到高阻态得管脚。

电源脚,“电源”与“地”统称为电源脚,因为它们组成供电回路,有着与信号引脚不同得电路结构。

VCC: TTL器件得供电输入引脚.VDD:CMOS器件得供电输入引脚。

VSS:为VCC或V D D提供电流回路得引脚。

GND:地,连接到测试系统得参考电位节点或VSS,为信号引脚或其她电路节点提供参考0电位;对于单一供电得器件,我们称VSS为GND・2.测试程序半导体测试程序得口得就是控制测试系统硬件以一定得方式保证被测器件达到或超越它得那些被具体定义在器件规格书里得设计指标。

测试程序通常分为儿个部分,如DC测试、功能测试、AC测试等。

DC测试验证电圧及电流参数;功能测试验证芯片内部一系列逻辑功能操作得正确性;AC 测试用以保证芯片能在特定得时间约束内完成逻辑操作。

程序控制测试系统得硬件进行测试,对每个测试项给出pa s s或fail得结果。

Pass指器件达到或者超越了其设计规格;F a il则相反,器件没有达到设计要求,不能用于最终应用。

测试程序还会将器件按照它们在测试中表现出得性能进行相应得分类,这个过程叫做“B i nning",也称为“分Biif\ 举个例子,一个微处理器,如果可以在15 0 MHz下正确执行指令,会被归为最好得一类,称之为“Bin 1〃;而它得某个兄弟,只能在100MHz下做同样得事悄,性能比不上它,但就是也不就是一无就是处应该扔掉,还有可以应用得领域,则也许会被归为“B i n 2 卖给只要求100MHz 得客户。

半导体工艺及芯片制造复习资料简答题与答案

半导体工艺及芯片制造复习资料简答题与答案

半导体工艺及芯片制造复习资料简答题与答案第一章、半导体产业介绍1 .什么叫集成电路?写出集成电路发展的五个时代及晶体管的数量?(15分)集成电路:将多个电子元件集成在一块衬底上,完成一定的电路或系统功能。

集成电路芯片/元件数 无集成1 小规模(SSI )2到50 中规模(MSI )50到5000 大规模(LSI )5000到10万 超大规模(VLSI ) 10万至U100万 甚大规模(ULSI ) 大于100万 产业周期1960年前 20世纪60年代前期 20世纪60年代到70年代前期 20世纪70年代前期到后期 20世纪70年代后期到80年代后期 20世纪90年代后期到现在2 .写出IC 制造的5个步骤?(15分)Wafer preparation (硅片准备)Wafer fabrication (硅片制造)Wafer test/sort (硅片测试和拣选)Assembly and packaging (装配和封装)Final test (终测)3 .写出半导体产业发展方向?什么是摩尔定律?(15分)发展方向:提高芯片性能一提升速度(关键尺寸降低,集成度提高,研发采用新材料),降低功耗。

提高芯片可靠性一严格控制污染。

降低成本——线宽降低、晶片直径增加。

摩尔定律指:IC 的集成度将每隔一年翻一番。

1975年被修改为:IC 的集成度将每隔一年半翻一番。

4 .什么是特征尺寸CD ? (10分)最小特征尺寸,称为关键尺寸(Critical Dimension, CD ) CD 常用于衡量工艺难易的标志。

5.什么是 More moore 定律和 More than Moore 定律?(10 分)“More Moore”指的是芯片特征尺寸的不断缩小。

从几何学角度指的是为了提高密度、性能和可靠性在晶圆水平和垂直方向上的特征尺寸的继续缩小。

与此关联的3D结构改善等非几何学工艺技术和新材料的运用来影响晶圆的电性能。

The Fundamentals of Digital Semiconductor Testing (chinese)

The Fundamentals of Digital Semiconductor Testing (chinese)

目录第一章.认识半导体和测试设备 (3)一、晶圆、晶片和封装 (3)二、自动测试设备 (6)三、半导体技术 (7)四、数字和模拟电路 (7)五、测试系统的种类 (8)六、测试负载板(LoadBoard) (11)七、探针卡(ProbeCard) (12)第二章.半导体测试基础 (13)一、基础术语 (13)二、正确的测试方法 (14)三、测试系统 (16)四、PMU (18)五、管脚电路 (21)第三章.基于PMU的开短路测试 (25)一、测试目的 (25)二、测试方法 (25)第四章.DC参数测试 (29)一、基本术语 (29)二、Binning (29)三、Program Flow (30)四、Test Summary (31)五、DC测试与隐藏电阻 (32)六、VOH/IOH (33)七、VOL/IOL (36)八、IDD Gross Current (39)九、IDD Static Current (42)十、IDDQ (44)十一、IDD Dynamic Current (45)十二、入电流(IIL/IIH)测试 (48)十三、输入结构-高阻/上拉/下拉 (54)十四、输出扇出 (55)十五、高阻电流(High Impedance Currents, IOZH/IOZL) (57)十六、输出短路电流(output short circuit current) (60)第五章.功能测试 (63)一、基础术语 (64)二、功能测试 (64)三、测试周期 (65)四、输入数据 (65)五、输出数据 (68)六、功能测试参数定义 (72)七、总功能测试(Gross Function Test) (73)八、功能测试实例 (77)九、标准功能测试 (80)第六章.AC参数测试 (91)第一章.认识半导体和测试设备本章节包括以下内容,●晶圆(Wafers)、晶片(Dice)和封装(Packages)●自动测试设备(ATE)的总体认识●模拟、数字和存储器测试等系统的介绍●负载板(Loadboards)、探测机(Probers)、机械手(Handlers)和温度控制单元(Temperature units)一、晶圆、晶片和封装1947年,第一只晶体管的诞生标志着半导体工业的开始,从那时起,半导体生产和制造技术变得越来越重要。

数字半导体测试基础2

数字半导体测试基础2

验证直流参数(Verifying DC Parameters)1.IDD Gross Current Test对象:VDD pin目的:粗略检测流入VDD pin的电源电流是否过大.(在wafer test中很有用),判断是否有必要继续测试.方法:因为不要求精确预置(而只是简单预置,为了使DUT在一个稳定的状态),所以IDD标准应该放宽,一般是2-3倍.所有input用驱动接地或电源,outputs不加负载.用PMU在VDD pin上加VDDmax(最坏情况),测电流,观察结果是否符合限制值.错误分析:有除DUT之外的其它的系统耗电导致电流过大电阻:在VDD和地之间的最小总电阻.可以用一个等效电阻代替DUT来验证测试系统的精确性2.IDD Static Current Test对象: VDD pin目的:检测当DUT预置在最低电流消耗逻辑状态下(静态),消耗的电流是否过大.(是检测CMOS器件中制程问题的有效方法)方法:执行test vector pattern,将DUT精确预置在特定逻辑状态下.其它的同IDD Gross Current Test.错误分析:有除DUT之外的其它的系统耗电导致电流过大电阻:在VDD和地之间的最小总电阻.可以用一个等效电阻代替DUT来验证测试系统的精确性3.IDD Dynamic Current Test对象:VDD pin目的:检测当DUT启动运行其功能时,消耗的电流是否过大方法:在最高工作频率下,运行test vector pattern,将DUT预置在启动逻辑状态下在测试过程中pattern持续执行.其它的同IDD Gross Current Test.错误分析:有除DUT之外的其它的系统耗电导致电流过大电阻:在VDD和地之间的最小总电阻.可以用一个等效电阻代替DUT来验证测试系统的精确性4.VOL/IOL;VOH/IOHa.VOL/IOL(定流测压)对象:output pin目的:测试output在逻辑0状态的时候,输出电阻是否过大.方法(串行/静态):VDD加VDDmin预置outputs逻辑0.用PMU向output pin灌入一个固定IOL,测电压,与标准做比较..重复步骤直到所有output pin都测完.错误分析:1)VOL过大但是output逻辑状态正确,表明预置成功,可能器件本身有缺陷.2)VOL过大而且output pin逻辑状态不正确,表明预置不成功,重新预置电阻:output在0逻辑状态下的最大输出电阻(output pin与地之间)用一个等效电阻代替失败的DUT pin可以用来验证测试系统的精确性b.VOH/IOH(定流测压)对象:output pin目的:测试output在逻辑1状态的时候,输出电阻是否过大.方法(串行/静态):VDD加VDDmin预置outputs逻辑1.用PMU向output pin拉出一个固定IOH,测电压,与标准做比较..重复步骤直到所有output pin都测完.错误分析:1)VOH过小,但是output逻辑状态正确,表明预置成功,可能器件本身有缺陷.2)VOH过小,约为-0.7v(保护二极管起了保护作用).而且output pin逻辑状态不正确,表明预置不成功,重新预置电阻:output在1逻辑状态下的最大输出电阻(output pin与VDD之间)用一个等效电阻代替失败的DUT pin可以用来验证测试系统的精确性5.IIL/IIHa.IIL对象:all input pins目的:测试input pin到VDD电阻是否足够大方法(串行/静态):VDD为VDDmax(最坏情况)用Drive固定所有的input pin为逻辑1.撤除被测试的pin的Drive,在用PMU使这个pin接VSS(logic 0),测电流.,比较是否超过标准范围.重复操作直到所有pin都测完.错误分析:有除DUT之外的其它的系统耗电导致电流过大器件有缺陷.电阻:input到VDD之间的最小电阻用一个等效电阻代替可以用来验证测试系统的精确性b.IIH对象:all input pins目的:测试input pin到地电阻是否足够大方法(串行/静态):VDD为VDDmax(最坏情况)用Drive固定所有的input pin为逻辑0.撤除被测试的pin的Drive,在用PMU使这个pin接VDD(logic 1),测电流.,比较是否超过标准范围.重复操作直到所有pin都测完.错误分析: :有除DUT之外的其它的系统耗电导致电流过大器件有缺陷.电阻:input到地之间的最小电阻用一个等效电阻代替可以用来验证测试系统的精确性IIL/IIH并行测试法(parallel method)每个input pin都连接一个PMU,同时开始测试,所以速度快,并且能够直到每个pin的测试情况IIL/IIH Ganged测试法所有input pin连再一起测一个总电流,这个方法之适合用于输入阻抗较大的电路,如CMOS电路.6.IOZL/IOZH对象:I/O pin和有高阻态的output pin.目的:检测在高阻态下output pin和VDD之间的电阻是否足够大.方法:output pin失去驱动能力,由PMU提供电压电流预置在高阻态PMU在output pin上加VSS,测拉出的电流,是否超过标准范围错误分析:1)电流略超标,可能是DUT之外系统有其它耗电流,或DUT有缺陷2)电流很大,DUT有严重缺陷,或者DUT未被正确预置电阻:高阻态下pin到VDD之间的最小电阻b.IOZH对象:I/O pin和有高阻态的output pin.目的:检测在高阻态下output pin和地之间的电阻是否足够大.方法:output pin失去驱动能力,由PMU提供电压电流预置在高阻态PMU在output pin上加VDD,测灌入的电流,是否超过标准范围错误分析:1)电流略超标,可能是DUT之外系统有其它耗电流,或DUT有缺陷2)电流很大,DUT有严重缺陷,或者DUT未被正确预置电阻:高阻态下pin到地的最小电阻7.Output Short Circuit Current(IOS)(定压0v测流)目的:检测output在逻辑1的状态下,电压为0时输出电阻是否满足条件这个测试提供最坏的负载情况,保证短路时可以提供标准电流.方法:预置输出逻辑1用PMU在output pin上apply 0v.测得电流,与规定范围做比较错误分析:电流超标,电阻不合适无电流,逻辑错误(0)电阻:在一个最大最小值范围内能保证电流不超范围。

半导体测试与表征技术基础

半导体测试与表征技术基础

半导体测试与表征技术基础第一章概述(编写人陆晓东)第一节半导体测试与表征技术概述主要包括:发展历史、现状和在半导体产业中的作用第二节半导体测试与表征技术分类及特点主要包括:按测试与表征技术的物理效应分类、按芯片生产流程分类及测试对象分类(性能、材料、制备、成分)等。

第三节半导体测试与表征技术的发展趋势主要包括:结合自动化和计算机技术的发展,重点论述在线测试、结果输出和数据处理功能的变化;简要介绍最新出现的各类新型测试技术。

第二章半导体工艺质量测试技术第一节杂质浓度分布测试技术(编写人:吕航)主要介绍探针法,具体包括:PN结结深测量;探针法测量半导体扩散层的薄层电阻(探针法测试电阻率的基本原理、四探针法的测试设备、样品制备及测试过程注意事项、四探针测试的应用和实例);要介绍扩展电阻测试系统,具体包括:扩展电阻测试的基本原理、扩展电阻的测试原理、扩展电阻测试系统、扩展电阻测试的样品、扩展电阻法样品的磨角、扩展电阻法样品的制备、扩展电阻测试的影响因素、扩展电阻法测量过程中应注意的问题、扩展电阻法测量浅结器件结深和杂质分布时应注意的问题、扩展电阻测试的应用和实例。

第二节少数载流子寿命测试技术(编写人:钟敏)主要介绍直流光电导衰退法、高频光电导衰退法,具体包括:非平衡载流子的产生、非平衡载流子寿命、少数载流子寿命测试的基本原理和技术、少数载流子寿命的测试。

以及其它少子寿命测试方法,如表面光电压法、少子脉冲漂移法。

第三节表面电场和空间电荷区测量(编写人:吕航)主要包括:表面电场和空间电荷区的测量,金属探针法测量PN结表面电场的分布、激光探针法测试空间电荷区的宽度;容压法测量体内空间电荷区展宽。

第四节杂质补偿度的测量(编写人:钟敏)包括:霍尔效应的基本理论、范德堡测试技术、霍尔效应的测试系统、霍尔效应测试仪的结构、霍尔效应仪的灵敏度、霍尔效应的样品和测试、霍尔效应测试的样品结构、霍尔效应测试的测准条件、霍尔效应测试步骤、霍尔效应测试的应用和实例、硅的杂质补偿度测量、znO的载流子浓度、迁移率和补偿度测量、硅超浅结中载流子浓度的深度分布测量第五节氧化物、界面陷阱电荷及氧化物完整性测量(编写人:钟敏)包括:固定氧化物陷阱和可动电荷、界面陷阱电荷、氧化物完整性测试技术等。

半导体CV测量基础

半导体CV测量基础

半导体C—v测量基础LeeStauffer(吉时利仪器公司)通用测试电容一电压(C—V)测试广泛用于测量半导体参数,尤其是MOSCAP和MOSFET结构。

此外,利用C—V测量还可以对其他类型的半导体器件和工艺进行特征分析,包括双极结型品体管(BJT)、JFET、III—V族化合物器件、光伏电池、MEMS器件、有机T盯显示器、光电二极管、碳纳米管(CNT)和多种其他半导体器件。

这类测量的基本特征非常适用于各种应用和培训。

大学的研究实验事和半导体厂商利用这类测量评测新材料、新工艺、新器件和新电路。

C—V测虽埘于产品和良率增强。

T:程师也是极其重要的,他们负责提高工艺和器件的性能。

可靠性T程师利用这类测量评估材料供货,监测工艺参数,分析失效机制。

采用一定的方法、仪器和软件,hT以得到多种半导体器件和材料的参数。

从评测外延生长的多晶开始,这些信息在整个生产链中都会用到,包括诸如平均掺杂浓度、掺杂分布和载流子寿命等参数。

在圆片T艺中,C—V测量nT用于分析栅氧厚度、栅氧电荷、游离子(杂质)和界面阱密度。

在后续的工艺步骤中也会用到这类测量,例如光刻、刻蚀、清洗、电介质和多晶硅沉积、金属化等。

当在圆片上完全制造出器件之后,在nr靠性和基本器件测试过程中可以利用C—V测量对阂值电压和其他一些参数进行特征分析,对器件性能进行建模。

半导体电容的物理特性MOSCAP结构足在半导体制造过程中形成的一种基本器件结构(如图l所示)。

尽管这类器件町以用于真实电路中,但是人们通常将其作为一种测试结构集成在制造工艺中。

由于这种结构比较简单而且制造过程容易控制,因此它们足评测底层工艺的一种方便的方法。

图1P型衬底上形成的MOSCAP结构的C—V测量电路图1中的金属/多晶层是电容的一极,二氧化硅是绝缘囵鼋哥詹{层。

由于绝缘层下面的衬底是一种半导体材料,因此它本身并不是电容的另一极。

实际上,其中的多数载流子是电容的另一极。

物理I:而言,电容c町以通过下列公式中的变量计算出来:C=A(K,d),其中A是电容的面积;K是绝缘体的介电常数;d是两极的I’日J距。

微电子器件授课教案

微电子器件授课教案

微电子器件授课教案第一章:微电子器件概述1.1 教学目标了解微电子器件的基本概念和分类掌握微电子器件的发展历程和趋势理解微电子器件在现代科技领域的应用1.2 教学内容微电子器件的定义和特点微电子器件的分类及性能指标微电子器件的发展历程和趋势微电子器件在现代科技领域的应用1.3 教学方法采用讲授和互动讨论相结合的方式,引导学生了解微电子器件的基本概念和分类通过案例分析,使学生掌握微电子器件的发展历程和趋势利用实际应用场景,让学生理解微电子器件在现代科技领域的重要作用第二章:半导体物理基础2.1 教学目标掌握半导体的基本性质和导电机制了解半导体物理中的重要概念和原理理解半导体器件的工作原理和性能特点2.2 教学内容半导体的基本性质和导电机制半导体物理中的重要概念和原理半导体器件的工作原理和性能特点2.3 教学方法通过讲解和示例,让学生掌握半导体的基本性质和导电机制利用实验和仿真,使学生了解半导体物理中的重要概念和原理结合具体器件,让学生理解半导体器件的工作原理和性能特点第三章:二极管和三极管3.1 教学目标掌握二极管和三极管的结构、原理和性能学会分析二极管和三极管在不同电路中的应用了解二极管和三极管的发展趋势和新型器件3.2 教学内容二极管和三极管的结构和工作原理二极管和三极管的性能参数和测试方法二极管和三极管在不同电路中的应用二极管和三极管的发展趋势和新型器件3.3 教学方法通过讲解和示例,让学生掌握二极管和三极管的结构和工作原理利用实验和仿真,使学生了解二极管和三极管的性能参数和测试方法结合具体应用案例,让学生学会分析二极管和三极管在不同电路中的应用介绍二极管和三极管的发展趋势和新型器件,激发学生的学习兴趣和探究精神第四章:集成电路和微电子技术了解集成电路的基本概念和分类掌握集成电路的设计和制造工艺理解微电子技术的发展和应用领域4.2 教学内容集成电路的基本概念和分类集成电路的设计和制造工艺微电子技术的发展和应用领域4.3 教学方法采用讲解和互动讨论相结合的方式,引导学生了解集成电路的基本概念和分类通过案例分析和实验,使学生掌握集成电路的设计和制造工艺利用实际应用场景,让学生理解微电子技术的发展和应用领域第五章:微电子器件的应用5.1 教学目标了解微电子器件在不同领域的应用掌握微电子器件的选型和使用方法理解微电子器件在现代科技中的重要作用5.2 教学内容微电子器件在电子设备中的应用微电子器件在通信系统中的应用微电子器件在计算机领域的应用微电子器件在其他领域的应用通过讲解和示例,让学生了解微电子器件在不同领域的应用利用实验和仿真,使学生掌握微电子器件的选型和使用方法结合具体应用场景,让学生理解微电子器件在现代科技中的重要作用第六章:功率器件和功率集成电路6.1 教学目标掌握功率器件的结构、原理和性能了解功率集成电路的基本概念和分类理解功率器件和功率集成电路在电力电子领域的应用6.2 教学内容功率器件的结构和工作原理功率器件的性能参数和测试方法功率集成电路的基本概念和分类功率器件和功率集成电路在电力电子领域的应用6.3 教学方法通过讲解和示例,让学生掌握功率器件的结构和工作原理利用实验和仿真,使学生了解功率器件的性能参数和测试方法结合具体应用案例,让学生了解功率集成电路的基本概念和分类介绍功率器件和功率集成电路在电力电子领域的应用,激发学生的学习兴趣和探究精神第七章:传感器和微电子器件7.1 教学目标了解传感器的基本概念和分类掌握传感器的原理和性能理解传感器和微电子器件在智能化领域的应用7.2 教学内容传感器的基本概念和分类传感器的原理和性能传感器和微电子器件在智能化领域的应用7.3 教学方法采用讲解和互动讨论相结合的方式,引导学生了解传感器的基本概念和分类通过案例分析和实验,使学生掌握传感器的原理和性能利用实际应用场景,让学生理解传感器和微电子器件在智能化领域的应用第八章:光电器件和光电子集成电路8.1 教学目标掌握光电器件的结构、原理和性能了解光电子集成电路的基本概念和分类理解光电器件和光电子集成电路在光通信领域的应用8.2 教学内容光电器件的结构和工作原理光电器件的性能参数和测试方法光电子集成电路的基本概念和分类光电器件和光电子集成电路在光通信领域的应用8.3 教学方法通过讲解和示例,让学生掌握光电器件的结构和工作原理利用实验和仿真,使学生了解光电器件的性能参数和测试方法结合具体应用案例,让学生了解光电子集成电路的基本概念和分类介绍光电器件和光电子集成电路在光通信领域的应用,激发学生的学习兴趣和探究精神第九章:微电子器件的可靠性9.1 教学目标了解微电子器件的可靠性基本概念掌握微电子器件的可靠性参数和测试方法理解微电子器件可靠性对系统的影响9.2 教学内容微电子器件的可靠性基本概念微电子器件的可靠性参数和测试方法微电子器件可靠性对系统的影响9.3 教学方法采用讲解和互动讨论相结合的方式,引导学生了解微电子器件的可靠性基本概念通过案例分析和实验,使学生掌握微电子器件的可靠性参数和测试方法利用实际应用场景,让学生理解微电子器件可靠性对系统的影响第十章:微电子器件的发展趋势10.1 教学目标了解微电子器件的最新发展动态掌握未来微电子器件的技术发展趋势理解微电子器件对现代社会的影响10.2 教学内容微电子器件的最新发展动态未来微电子器件的技术发展趋势微电子器件对现代社会的影响10.3 教学方法通过讲解和示例,让学生了解微电子器件的最新发展动态利用实验和重点和难点解析:1. 微电子器件的分类和性能指标:学生需要理解不同类型微电子器件的特点和应用场景,以及如何评估它们的性能。

半导体材料测试技术

半导体材料测试技术

半导体材料测试技术半导体材料测试技术是指对半导体材料进行表征和性能测试的一系列技术方法和工具。

半导体材料是电子器件制造与应用的基础,而半导体材料的质量和性能对电子器件的性能和可靠性有着直接的影响。

因此,了解和掌握半导体材料的性能及其测试方法是十分重要的。

1.结构表征技术:通过采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)等仪器,对半导体材料的晶体结构、晶格缺陷等进行分析和表征。

同时可以通过X射线衍射(XRD)技术对材料的晶格常数、晶体结构和材料的纯度进行分析。

2.光学特性测试技术:光学特性测试主要包括折射率、透明度、吸收谱、发射谱等光学性质的测试。

通过光学显微镜、紫外可见分光光度计、激光扫描显微镜等设备来进行测试。

3.电学特性测试技术:电学特性测试是对半导体材料的电导率、电介质常数、击穿电压等电学性质进行测试。

常见的测试设备包括电阻测试仪、电容测试仪、电压源/电流源等。

4.磁学特性测试技术:磁学特性测试主要是对半导体材料的磁化强度、磁畴结构等进行测试。

通过霍尔效应测试仪、磁学测试仪等设备来进行测试。

5.热学特性测试技术:热学特性测试主要是对半导体材料的热导率、热膨胀系数等进行测试。

热电测试仪、热膨胀仪等设备可以用来进行这方面的测试。

此外,还有一些特殊的测试技术,如电子能谱、质谱等,可以用来对半导体材料的表面组分和杂质掺杂进行分析。

综上所述,半导体材料测试技术是对半导体材料进行各种性能指标测试的一系列方法和工具的集合。

掌握这些测试技术,可以对半导体材料的质量和性能进行准确分析,为电子器件的研发和生产提供有力的支撑。

1-半导体基础知识及二极管

1-半导体基础知识及二极管

2-5
元素周 期表
2-6
1、电子半导(Negative) ——N型半导体 、电子半导 型半导体 +5价元素磷 、砷(As )、锑(Sb)等在硅晶体中 价元素磷(P)、 价元素磷 、 等在硅晶体中 给出一个多余电子,故叫施主原子。 给出一个多余电子,故叫施主原子。 电子数目 = 空穴数 + 正离子数
空穴 +4
+4 自由电子
+4
+4
+4
自由电子 空穴
挣脱共价键的束缚自由活动的电子 束缚电子成为自由电子后, 束缚电子成为自由电子后,在共 价键中所留的空位。 价键中所留的空位。
2-4
二、杂质半导体
电子半导体 (Negative) 杂质半导体 空穴半导体 (Positive ) 加+3价元素硼 价元素硼 (B )、铝(Al )、铟 、 、 (In)、钙(Ga ) 、 价元素磷(P)、 加+5价元素磷 、 价元素磷 砷(As )、锑(Sb) 、
2AP 2CP
2CZ54 (c)
2CZ13
2CZ30
二极管外形
2-22
二、二极管的V—I特性 二极管的 特性
二极管两端加正向电压时,就产生 二极管两端加正向电压时 就产生 二极管两端加上反向电压时,在开 当正向电压超过门槛电压时,正向 二极管两端加上反向电压时 在开 当正向电压超过门槛电压时 正向 二极管反向电压加到一定数值时, 二极管反向电压加到一定数值时 正向电流,当正向电压较小时 当正向电压较小时,正向 正向电流 当正向电压较小时 正向 iV / mA 始很大范围内,二极管相当于非常 电流就会急剧地增大,二极管呈现 始很大范围内 二极管相当于非常 电流就会急剧地增大 二极管呈现 反向电流急剧增大,这种现象称 反向电流急剧增大 这种现象称 电流极小(几乎为零) 这一部分 电流极小(几乎为零),这一部分 大的电阻,反向电流很小 。 这时 很小电阻而处于导通状态。 反向电流很小,且不随反 大的电阻 反向电流很小 且不随反 很小电阻而处于导通状态 为反向击穿。 为反向击穿。此时对应的电压称 B′ 称为死区,相应的 相应的A(A′)点的电压称 称为死区 相应的 点的电压称 15 向电压而变化。 用U 表示 如图 硅管的正向导通压降约为0.6~0.7V, 向电压而变化。此时的电流称之为 硅管的正向导通压降约为 为反向击穿电压,用 BR表示,如图 为反向击穿电压 为死区电压或门槛电压(也称阈值 为死区电压或门槛电压 也称阈值 反向饱和电流IR 。如图中 ( OC′) 锗管约为0.2~0.3V,如图中 见图中OC( 如图中AB(A′B′) 反向饱和电流 段,见图中 锗管约为 ) 中CD(C′D′)段 见图中 电压),硅管约为 硅管约为0.5V,锗管约为 锗管约为0.1V, 10 电压 硅管约为 锗管约为 段。 段。 如图中OA(OA′)段。 如图中 段 5

ic半导体测试基础(中文版)

ic半导体测试基础(中文版)

ic半导体测试基础(中文版)本章节我们来说说最基本的测试——开短路测试(Open-Short Test),说说测试的目的和方法。

一.测试目的Open-Short Test也称为ContinuityTest或Contact Test,用以确认在器件测试时所有的信号引脚都与测试系统相应的通道在电性能上完成了连接,并且没有信号引脚与其他信号引脚、电源或地发生短路。

测试时间的长短直接影响测试成本的高低,而减少平均测试时间的一个最好方法就是尽可能早地发现并剔除坏的芯片。

Open-Short 测试能快速检测出DUT是否存在电性物理缺陷,如引脚短路、bond wire缺失、引脚的静电损坏、以及制造缺陷等。

另外,在测试开始阶段,Open-Short 测试能及时告知测试机一些与测试配件有关的问题,如ProbeCard或器件的Socket没有正确的连接。

二.测试方法Open-Short测试的条件在器件的规格数或测试计划书里通常不会提及,但是对大多数器件而言,它的测试方法及参数都是标准的,这些标准值会在稍后给出。

基于PMU的Open-Short测试是一种串行(Serial)静态的DC测试。

首先将器件包括电源和地的所有管脚拉低至“地”(即我们常说的清0),接着连接PMU到单个的DUT管脚,并驱动电流顺着偏置方向经过管脚的保护二极管——一个负向的电流会流经连接到地的二极管(图3-1),一个正向的电流会流经连接到电源的二极管(图3-2),电流的大小在100uA到500uA之间就足够了。

大家知道,当电流流经二极管时,会在其P-N结上引起大约0.65V的压降,我们接下来去检测连接点的电压就可以知道结果了。

既然程序控制PMU去驱动电流,那么我们必须设置电压钳制,去限制Open管脚引起的电压。

Open-Short测试的钳制电压一般设置为3V——当一个Open的管脚被测试到,它的测试结果将会是3V。

串行静态Open-Short测试的优点在于它使用的是DC测试,当一个失效(failure)发生时,其准确的电压测量值会被数据记录(datalog)真实地检测并显示出来,不管它是Open引起还是Short导致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:本章节包括一下内容:◆测试目的◆测试术语◆测试工程学基本原则◆基本测试系统组成◆PMU(精密测量单元)及引脚测试卡◆样片及测试程序一、基础术语描述半导体测试的专业术语很多,这里只例举部分基础的:1.DUT需要被实施测试的半导体器件通常叫做DUT(Device Under Test,我们常简称“被测器件”),或者叫UUT(Unit Under Test)。

首先我们来看看关于器件引脚的常识,数字电路期间的引脚分为“信号”、“电源”和“地”三部分。

信号脚,包括输入、输出、三态和双向四类,输入:在外部信号和器件内部逻辑之间起缓冲作用的信号输入通道;输入管脚感应其上的电压并将它转化为内部逻辑识别的“0”和“1”电平。

输出:在芯片内部逻辑和外部环境之间起缓冲作用的信号输出通道;输出管脚提供正确的逻辑“0”或“1”的电压,并提供合适的驱动能力(电流)。

三态:输出的一类,它有关闭的能力(达到高电阻值的状态)。

双向:拥有输入、输出功能并能达到高阻态的管脚。

电源脚,“电源”和“地”统称为电源脚,因为它们组成供电回路,有着与信号引脚不同的电路结构。

VCC:TTL器件的供电输入引脚。

VDD:CMOS器件的供电输入引脚。

VSS:为VCC或VDD提供电流回路的引脚。

GND:地,连接到测试系统的参考电位节点或VSS,为信号引脚或其他电路节点提供参考0电位;对于单一供电的器件,我们称VSS为GND。

2.测试程序半导体测试程序的目的是控制测试系统硬件以一定的方式保证被测器件达到或超越它的那些被具体定义在器件规格书里的设计指标。

测试程序通常分为几个部分,如DC测试、功能测试、AC测试等。

DC测试验证电压及电流参数;功能测试验证芯片内部一系列逻辑功能操作的正确性;AC测试用以保证芯片能在特定的时间约束内完成逻辑操作。

程序控制测试系统的硬件进行测试,对每个测试项给出pass或fail的结果。

Pass指器件达到或者超越了其设计规格;Fail则相反,器件没有达到设计要求,不能用于最终应用。

测试程序还会将器件按照它们在测试中表现出的性能进行相应的分类,这个过程叫做“Binning”,也称为“分B in”. 举个例子,一个微处理器,如果可以在150MHz下正确执行指令,会被归为最好的一类,称之为“Bin 1”;而它的某个兄弟,只能在100MHz下做同样的事情,性能比不上它,但是也不是一无是处应该扔掉,还有可以应用的领域,则也许会被归为“Bin 2”,卖给只要求100MHz的客户。

程序还要有控制外围测试设备比如Handler 和Probe 的能力;还要搜集和提供摘要性质(或格式)的测试结果或数据,这些结果或数据提供有价值的信息给测试或生产工程师,用于良率(Yield)分析和控制。

二、正确的测试方法经常有人问道:“怎样正确地创建测试程序?”这个问题不好回答,因为对于什么是正确的或者说最好的测试方式,一直没有一个单一明了的界定,某种情形下正确的方式对另一种情况来说不见得最好。

很多因素都在影响着测试行为的构建方式,下面我们就来看一些影响力大的因素。

测试程序的用途。

下面的清单例举了测试程序的常用之处,每一项都有其特殊要求也就需要相应的测试程序:●Wafer Test——测试晶圆(wafer)每一个独立的电路单元(Die),这是半导体后段区分良品与不良品的第一道工序,也被称为“Wafer Sort”、CP测试等.∙∙∙ ●Package Test——晶圆被切割成独立的电路单元,且每个单元都被封装出来后,需要经历此测试以验证封装过程的正确性并保证器件仍然能达到它的设计指标,也称为“Final Test”、FT测试、成品测试等。

●Quality Assurance Test——质量保证测试,以抽样检测方式确保Package Test执行的正确性,即确保pass的产品中没有不合格品。

●Device Characterization——器件特性描述,决定器件工作参数范围的极限值。

●Pre/Post Burn-In ——在器件“Burn-in”之前和之后进行的测试,用于验证老化过程有没有引起一些参数的漂移。

这一过程有助于清除含有潜在失效(会在使用一段时间后暴露出来)的芯片。

●Miliary Test——军品测试,执行更为严格的老化测试标准,如扩大温度范围,并对测试结果进行归档。

●Incoming Inspection ——收货检验,终端客户为保证购买的芯片质量在应用之前进行的检查或测试。

●Assembly Verification ——封装验证,用于检验芯片经过了封装过程是否仍然完好并验证封装过程本身的正确性。

这一过程通常在FT测试时一并实施。

●Failure Analysis ——失效分析,分析失效芯片的故障以确定失效原因,找到影响良率的关键因素,并提高芯片的可靠性。

测试系统的性能。

测试程序要充分利用测试系统的性能以获得良好的测试覆盖率,一些测试方法会受到测试系统硬件或软件性能的限制。

高端测试机:●高度精确的时序——精确的高速测试●大的向量存储器——不需要去重新加载测试向量●复合PMU(Parametric Measurement Unit)——可进行并行测试,以减少测试时间●可编程的电流加载——简化硬件电路,增加灵活性●PerPin的时序和电平——简化测试开发,减少测试时间低端测试机:●低速、低精度——也许不能充分满足测试需求●小的向量存储器——也许需要重新加载向量,增加测试时间●单个PMU ——只能串行地进行DC测试,增加测试时间●均分资源(时序/电平)——增加测试程序复杂度和测试时间测试环节的成本。

这也许是决定什么需要被测试以及以何种方式满足这些测试的唯一的最重要的因素,测试成本在器件总的制造成本中占了很大的比重,因此许多与测试有关的决定也许仅仅取决于器件的售价与测试成本。

例如,某个器件可应用于游戏机,它卖15元;而同样的器件用于人造卫星,则会卖3500元。

每种应用有其独特的技术规范,要求两种不同标准的测试程序。

3500元的器件能支持昂贵的测试费用,而15元的器件只能支付最低的测试成本。

测试开发的理念。

测试理念只一个公司内部测试人员之间关于什么是最优的测试方法的共同的观念,这却决于他们特殊的要求、芯片产品的售价,并受他们以往经验的影响。

在测试程序开发项目启动之前,测试工程师必须全面地上面提到的每一个环节以决定最佳的解决方案。

开发测试程序不是一件简单的正确或者错误的事情,它是一个在给定的状况下寻找最佳解决方案的过程。

三.测试系统测试系统称为ATE,由电子电路和机械硬件组成,是由同一个主控制器指挥下的电源、计量仪器、信号发生器、模式(pattern)生成器和其他硬件项目的集合体,用于模仿被测器件将会在应用中体验到的操作条件,以发现不合格的产品。

测试系统硬件由运行一组指令(测试程序)的计算机控制,在测试时提供合适的电压、电流、时序和功能状态给DUT并监测DUT的响应,对比每次测试的结果和预先设定的界限,做出pass或fail的判断。

●测试系统的内脏图2-1显示所有数字测试系统都含有的基本模块,虽然很多新的测试系统包含了更多的硬件,但这作为起点,我们还是拿它来介绍。

“CPU”是系统的控制中心,这里的CPU不同于电脑中的中央处理器,它由控制测试系统的计算机及数据输入输出通道组成。

许多新的测试系统提供一个网络接口用以传输测试数据;计算机硬盘和Memory用来存储本地数据;显示器及键盘提供了测试操作员和系统的接口。

图2-1.通用测试系统内部结构DC子系统包含有DPS(Device Power Supplies,器件供电单元)、RVS (Reference Voltage Supplies,参考电压源)、PMU(Precision Measurement Unit,精密测量单元)。

DPS为被测器件的电源管脚提供电压和电流;RVS 为系统内部管脚测试单元的驱动和比较电路提供逻辑0和逻辑1电平提供参考电压,这些电压设置包括:VIL、VIH、VOL和VOH。

性能稍逊的或者老一点的测试系统只有有限的RVS,因而同一时间测试程序只能提供少量的输入和输出电平。

这里先提及一个概念,“tester pin”,也叫做“tester channel”,它是一种探针,和Loadboard背面的Pad接触为被测器件的管脚提供信号。

当测试机的pins共享某一资源,比如RVS,则此资源称为“Shared Resource”。

一些测试系统称拥有“per pin”的结构,就是说它们可以为每一个pin独立地设置输入及输出信号的电平和时序。

DC子系统还包含PMU(精密测量单元,Precision Measurement Unit)电路以进行精确的DC参数测试,一些系统的PMU也是per pin结构,安装在测试头(Test Head)中。

(PMU我们将在后面进行单独的讲解)每个测试系统都有高速的存储器——称为“pattern memory”或“vector memory”——去存储测试向量(vector或pattern)。

Test pattern(注:本人驽钝,一直不知道这个pattern的准确翻译,很多译者将其直译为“模式”,我认为有点欠妥,实际上它就是一个二维的真值表;将“test pattern”翻译成“测试向量”吧,那“vector”又如何区别?呵呵,还想听听大家意见)描绘了器件设计所期望的一系列逻辑功能的输入输出的状态,测试系统从pattern memory中读取输入信号或者叫驱动信号(Drive)的pattern状态,通过tester pin输送给待测器件的相应管脚;再从器件输出管脚读取相应信号的状态,与pattern中相应的输出信号或者叫期望(Expect)信号进行比较。

进行功能测试时,pattern为待测器件提供激励并监测器件的输出,如果器件输入与期望不相符,则一个功能失效产生了。

有两种类型的测试向量——并行向量和扫描向量,大多数测试系统都支持以上两种向量。

Timing分区存储有功能测试需要用到的格式、掩盖(mask)和时序设置等数据和信息,信号格式(波形)和时间沿标识定义了输入信号的格式和对输出信号进行采样的时间点。

Timing分区从pattern memory那里接收激励状态(“0”或者“1”),结合时序及信号格式等信息,生成格式化的数据送给电路的驱动部分,进而输送给待测器件。

Special Tester Options部分包含一些可配置的特殊功能,如向量生成器、存储器测试,或者模拟电路测试所需要的特殊的硬件结构。

The Systen Clocks为测试系统提供同步的时钟信号,这些信号通常运行在比功能测试要高得多的频率范围;这部分还包括许多测试系统都包含的时钟校验电路。

相关文档
最新文档