基本不等式练习题(带答案)(优.选)

合集下载

基本不等式试题(含答案)

基本不等式试题(含答案)

1. 若a ∈R ,下列不等式恒成立的是( )A .21a a +>B .2111a <+C .296a a +>D .2lg(1)lg |2|a a +>2. 若0a b<<且1a b +=,则下列四个数中最大的是( ) A.12B.22a b + C.2abD.a 3.设x >0,则133y x x=--的最大值为( )A.3 B.3- C.3-D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B.C. D.5. 若x , y 是正数,且141xy+=,则xy 有 ( )A.最大值16 B.最小值116C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥ C .111a b c++≥.a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+ B .111x y+≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则2,2a b aba b++三个数的大小顺序是 ( )A.22a b aba b+≤≤+ 22a b aba b+≤+C.22ab a ba b +≤≤+ D.22ab a ba b +≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p qx +=B.2p qx +<C.2p qx +≤D.2p qx +≥10. 下列函数中,最小值为4的是 ( ) A.4y x x=+ B.4sin sin y x x=+(0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+11. 函数y =的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 .14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的值恒为正,对吗?答 . 15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 已知)R ,10(log )(+∈≠>=x a a x x f a 且.若1x 、+∈R 2x , 试比较)]()([2121x f x f +与)2(21xx f +的大小,并加以证明.17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值.18. 设()13221+++⋅+⋅=n n a n .证明不等式 ()212)1(2+<<+n a n n n 对所有的正整数n 都成立.§3.4基本不等式经典例题:【 解析】 证法一 假设b a )1(-,c b )1(-,a c )1(-同时大于41,∵ 1-a>0,b>0,∴ 2)1(b a +-≥2141)1(=>-b a ,同理212)1(>+-c b ,212)1(>+-a c .三个不等式相加得2323>,不可能,∴ (1-a )b ,(1-b)c ,(1-c)a 不可能同时大于41.证法二 假设41)1(>-b a ,41)1(>-c b ,41)1(>-a c 同时成立, ∵ 1-a>0,1-b>0,1-c>0,a>0,b>0,c>0,∴641)1()1()1(>---a c c b b a , 即641)1()1()1(>---c c b b a a . (*) 又∵ a a )1(-≤412)1(2=⎥⎦⎤⎢⎣⎡+-a a , 同理b b )1(-≤41,c c )1(-≤41,∴c c b b a a )1()1()1(---≤641与(*)式矛盾, 故a c c b b a )1(,)1(,)1(---不可能同时大于41. 当堂练习:1.A;2.B;3.C;4.D;5.C;6.A;7.B;8.C;9.C; 10.C;11. 12; 12.3600 ;; 14. 对; 1516. 【 解析】 2121log log )()(x x x f x f a a +=+2log )2(),(log 12121xx x x f x x a a +=+=. ∵ 1x 、+∈R x 2, ∴ 22121)2(x x x x +≤. 当且仅当1x =2x 时,取“=”号. 当1>a 时,有)2(log )(log 2121x x x x a a +≤. ∴ ≤)(log 2121x x a )2(log 21x x a +≤.)2(log ]log [log 212121x x x x a a a +≤+. 即)2()]()([212121x x f x f x f +≤+..当10<<a 时,有a a x x log )(log 21≥⋅221)2(x x +. 即).2()]()([212121x x f x f x f +≥+ 17. (1)10,4⎛⎤ ⎥⎝⎦ (2)17418.【 解析】 证明 由于不等式2122)1()1(+=++<+<k k k k k k 对所有的正整数k 成立,把它对k 从1到n(n ≥1)求和,得到212252321++++<<+++n a n n又因2)1(21nn n +=+++ 以及2)1()]12(531[2121225232+=+++++<++++n n n因此不等式()212)1(2+<<+n a n n n 对所有的正整数n 都成立.。

人教A版必修一基本不等式同步练习题(含答案及解析)

人教A版必修一基本不等式同步练习题(含答案及解析)

人教A 版必修一基本不等式同步练习题一 选择题1.已知a >b >0,全集为R ,集合M =,N =,P =,则M ,N ,P 满足( )A .P =M ∩(∁R N )B .P =(∁R M )∩NC .P =M ∪ND .P =M ∩N2.若a >0,b >0,且a ≠b ,则( ) A .<<B .<< C .<<D .<<3.若x >0,y >0,且x+y =S ,xy =P ,则下列说法中正确的是( ) A .当且仅当x =y 时S 有最小值2B .当且仅当x =y 时P 有最大值C .当且仅当P 为定值时S 有最小值2D .若S 为定值,当且仅当x =y 时P 有最大值4.设正实数x ,y ,z 满足x 2﹣3xy+4y 2﹣z =0.则当取得最大值时,的最大值为( )A .0B .1C .D .35.已知m ,n ∈R ,m 2+n 2=100,则mn 的最大值是( )A .100B .50C .20D .10 6.下列推导过程,正确的为( )A .因为a 、b 为正实数,所以22a =•≥+a b b a a b bB .因为x ∈R ,所以1112 +xC .a <0,所以4424=•≥+a aa a D .因为x 、y ∈R ,xy <0,所以2)()(2)()(x -=-•--≤⎥⎦⎤⎢⎣⎡-+--=+x yy x x y yx x x y 7.已知a >0,b >0,若不等式恒成立,则m 的最大值为( ) A .9 B .12 C .16 D .10 8.若实数x ,y 满足2x+y =1,则x •y 的最大值为( ) A .1B .C .D .9.若正实数a ,b 满足a+b =1,则下列选项中正确的是( ) A .ab 有最大值B .+有最小值C .+有最小值4D .a 2+b 2有最小值10已知0<x <4,则的最小值为( )A .2 B .3C .4D .8二 填空题11.函数f (x )=a x ﹣1﹣2(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx ﹣ny ﹣1=0上,其中m >0,n >0,则+的最小值为 .12.某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,当工厂和仓库之间的距离为 千米时,运费与仓储费之和最小,最小值为 万元.13.已知直角三角形ABC的三内角A,B,C的对边分别为a,b,c,,且不等式恒成立,则实数m的最大值是.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股中记载:“今有邑,东西七里,南北九里,各中开门.出东门一十五里有木.问出南门几何步而见木?”其算法为:东门南到城角的步数,乘南门东到城角的步数,乘积作被除数,以树距离东门的步数作除数,被除数除以除数得结果,即出南门x里见到树,则.若一小城,如图所示,出东门1200步有树,出南门750步能见到此树,则该小城的周长的最小值为(注:1里=300步)里.15.已知a,b∈R+,且a+b++=5,则a+b的取值范围是.16.已知x、y都为正数,且x+y=4,若不等式恒成立,则实数m的取值范围是.17.如果一个直角三角形的斜边长等于5,那么这个直角三角形的面积的最大值等于.18.一批物资随51辆汽车从某市以vkm/h的速度匀速直达灾区,已知两地公路线长400km,为了安全起见,两辆汽车的间距不得小于km,那么这批物资全部到达灾区,最少需要h.19.若正实数x,y满足2x+y+6=xy,则xy的最小值是.20.若实数x,y满足x2+y2+xy=1,则x+y的最大值是.三解答题21.已知a,b,c均为正实数,求证:若a+b+c=3,则.22.已知a,b,c∈R,满足a>b>c.(1)求证:;(2)现推广:把的分子改为另一个大于1的正整数p,使对任意a>b>c恒成立,试写出一个p,并证明之.23.已知0<x<1,则x(4﹣3x)取得最大值时x的值为多少?24.已知,求函数的最大值.25.函数的最小值为多少?26.求下列函数的最值.(1)求函数的最小值;(2)若正数x,y满足x+3y=5xy,求3x+4y的最小值.27.若x,y为正实数,且2x+8y﹣xy=0,求x+y的最小值.28.若﹣4<x<1,求的最大值.29.若x>0,求函数y=x+的最小值,并求此时x的值.30.设0<x<,求函数y=4x(3﹣2x)的最大值.31.已知x>2,求x+的最小值.32.x>0,y>0且=1,求x+y的最小值.33.已知x∈(0,+∞),求的最大值.34.某厂家拟在2013年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m(m≥0)万元满足(k为常数),如果不搞促销活动,则该产品的年销售量是1万件.已知2013年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2013年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大?35.如图,徐州某居民小区要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200m2的十字形地域,计划在正方形MNPQ上建一座花坛,造价为4200元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为210元/m2;再在四个空角(图中四个三角形)铺草坪,造价为80元/m2.(1)设总造价为S(单位:元),AD长为x(单位:m),求出S关于x的函数关系式;(2)当AD长取何值时,总造价S最小,并求这个最小值.36.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2021年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入成本R(x)万元,且R(x)=,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2021年的利润W(x)(万元)关于年产量x(千部)的函数关系式,(利润=销售额﹣成本);(2)2021年产量为多少(千部)时,企业所获利润最大?最大利润是多少?37.已知p:1<2x<8;q:不等式x2﹣mx+4≥0恒成立,若¬p是¬q的必要条件,求实数m的取值范围.38.已知实数a>0,b>0,且a2+b2=8,若a+b≤m恒成立.(1)求实数m的最小值;(2)若2|x﹣1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.39.已知正实数x,y满足等式2x+5y=20.(1)求u=xy的最大值;(2)若不等式恒成立,求实数m的取值范围.40.已知a,b∈R,求证:ab≤()2.41.(1)已知x>1,求x+的最小值;(2)求的最大值.42.某公司建造一间背面靠墙的房屋,地面面积为48m2,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元,如果墙高为3m,且不计房屋背面和地面的费用,那么怎样设计房屋能使总造价最低?最低总造价是多少?43.如图,将宽和长都分别为x,y(x<y)的两个矩形部分重叠放在一起后形成的正十字形面积为.(注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形),(1)求y关于x的函数解析式;(2)当x,y取何值时,该正十字形的外接圆面积最小,并求出其最小值.人教A版必修一基本不等式同步练习题参考答案与解析1.分析:利用不等式的性质,判断得到,集合集合的交集、并集、补集的定义依次判断四个选项即可.解:因为a>b>0,所以,对于A,因为N=,则,因为集合M=,所以M∩(∁RN)==P,故选项A正确;对于B,因为∁R M={x|x≤b或},则(∁RM)∩N=≠P,故选项B错误;对于C,因为M∪N={x|b<x<a}≠P,故选项C错误;对于D,M∩N=≠P,故选项D错误.故选A.2.分析:根据基本不等式的性质,进行判断即可.解:∵a,b∈R+,且a≠b,∴a+b>2,∴<,而=>0,∴<,故选B.3.分析:利用均值不等式及其变形进行解答.解:∵x,y∈R+,x+y=S,xy=P,∴S=x+y≥2=2①,当且仅当x=y时取等号;∴如果P 是定值,那么当且仅当x=y时S的值最小,故A、C错误;由①得,P≤=,当且仅当x=y时取等号;∴如果S是定值,那么当且仅当x=y时P的值最大,故D正确,B错误.故选D.4.分析:依题意,当取得最大值时x=2y,代入所求关系式f(y)=+﹣,利用配方法即可求得其最大值.解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“=”),∴=1,此时,x=2y.∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2,∴+﹣=+﹣=﹣+1≤1,当且仅当y=1时取得“=”,满足题意.∴的最大值为1.故选B.5.分析:利用重要不等式的性质即可得出.解:由m2+n2=100,可得:100≥2mn,解得mn≤50,当且仅当m=n=±5时取等号.则mn的最大值是50.故选B.6.分析:利用基本不等式求解最值的三个条件:一正、二定、三相等,对四个选项逐一分析判断即可.解:对于A,因为a、b为正实数,所以,故,当且仅当,即a=b时取等号,故选项A正确;对于B,因为x2≥0,所以x2+1≥1,则,故选项B错误;对于C,当a<0时,,故选项C错误;对于D,因为xy<0,则,所以,当且仅当,即x=﹣y时取等号,故选项D正确.故选AD.7.分析:由已知a>0,b>0,不等式恒成立,转化成新函数的最小值问题.解:由已知a>0,b>0,不等式恒成立,所以m≤(+)(a+4b)恒成立,转化成求y=(+)(a+4b)的最小值,y=(+)(a+4b)=8++≥16,所以m≤16.故选C.8.分析:根据xy=x(1﹣2x)=﹣2(x﹣)2+≤,即可求出最大值.解:∵实数x,y满足2x+y=1,∴y=1﹣2x,∴xy=x(1﹣2x)=﹣2x2+x=﹣2(x﹣)2+≤,当x=,y=时取等号,故选C.9.分析:由a+b=1,根据逐一判断即可.解:∵a>0,b>0,且a+b=1;∴;∴;∴ab有最大值,∴选项A正确;+,,∴的最小值不是,∴B错误;,∴有最小值4,∴C正确;a2+b2≥2ab,,∴a2+b2的最小值不是,∴D错误.故选AC.10.分析:可利用“1”的代换,根据x+(4﹣x)=4配凑应用基本不等式.解:∵0<x<4,则=[x+(4﹣x)]()=(10++)≥(10+2)=4,当且仅当,即x=1时取等号.故选C.11.分析:利用题意首先确定m,n的关系式,然后结合均值不等式的结论整理计算即可求得最终结果.解:由指数函数的性质可得 A(1,﹣1),点在直线上,则:m+n﹣1=0,m+n=1.则:,当且仅当时等号成立.综上可得:的最小值为.故答案为:.12.分析:先求出比例系数,再得出运费与仓储费之和,利用基本不等式可求最值.解:设工厂和仓库之间的距离为x千米,运费为y1万元,仓储费为y2万元,则y1=k1x,y2=.∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,∴k1=5,k2=20,∴运费与仓储费之和为5x+,∵5x+≥=20,当且仅当5x=,即x=2时,运费与仓储费之和最小为20万元,故答案为:2,2013.分析:由题意可得m≤[(a+b+c)(++)]min,由柯西不等式可得其最小值,注意检验等号成立的条件,即可得到所求最大值.解:不等式恒成立,即为m≤[(a+b+c)(++)]min,由柯西不等式可得(a+b+c)(++)=[()2+()2+()2][()2+()2+()2]≥(•+•+ )2=(1+1+)2=6+4,当且仅当a=b=c,即a2+b2=c2时,上式取得等号.则[(a+b+c)(++)]min=6+4,所以m≤6+4,即m的最大值为6+4,故答案为:6+4.14.分析:由题意知,BE=4里,AG=2.5里,由△BEF∽△FGA,可知EF•FG=10里,再利用均值不等式求出EF+FG的最小值,进而得解.解:由题意知,BE=1200步=4里,AG=750步=2.5里,因为△BEF∽△FGA,所以=,所以EF•FG=BE•AG=4×2.5=10里,所以EF+FG≥2=2,当且仅当EF=FG=时,等号成立,而该小城的周长为4(EF+FG)≥8,所以该小城的周长的最小值为8里.故答案为:8.15.分析:a,b∈R+,且a+b++=5,利用基本不等式的性质可得:5=(a+b)≥(a+b),当且仅当a=b=2或时取等号.令a+b=t,化为:(t﹣1)(t﹣4)≤0,解出即可得出.解:∵a,b∈R+,且a+b++=5,则5=(a+b)≥(a+b),当且仅当a=b=2或时取等号.令a+b=t,化为:(t﹣1)(t﹣4)≤0,解得1≤t≤4.∴a+b的取值范围是[1,4].故答案为:[1,4].16.分析:利用基本不等式的结论求出,然后将不等式恒成立转化为,即可得到答案.解:因为x、y都为正数,且x+y=4,所以,当且仅当时取等号,故,因为不等式恒成立,则,所以实数m的取值范围是.故答案为:.17.分析:根据题意,设直角三角形的直角边分别为a,b,由勾股定理可得a2+b2=25,利用基本不等式的性质可得S=ab≤(a2+b2)=,即可得答案.解:根据题意,设直角三角形的直角边分别为a,b,由题意知斜边长等于5,则a2+b2=25,则有S =ab≤(a2+b2)=,当且仅当a=b时等号成立,故这个直角三角形的面积的最大值等于;故答案为:.18.分析:由题意可知,t相当于最后一辆车行驶了50个km+400km所用的时间,利用基本不等式,即可得出结论.解:设全部物资到达灾区所需时间为t小时,由题意可知,t相当于最后一辆车行驶了50个km+400km所用的时间,因此,t==+≥2=10.当且仅当=,即v=80时取“=”.故这些汽车以80km/h的速度匀速行驶时,所需时间最少要10小时.故答案为:1019.分析:首先右边是xy的形式,左边是2x+y和常数的和的形式,考虑把左边也转化成xy的形式,使形式统一.可以猜想到应用基本不等式.转化后变成关于xy的不等式,可把xy看成整体换元后,求最小值.解:由条件利用基本不等式可得,令xy=t2,即 t=>0,可得.即得到可解得.又注意到t>0,故解为,所以xy≥18.故答案应为18.20.分析:利用基本不等式,根据xy≤把题设等式整理成关于x+y的不等式,求得其范围,则x+y的最大值可得.解:∵x2+y2+xy=1,∴(x+y)2=1+xy,∵xy≤,∴(x+y)2﹣1≤,整理求得﹣≤x+y≤,∴x+y的最大值是,故答案为:21.分析:利用基本不等式可得,同理,,三式相加即可得证.证明:∵a,b,c均为正实数,∴,当且仅当a+1=2,即a=1时取等号;同理,当且仅当b+1=2,即b=1时取等号;,当且仅当c+1=2,即c=1时取等号.以上三个不等式相加,可得.∴,当且仅当a=b=c=1时取等号.22.分析:(1)由分析法,只可证明(a﹣c)()>0,再由基本不等式证明;(2)只需(a﹣c)()>0,左边=2﹣p+≥4﹣p,即可求得p值.解:(1)证明:由a>b>c,得a﹣b>0,b﹣c>0,a﹣c>0,要证,只要证(a ﹣c)()>0,左边=[(a﹣b)+(b﹣c)]()=1+>0,当且仅当a﹣b=b﹣c,即a+c=2b时等号成立;(2)解:要使,只需(a﹣c)()>0,左边=[(a﹣b)+(b ﹣c)]()=2﹣p+≥4﹣p>0,则p<4,∵p∈N*,∴可取p=2或3.取p=2,问题转化为>0.证明如下:要证>0,只需证明(a﹣c)()>0,左边=[(a﹣b)+(b﹣c)]()=≥>0,当且仅当a﹣b=b﹣c,即a+c=2b时等号成立.23.分析:根据基本不等式即可求出.解:∵0<x<1,∴4﹣3x>0,∴x(4﹣3x)=•3x(4﹣3x)≤×()2=,当且仅当3x=4﹣3x时,即x=时取等号,故x(4﹣3x)取得最大值时x的值为.24.分析:先将函数解析式整理成基本不等式的形式,然后利用基本不等式求得函数的最大值和此时x的取值即可.解:∵∴5﹣4x>0,∴=﹣(5﹣4x+)+3≤﹣2+3=1,当且=1.∴函数的最大值仅当5﹣4x=,即x=1时,上式成立,故当x=1时,ymax为1.25.分析:先利用换元法得到f(t)=t++2,然后结合基本不等式可求.解:设x﹣1=t(t>0),则x=t+1,∴f(t)==t++2+2,当且仅当t=时取等号,∴函数的最小值为2+2.26.分析:(1)将所求的式子进行化简变形,转化为乘积为定值的结构,然后利用基本不等式求解最值即可;(2)将已知的等式变形为,然后利用“1”的代换将所求式子进行变形,再利用基本不等式求解最值即可.解:(1)因为x>1,则x﹣1>0,所以函数==≥=,当且仅当,即x=时取等号,所以函数的最小值为.(2)因为x+3y=5xy,则,又x,y均为正数,所以3x+4y=(3x+4y)=≥=5,当且仅当且,即时取等号,所以3x+4y的最小值为5.27.分析:把已知2x+8y﹣xy=0,变形为,而x+y=,展开再利用基本不等式的性质即可.解:由2x+8y﹣xy=0,及x>0,y>0,得.∴x+y==10+2=18,当且仅当,,即x=12,y=6时取等号.∴x+y的最小值为18.故答案为18.28.分析:化简==﹣[(1﹣x)+],根据基本不等式即可求出.解:∵﹣4<x<1,∴1﹣x>0,∴==[(x﹣1)+]=﹣[(1﹣x)+]≤﹣×2=﹣1,当且仅当1﹣x=时,即x=0时取等号,故的最大值为﹣1.29.分析:由于x>0,利用基本不等式可得y=x+≥4,满足等号成立的条件,于是问题解决.解:∵x>0,∴y=x+≥2=4,当且仅当x=,即x=2时取“=”.故y=x+的最小值为4,当x=2时,有最小值.30.分析:根据题意,由0<x<可得3﹣2x>0,则可以将4x(3﹣2x)变形为2[2x(3﹣2x)],再由基本不等式的性质可得2[2x(3﹣2x)]≤2()2,即可得答案.解:∵0<x<,∴3﹣2x>0,则y=4x(3﹣2x)=2[2x(3﹣2x)]≤2()2=,当且仅当2x=3﹣2x,即x=时等号成立,答:当0<x<时,函数y=4x(3﹣2x)的最大值为.31.分析:直接利用基本不等式的应用求出结果.解:由于x>2,所以x﹣2>0;故+2+2≥6,当且仅当x=4时,等号成立.故最小值为6.32.分析:利用“乘1法”与基本不等式的性质即可得出.解:因为x>0,y>0,所以x+y=(x+y)()=10++≥10+2=16,当且仅当=,即x=4,y=12时取等号,所以x+y的最小值为16.33.分析:先利用基本不等式求出的最小值,然后将所求函数转化为,即可得到答案.解:因为x∈(0,+∞),所以,当且仅当,即x=时取等号,则=,所以的最大值为.34.分析:(1)由题目中产品的年销售量x万件与年促销费用m万元的函数关系式为:,当m=0时,x=1,可得k的值,即得x关于m的解析式;又每件产品的销售价格为1.5倍的成本,可得利润y与促销费用之间的关系式;(2)对(1)利润函数解析式进行变形,进而利用基本不等式求最大值即可.解:(1)由题意知,当m=0时,x=1,∴1=3﹣k,即k=2,∴;每件产品的销售价格为1.5×(万元),∴利润函数y=x[1.5×]﹣(8+16x+m)=4+8x﹣m=4+8(3﹣)﹣m=﹣[+(m+1)]+29(m≥0).(2)因为利润函数y=﹣[+(m+1)]+29(m≥0),所以,当m≥0时,+(m+1)≥2==21(万元).所以,该厂家8,∴y≤﹣8+29=21,当且仅当=m+1,即m=3(万元)时,ymax2013年的促销费用投入3万元时,厂家的利润最大,最大为21万元.35.分析:(1)设AD=x,DQ=y,由题意可得x2+4xy=200,把y用含有x的代数式表示,即可求得总造价S关于x的函数关系式(2)把(1)中的函数解析式利用基本不等式求最值得答案.解:(1)设AD=x,DQ=y,则x2+4xy=200,∴y=,则S==38000+(0);(2)S=38000+≥38000+2=38000+2=118000(0<x <),当且仅当4000x2=,即x=时上式等号成立.故当AD的长为米时,总造价S有最小值118000元.36.分析:(1)根据2021年的利润等于年销售额减去固定成本和另投入成本,分段求出利润W(x)关于x的解析式即可.(2)根据(1)求出的利润W(x)的函数解析式,分别利用二次函数的性质和基本不等式求出每段上的最大值,取两者中较大的利润值,即为年企业最大利润.解:(1)由题意可知,2021年的利润等于年销售额减去固定成本和另投入成本,①当0<x<40时,W(x)=0.7×1000x﹣(10x2+100x+1000)﹣250=﹣10x2+600x﹣1250,②当x≥40时,W(x)=0.7×1000x﹣(701x+﹣8450)﹣250=﹣(x+)+8200,所以W(x)=.(2)①当0<x<40时,W(x)=﹣10x2+600x﹣1250,此时函数W(x)为开口向下的二次函数,所以当x=30时,W(x)取得最大值,最大值为W(30)=7750(万元),②当x≥40时,W(x)=﹣(x+)+8200,因为x>0,所以x+=200,当且仅当x=即x=100时,等号成立.即当x=100时,W(x)取得最大值﹣200+8200=8000(万元),综上所述,当x=100时,W(x)的值最大,最大值为8000(万元),故当2021年产量为100千部时,企业所获利润最大,最大利润是8000万元.37.分析:由已知可求p:0<x<3,由¬p是¬q的必要条件可知p是q的充分条件,从而可得x2﹣mx+4≥0对于任意的x∈(0,3)恒成立,进而转化为m=对于任意的x∈(0,3)恒成立,利用基本不等式可求解:∵1<2x<8,∴p:0<x<3,∵¬p是¬q的必要条件,∴p是q的充分条件即p⇒q,∵x2﹣mx+4≥0对于任意的x∈(0,3)恒成立,∴m=对于任意的x∈(0,3)恒成立,∵=4,当且仅当x=即x=2时等号成立.∴m≤438.分析:(1)根据基本不等式的性质即可求解m的最小值;(2)根据a+b≤m恒成立,由(1)可得a+b的最大值为m,取绝对值即可求解;解:(1)∵a2+b2≥2ab,∴2a2+2b2≥(a+b)2,∴(a+b)2≤16,∴(a+b)≤4,故m≥4;(2)由2|x﹣1|+|x|≥a+b恒成立,由(1)可得a+b的最大值为4,故只需2|x﹣1|+|x|≥4,即:当x≥1时,2(x﹣1)+x≥4,解得:x≥2;当0≤x<1时,2(1﹣x)+x≥4,无解;当x<0时,2(1﹣x)﹣x≥4,解得;x,故得实数x的取值范围是.39.分析:(1)由题意利用基本不等式求得u=xy的最大值为10.(2)由题意利用基本不等式求得+的最小值为,可得 m2+4m≤,由此求得m的范围.解:(1)∵正实数x,y满足等式2x+5y=20≥2,∴≤10,∴xy≤10,∴u=xy的最大值为10.(2)∵=1,∴+=+=1+++≥+2=,当且仅当=时,等号成立,故+的最小值为.∵不等式恒成立,∴m2+4m≤,求得﹣≤m≤,即m的范围为[﹣,].40.分析:利用综合法,通过两数和的平方以及重要不等式即可得出.证明:∵a,b∈R,∴(a+b)2=a2+b2+2ab,∵a2+b2≥2ab,∴(a+b)2≥4ab,∴ab≤()2,当且仅当a=b>0时取等号.41.分析:(1)变形利用基本不等式的性质即可得出.(2)直接利用基本不等式的性质即可得出.解:(1)∵x>1,∴x+=x﹣1++1≥2+1=3,当且仅当x=2时取等号,因此x+的最小值为3.(2)由x(10﹣x)≥0,解得0≤x≤10.∴≤=5,当且仅当x=5时取等号.∴的最大值是5.42.分析:设底面的长为x,宽为y,则y=,设房屋总造价为f(x),由题意可得:f(x)=3600x++5800,再利用基本不等式即可得x=8时,f(x)的值最小,故当房屋底面的长为8m,宽为6m时,这时的房屋总造价最低,最低总造价是63400元.解:如图所示,设底面的长为x,宽为,则xy=48,∴y=,设房屋总造价为f(x),由题意可得:f(x)=3x•1200+3××800×2+5800=3600x++5800≥+5800=63400,当且仅当,即x=8时,等号成立,故当房屋底面的长为8m,宽为6m 时,这时的房屋总造价最低,最低总造价是63400元.(2)43.分析:(1)根据几何图形的面积即可得到函数的解析式,并求出函数的定义域,即可得到答案.设正十字形的外接圆的直径为d,则,利用基本不等式可以求出d的最小值,进而求出外接圆面积的最小值.解:(1)由题意可得:,则,∵y>x,∴,解得,∴y关于x的解析式为(0<x<).(2)设正十字形的外接圆的直径为d,由图可知=,当且仅当时,不等式等号成立,所以正十字形的外接圆直径d的最小值为,则半径的最小值为.所以正十字形的外接圆面积最小值为.此时.所以当时正十字形的外接圆面积最小,最小值为.。

证明不等式的基本方法练习题(基础、经典、好用)

证明不等式的基本方法练习题(基础、经典、好用)

证明不等式的基本方法一、选择题1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( )A .s ≥tB .s >tC .s ≤tD .s <t2.设0<x <1,则a =2x ,b =1+x ,c =11-x 中最大的一个是( ) A .a B .b C .c D .无法判断3.设a 、b ∈(0,+∞),且ab -a -b =1,则有( )A .a +b ≥2(2+1)B .a +b ≤2+1C .a +b <2+1D .a +b >2(2+1)4.已知a 、b 、c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为( )A .5B .7C .9D .115.(2012·湖北高考)设a ,b ,c ,x ,y ,z 均为正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +c x +y +z 等于( ) A.14 B.13C.12D.34 二、填空题6.设a >b >0,m =a -b ,n =a -b ,则m 与n 的大小关系是________.7.以下三个命题:①若|a -b |<1,则|a |<|b |+1;②若a 、b ∈R ,则|a +b |-2|a |≤|a -b |;③若|x |<2,|y |>3,则|x y |<23,其中正确命题的序号是________.8.若x +y +z =1,且x ,y ,z ∈R ,则x 2+y 2+z 2与13的大小关系为________.三、解答题9.设a >0,b >0,a +b =1,求证:1a +1b +1ab ≥8.10.(2013·深圳调研)已知a ,b 为正实数.(1)求证:a 2b +b 2a ≥a +b ;(2)利用(1)的结论求函数y =(1-x )2x +x 21-x(0<x <1)的最小值.11.(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y +xy .(2)1≤a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .解析及答案一、选择题1.【解析】 ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t .【答案】 A2.【解析】 ∵0<x <1,∴1+x >2x =4x >2x , ∴只需比较1+x 与11-x的大小, ∵1+x -11-x =1-x 2-11-x =-x 21-x<0, ∴1+x <11-x. 因此c =11-x 最大. 【答案】 C3.【解析】 ∵ab -a -b =1,∴1+a +b =ab ≤(a +b 2)2.令a +b =t (t >0),则1+t ≤t 24(t >0).解得t ≥2(2+1),则a +b ≥2(2+1).【答案】 A4.【解析】 把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c=3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2+2+2=9.【答案】 C5.【解析】 由题意可得x 2+y 2+z 2=2ax +2by +2cz , 又a 2+b 2+c 2=10相加可得(x -a )2+(y -b )2+(z -c )2=10,所以不妨令⎩⎨⎧x -a =a ,y -b =b ,z -c =c (或⎩⎨⎧x -a =b ,y -b =c ,z -c =a), 则x +y +z =2(a +b +c ),∴a +b +c x +y +z =12. 【答案】 C二、填空题6.【解析】 ∵a >b >0,∴m =a -b >0,n =a -b >0.∵m 2-n 2=(a +b -2ab )-(a -b )=2b -2ab =2b (b -a )<0,∴m 2<n 2,从而m <n .【答案】 m <n7.【解析】 ①|a |-|b |≤|a -b |<1,所以|a |<|b |+1; ②|a +b |-|a -b |≤|(a +b )+(a -b )|=|2a |, 所以|a +b |-2|a |≤|a -b |;③|x |<2,|y |>3,所以1|y |<13,因此|x ||y |<23.∴①②③均正确.【答案】 ①②③8.【解析】 ∵(x +y +z )2=1,∴x 2+y 2+z 2+2(xy +yz +zx )=1,又2(xy +yz +zx )≤2(x 2+y 2+z 2),∴3(x 2+y 2+z 2)≥1,则x 2+y 2+z 2≥13.【答案】 x 2+y 2+z 2≥13三、解答题9.【证明】 ∵a >0,b >0,a +b =1, ∴2ab ≤a +b =1.因此ab≤12,1ab≥4.则1a+1b+1ab=(a+b)(1a+1b)+1ab≥2ab·2 1ab+4=8.故1a+1b+1ab≥8成立.10.【解】(1)证明∵a2b+b2a-(a+b)=a3+b3-a2b-ab2ab=a2(a-b)-b2(a-b)ab=(a-b)2(a+b)ab.又∵a>0,b>0,∴(a-b)2(a+b)ab≥0,当且仅当a=b时等号成立.∴a2b+b2a≥a+b.(2)∵0<x<1,∴1-x>0,由(1)的结论,函数y=(1-x)2x+x21-x≥(1-x)+x=1.当且仅当1-x=x即x=12时等号成立.∴函数y=(1-x)2x+x21-x(0<x<1)的最小值为1.11.【证明】(1)由于x≥1,y≥1,则x+y+1xy≤1x+1y+xy⇔xy(x+y)+1≤y+x+(xy)2,将上式中右式减左式得[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1),由x≥1,y≥1易知(xy-1)(x-1)(y-1)≥0,即原不等式成立.(2)设log a b=x,log b c=y,由对数换底公式得log c a=1xy,log b a=1x,log c b=1y,log a c=xy,则所证不等式可化为x+y+1xy≤1x+1y+xy,由1≤a≤b≤c知x=log a b≥1,y=log b c≥1,由(1)知所证不等式成立.。

新必修一-2.2基本不等式精选练习(含答案)

新必修一-2.2基本不等式精选练习(含答案)

新人教2019版基本不等式精选练习(含答案)一.选择题(共30小题)1.若直线过点(1,2),则a+b的最小值等于()A.3 B.4 C.D.2.若x>0,y>0,且+=1,x+2y>m2+7m恒成立,则实数m的取值范围是()A.(﹣8,1)B.(﹣∞,﹣8)∪(1,+∞)C.(﹣∞,﹣1)∪(8,+∞)D.(﹣1,8)3.直角三角形面积为50,则两直角边和的最小值是()A.10 B.20 C.30 D.404.如果b<a<0,那么下列不等式错误的是()A.a2>b2 B.a﹣b>0 C.a+b<0 D.|b|>|a|5.已知实数a,b∈R+,且a+b=2,则的最小值为()A.9 B.C.5 D.46.若正数a,b满足=,则当ab取最小值时,b的值为()A.B.C.D.7.已知x,y>0,,则x+2y的最小值为()A.9 B.12 C.15 D.8.已知正实数满足a+2b=1,则+的最小值为()A.8 B.9 C.10 D.119.设a>0,b>0,若2a+b=1,则+的最小值为()A.2B.8 C.9 D.1010.已知正实数a,b满足,则的最小值为()A.4 B.6 C.9 D.1011.已知a>0,b>0,且满足ab=a+b+3,则a+b的最小值是()A.2 B.3 C.5 D.612.对于任意实数a,b,c,d,下列命题中正确的是()A.若a>b,则ac>bc B.若a>b,c>d,则ac>bdC.若ac2>bc2,则a>b D.若a>b,则13.已知x>0,y>0,2x﹣=﹣y,则2x+y的最小值为()A.B.2C.3D.414.两个正实数a,b满足3a+b=1,则满足,恒成立的m取值范围()A.[﹣4,3] B.[﹣3,4] C.[﹣2,6] D.[﹣6,2]15.下列说法正确的是()A.若a>b,则ac>bc B.若a>b,c>d,则ac>bdC.若a>b,则a2>b2D.若a>b,c>d,则a+c>b+d16.已知a>﹣1,b>0,a+2b=1,则的最小值为()A.B.C.7 D.917.若a,b=R*,ab+2a+b=4,则a+b的最小值为()A.2 B.﹣1 C.2﹣2 D.2﹣318.设x,y∈R,且xy≠0,则的最小值为()A.﹣9 B.9 C.10 D.019.若实数x,y满足x2y2+x2+y2=8,则x2+y2的取值范围为()A.[4,8] B.[8,+∞)C.[2,8] D.[2,4]20.若mn=1,其中m>0,则m+3n的最小值等于()A.B.2 C.D.21.已知m>0,xy>0,当x+y=2时,不等式≥4恒成立,则m的取值范围是()A.[,+∞)B.[2,+∞)C.(0,] D.(,2]22.已知0<x<1,当取得最小值时x=()A.2﹣B.﹣1 C.D.23.设a>0,b>0,且a+b=4,则的最小值为()A.8 B.4 C.2 D.124.ab>0,则的最小值为()A.B.C.3 D.2 25.已知a>0,b>0,且2a+b=ab﹣1,则a+2b的最小值为()A.B.C.5 D.9 26.设x>0,y>0,不等式++≥0恒成立,则实数m的最小值是()A.﹣2 B.﹣4 C.1 D.2 27.当x>4时,不等式x+≥m恒成立,则m的取值范围是()A.m≤8 B.m<8 C.m≥8 D.m>8 28.已知非负数x,y满足xy+y2=1,则x+2y的最小值是()A.B.2 C.D.29.若正数a,b满足4a+3b﹣1=0,则的最小值为()A.B.C.2D.30.若a,b都是正数,且a+b=1,则(a+1)(b+1)的最大值为()A.B.2 C.D.4二.填空题(共12小题)31.已知正数x,y满足x+2y=3,则的最大值为.32.当x<﹣1时,f(x)=x+的最大值为.33.已知m>0,n>0,且m+n=4,则+的最小值是34.已知x>3,那么函数y=+x﹣3的最小值是;35.若正实数a,b满足a+b=4,则+的最小值是.36.已知正数a,b满足a2+b2=6,则b的最大值为.37.已知正数x,y满足2x+y=1,则的最小值是.38.已知m>0,n>0,且m+n=2,则的最小值为.39.已知正数x,y满足x+y=5,则的最小值为.40.设x>0,y>0,x+2y=5,则的最小值为.41.已知正实数x,y满足x+2y=4,则xy的最大值为,的最大值为.42.已知a,b∈R+且a+2b=3,则的最小值是;的最小值是.三.解答题(共8小题)43.设x,y∈R+,+=3,求2x+y的最小值.44.设a,b,c>0,且ab+bc+ca=1,求证:(1)a+b+c≥;(2)++≥(++)45.已知x>0,y>0,2xy=x+4y+a.(1)当a=16时,求xy的最小值;(2)当a=0时,求x+y+的最小值.46.已知x,y∈R*,且.(1)求xy的最小值;(2)求4x+6y的最小值.47.(1)已知x>1,求2x+的最小值;(2)已知x>y>0,求x2+的最小值.48.若正数a,b满足a+b=1,求+的最小值.49.(1)已知a>0,b>0,比较与a+b的大小;(2)已知正实数x,y满足x+y=1,求的最小值.50.已知实数x,y,若x≥0,y≥0且x+y=3,则的最大值.基本不等式精选练习答案一.选择题(共30小题)1.故选:C.2.故选:A.3.故选:B.4.故选:A.5.故选:B.6.故选:A.7.故选:D.8.故选:B.9.10.故选:C.11.故选:D.12.故选:C.13.故选:C.14..故选:B.15.故选:D.16.故选:B.17.故选:D.18.故选:B.19.故选:A.20.故选:C.21.故选:B.22.故选:D.23.故选:D.24.故选:A.25.故选:A.26.故选:B.27.故选:A.28.故选:B.29.故选:A.30.故选:C.二.填空题(共12小题)31..32.﹣3.33.1.34.2 35..36.5.37.25.38..39..40.441.2;3 42.3,3三.解答题(共8小题)43.最小值为.44.45.(1)∴xy的最小值为16.(2)最小值为.46.(1)最小值24;(2)最小值50.47.(1)最小值为2+2;(2)最小值为8.48.最小值为.49.(1)∴≥a+b(当且仅当a=b时取等号)(2)当且仅当x=y=时有最小值为1.50.的最大值为.。

不等式题目及答案

不等式题目及答案

不等式题目及答案【篇一:基本不等式练习题及答案】教a版教材习题改编)函数y=x+xx>0)的值域为( ).a.(-∞,-2]∪[2,+∞)c.[2,+∞)b.(0,+∞) d.(2,+∞)a+b12.下列不等式:①a2+1>2a;②2;③x2+≥1,其中正确的个数是 x+1ab( ).a.0b.1c.2d.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ).1a.2b.1 c.2 d.4a.1+2b.1+3c.3d.4t2-4t+15.已知t>0,则函数y=的最小值为________. t考向一利用基本不等式求最值11【例1】?(1)已知x>0,y>0,且2x+y=1,则x+y的最小值为________;(2)当x>0时,则f(x)=2x________. x+1【训练1】 (1)已知x>1,则f(x)=x+1的最小值为________. x-12(2)已知0<x<5y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.考向二利用基本不等式证明不等式bccaab【例2】?已知a>0,b>0,c>0,求证:abca+b+c..【训练2】已知a>0,b>0,c>0,且a+b+c=1.111求证:a+b+c≥9.考向三利用基本不等式解决恒成立问题________.考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?双基自测d.(2,+∞)答案 c2.解析①②不正确,③正确,x2+112(x+1)+1≥2-1=1.答案 b x+1x+11的最小值是( ). a?a-b?13.解析∵a>0,b>0,a+2b=2,∴a+2b=2≥2ab,即ab≤2答案 a4.解析当x>2时,x-2>0,f(x)=(x-2)+=3,即a=3.答案 ct2-4t+115.解析∵t>0,∴y==t+tt-4≥2-4=-2,当且仅当t=1时取等号.答案-2【例1】解析 (1)∵x>0,y>0,且2x+y=1,112x+y2x+yy2xy2x∴x+y=x+y=3+x+y3+22.当且仅当xy 时,取等号.(2)∵x>0,∴f(x)=2x221=1≤2=1,当且仅当x=x,即x=1时取等号.答x+1x+x案 (1)3+22 (2)1【训练1】.解析 (1)∵x>1,∴f(x)=(x-1)+1+1≥2+1=3 当且仅当xx-11?5x+2-5x?2=1,∴y≤,当且仅当5x=2-5x,-5x>0,∴5x(2-5x)≤?52??1128即x=5时,ymax=5.(3)由2x+8y-xy =0,得2x+8y=xy,∴y+x=1,4yx当且仅当xyx=2y时取等号,又2x+8y-xy=0,∴x=12,y =6,∴当x=12,y=6时,x+y取最小值18.1答案 (1)3 (2)5(3)18bcca【例2】证明∵a>0,b>0,c>0,∴a+b≥2bcabcaab=2b;acb+c≥2 bccabcab=2c;aba+c≥2caab?bccaab?+c≥2(abc=2a.以上三式相加得:2?ab?bccaab+b+c),即abca+b+c.【训练2】111a+b+ca+b+c证明∵a>0,b>0,c>0,且a+b+c=1,∴a+b+c=aba+b+cbcacab?ba?ca?cb?a+b+?ac+?bc 3+3+caabbcc??????1≥3+2+2+2=9,当且仅当a=b=c=3时,取等号.xx解析若对任意x>0≤a恒成立,只需求得y=的最大值即x+3x +1x+3x+1可,因为x>0,所以y=x=x+3x+1111x=1时115x+x32 xx ?1??1?取等号,所以a的取值范围是?5,+∞?答案 ?5? ????【训练3】解析由x>0,y>0,xy=x+2y≥2 2xy,得xy≥8,于是由m-2≤xy恒成立,得m-2≤8,m≤10,故m的最大值为10.答案 1016当且仅当x=x,即x=4时取等号.故当侧面的长度为4米时,总造价最低.【训练3】解 (1)第n次投入后,产量为(10+n)万件,销售价格为100元,固定成本为80元,科技成本投入为100n万元.所以,年利润为f(n)=(10+n+180?80??*100-100-?-100n(n∈n).(2)由(1)知f(n)=(10+n)?-100n n)?n+1?n+1???9?9n+1+≤520(万元).当且仅当n+1==1 000-80?, n+1??n +1即n=8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.【示例】.正解∵a>0,b>0,且a+b=1,12?12b2a∴a+b=?a+b(a+b)=1+2+ab3+2 ??b2aab3+22. a+b=1,??当且仅当?b2a??ab ?a=2-1,12即?时,ab3+22. ?b=2-22 11112【试一试】尝试解答] a+ab=a-ab+ab+ab+a(a-b)+a?a-b?a?a-b?11+ab+ab≥2 1a?a-b?2 1abab2+2=4.当且仅当a(a-a?a-b?a?a-b?b)=1a?a-b?且ab=1aba=2b时,等号成立.答案d【篇二:初中数学不等式试题及答案】t>a卷2?x7x??1的解集为_____________。

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。

必修一 基本不等式练习(精选典题)含答案

必修一  基本不等式练习(精选典题)含答案

必修一基本不等式练习(精选典题)一.选择题(共19小题)1.已知正数x,y满足x+y=1,则的最小值为()A.5B.C.D.22.若关于x的不等式ax2+bx﹣1>0的解集是{x|1<x<2},则不等式bx2+ax﹣1<0的解集是()A.B.{x|x<﹣1或C.D.或x>1}3.若a,b∈R+,且a+b=1,则的最小值为()A.B.5C.D.254.若正数a,b满足:lga+lgb=lg(a+b),则的最小值为()A.16B.9C.4D.15.若a>0,b>0,ab=a+b+1,则a+2b的最小值为()A.3+3B.3﹣3C.3+D.76.下列说法正确的是()A.的最小值为2B.的最小值为4,x∈(0,π)C.x2+1的最小值为2xD.4x(1﹣x)的最大值为17.不等式的解集为()A.[0,1]B.(0,1]C.(﹣∞,0]∪[1,+∞)D.(﹣∞,0)∪[1,+∞)8.若a>0,b>0,且a+2b﹣4=0,则ab的最大值为()A.B.1C.2D.49.已知a<b,则的最小值为()A.3B.2C.4D.110.若a<b<0,则下列结论中不恒成立的是()A.|a|>|b|B.>C.a2+b2>2ab D.()2>12.若不等式x2+ax+1≥0对任意x∈R恒成立,则实数a的取值范围是()A.[2,+∞)B.(﹣∞,﹣2]C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)13.若m+n>0,则关于x的不等式(m﹣x)(n+x)>0的解集是()A.{x|﹣n<x<m}B.{x|x<﹣n或x>m}C.{x|﹣m<x<n}D.{x|x<﹣m或x>n} 14.关于x的方程x2﹣(a﹣1)x+4=0在区间[1,3]内有两个不等实根,则实数a的取值范围是()A.(4,5]B.[3,6]C.(5,]D.[)15.若不等式2x2+ax+2≥0对一切x∈(0,]恒成立,则a的最小值为()A.0B.﹣2C.﹣5D.﹣316.若关于x的不等式ax﹣1>0的解集是(1,+∞),则关于x的不等式(ax﹣1)(x+2)≥0的解集是()A.[﹣2,+∞)B.[﹣2,1]C.(﹣∞,﹣2)∪(1,+∞)D.(﹣∞,﹣2]∪[1,+∞)17.不等式ax2+bx+c>0的解集为(﹣4,1),则不等式b(x2+1)﹣a(x+3)+c>0的解集为()A.B.C.D.18.已知关于x的不等式ax2+x<0的解集中的整数恰有2个,则()A.<a≤B.≤a<C.<a≤或﹣≤a<﹣D.≤a<或﹣<a≤﹣19.若不等式(x﹣a)(1﹣x﹣a)<1对任意实数x成立,则()A.﹣1<a<1B.0<a<2C.D.二.解答题(共7小题)20.解下列不等式:(1)x4﹣x2﹣2≥0;(2).21.解关于x的不等式x2﹣(a+1)x+a≥0(a∈R).22.已知函数f(x)=ax2﹣(a2+1)x+a+b(a,b∈R).(Ⅰ)若f(x)≤0的解集为[﹣1,3],求a+b的值;(Ⅱ)若a∈[﹣1,0],b=0,求f(x)>0的解集.23.(1)已知a,b,c∈(0,+∞),且a+b+c=1,求证:;(2)解关于x的不等式:ax2﹣2≥2x﹣ax(a<0).24.若不等式ax2﹣bx+c>0的解集为{x|﹣3<x<2}.(1)求证:b+c=﹣7a;(2)求不等式cx2+bx+a<0的解集.25.已知函数f(x)=ax2﹣(2a+1)x+2.(1)当a=2时,解关于x的不等式f(x)≤0;(2)若a>0,解关于x的不等式f(x)≤0.26.已知关于x的不等式:x2﹣mx+m>0,其中m为参数.(1)若该不等式的解集为R,求m的取值范围;(2)当x>1时,该不等式恒成立,求m的取值范围.不等式练习参考答案一.选择题(共19小题)1.C;2.C;3.C;4.C;5.D;6.D;7.B;8.C;9.A;10.D;;12.C;13.A;14.C;15.C;16.D;17.B;18.B;19.D;二.解答题(共7小题)20.【解答】解:(1)将原不等式因式分解得(x2+1)(x2﹣2)≥0,∵x2+1>0,所以,x2﹣2≥0,解得x≤或x≥,因此,原不等式的解集为{x|x≤或x ≥};(2)由,得,化简得,等价于,解得x<﹣4或x≥﹣1,因此,原不等式的解集为{x|x<﹣4或x≥﹣1}.21.【解答】解:关于x的不等式x2﹣(a+1)x+a≥0化为(x﹣1)(x﹣a)≥0,不等式对应方程的实数根为a和1;当a>1时,不等式的解集为(﹣∞,1]∪[a,+∞);当a=1时,不等式的解集为R,当a<1时,不等式的解集为(﹣∞,a]∪[1,+∞).22.【解答】解:函数f(x)=ax2﹣(a2+1)x+a+b(a,b∈R).(Ⅰ)由f(x)≤0的解集为[﹣1,3],即方程ax2﹣(a2+1)x+a+b的两个根分别为﹣1,3.∴a>0∴,解得:a=1,b=﹣4.则a+b=﹣3.(Ⅱ)由b=0,可得f(x)=ax2﹣(a2+1)x+a=(ax﹣1)(x﹣a)∵a∈[﹣1,0],∴当a=0时,可得f(x)=﹣x,则f(x)>0,即﹣x>0,∴x<0∴解集为{x|x<0};∴当即a=﹣1时,f(x)>0,可得(x﹣a)2<0.此时无解;当a∈(﹣1,0)时,f(x)>0,即(ax ﹣1)(x﹣a)>0.∵∴解集为{x|<x<a};综上可得:当a∈(﹣1,0)时,不等式的解集为{x|<x<a};当a=﹣1时,不等式的无解;当a=0时,不等式的解集为{x|x<0}.23.【解答】解:(1)∵a+b+c=1,代入不等式的左端,∴====.∵a,b,c∈(0,+∞),∴.∴.∴(当且仅当时,等号成立).(2)原不等式可化为ax2+(a﹣2)x﹣2≥0,化简为(x+1)(ax﹣2)≥0.∵a<0,∴.1°当﹣2<a<0时,;2°当a=﹣2时,x=﹣1;3°当a<﹣2时,.综上所述,当﹣2<a<0时,解集为;当a=﹣2时,解集为{x|x=﹣1};当a<﹣2时,解集为.24.【解答】解:(1)证明:关于x的一元二次不等式ax2﹣bx+c>0的解集为{x|﹣3<x<2},∴a<0,且﹣3,2是一元二次方程ax2﹣bx+c=0的两个实数根,∴=﹣3+2=﹣1,=﹣3×2=﹣6;∴b=﹣a,c=﹣6a;∴b+c=﹣7a;(2)b=﹣a,c=﹣6a代入不等式cx2+bx+a <0,得﹣6ax2﹣ax+a<0,又a<0,则﹣6x2﹣x+1>0,化为6x2+x﹣1<0,解得﹣<x<;∴所求不等式的解集为{x|﹣<x<}.25.【解答】解:(1)当a=2时f(x)≤0可化为2x2﹣5x+2≤0,可得(2x﹣1)(x﹣2)≤0,解得,∴f(x)≤0的解集为;(2)不等式f(x)≤0可化为ax2﹣(2a+1)x+2≤0,a>0时,则不等式为a(x﹣)(x﹣2)≤0;①当时,有,解不等式得:;②当时,有,解不等式得:x=2;③当时,有,解不等式得:;综上:①时,不等式的解集为;②时,不等式的解集为{x|x=2};③时,不等式的解集为.26.【解答】解:(1)关于x的不等式x2﹣mx+m>0的解集为R,则△<0,即m2﹣4m<0;)解得0<m<4,∴m的取值范围是0<m<4;(2)当x>1时,关于x 的不等式x2﹣mx+m>0恒成立,等价于m<恒成立,设f(x)=,x>1;则f(x)=(x﹣1)++2≥2+2=4,当且仅当x=2时取“=”;∴m的取值范围是m<4.。

高中数学(必修一)第二章 基本不等式练习题

高中数学(必修一)第二章 基本不等式练习题

高中数学(必修一)第二章 基本不等式练习题(含答案解析)学校:___________姓名:___________班级:_____________一、解答题 1.已知a b ,比较2a ab +与23ab b -的大小,并证明.2.设a ,b 为正实数,求证:()()()2233338a b a b a b a b +++≥.3.求函数1(3)3y x x x =+>-的最小值.4.(1)把49写成两个正数的积,当这两个正数各取何值时,它们的和最小?(2)把12写成两个正数的和,当这两个正数各取何值时,它们的积最大?5.已知圆C 的圆心在坐标原点,且过点(M . (1)求圆C 的方程;(2)已知点P 是圆C 上的动点,试求点P 到直线40x y +-=的距离的最小值;(3)若直线l 与圆C 相切,且l 与,x y 轴的正半轴分别相交于,A B 两点,求ABC 的面积最小时直线l 的方程.6.已知a ,b R +∈,求证:()114a b a b ⎛⎫++≥ ⎪⎝⎭.7.函数π()2sin()10,||2f x x ωϕωϕ⎛⎫=++>< ⎪⎝⎭图像过点π,13⎛⎫ ⎪⎝⎭,且相邻对称轴间的距离为π2.(1)求,ωϕ的值;(2)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若32A f ⎛⎫= ⎪⎝⎭,且2a =,求ABC 面积的最大值.8.小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售收入为25x -万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大? (利润=累积收入+销售收入-总支出)9.高一(3)班的小北为我校设计的冬季运动会会徽《冬日雪花》获得一等奖.他的设计灵感来自三个全等的矩形的折叠拼凑,现要批量生产.其中会徽的六个直角(如图2阴影部分)要利用镀金工艺上色.已知一块矩形材料如图1所示,矩形 ABCD 的周长为4cm ,其中长边 AD 为 x cm ,将BCD △沿BD 向ABD △折叠,BC 折过去后交AD 于点E .(1)用 x 表示图1中BAE 的面积;(2)已知镀金工艺是2元/2cm ,试求一个会徽的镀金部分所需的最大费用.10.已知ABC 的内角A ,B ,C 的对边分别为a , b ,c ,A 为锐角,cos cos 3cos b A a B c A +=. (1)求cos A ;(2)若2a =,求ABC 面积的最大值.11.已知(2,5)x ∈-,求(2)(5)y x x =+-的最大值,以及y 取得最大值时x 的值.12.下列结论是否成立?若成立,试说明理由;若不成立,试举出反例.(1)若0ab >,则a b +≥(2)若0ab >2≥;(3)若0ab <,则2b aa b+≤-.13.已知a ,b ,c 均为正实数.(1)求证:a b c ++≥(2)若1a b +=,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.14.已知x >2,求函数4()2f x x x =+-的最小值.15.已知抛物线C :()220y px p =>的焦点为F ,直线l 过F 且与抛物线C 交于A ,B 两点,线段AB 的中点为M ,当3AB p =时,点M 的横坐标为2. (1)求抛物线C 的方程;(2)若直线l 与抛物线C 的准线交于点D ,点D 关于x 轴的对称点为E ,当DME 的面积取最小值时,求直线l 的方程.16.如图,动物园要以墙体为背面,用钢筋网围成四间具有相同面积的矩形虎笼.(1)现有可围36m 长钢筋网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?(2)若每间虎笼的面积为220m ,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?17.已知 5<4x ,求函数14145y x x =-+- 的最大值.参考答案:1.见解析【解析】利用作差法比较大小. 【详解】解:223a ab ab b +>-,证明如下:()2222232()a ab ab b a ab b a b +--=-+=-.a b ≠2()0a b ∴-> 223a ab ab b ∴+>-【点睛】本题考查作差法比较两式的大小关系,属于基础题. 2.证明见解析【分析】利用基本不等式计算可得;【详解】解:因为a ,b 为正实数,所以a b +≥222a b ab +≥,332a b +≥=当a b =时取等号,所以()()()223333228a b a b a b ab a b +++≥⨯=,即()()()2233338a b a b a b a b +++≥,当且仅当a b =时取等号;3.5【分析】式子化为1333x x +-+-,再利用基本不等式即可求解. 【详解】因为3x >, 所以30x ->,所以133353y x x =+-+≥=-, 当且仅当133x x -=-即4x =时取等号,此时取得最小值5.4.(1)当7x y ==时,x y +取得最小值14;(2)当6x y ==时,xy 取得最大值36【解析】(1)设0x >,0y >,49xy =,然后利用基本不等式求得x y +的最小值,根据基本不等式等号成立的条件,求得,x y 的值.(2)设0x >,0y >,12x y +=,然后利用基本不等式求得x y ⋅的最大值,根据基本不等式等号成立的条件,求得,x y 的值.【详解】(1)设0x >,0y >,49xy =,由均值不等式,得214x y xy +=, 当且仅当x y =时,取等号.由,49,x y xy =⎧⎨=⎩得7x y ==,即当7x y ==时,x y +取得最小值14.(2)设0x >,0y >,12x y +=,由均值不等式,得22123622x y x y +⎛⎫⎛⎫⋅== ⎪ ⎪⎝⎭⎝⎭.当且仅当x y =时,取等号.由,12,x y x y =⎧⎨+=⎩得6x y ==.即当6x y ==时,xy 取得最大值36.【点睛】本小题主要考查利用基本不等式求最值,属于基础题. 5.(1)224x y +=(2)2(3)0x y +-【分析】(1)利用两点间距离公式可求得半径r ,由此可得圆C 方程; (2)利用点到直线距离公式可求得圆心到直线距离d ,可知最小值为d r -;(3)设():10,0x yl a b a b+=>>,由圆心到直线距离等于半径,结合基本不等式可知当a b ==ABC面积取得最小值,由此可得直线l 方程. (1)由题意知:圆心()0,0C ,半径2r CM ===,∴圆C 的方程为:224x y +=.(2)圆心到直线40x y +-=的距离d r ==,∴点P 到直线40x y +-=的距离最小值为2d r -=.(3)设直线():10,0x yl a b a b+=>>,即0bx ay ab , 则圆心到直线l 距离2d ==,ab ∴=≥a b ==,解得:8ab ≥, ∴当a b ==ABC 面积取得最小值142ab =,则直线1l =,即0x y +-=. 6.见解析【分析】()11a b a b ⎛⎫++ ⎪⎝⎭展开并运用基本不等式即可得证.【详解】()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时等号成立.【点睛】本题考查基本不等式的应用,属于基础题. 7.(1)2ω=,π3ϕ=;(2)2+【分析】(1)由题干条件得到最小正周期,进而求出2ω=,待定系数法求出π3ϕ=;(2)先由32A f ⎛⎫= ⎪⎝⎭求出π6A =,利用余弦定理,基本不等式求出8bc ≤+. (1)由题意得:()f x 的最小正周期πT =,由于0>ω,故2ππω=,解得:2ω=,又2π32sin()11ϕ++=,所以2ππ,3k k Z ϕ+=∈,即2ππ,3k k Z ϕ=-∈,又π||2ϕ<,所以2πππ,32k k Z <∈-,解得:1766k <<,k Z ∈,故1k =,此时π3ϕ=,综上:2ω=,π3ϕ=; (2)2sin()33π12A f A ⎛⎫= ⎪⎝++=⎭,所以sin()1π3A +=,因为()0,πA ∈,所以ππ4π,333A ⎛⎫+∈ ⎪⎝⎭,则ππ32A +=,解得:π6A =,又2a =,所以由余弦定理得:224cos 2b c A bc +-==,则224b c +=,由基本不等式得:222b c bc +≥,即42bc ≥,解得:8bc ≤+b c =时等号成立,故ABC 面积最大值为1sin 22bc A ≤8.(1)第三年;(2)第5年.【解析】(1)求出第x 年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入﹣总支出,可得平均利润,利用基本不等式,可得结论. 【详解】(1)设大货车运输到第x 年年底,该车运输累计收入与总支出的差为y 万元, 则y =25x ﹣[6x +x (x ﹣1)]﹣50=﹣x 2+20x ﹣50(0<x ≤10,x ∈N )由﹣x 2+20x ﹣50>0,可得10﹣<x <,∈2<10﹣<3,故从第3年,该车运输累计收入超过总支出; (2)∈利润=累计收入+销售收入﹣总支出,∈二手车出售后, 小张的年平均利润为(25)y x y x +-==19﹣(x +25x)≤19﹣10=9,当且仅当x =5时,等号成立, ∈小张应当在第5年年底将大货车出售,能使小张获得的年平均利润最大. 【点睛】思路点睛:首先构建函数的模型一元二次函数,再解一元二次不等式,再利用基本不等式求最值.9.(1)()223cm 12S x x x ⎡⎤⎛⎫=-+<< ⎪⎢⎥⎝⎭⎣⎦;(2)当 AD cm 时,一个会徽的镀金部分所需的最大费用为(36-元.【分析】(1)设ED a =cm ,根据条件可得222x x a x-+=,然后利用面积公式即得;(2)利用基本不等式即得.(1)因为AD x =cm ,所以()2AB x =-cm , 设 ED a = cm ,则()AE x a =-cm ,因为AEB C ED '∠=∠,EAB DC E '∠=∠,AB DC '=, 所以Rt Rt BAE DC E '≌△△,所以BE ED a ==cm , 在Rt BAE △中,由勾股定理得222BA AE BE +=, 即()()2222x x a a -+-=, 解得222x x a x-+=,所以22x AE x a x-=-=, 所以BAE 的面积()()22112232223cm 1222x x x S AB AE x x x x x x --+-⎡⎤⎛⎫=⋅=-⋅==-+<< ⎪⎢⎥⎝⎭⎣⎦. 所以BAE 的面积()223cm 12S x x x ⎡⎤⎛⎫=-+<< ⎪⎢⎥⎝⎭⎣⎦;(2)设一个会徽的镀金费用为y 元,则(26212312336BAE y Sx x ⎡⎤⎛⎫=⋅⋅=⨯-+≤⨯-=- ⎪⎢⎥⎝⎭⎣⎦当且仅当2xx=,12x <<,即x所以当AD cm 时,一个会徽的镀金部分所需的最大费用为(36-元. 10.(1)1cos 3A =;【分析】(1)由正弦定理、两角和的正弦公式求cos A 的值;(2)由同角三角函数间的基本关系求sin A 的值,根据余弦定理和基本不等式求bc 的最大值,最后根据三角形的面积公式求ABC 面积的最大值即可. (1)因为cos cos 3cos b A a B c A +=,由正弦定理得sin cos cos sin 3sin cos B A B A C A +=, 所以()sin 3sin cos A B C A +=,所以sin 3sin cos C C A =. 在ABC 中,sin 0C ≠, 所以1cos 3A =;(2)由(1)知1cos 3A =,由22sin cos 1A A +=,A 为锐角,得sin A =由余弦定理可知222123b c a bc +-=,因为2a =, 所以2233122b c bc +-=, 所以22212336bc b c bc +=+≥,所以3bc ≤,当且仅当b c ==所以1sin 2ABC S bc A =△所以ABC 11.当32x =时,y 取得最大值494【解析】根据基本不等式,求得y 的最大值,根据基本不等式等号成立的条件,求得此时x 的值.【详解】∈(2,5)x ∈-,∈20,50x x +>->,∈22549(2)(5)24x x y x x ++-⎛⎫=+-=⎪⎝⎭. 当且仅当25x x +=-,即32x =时,取等号.即当32x =时,y 取得最大值494.【点睛】本小题主要考查利用基本不等式求最值,属于基础题. 12.(1)不成立,理由见解析; (2)成立,理由见解析; (3)成立,理由见解析;【分析】取特殊值判断(1),由均值不等式判断(2)(3). (1)取1,2a b =-=-满足0ab >,此时a b +≥不成立; (2)0ab >,0,0a bb a∴>>,2,当a b =时等号成立. (3)0ab <,0,0b aa b∴<<,2b a b a a b a b ⎡⎤⎛⎫⎛⎫∴+=--+-≤-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当a b =-时等号成立. 13.(1)证明见解析 (2)证明见解析【分析】(1)利用基本不等式证明即可;(2)由112111⎛⎫⎛⎫++=+ ⎪⎪⎝⎭⎝⎭a b ab 利用基本不等式求最值即可.(1)因为a ,b ,c 都是正数,所以 ()()()(1122++=+++++≥⎡⎤⎣⎦a b c a b b c a c=,当且仅当a b c ==时,等号成立,所以a b c ++≥ (2)211111122211111119142a b a b a b ab ab ab ab a b +⎛⎫⎛⎫++=+++=++=+≥+=+= ⎪⎪⎝⎭⎝⎭+⎛⎫⎪⎝⎭, 当且仅当12a b ==时等号成立. ∈11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 14.6【解析】利用基本不等式可求函数的最小值.【详解】解:∈2x >,∈20x ->,故44()222622f x x x x x =+=-++≥=--, 当且仅当4x =时等号成立,故()f x 的最小值为6.15.(1)24y x =(2)1x y =±+【分析】(1)设()()1122,,,A x y B x y ,根据焦点弦的性质得到12||AB x x p =++,从而求出p ,即可得解; (2)设:1l x ty =+,联立直线与抛物线,消元、利用韦达定理得到M y ,从而得到M x ,则()1||12DEM M S DE x =⋅+最后利用基本不等式求出最小值,即可得解; (1)解:设()()1122,,,A x y B x y ,由题知12||43AB x x p p p =++=+=时,2p =,故抛物线方程为24y x =;(2)解:设:1l x ty =+,联立抛物线方程得2440y ty --=,∈1222M y y y t +==,2121M M x ty t =+=+,而21,D t ⎛⎫-- ⎪⎝⎭,21,E t ⎛⎫- ⎪⎝⎭, 所以()()21141||1224||822||||DEM M S DE x t t t t ⎛⎫=⋅+=⋅⋅+=+≥ ⎪⎝⎭, 当且仅当||1t =时等号成立,故直线l 的方程为1x y =±+.16.(1)长为9m 2,宽为18m 5(2)长为5m ,宽为4m【分析】(1)设每间老虎笼的长为m x ,宽为m y ,则每间老虎笼的面积为S xy =,可得出4536x y +=,利用基本不等式可求得S 的最大值,利用等号成立的条件求出x 、y 的值,即可得出结论;(2)设每间老虎笼的长为m x ,宽为m y ,则20xy =,利用基本不等式可求得钢筋网总长45x y +的最小值,利用等号成立的条件求出x 、y 的值,即可得出结论.(1)解:设每间老虎笼的长为m x ,宽为m y ,则每间老虎笼的面积为S xy =,由已知可得4536x y +=,由基本不等式可得()2211458145m 202025x y S xy x y +⎛⎫==⋅⋅≤⨯= ⎪⎝⎭, 当且仅当454536x y x y =⎧⎨+=⎩,即当92185x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立, 因此,每间虎笼的长为9m 2,宽为18m 5时,可使得每间虎笼的面积最大. (2)解:设每间老虎笼的长为m x ,宽为m y ,则20xy =,钢筋网总长为()4540m x y +≥=,当且仅当4520x y xy =⎧⎨=⎩,即当54x y =⎧⎨=⎩时,等号成立, 因此,每间虎笼的长为5m ,宽为4m 时,可使围成四间虎笼的钢筋网总长最小. 17.2 【分析】将14145y x x =-+-变形为[()1]54454y x x=--++-,利用基本不等式即可求得答案. 【详解】根据题意,函数()114545444554y x x x x ⎡⎤=-++=--++⎢⎥--⎣⎦ , 又由54x <,则540x ->,则()154254x x -+≥-, 当且仅当15454x x -=-时,即1x =时取等号, 则1[(54)]424254y x x=--++≤-+=-, 故函数14145y x x =-+-的最大值为2.。

高中数学周测十:基本不等式(有答案)

高中数学周测十:基本不等式(有答案)

周测卷·数学(十)2a+b≤(45分钟 100分)项是符合题目要求的.1.下列函数的最小值为2的是( )A .xx y 22+=B . 2y =C .xx y -+=33 D .1sin (0)sin 2y x x x π=+<<2.若2,0,0=+>>b a b a ,则下列不等式中不正确的是( )A.1≤abB.2≤+b aC.222≥+b aD.211≥+ba10,0,21xx y x y x y>>+=+3.若且,则的最小值是A .2B .3C .221+ D.44.若122=+y x ,则y x +的最大值是A.0B.-2C.2D.15.用一个长为m 100篱笆围的矩形菜园,问这个矩形的长、宽各为多少时,矩形的面积最大( )A .625B .500C .400D .5256.已知实数y x ,满足0>>y x 且2=+y x ,则yx y x -++132的最小值是( ) A.4223+B.22C.43D.332二、填空题:本题共3小题,每小题8分,共24分.把答案填在题中的横线上.7.已知0,0,232x y x y xy >>+=-,则xy 的取值范围为_______.8、[1,3]x ∈若存在使不等式042<+-mx x 成立,则实数m 的取值范围为______. 9、已知正实数x y 、满足32=+y x ,则2xyx y+的最大值为_______ 三、解答题:本题共3小题,共40分.解答应写出必要的文字说明、证明过程和演算步骤.10.(本小题满分13分)(1)若3>x ,求x x x f +-=39)(的最小值. (2)已知20<<x ,求)2()(x x x f -=的最大值.11.(本小题满分13分)已知0,0>>n m ,直线04=++ny mx 恒过函数2log 1)2y x =---(的定点,求nm 14+的最小值.12.(本小题满分14分)设函数3)2()(2+--=x b ax x f .(1)若2)1(=-f ,且0,0>>b a ,求ab 的最大值;(2)若3)1(=f ,且1)(>x f 在)1,1(-∈a 上恒成立,求实数x 的取值范围.答案一、选择题:本题共6小题,每小题6分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数的最小值为2的是( )A .xx y 22+=B . 2y =C .xx y -+=33 D .sin (0)sin 2y x x x π=+<<答案:C 解析:本题考查运用基本不等式的性质.A 项0<x 时显然不满足条件;B 项.212,2y ==≥+其最小值大于2;D 项,1(0,),sin (0,1),sin 2,2sin x x y x+x π∈∈=>=则 因此D 项不正确; 选项C 是正确的.2.若2,0,0=+>>b a b a ,则下列不等式中不正确的是( )A.1≤abB.2≤+b aC.222≥+b aD.211≥+ba答案:B 解析:本题考查基本不等式变形的运用.因为1)2(2=+≤b a ab ,A 选项正确,因为42222)(2=++≤+=++=+b a ab ab b a b a ,故B 项不正确;222()22a b a b ++≥=,故C 项正确,2211≥=+=+abab b a b a ,故D 项正确.10,0,21xx y x y x y>>+=+3.若且,则的最小值是A .2B .3C .221+ D.4答案:C 解析:本题考查基本不等式.因为0,0x y >>,由2212121+≥++=++=+yxx y y x x y x y x x 当且仅当222y x =时等号成立,故最小值为221+.4.若122=+y x ,则y x +的最大值是A.0B.-2C.2D.1答案:B 解析:本题考查基本不等式和指数函数.因为yx y x +≥+2222,122=+y x 所以122≤+yx ,所以22412-+=≤y x ,所以2-≤+y x 故最大值为-2. 5.用一个长为m 100篱笆围的矩形菜园,问这个矩形的长、宽各为多少时,矩形的面积最大( )A .625B .500C .400D .525答案:A 解析:本题考查基本不等式的实际应用.设矩形的长、宽分别为y x ,,由已知得10022=+y x ,即50=+y x 625)250()2(22==+≤=y x xy S 矩形当且仅当25==y x 时等号成立.6.已知实数y x ,满足0>>y x 且2=+y x ,则yx y x -++132的最小值是( ) A.4223+B.22C.43D.332答案:A 解析:本题考查利用基本不等式求最小值.00>-∴>>y x y x ,由2=+y x 得422=+y x 即43=-++y x y x2112112()3()(3)(3)34343x y x yx y x y x y x y x y x y x y x y-++=+++-=+++-+-+-所以221(32()(3)1(3.4x y x y x y ≥+-=+=+,当且仅当)时等号成立二、填空题:本题共3小题,每小题8分,共24分.把答案填在题中的横线上. 7.已知0,0,232x y x y xy >>+=-,则xy 的取值范围为_______.答案:),2[+∞解析:本题考查基本不等式.因为0,0x y >>由xy y x xy 22223≥+=-得:xy xy 2223≥-令02223,2≥--=t t xy t 则得:322-≤≥t t 或所以 2.xy ≥ 8、[1,3]x ∈若存在使不等式042<+-mx x 成立,则实数m 的取值范围为______. 答案:),4(+∞解析:本题考查解不等式.由042<+-mx x ,[1,3]x ∈存在得min )4(x x m +>而4424=≥+xx ,当且仅当2=x 时等号成立,故4>m .9、已知正实数x y 、满足32=+y x ,则2xyx y+的最大值为_______答案:13解析:本题考查利用基本不等式求最值.令1221,2xy x y t x y t xy x y +===+=+则 1211221(2)()(5)(53,333y x x y x y x y ++=++≥+=当且仅当y x =时等号成立,所以1.3t 的最大值为三、解答题:本题共3小题,共40分.解答应写出必要的文字说明、证明过程和演算步骤.10.(本小题满分13分)(1)若3>x ,求x x x f +-=39)(的最小值. (2)已知20<<x ,求)2()(x x x f -=的最大值.解析:本题考查利用基本不等式求最值.(1)由3>x 知03>-x ,所以99()3333f x x x x x =+=+-+--39≥=,即x x x f +-=39)(的最小值为9. (2)因为20<<x ,则函数1)22()2()(2=-+≤-=x x x x x f 当且仅当1=x 时取等号,则)2()(x x x f -=的最大值为1.11.(本小题满分13分)已知0,0>>n m ,直线04=++ny mx 恒过函数2log 1)2y x =---(的定点,求nm 14+的最小值.解析:本题考查均值不等式和函数方程的结合. 易知函数2log 1)2y x =---(的定点为(-2,-2),由于直线04=++ny mx 恒过定点(-2,-2),所以20422=+=+--n m ,n m 则,所以41m n +=141()()2m n m n++ 149(5)22n m m n =++≥,当且仅当32,342422===+=n m ,n m m n 即时且时等号成立, 所以n m 14+的最小值是29.12.(本小题满分14分)设函数3)2()(2+--=x b ax x f .(1)若2)1(=-f ,且0,0>>b a ,求ab 的最大值;(2)若3)1(=f ,且1)(>x f 在)1,1(-∈a 上恒成立,求实数x 的取值范围. 解析:本题考查二次函数恒成立与基本不等式.(1)由(1)2f -=得1232=+=+-+b a b a 得,因为0,0>>b a ,所以41)2(2=+≤b a ab ,当且仅当21==b a 时等号成立,故ab 的最大值为41.(2)因为3)1(=f ,所以2332+==++-a b b a 得,所以13)(2>+-=ax ax x f 在)1,1(-∈a 上恒成立,等价于02)(2>+-x x a 在)1,1(-∈a 上恒成立,020222>++->+-∴x x x x 且(1,2).x ∈-解得。

基本不等式练习题(带答案)

基本不等式练习题(带答案)

学习必备 欢迎下载《基本不等式》同步测试一、选择题,本大题共 10 小题,每小题4 分,满分 40 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .1. 若a R ,下列不等式恒成立的是()A . a21a B . 1 1C . a296a21)lg | 2a |2D . lg( aa 12. 若 0 ab 且 a b1,则下列四个数中最大的是() A.1B.a 2b 2C. 2abD. a23. 设 x>0,则 y3 3x1的最大值为()xA. 3B. 3 3 2C. 3 23D.- 14. 设 x, yR , 且 x y 5, 则 3 x 3 y 的最小值是 ()A. 10B. 6 3C. 4 6D. 18 3 5. 若 x, y 是正数,且 1 4 1,则 xy 有()xyA.最大值 16B.最小值 1 D.最大值1C.最小值 16 16166. 若 a, b, c ∈ R ,且 ab+bc+ca=1, 则下列不等式成立的是()A . a2b2c22B . (a b c ) 231 1 12 3D . a bc3 C .bca7. 若 x>0, y>0,且 x+y 4,则下列不等式中恒成立的是()A . 1y 1B .1 11C . xy 2D .11x 4xyxy8. a,b 是正数,则ab , ab , 2ab 三个数的大小顺序是 ()2 a bA.ab ab2abB.aba b 2ab2a b2 a bC. 2ababa b D.ab2ab aba b2a b29. 某产品的产量第一年的增长率为 p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( )A. x p qB. xpqC. xpq D. xp q222210. 下列函数中,最小值为4 的是()A. yx4B. ysin x4(0 x)xsin xC. y e x4e xD. y log3 x4log x 3二、填空题 , 本大题共4小题,每小题 3 分,满分 12 分,把正确的答案写在题中横线上.11.函数 y x1x2的最大值为.12.建造一个容积为18m3, 深为 2m 的长方形无盖水池,如果池底和池壁每 m2的造价为 200元和 150 元,那么池的最低造价为元 .13.若直角三角形斜边长是1,则其内切圆半径的最大值是.14.若 x, y 为非零实数,代数式x2y28( x y) 15 的值恒为正,对吗?答.y2x2y x三、解答题 , 本大题共 4 小题,每小题12 分,共 48 分,解答应写出必要的文字说明、证明过程和演算步骤.15. 已知:x2y2 a , m2n 2b(a, b 0) , 求 mx+ny 的最大值 .16. 设 a, b, c (0,111), 且a+b+c=1,求证:(1)(1)( 1) 8.a b c17. 已知正数a, b满足a+b=1( 1)求ab 的取值范围;( 2)求ab1的最小值. ab18. 是否存在常数x y x y对任意正数 x, y 恒c,使得不等式c2x y x 2 y x 2 y 2x y成立?试证明你的结论.《基本不等式》综合检测一、选择题题号12345678910答案A B C D C A B C C C 二.填空题11.12114.对12.360013.22三、解答题15.ab16. 略17. (1)0,11718.存在,c2(2)443。

基本不等式专题练习(含参考答案)

基本不等式专题练习(含参考答案)

数学 基本不等式[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥22.若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .43.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32 4.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .165.已知x >0,y >0,2x +y =3,则xy 的最大值为________. 6.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.7.函数y =x 2x +1(x >-1)的最小值为________.8.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( ) A .6 B .9 C .18D .242.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________. 4.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________.【参考答案】[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误.对于D ,因为ab >0, 所以b a +a b≥2b a ·ab=2. 2.(2019·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立, 所以M ≤1,即M 的最大值为1.3.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32解析:选A.y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A. 4.(2019·长春市质量检测(一))已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B.由4x +y =xy 得4y +1x =1,则x +y =(x +y )⎝⎛⎭⎫4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.5.已知x >0,y >0,2x +y =3,则xy 的最大值为________.解析:xy =2xy 2=12×2xy ≤12×⎝ ⎛⎭⎪⎫2x +y 22=98,当且仅当2x =y =32时取等号. 答案:986.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:307.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2,x >-1,所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( )A .6B .9C .18D .24解析:选C.因为a >0,b >0,a +b =1a +1b ,所以ab (a +b )=a +b >0,所以ab =1.则3a +81b ≥23a ·34b =23a +4b ≥232a ·4b=18,当且仅当a =4b =2时取等号.所以3a +81b 的最小值为18.故选C.2.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)解析:选C.根据题意,由于不等式x 2+x <a b +ba对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝⎛⎭⎫a b +b a min ,因为a b +b a ≥2 a b ·ba=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.解析:令t =x +2y ,则2x +4y +xy =1可化为1=2x +4y +xy ≤2(x +2y )+12⎝ ⎛⎭⎪⎫x +2y 22=2t+t 28.因为x >0,y >0,所以x +2y >0,即t >0,t 2+16t -8≥0,解得t ≥62-8.即x +2y 的最小值是62-8.答案:62-84.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________. 解析:因为a +b =4,所以a +1+b +3=8,所以1a +1+1b +3=18[(a +1)+(b +3)]⎝ ⎛⎭⎪⎫1a +1+1b +3=18⎝ ⎛⎭⎪⎫2+b +3a +1+a +1b +3≥18(2+2)=12,当且仅当a +1=b +3,即a =3,b =1时取等号,所以1a +1+1b +3的最小值为12.答案:12。

基本不等式练习题带答案

基本不等式练习题带答案
• a. 假设 a > b,则 ab > b^2(反面结论); • b. 根据已知条件,推导出 ab - b^2 = b(a - b) < 0(矛盾); • c. 否定反面结论,得出 a ≤ b,从而证明原命题成立。
06
基本不等式的扩展 知识
基本不等式的推广形式
单击此处添加标题
平方和与平方差形式:a²+b² ≥ 2ab 和 a²-b² ≥ 2ab
• 题目:已知 x > 0,y > 0,且 xy = 4,则下列结论正确的是 ( ) A. x + y ≥ 4 B. x + y ≤ 4 C. x + y ≥ 8 D. x + y ≤ 8 答案: A
• A. x + y ≥ 4 B. x + y ≤ 4 • C. x + y ≥ 8 D. x + y ≤ 8 • 答案:A
基本不等式的应用:在数学、物 理、工程等领域有广泛的应用, 用于解决最优化问题、估计值域 和解决一些数学竞赛问题等。
添加标题
添加标题
添加标题
添加标题
基本不等式的形式:常见的形式 有AM-GM不等式、CauchySchwarz不等式和Holder不等式 等。
基本不等式的证明方法:可以通 过代数、几何和概率统计等方法 证明基本不等式。
• 题目:若 a > b > c,且 a + b + c = 1,则下列结论正确的是 ( ) A. ac + bc ≥ ab B. ac + bc ≤ ab C. ac + bc > ab D. ac + bc < ab 答案:B
• A. ac + bc ≥ ab B. ac + bc ≤ ab • C. ac + bc > ab D. ac + bc < ab

高中数学基本不等式训练题(含答案)

高中数学基本不等式训练题(含答案)

高中数学基本不等式训练题(含答案)高中数学基本不等式训练题(含答案)1.若xy>0,则对 xy+yx说法正确的是()A.有最大值-2 B.有最小值2C.无最大值和最小值 D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()A.400 B.100C.40 D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:2 44.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0 时,求f(x)的最大值.解:(1)∵x>0,12x,4x>0.12x+4x212x4x=83.当且仅当12x=4x,即x=3时取最小值83,当x>0时,f(x)的最小值为83.(2)∵x<0,-x>0.则-f(x)=12-x+(-4x)212-x-4x=83,当且仅当12-x=-4x时,即x=-3时取等号.A.①② B.②③C.③④ D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合基本不等式的条件,故①的推导过程正确;②虽然x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合基本不等式的条件,4a+a24aa=4是错误的;④由xy<0得xy,yx均为负数,但在推导过程中将全体xy +yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a>0,b>0,则1a+1b+2ab的最小值是()A.2 B.22C.4 D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab =1时,等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64 B.最大值164C.最小值64 D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y4y=4xy,xy116.答案:大1169.(2019年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x>0,y>0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x>-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.解:(1)∵x>-1,x+1>0.y=x+4x+1+6=x+1+4x+1+52 x+14x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x>1,x-1>0.(x-1)+9x-1+22x-19x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)(1b -1)(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120191600x225x+12019=36000(元)当且仅当x=225x(x>0),即x=15时等号成立.。

基本不等式练习(含答案)

基本不等式练习(含答案)

§3.4 基本不等式:ab ≤a +b 2基本不等式的常用推论1. ①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112+2a b +≤≤≤222b a +。

2.(1)当x >0时,x +1x ≥2;当x <0时,x +1x ≤-2. (2)当ab >0时,b a +a b ≥2;当ab <0时,b a +a b ≤-2例1 已知 ,求函数y=x (1-3x )的最大值例3 求22515(1)1x x y x x ++=>-在最小值 例4 已知正数x 、y 满足611x y+=,求32x y +的最小值130x13,,3x y x x x 例2 若函数当为何值时,函数有最大值,并求其最大值。

>=+-一、选择题1.已知正数0<a <1,0<b <1,且a ≠b ,则a +b ,2ab ,2ab ,a 2+b 2,其中最大的一个是( )A .a 2+b 2B .2abC .2abD .a +b总结 (1)大小比较除了用比较法,也可利用已知的不等式.(2)本题是选择题,因此也可以采用赋值法,取特殊值解决.2.函数y =log 2⎝ ⎛⎭⎪⎫x +1x -1+5 (x >1)的最小值为( )A .-3B .3C .4D .-4答案 B3.已知点P (x ,y )在经过A (3,0),B (1,1)两点的直线上,则2x +4y 的最小值为( )A .2 2B .4 2C .16D .不存在答案 B解析 ∵点P (x ,y )在直线AB 上,∴x +2y =3.∴2x +4y ≥22x ·4y =22x +2y =42(x =32,y =34时取等号).4.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值52 B .最小值54 C .最大值1 D .最小值1答案 D解析 f (x )=x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1x -2≥1.当且仅当x -2=1x -2,即x =3时等号成立.5.若14<<-x ,则2222)(2-+-=x x x x f 有( )A.最小值1B. 最大值1C. 最小值-1D.最大值-16.函数1)(+=x xx f 的最大值为( )A.52B. 21C. 22D. 17.若实数b a ,满足2=+b a ,则b a 33+的最小值是( ) (A)18 (B)6 (C)32 (D)4328.若正数b a ,满足3++=b a ab ,则ab 的取值范围是9.设a>0,b>0,2212ba ,则_______________10.(1)已知0,0>>b a ,且14=+b a ,求ab 的最大值;(2)已知0,0>>y x ,且1=+y x ,求yx 94+的最小值.11.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.112答案 B解析 ∵8-(x +2y )=2xy =x ·(2y )≤(x +2y 2)2. ∴原式可化为(x +2y )2+4(x +2y )-32≥0.∵x >0,y >0,∴x +2y ≥4.当x =2,y =1时取等号12.(2013年普通高等学校招生统一考试山东数学(理)试题)设正实数,,x y z 满足22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +-的最大值为 ( )A .0B .1C .94 D .313.若xy 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( ) A .3 B.72 C .4 D.92答案 C解析 ⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2 =x 2+y 2+14⎝ ⎛⎭⎪⎫1x 2+1y 2+x y +y x =⎝ ⎛⎭⎪⎫x 2+14x 2+⎝ ⎛⎭⎪⎫y 2+14y 2+⎝ ⎛⎭⎪⎫x y +y x ≥1+1+2=4. 当且仅当x =y =22或x =y =-22时取等号. 【答案】B .14. 求函数()()y x x x=++49的最值。

(完整版)基本不等式练习题(带答案)

(完整版)基本不等式练习题(带答案)

A. 1 B. a2 b2 C.2ab D.a 2
3. 设 x>0,则 y 3 3x 1 的最大值为 x
( )
A.3 B. 3 3 2 C. 3 2 3 D.-1
4. 设 x, y R, 且x则 y 5, 3x 3y 的最小值是(
2
2
2
2
10. 下列函数中,最小值为 4 的是
( )
A. y x 4 x
B. y sin x 4 (0 x ) sin x
C. y ex 4ex
D. y log3 x 4 logx 3
11. 函数 y x 1 x2 的最大值为
.
The shortest way to do many things is
()
A. a2 b2 c2 2
B. (a b c)2 3
111 C. 2 3
abc
D. a b c 3
7. 若 x>0, y>0,且 x+y 4,则下列不等式中恒成立的是
()
A.
x
1
y
1 4
B. 1 1 1 xy
C. xy 2
D. 1 1 xy
8. a,b 是正数,则 a b , ab, 2ab 三个数的大小顺序是 ( )
12. 建造一个容积为 18m3, 深为 2m 的长方形无盖水池,如果池底和池壁每 m2 的造价为
200 元和 150 元,那么池的最低造价为
元.
13. 若直角三角形斜边长是 1,则其内切圆半径的最大值是
.
14.
若 x, y 为非x2
8( x y
y ) 15 的值恒为正,对吗?答 x
)
A. 10
B. 6 3

基本不等式练习题(带答案)

基本不等式练习题(带答案)

基本不等式练习题(带答案)基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若 $a\in R$,下列不等式恒成立的是()A。

$a^2+1>a$B。

$\frac{1}{2}<a<1$C。

$a^2+9>6a$D。

$\log_{a+1}。

\log_{|2a|}$2.若 $|a|<|b|$ 且 $a+b=1$,则下列四个数中最大的是()A。

$1$B。

$2$C。

$a^2+b^2$D。

$a$3.设 $x>0$,则 $y=3-\frac{3}{x}$ 的最大值为()A。

$3$B。

$\frac{3}{2}$C。

$\frac{3}{4}$D。

$-1$4.设$x,y\in R$,且$x+y=5$,则$3x+3y$ 的最小值是()A。

$10$B。

$6\sqrt{3}$C。

$4\sqrt{10}$D。

$18$5.若 $x,y$ 是正数,且 $\frac{1}{4x^2}+\frac{1}{9y^2}=1$,则 $xy$ 有()A。

最小值 $\frac{1}{36}$B。

最大值 $\frac{1}{36}$C。

最小值 $\frac{16}{9}$D。

最大值 $\frac{16}{9}$6.若 $a,b,c\in R$,且 $ab+bc+ca=1$,则下列不等式成立的是()A。

$a^2+b^2+c^2\ge 2$XXX 3$C。

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge 2$D。

$a+b+c\le 3$7.若 $x>0,y>0$,且 $x+y\le 4$,则下列不等式中恒成立的是()A。

$\frac{x}{x+1}+\frac{y}{y+1}\le 1$B。

$\frac{x}{x+1}+\frac{y}{y+1}\ge 1$C。

$xy\ge 2$D。

$xy\le 1$8.若 $a,b$ 是正数,则$\frac{a+b}{2},\sqrt{ab},\frac{2ab}{a+b}$ 三个数的大小顺序是()A。

基本不等式(一)周测含答案

基本不等式(一)周测含答案

一、均值不等式的理解1.设0<a <b ,则下列不等式中正确的是()A.a <b <√ab <a +b2B.a <√ab <a +b 2<bC.a <√ab <b <a +b2 D.√ab <a <a +b 2<b二、已知“和”求“积”的最大值2.若正实数a 、b 满足a +2b =1,则当ab 取最大值时,a 的值是()A.12B.14C.16D.183.已知x >0,y >0,且x +2y =4,则(1+x )(1+2y )的最大值为()A.36B.4C.16D.9三、已知“积”求“和”的最小值4.已知a >0,b >1,且a (b −1)=9,则a +b 的最小值为()A.5B.6C.7D.85.已知x,y 为正实数,且xy =4,则x +4y 的最小值是()A.4B.8C.16D.326.已知x >2,若y =x +1x −2当x =a 时取最小值,则a =()A.1+√2B.1+√3 C.3D.47.已知x >3,y =1x −3+x 的最小值为()A.2B.3C.4D.58.已知−1<x <1,则y =x 2−2x +22x −2有()A.最大值−1B.最小值−1C.最大值1D.最小值19.函数y =x 4+3x 2+3x 2+1的最小值为()A.2B.3C.4D.5五、配系数、换元法与因式分解10.已知正实数x,y 满足(x +2)(y +3)=32,则x +2y 的最小值为()A.4B.6C.8D.1211.已知a,b >0,(a +b )(a +2b )+(a +b )=9,则3a +4b 的最小值为()A.6 B.12 C.12√2−1 D.6√2−1六、整体消元法与因式分解12.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是()A.3B.4C.92D.11213.若a >0,b >0,且ab =3a +3b +27,则ab 的最小值为()A.9B.16C.49D.8114.若实数a,b 满足1a +2b=√ab ,则ab 的最小值为()A.√2B.2C.2√2D.4第1页共2页1B2A3D4C5B6C7D8A9B10C11D12 B13D14C第2页共2页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式
1. 若
a ∈R ,下列不等式恒成立的是 ( )
A .21a a +>
B .2111
a <+ C .296a a +> D .2
lg(1)lg |2|a a +>
2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )
A.
1
2
B.22a b + C.2ab D.a
3. 设x >0,则1
33y x x
=--
的最大值为 ( )
A.3 B.3- C.3- D.-1
4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )
A. 10
B.
C.
D. 5. 若x , y 是正数,且
14
1x y
+=,则xy 有 ( ) A.最大值16 B.最小值
116 C.最小值16 D.最大值116
6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )
A .2222a b c ++≥
B .2
()3a b c ++≥
C .
111a
b
c
+
+
≥ D .a b c ++≤
7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )
A .114x y ≤+
B .111x y +≥
C 2≥
D .1
1xy ≥
8. a ,b 是正数,则
2,2
a b
ab
a b
++三个数的大小顺序是 ( )
A.22a b ab a b ++ 22a b ab
a b
+≤≤
+
C.
22ab a b a b ++ D.22
ab a b
a b +≤
+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( )
A.2p q x += B.2p q x +< C.2p q x +≤ D.2
p q
x +≥ 10. 下列函数中,最小值为4的是 ( )
A.4y x x =+
B.4sin sin y x x
=+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+
11. 函数y =的最大值为 .
12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200
元和150元,那么池的最低造价为 元.
13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 .
14. 若x , y 为非零实数,代数式22228()15x y x y
y x y x
+-++的值恒为正,对吗?答 .
三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出必要的文字说明、证明
过程和演算步骤.
15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.
16. 设a , b , c (0,),∈+∞且a +b +c =1,求证:111
(1)(1)(1)8.a b c ---≥
17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1
ab ab
+的最小值.
18. 是否存在常数c ,使得不等式
2222x y x y
c x y x y x y x y
+≤≤+++++对任意正数x , y 恒
成立?试证明你的结论.
《基本不等式》综合检测
一、选择题
二.填空题
11.
1
2 12.3600 13. 14.对 三、解答题
15 16. 略 17. (1)10,4⎛⎤
⎥⎝⎦
(2)174 18.存在,23c =
最新文件---------------- 仅供参考--------------------已改成word 文本 --------------------- 方便更改。

相关文档
最新文档