人教版七级数学上册 有理数的乘法
人教版数学七年级上册第一章有理数有理数的乘法
1.4.1 有理数的乘法
栏目索引
3.(独家原创试题)我们用有理数的运算研究下面的问题.规定:水位上升 为正,水位下降为负.如果水位每天下降4 cm,那么5天后的水位变化用算 式表示正确的是 ( ) A.(+4)×(+5) B.(+4)×(-5) C.(-4)×(+5) D.(-4)×(-5)
答案 C 根据“水位每天的变化情况×天数”列出算式即可.故选C.
(3)0×(-2 019)=0.
(4)(-3.25)× 123
=- 3.25
2 13
=- 143
2 13
=- 1 .
2
1.4.1 有理数的乘法
栏目索引
温馨提示 运用乘法法则计算时,先确定积的符号,再确定积的绝对值, 然后进行计算.为了便于运算,是带分数的因数先将其化为假分数再运 算.
12
6
正解
-24× 172
5 6
1
=-24× 7 -(-24)× 5-(-24)×1=-14+20+24=30.
12
6
栏目索引
1.4.1 有理数的乘法
栏目索引
错因分析 错解一运用分配律把括号前面的数乘进括号内时,忽略了24 前面的负号,导致错误;错解二运用分配律把括号前面的数乘进括号内
栏目索引
1.4.1 有理数的乘法
栏目索引
知识点二 有理数的倒数
5.(2018江苏常州中考)-3的倒数是 ( )
A.-3 B.3 C.- 1 D. 1
3
3
答案 C 乘积为1的两个数互为倒数,因为-3与- 1 的乘积为1,所以-3的
人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3
人教版七年级上数学上册 有理数的乘法 课件
判断:下列各式的积是正的还是负的?
( 1 ) 2 3 4( 5)
负
( 2 ) 2 3( 4)( 5) 正
( 3 ) 2 ( 3)( 4)( 5) 负
( 4 ) ( 2)( 3) (4)( 5) 正
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
归纳
1、几个不是0的数相乘, 负因数的个数是 偶__数__个_ 时,积是正数;
两点间的距离|AB|=|a-b|.
(1)数轴上表示2和5的两点间的距离是__3___,数轴上表 示-2和-5的两点间的距离是__3___,数轴上表示1和-3 的两点之间的距离是__4___.
(2)数轴上表示x和-1的两点A和B之间的距离是_|_x_+_1,如| 果|AB|=2,那么x为__-_3_或__.1
(3)求|x+1|+|x-2|的最小值.
复习回顾 1、有理数的加法法则是什么?
同号两数相加,取相同的符号,并把绝对值相加.
绝对值不相等的异号两数相加,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对 值.互为相反数的两个数相加得0.
一个数同0相加,仍得这个数.
让每个学生在快乐中好好学习·天天向上!
人教版七级数学上册 有理数的乘法 课件
课后作业
课本P37,38复习巩固2、3题
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
拓展练习
1.如果-5x是正数,那么x的符号( ) A. X>0 B. X≥0 C. X<0 D. X≤0
2、若a·b=0,则 ( )
A. a = 0
有理数的乘法人教版七年级数学上册PPT精品课件
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
有理数的乘法法则+课件+人教版七年级数学上册
因数 因数 积的符号 积的绝对值 积
+3 +3
+
9
9
+3 +2
+
6
6
+3 +1
+
3
3
+3 0
0
0
正数乘正数积的符号为_正_;
积的绝对值等于各因数绝对值相_乘_.
正数乘0积为_0_;
-3×3=-9, -3×2=-6, -3×1=-3, -3×0=0.
因数 因数 积的符号 积的绝对值 积
-3 +3
-
9
3×(-1)= -3 3×(-2)= -6 3×(-3)= -9
3×(-4)= -12
(-3)×(-1)= 3 (-3)×(-2)= 6 (-3)×(-3)= 9
(-3)×(-4)= 12
寻找规律
①正数乘正数积为_正_数; ②负数乘正数积为_负_数;
③正数乘负数积为_负_数; ④负数乘负数积为_正_数; 积的绝对值等于各因数绝对值相_乘_. ⑤0与任何数相乘结果是 0 . →1.两数相乘,同号得正,异号得负,并把绝对值相乘. →2.任何数同0相乘,都得0.
为更有效的开展抢险救援工作,研究者发现抢险前后水库当中 的水位变化具有如下规律:抢险前的水位每天升高3厘米,抢险 后的水位每天下降3厘米,抢险之前,3天的水位总变化情况如何? 抢险之后,3天的水位的总变化又如何?
第三天 第二天 第一天
第一天 第二天 第三天
抢险前的水库
抢险后的水库
合作探究
抢险之前:
-9
-3 +2
-
6
-6
-3 +1
-
3
人教版七年级数学上册有理数的加减乘除混合运算
2 计算-28-53的按键顺序是( D ) A.()2 8()5 3 = B. 2 8()5 3 = C. + / 2 8()5 3 = D. 2 8 / 5 3 =
知2-练
知2-练
3 用计算器计算(结果保留两位小数). (1)2.52÷(-15)≈ -0.17 ; (2)-2.34×(-0.12)-3.74÷(-2.68)
知1-讲
知1-讲
例4 〈易错题〉计算:(-12)÷
1 3
+
1 4
1 6
.
错解:-12÷
1 3
+
1 4
1 6
(12)
1 3
(12)
1 4
(12)
1 6
=-36-48+72=-12.
错解分析:错解是由于受分配律a(b+c)=ab+ac
思维定式的影响,错误地认为a÷(b
+c)=a÷b+a÷c,这是不正确的;
2 3 2,就可以得到答案3. 7.
不同品牌的计算器的操作方法可能有所不同,
具体参见计算器的使用说明.
(来自教材)
知2-练
1 下列说法错误的是( D ) A.开启计算器使之工作的按键是 ON 键 B.输入-5.8的按键顺序是 5 8 +/ 或()5 8 C.输入0.58的按键顺序是 5 8 D.按键 6 9 + / 8 7 / 能计算-69-87的结果
结果是( D )
A.-24
B.-20
C.6
D.36
2 若两个数的和为0,且商为-1,则这两个数( C )
A.互为相反数
B.互为倒数
C.互为相反数且不为零 D.以上都不对
知1-练
3 根据有理数的运算律,下列等式正确的是( B )
人教版数学七年级上册第一章第四节有理数的乘法
(-6 )×5=-30
5× (-6) = (-6) ×5 三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.
解:原式=(-85)×[(-25)×(-4)]
数的范围已扩充到有理数.
任何数和零相乘,都得0.
5×3+5×(-7 )=
(2)
[3×(-4)]×(-
5)=
(-12)×(-5)
=
60
用字母表示乘数时,“×”号可以写成“·”或省略,
(2)第二组式子中数的范围是 ________;
根据以上信息,请求出下式的结果.
5×3+5×(-7 )=
1.有理数的乘法法则是什么?
数的范围已扩充到有理数.
(1) 2×3=
3×2=
10月3日的游客人数为2.
新知演练
新知应用
一(-个24数)×同( 几-个数+的和-相乘,) 等于把这个数分别同这几个数相乘,再把积相加.
拓展练习
1.阅读材料,回答问题
(1 1) (1 1) 3 2 1
2
3 23
(1 1) (1 1) (1 1) (1 1) 3 5 2 4 ( 3 2) (5 4) 1
2
4
3
5 2435 23 45
根据以上信息,请求出下式的结果.
(1 1) (1 1) (1 1) (1 1 ) (1 1) (1 1) (1 1) (1 1 )
新知讲解
结论: (1)第一组式子中数的范围是 __正__数____; (2)第二组式子中数的范围是 _有__理__数___; (3)比较第一组和第二组中的算式,可以发现
_各__运__算__律__在__有__理__数__范__围__内__仍__然__适__用___.
人教版初一数学上册有理数的乘除(基础)知识讲解
有理数的乘除(基础)【学习目标】1.会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算;2.理解乘法与除法的逆运算关系,会进行有理数除法运算;3. 巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算;4. 培养观察、分析、归纳及运算能力.【要点梳理】要点一、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.要点诠释: (1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.要点诠释:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点诠释:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd=d(ac)b.一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad.(3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”.要点二、有理数的除法1.倒数的意义:乘积是1的两个数互为倒数.要点诠释:(1)“互为倒数”的两个数是互相依存的.如-2的倒数是12-,-2和12-是互相依存的;(2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数;(4)互为倒数的两个数必定同号(同为正数或同为负数).2. 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b ab b÷=≠. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. 要点诠释:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些. (2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值. 要点三、有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果.要点四、有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的. 【典型例题】类型一、有理数的乘法运算1.(2015•台湾)算式(﹣1)×(﹣3)×之值为何?( ) A .B .C .D .【思路点拨】根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可 【答案】D . 【解析】 解:原式=××=.【总结升华】本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.2.(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭;(2)(1-2)(2-3)(3-4)…(19-20); (3)(-5)×(-8.1)×3.14×0.【答案与解析】几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘.因数是小数的要化为分数,是带分数的通常化为假分数,以便能约分.几个数相乘,有一个因数为零,积就为零.(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭591936548=-⨯⨯⨯=-;(2)(1-2)(2-3)(3-4)…(19-20)19-(1)(1)(1)(1)1=-⨯-⨯-⨯⋅⋅⋅⨯-=-个(1)相乘;(3)(-5)×(-8.1)×3.14×0=0.【总结升华】几个不等于零的数相乘,积的符号由负因数的个数确定,与正因数的个数无关.当因数中有一个数为0时,积为0.3.运用简便方法计算:(1)5105(12)6⎛⎫-⨯+⎪⎝⎭(2)(-0.25)×0.5×(-100)×4(3)111 (5)323(6)3333 -⨯+⨯+-⨯【思路点拨】 (1)根据题目特点,可以把51056-折成51056--,再运用乘法分配律进行计算.(2)运用乘法结合律,把第1、4个因式结合在一起.(3)逆用乘法分配律:ab+ac=a(b+c).【答案与解析】解:(1)5105(12)6⎛⎫-⨯+⎪⎝⎭5105(12)6⎛⎫=--⨯+⎪⎝⎭510512126=-⨯-⨯(分配律)1260101270=--=-(2)(-0.25)×0.5×(-100)×4=(-4×0.25)×[0.5×(-100)] (交换律)=-1×(-50)=50(结合律)(3)111(5)323(6)3333-⨯+⨯+-⨯11[(5)2(6)]39333⎛⎫=-++-⨯=-⨯+⎪⎝⎭(逆用乘法的分配律)27330=--=-【总结升华】首先要观察几个因数之间的关系和特点.适当运用“凑整法”进行交换和结合.举一反三:【变式1】计算16.8×+7.6×的结果是.【答案】7.解:原式=8.4×=(8.4+7.6)×=16×=7.【高清课堂:有理数乘除 381226 多个有理数相乘例2】【变式2】542(1)()( 2.5)(4)12253-⨯⨯-⨯-;4(2)(0.125)()16(7)7-⨯-⨯⨯-【答案】(545147(1)=1225239-⨯⨯⨯=-原式 4(2)(0.1258)2(7)87=-⨯⨯⨯⨯=-原式类型二、有理数的除法运算4.计算:(1)(-32)÷(-8) (2)112(1)36÷-【答案与解析】 (1)(-32)÷(-8)=+(32÷8)= 4 ……用法则二进行计算.(2)117776212363637⎛⎫⎛⎫⎛⎫÷-=÷-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……用法则一进行计算. 【总结升华】(1)乘法、除法的符号法则是一致的,两数相乘除,同号得正,异号得负;(2)除法的两个法则是一致的,应学会灵活选择. 举一反三:【高清课堂:有理数乘除 381226 有理数除法(法则)】 【变式】计算:(1) 1.25(0.375)-÷-【答案】原式535810()()48433=+÷=+⨯=类型三:有理数的乘除混合运算5.(2015秋•德惠市校级期中)计算:(﹣2)×.【思路点拨】原式利用除法法则变形,约分即可得到结果. 【答案与解析】解:原式=2××3×3=9.【总结升华】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键. 举一反三:【变式1】计算:(-9)÷(-4)÷(-2)【答案】 (-9)÷(-4)÷(-2)=-9÷4÷2=1199428-⨯⨯=- 【变式2】计算:(1)14410(2)893-÷⨯÷- (2)341731755⎛⎫⎛⎫⎛⎫-÷-÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】 (1)14410(2)893-÷⨯÷-194181941243108432843216⎛⎫=-⨯⨯⨯-=⨯⨯⨯= ⎪⎝⎭(2)341731755⎛⎫⎛⎫⎛⎫-÷-÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3511717435⎛⎫⎛⎫⎛⎫=-⨯-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 351171174354⎛⎫=-⨯⨯⨯=-⎪⎝⎭类型四、有理数的加减乘除混合运算6. 计算(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭; (2)111351226412⎛⎫⎛⎫-÷-+-+ ⎪ ⎪⎝⎭⎝⎭【答案与解析】(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭1135(12)26412⎛⎫=-+-+⨯- ⎪⎝⎭ 1135(12)(12)(12)(12)26412⎛⎫=-⨯-+⨯--⨯-+⨯- ⎪⎝⎭=6-2+9-5=8(2)法1:原式=16295181121()()121212121288-+-+⎛⎫⎛⎫-÷=-÷-=⨯= ⎪ ⎪⎝⎭⎝⎭法2:由(1)知:1135182641212⎛⎫⎛⎫-+-+÷-= ⎪ ⎪⎝⎭⎝⎭,所以16295112128-+-+⎛⎫⎛⎫-÷= ⎪ ⎪⎝⎭⎝⎭ 【总结升华】除法没有分配律,在进行有理数的除法运算时,若除数是和的形式,一般先算括号内的,然后再进行除法运算,也可以仿照方法2利用倒数关系巧妙解决. 举一反三: 【变式】75318 1.456 3.9569618⎛⎫-+⨯-⨯+⨯⎪⎝⎭ 【答案】 原式()753181818 1.456 3.9569618⎛⎫=⨯-⨯+⨯+-⨯+⨯⎪⎝⎭(14153)( 1.45 3.95)6=-++-+⨯2 2.5617=+⨯= 类型五:利用有理数的加减乘除,解决实际问题7.气象统计资料表明,高度每增加1000米,气温就降低6℃.如果现在地面的气温是27℃,那么8000米的高空的气温大约是多少?【思路点拨】解决此题的关键是明确高度变化与气温变化的关系.由于“高度每增加1000米,气温就降低6℃”,8000米的高空比地面高度增加8000米,因此气温降低6×8=48℃,由此便可求出高空的气温. 【答案与解析】解:80002762748211000-⨯=-=-(℃)因此8000米的高空的气温大约是-21℃.【总结升华】本题是生活实际中的问题,关键是读懂题意,弄清各数量之间的关系,再列出正确的算式.附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形; (2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断. 【答案】B.【解析】解:①x 2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B . 【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b. 【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.可以采用列表法探究其解显然,当x=21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。
人教版七年级数学上册1.乘方——有理数的乘方运算
计算器显示的结果为-410 338 673. (4)按键顺序为 2 3 × 6 ÷ 5 = ,
计算器显示的结果为27.6.
总结
知3-讲
用计算器计算时,要弄清计算器的每个按键 的作用,结合有理数运算的顺序,进行计算.
A.1
B.-1
C.2 016
D.-2 016
知2-练
4 下列等式成立的是( B )
A.(-3)2=-32
B.-23=(-2)3
C.23=(-2)3
D.32=-32
5 计算: (1)(-4)3;
(2) (-2)4;
(3) (- 2 )3.
3
(1)-64;(2)16;(3) 8 .
27
知识点 3 利用计算器计算有理数的乘方
第一章 有理数
1.5 有理数的乘方
第1课时 乘方——有理数 的乘方运算
1 课堂讲授 有理数的乘方的意义
有理数的乘方运算
利用计算器计算有理数的乘方
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 1.如图,边长为a厘米的正方形的面积为_a_×__a_平方厘米. 2.如图,一正方体的棱长为a厘米, 则它的体积 为
(1)-(-3)3;
(2)
3 42 ;(3)源自2 33 ;
(4)
1
2 3
2
.
解:(1)-(-3)3=-(-33)=33=3×3×3=27.
(2)
3 4
2
3 4
3 4
9 16
.
(3)
2 3
3
2 3
人教版七数上 有理数的乘法运算律 课件
3.计算:
(1)(-19) (98) 0 (25)
解: (-19) (98) 0 (25) 0
3.计算:
(2) 0.2
0.4
2
1 2
1
5
0.2
0.4
5 2
1 5
0.2
0.4
5
2
1
5
0.08 1 0.04 2
乘法交换律:ab ___b_a____
(3) 3(4)(5) (4) 3(4)(5)
60
60
三个数相乘,先把前两个数相乘,或者 先把后两个数相乘,积相等. 乘法结合律:(ab)c __a_(_b_c_)____
问题2 阅读,并思考:
53 (7) 5(4) 20
5 3 5(7) 15 35 20
分配律: a(b c) __a_b__a_c__
课后作业
1、完成教材本课时对应习题; 2、完成同步练习册本课时的习题。
4.利用分配律可以得到-2×6+3×6=(-2+3) ×6,如果用a表示任意一个数,那么利用分 配律可以得到-2a+3a等于什么?类似地: 2ab-5ab又等于什么呢?
解:-2a+3a=(-2+3)a;
2ab-5ab=(2-5)ab.
课堂小结
乘法交换律:ab __b_a__ 乘法结合律: (ab)c __a_(_bc_)__
2 12
6 12
12=
1 12
12=
1
例 用两种方法计算:
1 4
1 6
1 2
12
解法2:
1 4
1 6
1 2
12
= 1 12 1 12 1 12=3 2 6= 1
4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
(4)(-100)×(-1)×(-3)×(-0.5); =100×1×3×0.5 =150
(5)(-0.1)×(-100)×0.01×(-10); =[(-0.1)×(-10)]×[(-100)×0.01] =1×(-1)=-1
3.下面计算正确的是 ( A ) A.-5×(-4)×(-2)×(-2)=5×4×2×2=80 B.(-12)× 1 1 1 = -4+3+1=0
3 4
C.(-9)×5×(-4)×0=9×5×4=180 D.-2×5-2×(-1)-(-2)×2=-2×(5+1-2)=-8
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
一般地,有理数乘法中,有:
(1)乘法交换律:两个数相乘,交换因数的位 置,积相等. 用字母表示为ab=ba.
(2)乘法结合律:三个数相乘,先把前两个数相乘, 或者先把后两个数相乘,积相等. 用字母表示为(ab)c=a(bc).
(3)乘法分配律:一个数同两个数的和相乘,等于 把这个数分别同这两个数相乘,再把积相加. 用字母表示为a(b+c)=ab+ac.
知识小结
多个有理数相乘的符号法则
有理数 的乘法
有理数乘 法的运算 律
交换律: ab=ba 结合律:(ab)c=a(bc) 分配律:a(b+c)=ab+bc
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
4.计算.
(1)-2×3×(-4); =2×3×4
=24
(2)-6×(-5)×(-7);
=-(6×5×7) =-210
(3)0.1×(-0.001)×(-1); =0.1×0.001×1 =0.0001
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
4152 3
小 组 讨 论
计算下列各题,并比较它们的结果. (1)(-7)×8与8×(-7);
(-7)×8=-56 =8×(-7) (2)[(-2)×(-6)]×5与(-2)×[(-6)×5]; [(-2)×(-6)]×5=12×5=60=(-2)×[(-6)×5]
(3)5×[(-2)+(-6)]与5×(-2)+5×(-6). 5×[(-2)+(-6)]=5×(-8)=-40=5×(-2)+5×(-6
思考
你能看出下式的结果吗?如果能,请说明理由. 7.8×(-8.1)×0×(-19.6). =0
几个数相乘,如果其中有因数为0,那么积等于0
11242.53 2
3 9
25
9
2 0 .8 7 .8 2 1.5 2 78.2
35812 2
12 152 3 2 7
41 5 83 2 01 0
D检测反馈
1.式1 子 3242 5132105 0 03 040
2105
2105
中用到的 ( D运 ) 算律是
A.乘法交换律及乘法结合律
B.乘法交换律及乘法分配律
C.加法结合律及乘法分配律
D.乘法结合律及乘法分配律
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
用两种方法计算 . 1 1 112 4 6 2
解法1:
3 12
2 12
6 12
12
1 12 12
1
解法2:
1 12 1 12 1 12
4
6
2
326
1
比较上述两种解法,哪种解法运算量较小?
计算4.98×(-5). 解:4.98×(-5)
=(5-0.02)×(-5) =-25+0.1 =-24.9
合作讨论
(1)任意选择两个有理数(至少有一个是负数), 分别表示□和○,计算并比较两个算式的运算 结果. □ × ○ 和○ × □ .
(2)任选择三个有理数(至少有一个是负数), 分别表示□、○和◇,计算并比较两个算式的 运算结果.( □ × ○ )× ◇ 和□ ×( ○ × ◇ ).
(3)任意选择三个有理数(至少有一个是负数), 分别表示□、○和◇,计算并比较两个算式的 运算结果. □ ×( ○ + ◇) 和 □×○ + □×◇.
(1)几个非0有理数相乘时,积为整十,整百的相 结合;可以约分的相结合;互为倒数的相结合;互为 负倒数的相结合.
(2)可以将带分数化成假分数,小数化成分数. 当带分数化成整数部分和分数部分的和的形式,分 数的分母又可以跟算式中的一个因数约分时,常将 带分数拆成一个整数和一个分数的和的形式.
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
【思考】几个不是0的数相乘,积的符号与负因数
的个数之间有什么关系?
几个不是0的数相乘, 负因数的个数是偶数时,积是正数; 负因数的个数是奇数时,积是负数.
例: 计算.
13591
6 5 4
3
59 65
1 4
9 8
25641
5 4 5Leabharlann 4 1546与两个有理数相乘的计算方法相比较,思考多个 不是0的数相乘,先做哪一步,再做哪一步?
2.下列各式中运算结果为正的是( D ) A.2×3×(-4)×5 B.2×(-3)×(-4)×(-5) C.2×0×(-4)×(-5) D.(-2)×(-3)×(-4)×(-5)
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
648 13551
2 8 6 12 114
人教版七年级数学上册1.4.1 有理数的乘法(第2课时)(共18张PPT )
七年级数学·上 新课标 [人]
第一章 有理数
学习新知
检测反馈
教学目标
掌握多个有理数乘法的符号法则 熟练运用有理数乘法的运算律
观察
学习新知
观察下列各式,它们的积是正的还是负的?
2×3×4×(-5) 负 , 2×3×(-4)×(-5) 正 ,
2×(-3)×(-4)×(-5) 负, (-2)×(-3)×(-4)×(-5) 正 .