(完整版)平面直角坐标系典型例题含答案

合集下载

平面直角坐标系中三角形面积的求法(例题及对应练习)

平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时—平面直角坐标系(答案卷)知识点一:有序数对:1.有序数对的概念:由两个数a与b组成的数对。

记做。

2.有序数对的应用:利用有序数对可以表示物体的位置。

表示方法有:定位法;定位法;定位法;定位法。

【类型一:有序数对的理解】1.张明同学的座位位于第2列第5排,李丽同学的座位位于第4排第3列,若张明的座位用有序数对表示为(2,5),则李丽的座位用的有序数对表示为()A.(4、3)B.3,4C.(3,4)D.(4,3)2.如图是小唯关于诗歌《望洞庭》的书法展示,若“湖”的位置用有序数对(2,3)表示,那么“螺”的位置可以表示为()A.(5,8)B.(5,9)C.(8,5)D.(9,5)3.如图,在围棋棋盘上有3枚棋子,如果黑棋❶的位置用有序数对(0,﹣1)表示,黑棋❷的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对表示为()A.(2,1)B.(﹣1,2)C.(﹣2,1)D.(1,﹣2)【类型二:用有序数对表示位置】4.以下能够准确表示渠县地理位置的是()A.离达州市主城区73千米B.在四川省C.在重庆市北方D.东经106.9°,北纬30.8°5.下列不能确定点的位置的是()A.东经122°,北纬43.6°B.礼堂6排22号C.地下车库负二层D.港口南偏东60°方向上距港口10海里6.下列数据不能确定物体位置的是()A.某小区3单元406室B.南偏东30°C.淮海路125号D.东经121°、北纬35°7.嘉嘉乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的小艇A,B,C的位置如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇B相对于游船的位置可表示为(﹣60°,2),小艇C相对于游船的位置可表示为(0°,﹣1)(向东偏为正,向西偏为负),下列关于小艇A相对于游船的位置表示正确的是()A.小艇A(30°,3)B.小艇A(﹣30°,3)C.小艇A(30°,﹣3)D.小艇A(60°,3)8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),用方位角和距离可描述为:在点O正北方向,距离O点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B,则判断正确的是()嘉嘉:目标B的位置为(3,210°);琪琪:目标B在点O的南偏西30°方向,距离O点3个单位长度.A.只有嘉嘉正确B.只有淇淇正确C.两人均正确D.两人均不正确知识点二:平面直角坐标系:1.平面直角坐标系的概念:如图:平面内,两条相互,且的数轴组成平面直角坐标系。

平面直角坐标系中三角形面积的求法(例题及对应练习)

平面直角坐标系中三角形面积的求法(例题及对应练习)

.;.例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。

平面直角坐标系中三角形面积的求法(例题及对应练习)

平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。

(完整版)八年级数学《平面直角坐标系》经典例题

(完整版)八年级数学《平面直角坐标系》经典例题

考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在面直角坐标中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限8、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.考点2:点在坐标轴上的特点x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。

考点3:考对称点的坐标知识解析:1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。

2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。

3、关于原点对称: A(a,b)关于原点对称的点的坐标为(-a,-b)。

八年级数学《平面直角坐标系》经典例题

八年级数学《平面直角坐标系》经典例题

八年级数学《平面直角坐标系》经典例题7、如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b+的值为( )A .2B .3C .4D .58、在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .9、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( ) A (3,3) B (5,3) C (3,5) D (5,5)10、在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1) 11、如图所示,在平面直角坐标系中,ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)考点5:点到直线的距离点P (x,y )到x 轴,y 轴的距离分别为|y|和|x|,1、点M (-6,5)到x 轴的距离是_____,到y 轴的距离是______.2、已知点P (x ,y )在第四象限,且│x │=3,│y │=5,则点P 的坐标是( ) A .(-3,5) B .(5,-3) C .(3,-5) D .(-5,3)3、已知点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标是 。

4、已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 .考点6:平行于X 轴、Y 轴的直线的特点平行于x 轴的直线上点的纵坐标相同;平行于y 轴的直线上点的横坐标相同1、已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________.2、已知点A(1,2),AC ∥y 轴, AC=5,则点C 的坐标是_____________.)bx3、如果点A (),3a -,点B ()2,b 且AB//x 轴,则_______4、如果点A ()2,m ,点B (),6n -且AB//y 轴,则_______5、已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 .6、已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为__________________________.考点7:角平分线的理解第一、三象限角平分线的点横纵坐标相同(y=x ); 第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)1、若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(2,-2)或(-2,2)2、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 。

(完整版):平面直角坐标系经典例题解析

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1在平面直角坐标系中,点P(m, m-2)在第一象限内,则m的取值范围是_________________ 思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得: 解得:m > 2.故答案为:m> 2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1如果m是任意实数,则点P (m-4, m+1) 一定不在( )A. 第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:T( m+1 - ( m-4) =m+1-m+4=5•••点P的纵坐标一定大于横坐标,•••第四象限的点的横坐标是正数,纵坐标是负数,•第四象限的点的横坐标一定大于纵坐标,•••点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-,+);第三象限(-,-);第四象限(+,-). 例2如图,矩形BCDE 的各边分别平行于x轴或y轴,物体甲和物体乙分别由点 A (2, 0) 同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )A . (2, 0)B . ( - 1 , 1) C. ( - 2, 1) D. (- 1,- 1)分析:禾U用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12X1,物体甲行的路程为12冷=4,物体乙行的路程为12烂=8,在BC边相遇;31②第二次相遇物体甲与物体乙行的路程和为 12X2,物体甲行的路程为12X2』=8,物体乙行 [3的路程为12X 2X =16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的 路程和为12X 3,物体甲行的路程为 12X 3X1=12,物体乙3行的路程为12X 3X =24,在A 点相遇;3此时甲乙回到原出发点,则每相遇三次,两点回到出发点, •/ 2012- 3=670…2 ,故两个物体运动后的第 2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为故选:D .点评: 此题主要考查了行程问题中的相遇问题及按比例分配的运用, 通过计算发现规律就可以解决问题.例2如图,动点P 从(0, 3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点 P 第2013次碰到矩形的边时,点 P 的坐标为( )A. ( 1,4)B. (5, 0)C. (6, 4)D. (8, 3)思路分析:根据反射角与入射角的定义作出图形,可知每 6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.~解 如图,经过6次反弹后动点回到出发点( 0, 3),V 划 4/KJ 11321:;; !12S45678•/ 2013- 6=335…3,•••当点P 第2013次碰到矩形的边时为第 336个循环组的第3次反弹, 点P 的坐标为(8, 3). 故选D.点评:本题是对点的坐标的规律变化的考查了, 作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练 2.如图,在平面直角坐标系中, A (1, 1) , B (- 1, 1), C (- 1,- 2), D (1 , - 2).把 一条长为2012个单12 X 2 =16,在DE 边相遇; 此时相遇点的坐标为:(-1,-1),物体乙行的路程为位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A - B - C - D - A -…的规律紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点 的坐标是()••• AB=1 -( - 1) =2 , BC=1 -( - 2) =3, CD=1 -( - 1) =2 , DA=1 -( - 2) =3 , •••绕四边形 ABCD 一周的细线长度为 2+3+2+3=10, 2012 - 10=201 …2 •细线另一端在绕四边形第 202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(-1, 1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形 ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题 的关键.例2如图,在平面直角坐标系 xOy 中,点P (-3, 5)关于y 轴的对称点的坐标为()A . (-3, -5)B . (3, 5)C . ( 3. -5)D . ( 5, -3)答:B考点二:函数的概念及函数自变量的取值范围例3在函数y中,自变量x 的取值范围是 ____________ .x思路分析:本题主要考查自变量的取值范围, 函数关系中主要有二次根式和分式两部分. 根据二次根式的意义,被开方数 X+1A0,根据分式有意义的条件, x 工0就可以求出自变量 x 的取值范围.解:根据题意得:x+1>0且x 工0 解得:X 二1且X M0 例3函数y= _3中自变量x 的取值范围是()x 1A. x > -3B. x >3C. x 》0 且 x MlD. x > -3 且 x ^l思路分析:根据被开方数大于等于 0,分母不等于0列式计算即可得解. 解:根据题意得,x+3>0且X-1M 0, 解得x > -3且x M 1. 故选D.点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1 )当函数表达式是整式时,自变量可取全体实数;分析: 根据点的坐标求出四边形 ABCD 的周长,然后求出另一端是绕第几圈后的第几个 A . (1,- 1) B • ( - 1, 1) 单位长度,从而确定答案.解答:解:••• A (1 , 1), B (- 1, 1), C (- 1 , - 2), D (1,- 2),(2 )当函数表达式是分式时,考虑分式的分母不能为 (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数y ,2 中自变量x的取值范围是( )7x2A . x > -2B . x > 2C . x 乂2D . x >23. A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离 S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了 C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 后开始返回与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断. 解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,至厅一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准 确,错误;C 、 从家出发,一直散步(没有停留) ,然后回家了,图形为上升和下降的两条折线,错误;D 、 从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴 表示的量,再根据函数图象用排除法判断.例5如图,Y ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在 Y ABCD 的顶点上,它们的各边与 Y ABCD 的各边分别平行,且与 Y ABCD 相似.若小平 行四边形的一边长为 X ,且0V x <8阴影部分的面积的和为 y ,则y 与x 之间的函数关系的 大致图象是( )思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形0;18分钟味着有停留,而路程没有增加,意的面积,再根据相似多边形面积的比等于相似比的平方列式求出y与x之间的函数关系式, 然后根据二次函数图象解答.解:•••四个全等的小平行四边形对称中心分别在Y ABCD的顶点上,•••阴影部分的面积等于一个小平行四边形的面积,•••小平行四边形与Y ABCD相似,..._y_32x 2(8),整理得 1 2 y -x ,2又O v x<8纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图象.故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平"面直角坐标洗中,点 A (11, 0),点B (0, 6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B'和折痕OP.设BP=t.(I)如图①,当/ BOP=30时,求点P的坐标;(H)如图②,经过点P再次折叠纸片,使点C落在直线PB'上,得点C'和折痕PQ,若AQ=m , 试用含有t的式子表示m;(川)在(H)的条件下,当点C'恰好落在边OA上时,求点P的坐标(直接写出结果即可). 考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(I)根据题意得,/ OBP=9O , OB=6,在Rt A OBP 中,由/ BOP=3O , BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(□)由厶OB P、△ QC P分别是由厶OBP、△ QCP折叠得到的,可知△ OB OBP ,△ QC QCP,易证得△ OBP s^ PCQ,然后由相似三角形的对应边成比例,即可求得答案;(川)首先过点P作PE丄OA于E,易证得△ PC C QA由勾股定理可求得C'Q的长,1 11然后利用相似三角形的对应边成比例与m= t2- t+6,即可求得t的值.6 6点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识. 此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4. 甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A .甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D •比赛中两队从出发到 2.2秒时间段,乙队的速度比甲队的速度快4•解:A 、由函数图象可知,甲走完全程需要 4分钟,乙走完全程需要 3.8分钟,乙队率先到达终点,本选项错误;B 、 由函数图象可知,甲、乙两队都走了1000米,路程相同,本选项错误;C 、 因为4-3.8=02分钟,所以,乙队比甲队少用 0.2分钟,本选项正确;D 、 根据0〜2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,本选项错误; 故选C • 5. 如图,点A 、B 、C 、D 为O O 的四等分点,动点 P 从圆心O 出发,沿OC-CD-DO 的路线做匀速运动,设运动的时间为 t 秒,/ APB 的度数为y 度,则下列图象中表示 yCD上运动时,/ APB 不变,当P 在DO 上运动时,/ APB 逐渐增大,即可得出答案.解答: 解:当动点P 在OC 上运动时,/ APB 逐渐减小; 当P 在C D 上运动时,/ APB 不变; 当P 在DO 上运动时,/ APB 逐渐增大.故选C •点评:本题主要考查了动点问题的函数图象,用到的知识点是圆周角、圆内的角及 函数图象认识的问题.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所 需要的条件,结合实际意义画出正确的图象.(度)与t (秒)之间函数关系最恰当的是(考点:动点问题的函数图象•分析:根据动点 P 在OC 上运动时,/ APB 逐渐减小,当 P考点四:动点问题的函数图象例5如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE-ED-DC 运动到点C 时停止, 点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是 1cm/s .若P , Q 同时开始运动,设运动时间为t (s ), △ BPQ 的面积为y (cm ).已知y 与t 的函数图象如图2,则下列结论 错误的是()4 B.sin /EBC —52 2 C. 当 0 v t < 10 时,y= — t5D. 当t=12s 时,△ PBQ 是等腰三角形思路分析:由图2可知,在点(10, 40)至点(14, 40)区间,△ BPQ 的面积不变,因此可 推论(1 )在BE 段,BP=BQ 持续时间10s ,贝U BE=BC=10 y 是t 的二次函数; (2 )在ED 段, y=40是定值,持续时间 4s ,则ED=4; (3)在DC 段, y 持续减小直至为0, y 是t 的一次函数. 解:(1)结论A 正确.理由如下:分析函数图象可知, BC=10cm ED=4cm 故 AE=AD-ED=BC-ED=10-4=6cm如答图1所示,连接EC,过点E 作EF 丄BC 于点F ,11由函数图象可知, BC=BE=10cm BEC =40=— BC?EF= X 10X EF,2 2E F 8/• sin / EBC= =-BE 10(3)结论C 正确.理由如下: 如答图2所示,过点P 作PGLBQ 于点G,•/ BQ=BP=,AEA. 图1AE=6cmEF=8,(2)结论B 正确.理由如下:答圏2答郎1 1 1 4 2••• y=S^BPC= BQ?PG= BQ?BP?sinZ EBC= t?t? = t2.2 2 2 5 5(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB, NC此时AN=8 ND=2由勾股定理求得:NB=S J2,NC=2j17 ,•/ BC=10,•••△ BCN不是等腰三角形,即此时厶PBQ不是等腰三角形.点评:本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm。

七年级数学下册第七章平面直角坐标系经典大题例题

七年级数学下册第七章平面直角坐标系经典大题例题

(名师选题)七年级数学下册第七章平面直角坐标系经典大题例题单选题1、如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3)B.(3,4)C.(4,2)D.(2,4)答案:C分析:根据小丽的座位坐标为(3,2),根据四个选项中的座位坐标,判断四个选项中与其相邻的座位,即可得出答案.解:∵只有(4,2)与(3,2)是相邻的,∴与小丽相邻且能比较方便地讨论交流的同学的座位是(4,2),故C正确.故选:C.小提示:本题主要考查了坐标确定位置,关键是根据有序数对表示点的位置,根据点的坐标确定位置.2、点P(a,b)在第二象限,若点P到x轴的距离是5,到y轴的距离是2,则点P的坐标为()A.(-2,5)B.(-5,2)C.(2,-5)D.(5,-2)答案:A分析:根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.解:∵点P(a,b)在第二象限内,点P到x轴的距离是5,到y轴的距离是2,∴点P的横坐标为a=−2,纵坐标为b=5,∴点P的坐标为(−2,5).故选:A.小提示:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.3、在平面直角坐标系xoy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,,点A2的伴随点为A3,,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2020的坐标为( )A.(-3,3)B.(-2,-2)C.(3,-1)D.(2,4)答案:C分析:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可.∵A1(2,4),∴A2(-3,3),A3(-2,-2),A4(3,-1),A5(2,4),A6(-3,3),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-1),故选:C.小提示:本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义,并求出每4个点为一个循环组依次循环是解题的关键.4、如果第二列第一行用有序数对(2,1)表示,那么数对(3,6)和(3,4)表示的位置是()A.同一行B.同一列C.同行同列D.不同行不同列答案:B分析:数对中第一个数字表示列数,第二个数字表示行数,据此可作出判断.解:第二列第一行用数对(2,1)表示,则数对(3,6)表示第三列,第六行,数对(3,4)表示表示第三列,第四行.所以数对(3,6)和(3,4)表示的位置是同一列不同行.故选:B.小提示:本题主要考查了坐标确定位置,一般用数对表示点位置的方法是第一个数字表示列,第二个数字表示行,也有例外,具体题要根据已知条件确定.5、在平面直角坐标系xOy中,对于点P(x,y)我们把点P(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2022的坐标为()A.(−3,3)B.(−2,−2)C.(3,−1)D.(2,4)答案:A分析:据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2022除以4,根据商和余数的情况确定点A2022的坐标即可.观察发现:A1(2,4)、A2(−3,3)、A3(−2,−2)、A4(3,−1)、A5(2,4)、A6(−3,3)⋅⋅⋅依此类推,可以发现每4个点为一个循环组依次循环,∵2022÷4=505余2,∴点A2022的坐标与A2的坐标相同为(−3,3),故选:A.小提示:本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.6、如图,在平面直角坐标系xOy中,将四边形ABCD先向上平移,再向左平移得到四边形A1B1C1D1,已知A1(−3,5),B1(−4,3),A(3,3),则点B坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)答案:B解析:由题意得到点A的坐标变化规律,然后根据点A的变化规律反推可以由B1得到B的坐标.解:∵-3-3=-6,5-3=2,∴点A变到A1的过程中,横坐标加-6,纵坐标加2,∴由B1反推到B的过程,必须是横坐标加6,纵坐标加-2,∴-4+6=2,3-2=1,∴B点坐标为(2,1),故选B.小提示:本题考查平移的坐标变化,得到图形的平移规律是解题关键.7、家长会前,四个孩子分别向家长描述自己在班里的座位,在没有其他参考信息的情况下,家长能根据描述准确找到自己孩子座位的是()A.小强说他坐在第一排B.小明说他坐在第三列C.小刚说他的座位靠窗D.小青说她坐在第二排第五列答案:D分析:直接利用坐标确定位置需要两个量,进而分析得出答案解∶A、小强说他坐在第一排,无法确定座位位置,故此选项不符合题意;B、小明说他坐在第三列,无法确定座位位置,故此选项不符合题意;C、小刚说他的座位靠窗,无法确定座位位置,故此选项不符合题意;D、小青说她坐在第二排第五列,能准确确定座位位置,故此选项符合题意.故选:D小提示:本题主要考查了利用坐标确定位置.掌握具体位置的确定需两个量是解题关键.8、如图,在平面直角坐标系中,线段AB的两个端点是A(1,3),B(2,1),若点A的对应点A′的坐标为(﹣2,0),则点B的对应点B′的坐标为()A.(﹣3,2)B.(﹣1,﹣3)C.(﹣1,﹣2)D.(0,﹣2)答案:C分析:利用平移变换中对应点的平移方向和平移距离完全相同知:点A到点A′的坐标变化与点B到点B′的坐标变化完全相同得出结果.解:∵从点A(1,3)到点A′(-2,0),横坐标减3,纵坐标减3,点B的对应点B′的坐标为(2-3,1-3),即为(-1,-2).故选:C.小提示:本题考查点的平移变换,掌握对应点的坐标变换完全相同是解决问题的关键.9、如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),那么棋子“炮”的坐标为()A.(3,0)B.(3,1)C.(3,2)D.(2,2)答案:C分析:根据“车”的位置,向右平移2个单位,再向下平移3个单位得到坐标原点,建立平面直角坐标系,再根据“炮”的位置解答.解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3),建立如图平面直角坐标系,原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y 轴,向上为正方向;根据建立的坐标系可知,棋子“炮”的坐标为(3,2).故选:C.小提示:本题考查坐标确定位置,是基础考点,掌握相关知识是解题关键.10、如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2022分钟时,这个粒子所在位置的坐标是()A.(44,5)B.(44,2)C.(45,5)D.(45,2)答案:B分析:找出粒子运动规律和坐标之间的关系即可解题.解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了2=1×2(分钟),将向左运动,(2,2)表示粒子运动了6=2×3(分钟),将向下运动,(3,3)表示粒子运动了12=3×4(分钟),将向左运动,…,于是会出现:(44,44)点粒子运动了44×45=1980(分钟),此时粒子将会向下运动,∴在第2022分钟时,粒子又向下移动了2022-1980=42个单位长度,∴粒子的位置为(44,2),故选:B.小提示:本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律.填空题11、如图,A和B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则ab的值为________.答案:1分析:由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.解:由题意可知:a=0+(3−2)=1;b=0+(2−1)=1;∴ab=1,所以答案是:1.小提示:本题主要考查了坐标与图形变化—平移,熟知在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.12、在平面直角坐标系中,点A(−5,3)到y轴的距离为_______.答案:5分析:根据点到y轴的距离是横坐标的绝对值,可得答案.解:点A(-5,3)到y轴的距离是:|-5|=5.所以答案是:5.小提示:本题考查了点的坐标,正确掌握点的坐标特点是解决的关键.13、在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是______.答案:(-4,5)分析:根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到点M的横纵坐标可能的值,进而根据所在象限可得点M的具体坐标.解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=−4,y=5,∴点M的坐标为(−4,5),故答案是:(−4,5).小提示:本题考查了点的坐标,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;第二象限(−,+).14、将点P(m+2,2m+4)向右平移1个单位长度到点Q,且点Q恰好在y轴上,那么点Q的坐标是________.答案:(0,−2)分析:先根据平移方式表示出点Q的坐标,再根据y轴上点的特征解题即可.由题意,得点Q的坐标为(m+3,2m+4),∵点Q恰好在y轴上则m+3=0,解得m=−3,故2m+4=−2,点Q的坐标为(0,−2).所以答案是:(0,−2).小提示:本题主要考查点的平移及在y轴上点的特征,掌握点的平移规律及在y轴上点的特征是解题的关键.15、如图,在平面直角坐标系中,直线l交x轴于点A,交y轴于点A1,∠A1AO=45°,A2,A3,...在直线l上,点B1,B2,B3...在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,已知点A坐标是(-2,0),则点B n的横坐标为______.答案:2n+1−2##−2+2n+1分析:先求B1,B2,B3的坐标,探究规律后,根据规律即可解出答案.由题意得:OA=OA1=2∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8∴B1(2,0),B2(6,0),B3(14,0)∵2=22−2,6=23−2,14=24−2∴B n的横坐标为2n+1−2所以答案是:2n+1−2.小提示:本题考查了点的坐标和等腰直角三角形的性质等知识,利用知识点得出每个点的坐标,寻找出规律是解决问题的关键.解答题16、已知:如图△ABC的位置如图所示,(每个方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上).点A,B,C的坐标分别为(−1,−1),(5,−1),(1,4).(1)请在图中建立平面直角直角坐标系,平移△ABC使A,B,C的对应点分别为A′,B′,C′且点A的对应点A′坐标为(1,0),分别写出B′,C′两点的坐标并画出平移后的图形;(2)点P(m,n)是(1)中平面直角坐标系内的一点,点P随着△ABC一起平移,点P的对应点P′(n+2,4).求点P的坐标并求平移过程中线段PC扫过的面积.答案:(1)点B′,C′的坐标分别是(7,0),(3,5),见解析(2)点P的坐标为(3,3),P′(5,4),4分析:(1)根据A,B,C的坐标确定平面直角坐标系即可,判断出B′,C′的坐标,画出图形即可;(2)利用平移变换的性质求出m,n的值,画出图形可得结论.(1)解:∵点A(−1,−1)的对应点A′坐标为(1,0),∴点的坐标平移规律是:横坐标加2,纵坐标加1,∵B,C的坐标分别为(5,−1),(1,4)∴点B′,C′的坐标分别是(7,0),(3,5),平面直角坐标系如图所示:(2)解:∵点P(m,n)平移后落在P′(n+2,4),∴m+2=n+2,n+1=4,解得,m=n=3,∴点P的坐标为(3,3),P′(5,4),∵平移过程中线段PC扫过的图形是一个平行四边形,×2×1=4.它的面积=4×2−4×12即平移过程中线段PC扫过的面积为4.小提示:本题考查作图——平移变换,平行四边形的面积等知识,解题的关键是掌握平移变换的性质,学会用割补法求平行四边形面积.17、阅读材料:两点间的距离公式:如果平面直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=√(x1−x2)2+(y1−y2)2,则AB2=(x1−x2)2+(y1−y2)2.例如:若点A(4,1),B(3,2),则AB=√(4−3)2+(1−2)2=√2,若点A(a,1),B(3,2),且AB=√2,则(√2)2=(a−3)2+(1−2)2.根据实数章节所学的开方运算即可求出满足条件的a的值.根据上面材料完成下列各题:(1)若点A(−2,3),B(1,2),则A、B两点间的距离是.(2)若点A(−2,3),点B在x轴上,且A、B两点间的距离是5,求B点坐标.答案:(1)√10(2)B(−6,0)或B(2,0)分析:(1)根据题目所给两点间的距离公式求解即可.(2)设B(m,n).根据点B的位置和题目所给点的两点间距离公式列出方程,再根据开方运算求解即可.(1)解:∵A(−2,3),B(1,2),∴AB=√(−2−1)2+(3−2)2=√10.所以答案是:√10.(2)解:设B(m,n).∵点B在x轴上,∴n=0.∴B(m,0).∵A(−2,3),且A、B两点间的距离是5,∴52=(−2−m)2+(3−0)2.整理得(−2−m)2=16.∵±√16=±4,∴−2−m=4或−2−m=−4.∴m=−6或m=2.∴B(−6,0)或B(2,0).小提示:本题考查平面直角坐标系中点的坐标,利用平方根解方程,实数的混合运算,正确理解题意是解题关键.18、对于平面直角坐标系中的图形M上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P′(x+e,y−e)称为将点P进行“e型平移”,点P称为将点P进行“e型平移”的对应点;将图形M上的所有点进行“e型平移”称为将图形M进行“e型平移”例如,将点P(x,y)平移到P′(x+1,y−1)称为将点P进行“1型平移”.(1)已知点A(−1,2),B(2,3).将线段AB进行“1型平移”后得到对应线段A′B′.①画出线段A′B′,并直接写出A′,B′的坐标;②四边形ABB′A′的面积为________(平方单位);(2)若点A(2−a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,当四边形ABB′A′的面积为8平方单位,试确定a的值.答案:(1)①图见解析,A′(0,1),B′(3,2);②4(2)2分析:(1)①根据新定义将点A,B先向右平移1个单位再向下平移1个单位,得到A′,B′,连接A′B′,根据平移写出点的坐标即可,②根据四边形AA′B′B的面积=S△ABA′+S△AB′B,即可求解.(2)根据点坐标,构造大长方形CDEF,根据长方形的面积减去4个三角形的面积,根据坐标与图形求得C(2−a,a+2),D(a+3,a+2),E(a+3,a−1),F(2−a,a−1),进而根据新定义求得S△AA′F=S△B′BD=12×2×2=2,根据坐标系求得S△ABC=S△A′B′E=12×1×(2a−1)=a−12,根据四边形ABB′A′的面积为CF×CD−(S△AA′F+S△B′BD)−(S△ABC+S△A′B′E),四边形ABB′A′的面积为8平方单位建立方程,即可求解.(1)如图所示,A′(0,1),B′(3,2),②四边形AA′B′B的面积=S△ABA′+S△AB′B=12×4×1+12×4×1=4,(2)∵点A(2−a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,∴A′(2−a+2,a+1−2),B′(a+1+2,a+2−2),A′(4−a,a−1),B′(a+3,a),标注字母如图,则C(2−a,a+2),D(a+3,a+2),E(a+3,a−1),F(2−a,a−1),根据定义可知AF=A′F=2,BD=B′D=2,∴S△AA′F=S△B′BD=12×2×2=2,∵A(2−a,a+1),B(a+1,a+2),∴AC=a+2−(a+1)=1,BC=a+1−(2−a)=2a−1,∴S△ABC=S△A′B′E=12×1×(2a−1)=a−12,∴FC=AC+AF=1+2=3,CD=CB+BD=2a−1+2=2a+1,∴四边形ABB′A′的面积为CF×CD−(S△AA′F+S△B′BD)−(S△ABC+S△A′B′E)=3×(2a+1)−(2+2)−(a−12+a−12)=6a+3−4−2a+1 =4a,∵四边形ABB′A′的面积为8平方单位,∴4a=8,解得a=2.小提示:本题考查了新定义,平移的性质,坐标与图形,理解新定义是解题的关键.。

平面直角坐标系中三角形面积的求法(例题及对应练习)

平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题我们要注意其中的解题方法和解题技巧.现一、有一边在坐标轴上例1如图1,平面直角坐标系中,△ ABC的顶点坐标分别为(— 3 , 0),(0, 3),( 0,—1),你能求岀三角形ABC的面积吗?1~.解题时丄丄丄 1 1(AD+CE X DE- 2 ADX DB-M CE X BE= X( 4+6)X 5 —2 X4X 4—X^6 X 1 = 14.平面直角坐标系中的面积问题(提高篇)4、在平面直角坐标系中,△ ABC的顶点坐标分别为A (1, -1) , B (-1 ,4), C (-3 , 1), (1)求厶ABC 的面积;(2)将厶ABC先向下平移2个单位长度,再向右平移3个单位长度,求线段AB扫过的面积。

“割补法”的应用-、已知点的坐标,求图形的面积。

1、在平面直角坐标系中,△ ABC的顶点坐标分别为A (-2, -2), B (0 , -1) , C ( 1 , 1),求厶ABC 的面积。

分析:根据三个顶点的坐标特征可以看岀,△ ABC的边y轴上,由图形可得BC= 4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解解:因为B(0,3),C(0,-1), 所以BC=3- (-1 ) =4.因为A(-3,0), 所以A点到y轴的距离,即BC边上的高为3,S iAiC=-BC^AO =丄汀恋二6二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4, 1), B (4, 5), C (-1 , 2), 求三角形ABC的面积.2、在平面直角坐标系中,四边形ABCD (-4, -2) B (4, -2) C (2, 2) D (-2 , 3)分析:由A (4 , 1), B (4, 5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的咼CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A, B两点的横坐标相同,所以边AB// y轴,所以AB=5-1=4.作AB边上的咼CD,则D点的横坐标为4,所以<y—X4X5 = 10所以.三、三边均不与坐标轴平行例3如图2,平面直角坐标系中,已知点A (-3,-1),B( 1,3),C(2,-3),你能求岀三角形ABC的面积吗?CD=4- (-1 ) =5,TFh-llH丿丄i—『J-l]bJnNJ・rE3分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求岀,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x轴的直线交于点D E,则四边形ADEC为梯形.因为A (-3 , -1 ), B (1,1*7 —3) , C (2, -3 ),所以AD= 4, CE=6, DB=4, BE=1, DE= 5.所以亠-=-ABC的面积为12,求点C的坐标的各个顶点的坐标分别为A求这个四边形的面积。

七年级数学平面直角坐标系典型例题及答题技巧

七年级数学平面直角坐标系典型例题及答题技巧

七年级数学平面直角坐标系典型例题及答题技巧单选题1、点A(−3,−5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,−8)B.(1,−2)C.(−6,−1)D.(0,−1)答案:C解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.解:点A的坐标为(−3,−5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:−3−3=−6,纵坐标为:−5+4=−1,即(−6,−1).故选:C.小提示:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.2、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)答案:D解析:点P在y轴上则该点横坐标为0,据此解答即可.∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)答案:B解析:在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.小提示:本题运用了点平移的坐标变化规律,关键是把握好规律.4、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.5、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.6、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.7、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.8、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)答案:C解析:不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,∵1+2+3+4+5+6+7+8+9=45,∴第46、47、48、49、50个有序数对依次是(1,10)、(2,9)、(3,8)、(4,7)、(5,6).所以C选项是正确的.小提示:本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.填空题9、如图是中国象棋棋盘的一部分,如果我们把“馬”所在的位置记作(2,1),“卒”所在的位置就是(3,4),那么“相”所在的位置是____________.答案:(5, 3) .解析:马在第2列第1行,表示为(2,1),“卒”所在的位置就是(3,4),可知数对中前面的数表示的是列,后面的数表示的是行.据此进行解答.故答案为(5, 3)由已知可得:数对中前面的数表示的是列,后面的数表示的是行.所以,“相”所在的位置是(5, 3).小提示:本题主要考查了学生用数对表示位置的知识.10、点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为_____.答案:(2,1).解析:将点A的纵坐标加4,横坐标不变,即可得出点A′的坐标.解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).小提示:本题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.11、与点(2,−7)关于y轴对称的点的坐标为_______,关于y=−1对称的点的坐标为_______.答案:(−2,−7)(2,5)解析:关于y轴对称的点的坐标特征是:纵坐标不变,横坐标变为原数的相反数;关于y=−1对称的点的坐标特征是:横坐标不变,纵坐标关于y=−1对称,据此解题.解:点(2,−7)关于y轴对称的点的坐标为(−2,−7),关于y=−1对称的点的坐标为(2,5),所以答案是:(−2,−7);(2,5).小提示:本题考查直角坐标系、关于y轴对称的点的坐标等知识,是基础考点,掌握相关知识是解题关键.12、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.13、请写出一个在第三象限内的点的坐标:__________(只写一个).答案:(−1,−1)解析:根据第三象限内的点的横坐标和纵坐标都是负数直接写出即可.解:因为第三象限内的点的横坐标和纵坐标都是负数,故坐标可以是(−1,−1)(答案不唯一).小提示:本题考查了平面直角坐标系内点的坐标的特征,解题关键是熟知在不同象限的点的坐标的符号特征.解答题14、已知点P(2a−2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ//y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.答案:(1)P(−12,0);(2)P(4,8);(3)2021解析:(1)根据x轴上点的坐标特征:纵坐标为0,列出方程即可求出结论;(2)根据与y轴平行的直线上两点坐标关系:横坐标相等、纵坐标不相等即可求出结论;(3)根据题意可得:点P的横纵坐标互为相反数,从而求出a的值,即可求出结论.解:(1)若点P在x轴上,∴a+5=0解得:a=-5∴P(−12,0);(2)∵点Q的坐标为(4,5),直线PQ//y轴∴2a−2=4解得:a=3∴P(4,8);(3)∵点P在第二象限,且它到x轴、y轴的距离相等∴2a−2+a+5=0解得:a=-1∴a2020+2020=(−1)2020+2020=2021小提示:此题考查的是根据题意,求点的坐标,掌握x轴上点的坐标特征、与y轴平行的直线上两点坐标关系和点到x 轴、y轴的距离与坐标关系是解题关键.15、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.。

平面直角坐标系求面积经典例题

平面直角坐标系求面积经典例题

平面直角坐标系求面积经典例题好嘞,今天咱们聊聊平面直角坐标系求面积这事儿,嘿,这可不是啥难事儿。

想象一下,你在一个大大的纸上,眼前是个坐标系,X轴横着,Y轴竖着,形成了个十字架。

哎,这不就像咱们生活中遇到的各种问题嘛,画个图,一目了然。

大家都知道,图上每一点都有个“身份证”,就是它的坐标,像人一样,各自有各自的名字。

说到面积,哎,你可别小看这个面积,面积可是一门艺术,像画画儿一样,把你的想法用数字表现出来。

咱们先来个简单的例子吧,想象一下一块矩形,边长分别是A和B,这可不难。

矩形就像是你家里那张大桌子,上面摆着丰盛的菜,大家聚在一起。

面积的公式就是A乘B,嘿,这样算下来,咱们就知道这张桌子上能放下多少美食,想想都让人开心。

对于那些学过点数学的朋友,A和B就像是基因,乘起来才有那种“哇”的感觉,面积就是它们的孩子,哈哈,给人带来惊喜!再说个三角形,这个可有点意思。

想象一下,三角形就像是你追的女神,个性鲜明,边边角角都让人着迷。

它的面积公式是底乘高再除以二,听起来是不是有点复杂?其实想想看,底就是她的魅力,而高就是你的追求,嘿,搞定了这两样,成功就不远了!心里不禁想起了那些年追求的甜蜜与苦涩,哈哈,面积也能让我们感受到生活的乐趣。

再看看圆形,圆形就像那经典的月饼,圆圆的,饱满的。

它的面积公式是π乘以半径的平方,哦,这个π可是个神秘的数字,大家可能都知道,古人研究这个可花了不少心思。

半径就像是你跟朋友间的距离,越小越亲近,嘿,面积就表示了你们之间的情谊,越大越深厚,真是让人感慨万千呀。

脑海中浮现的全是跟朋友们一起分享美食的欢乐时光,哈哈,那才叫一个痛快。

如果我们把这几种形状的面积都放在一起,简直就是一个欢乐的大家庭。

每个形状都有自己的特点,都是独一无二的。

你可能会问,如何把这些形状组合起来求总面积?别担心,这就像拼图一样,找到合适的位置,把它们组合起来就好了。

就像人生中的种种经历,有快乐,有伤心,拼凑在一起,才成就了你现在的模样。

平面直角坐标系中三角形面积的求法(例题及对应练习)

平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。

专题07 平面直角坐标系(解析版)

专题07 平面直角坐标系(解析版)

专题07 平面直角坐标系知识点1:认识平面直角坐标系1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

知识点2:坐标方法的简单应用1.用坐标表示地理位置;2.用坐标表示平移。

1.平面直角坐标系中各象限点的坐标特点①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0。

2.平面直角坐标系中坐标轴上点的坐标特点①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0。

3.平面直角坐标系中对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

4.平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。

如果点P(a,b) 在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即 a = b ;如果点P(a,b) 在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即a = -b 。

平面直角坐标系

平面直角坐标系

平面直角坐标系一、知识点梳理1、 平面直角坐标系和象限:2、 各个象限内点的坐标特点:3、 对称性:点A (-1,3)关于x 轴对称的点的坐标是________;点A (-1,3)关于y 轴对称的点的坐标是________; 点A (-1,3)关于原点对称的点的坐标是________; 点P (a,b ) 关于x 轴对称的点的坐标是________; 点P (a,b ) 关于y 轴对称的点的坐标是________; 点P (a,b ) 关于原点轴对称的点的坐标是________;二、典型例题 例1、(1)在平面直角坐标中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 ____ .例2、(2011 盐城)如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4). 将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C ′的坐标是 .例3、(2011 盐城)小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系. 下列说法错误..的是( ) A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min(第3题图)(第2题图)例4、(2011 镇江)在平面直角坐标系中,正方形ABCD 的顶点分别为A ()1,1、B ()1,1-、C ()1,1--、D ()1,1-,y 轴上有一点P ()2,0。

作点P 关于点A 的对称点1P ,作1P 关于点B 的对称点2P ,作点2P 关于点C 的对称点3P ,作3P 关于点D 的对称点4P ,作点4P 关于点A 的对称点5P ,作5P 关于点B 的对称点6P ┅,按如此操作下去,则点2011P 的坐标为( ) A .()2,0 B .()0,2 C .()2,0- D . ()0,2-例5、(2011 重庆)如图,在平面直角坐标系中有一矩形ABCD ,其中A (0,0),B (8,0),D (0,4),若将△ABC 沿AC 所在直线翻折,点B 落在E 点处。

平面直角坐标系例题练习

平面直角坐标系例题练习

一、蕴含的数学思想方法: (一)化归思想所谓化归(即转化)思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.平面内的点由两条数轴上的点来表示,把新的知识转化为旧知识,体现了化归(即转化)的数学思想,化“复杂”为“简单”,从而实现问题的解决. (二)数形结合的思想数和形是数学中两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下数和形之间可以相互转化,相互渗透.坐标平面内的点与有序实数对是一一对应的,渗透了数形结合的思想,就是在研究问题的过程中,把数和形结合起来考查,使抽象问题具体化,化难为易,从而获得简便易行的方案. 二、典型例题分析: 考点一、位置的确定 例1、如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,黑棋①的位置可记为(C ,4),白棋②的位置可记为(E ,3),则白棋⑨的位置应记为 _____.考点二、平面直角坐标系内的点的特点: (一)确定字母取值范围:例2、(2007年重庆)若点M (1,12-a )在第四象限内,则a 的取值范围是 . 例3、点A (m +3,m +1)在x 轴上,则A 点的坐标为( ) A (0,-2) B 、(2,0) C 、(4,0) D 、(0,-4)提示:在根据点所在象限或坐标轴确定字母取值时,先根据坐标系内点的坐标特点确定,坐标的正负,然后列出不等式(或方程)解答.同时也可利用这一特点由点的坐标确定点所在的象限.(二)确定点的坐标: 例4、(2007年杭州市)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .(-4,3)B .(-3, -4)C .(-3, 4)D .(3, -4) 提示:此题主要考查了点的坐标与它到横、纵坐标轴的距离之间的关系,解这类题的最佳方法可通过画示意图来解决.(三)确定对称点的坐标(拓展考点):例5、(2007年怀化市)已知点(23)P -,关于y 轴的对称点为()Q a b ,,则a b +的值是( )A.1B.1-C.5D.5-提示:关于坐标轴对称点的特征有三条(1)关于x 轴对称的点的横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点的纵坐标相同,横坐标互为相反数;(3)关于坐标原点对称的点的横、纵坐标均互为相反数. 考点三、与平移有关的问题例6、(2007年哈尔滨改编) ABC △在平面直角坐标系中的位置如图所示.(1)将ABC △向下平移3个单位长度,画出平移后的222A B C △.解析:要作△ABC 向下平移3个单位的后的△A 1B 1C 12,首先要作出A 、B 、C 三点向下平移3个单位的对应点,然后顺次连接即可;解:所画的图形如图所示,此时点A 1(-2,0),B 1(-3,-1),C 1(-1,-2). 例7、(2006 年南京)在平面直角坐标系中,□ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( ) A .(3,7) B .(5,3) C .(7,3) D .(8,2)提示:解答平行于坐标轴直线上点的坐标时,平行条件往往被忽略,而这类问题的关键在于找出与已知点平行的横坐标或纵坐标的值,以此为突破确定其他点的坐标.考点四、建立直角坐标系 例8、(2007年泸州市)如图1是某市市区四个旅游景点示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,建立平面直角坐标系,用坐标表示下列景点的位置.①动物园 ,②烈士陵园 .解析:答案不唯一,若以金凤广场为坐标原点,其水平线为x 轴,垂直线为y 轴,则①动物园坐标为(1,2);②烈士陵园坐标为(-2,3).提示:这是一道开放性试题,当建立的直角坐标系不同,其点的坐标也就不同,但要注意,一旦直角坐标系确定以后,点的坐标也就确定了.1.(1)若点(5-a,a -3)在第一、三象限角平分线上,求a 的值.(2)已知两点A (-3,m ),B(n,4).若AB ∥x 轴,求m 的值,并确定n 的范围. (3)点P 到x 轴和y 轴的距离分别是3和4,求点P 的坐标.2.将点A (-3,-2)向右平移5个单位长度,得到点A1,再把A1向上平移4个单位长度,得到点A2,则点A2的坐标为( ) A .(-2,-2) B .(2,2) C .(-3,2) D .(3,2)3.已知点A (a -1,-2),B (-3,b +1),根据以下要求确定a 、b 的值.(1)直线AB ∥y 轴; (2)直线AB ∥x 轴;(3)A 、B 两点在第二、四象限两条坐标轴夹角的平分线上. 三.练习1.点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A. 第一象限内 B. x 轴负半轴上C. x 轴正半轴上D. y 轴正半轴上2.(2007年山东滨州)第三象限内的点P (x ,y )在第三象限,满足x =5,y 2=9 则点P 的坐标是 .3.(2007年内江市)已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = .4. (2007年双柏市)点P (3,2)关于y 轴对称的点的坐标为_____________________5.(2007年四川德阳)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探究可得,第100个点的坐标为 .6.(2006年旅顺口区)如图7,我们给中国象棋棋盘建立一个平面直角坐标系(每小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P .写出下一步“马”可能到达的点的坐标 ;7.(2006年苏州市)如图5,直角坐标系中,△ABC 的顶点都在网格点上.其中,A 点坐标为(2,一1),则△ABC 的面积为_____平方单位.8.(2006年武汉市)如图3在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左边图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是 .9.如图,已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位后,与点P 对应的点为Q ,则点Q 的坐标为 ( )A .(3,2)B .(6,2)C .(6,4)D .(3,5)10.如图,在四边形ABCD 中,A 、B 、C 、D 的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD 的面积。

7.平面直角坐标系

7.平面直角坐标系
(2)标出P(3,6),Q(-4,2)的位置.
课后巩固
17.如图,已知四边形ABCD. (1)写出点A,B,C,D的坐标;
(1)A(-2,1),B(-3,-2), C(3,-2),D(1,2)
(2)试求四边形ABCD的面积.(网格中每个小正方形的 边长均为1) (2)
培优学案
18.在平面直角坐标系中,一蚂蚁从原点O出发,按 向上、向右、向下、向右的方向依次不断移动, 每次移动1个单位,其行走路线如图所示.
课堂导学
3.已知点A(2,5)、B(4,-2)、C(-2,3)、D(-4, 0)、E(-3,-4)、F(0,4),则:
(1)在第一象限的点是_____A_____; (2)在第二象限的点C是__________; (3)在第三象限的点E是__________; (4)在第四象限的点B是__________; (5)在x轴上的点D 是__________; (6)在y轴上的点F 是__________;
2.对于平面内任意一点P,过点P分别向x轴、y轴作线 ,垂足在x轴、y轴上对应的数a、b分别叫做点P的 __横__坐__标____、__纵__坐__标__,有序数对 (a,b)叫做点P 的____坐__标____.
课堂导学
知识点:平面直角坐标系及其概念 【例题】已知点A(a,b)在第四象限,那么点B(b,a)在
()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【解析】根据第四象限的点的横坐标是正数,纵坐标
是负数,确定出a、b的正负情况,再根据各
象限内点的坐标特征解答.
【答案】B
课堂导学
【点拔】本题考查了各象限内点的坐标的符号特征, 记住各象限内点的坐标的符号是解决的关键 ,四 个象限的符号特点分别是:第一象限(+ ,+);第二象限(-,+);第三象限(-,-) ;第四象限(是-3,纵坐标是5,则点A的坐标

高斯平面直角坐标系例题

高斯平面直角坐标系例题

高斯平面直角坐标系例题篇一:高斯平面直角坐标系是一种常见的表示平面位置的方法。

在这种坐标系中,平面上的每个点都被表示为一个 x 坐标和 y 坐标的组合。

这些坐标通常使用小数表示,并且遵循一定的规则。

例题 1:求出点 P(2,3) 在高斯平面直角坐标系中的位置。

解:在高斯平面直角坐标系中,点 P(2,3) 的位置可以用以下方程表示: x = 2 y = 3因此,点 P 的位置是 (2,3)。

拓展:点 P(2,3) 在高斯平面直角坐标系中的位置也可以使用散点图表示。

散点图是一种用于表示多个点的位置和关系的图形。

在散点图中,点 P 的位置可以被表示为一个点,并且其他点可以通过直线或曲线连接。

散点图可以帮助我们更好地理解点 P 在平面上的位置和关系。

例题 2:求出点 Q(-3,-1) 和高斯平面直角坐标系中点 P(2,3) 的距离。

解:点 Q(-3,-1) 和高斯平面直角坐标系中点 P(2,3) 的距离可以用以下公式计算:d = √((x2 - x1)2 + (y2 - y1)2)其中,(x1,y1) 是点 P 的位置,(x2,y2) 是点 Q 的位置。

代入点 Q 的坐标 (-3,-1),得到:d = √((2 - (-3))2 + (3 - (-1))2)d = √(52 + 42)d = √20因此,点 Q(-3,-1) 和高斯平面直角坐标系中点 P(2,3) 的距离为√20。

拓展:计算点 P 和点 Q 之间的距离是高斯平面直角坐标系中常用的问题。

这种方法可以用于计算两个点之间的距离,也可以用于计算多个点之间的距离和关系。

篇二:高斯平面直角坐标系是一种常见的表示平面位置的方法。

在这个坐标系中,x 轴和 y 轴分别表示平面上的水平和垂直方向,而原点 O 则是坐标系的中心点。

下面是一个例题:已知点 P(2,3) 和高斯平面直角坐标系中的点 Q(1,2),求点 Q 在平面上的分量。

为了求解这个问题,我们需要将点 Q 表示为高斯平面直角坐标系中的分量形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。

注意a 与b 的先后顺序对位置的影响。

2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。

这个平面叫做坐标平面。

(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。

3.各象限内的点与坐标轴上的点的坐标特征:4. 特殊位置点的特殊坐标5.对称点的坐标特征:6.点到坐标轴的距离:点)P到X轴距离为y,到y轴的距离为x。

x,(y7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2,3)在第( )象限. A .一 B .二 C .三 D .四2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )A. 02<<-aB.20<<aC.2>aD.0<a 3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( ) A .)2,0(- B.)0,2( C.)0,4( D.)4,0(-2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。

3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上(除原点) 考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.(2,3)2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( ) A .a=4,b=-1 B .a=-4,b=1 C .a=-4,b=-1 D .a=4,b=1 考点4:点的平移1.已知点A (-2,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A ′,则点A ′的坐标是( )A .(-5,6)B .(1,2)C .(1,6)D .(-5,2)2.已知A (2,3),其关于x 轴的对称点是B ,B 关于y 轴对称点是C ,那么相当于将A 经过( )的平移到了C .A .向左平移4个单位,再向上平移6个单位B .向左平移4个单位,再向下平移6个单位C .向右平移4个单位,再向上平移6个单位D .向下平移6个单位,再向右平移4个单位3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5考点5:点到坐标轴的距离考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.33.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)考点7:角平分线的理解1.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a= .考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.3.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a 的值为()A.2 B.4 C.0或4 D.4或-42.如图,已知:)4,5(-A、)2,2(--B、)2,0(C。

(1)求ABC∆的面积;(2)y轴上是否存在点P,使得PBC∆面积与ABC∆的面积相等,若存在求出P点的坐标,若不存在,请说明理由。

考点11:有规律的点的坐标1.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).2.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.三、课后作业一.选择题1.下列各点中位于第四象限的点是()A.(3,4) B.(-3,4) C.(3,-4) D.(-3,-4)2.已知a>0,b<0,那么点P(a,b)在第()象限.A.一 B.二 C.三 D.四3.点)1,2M关于x轴对称的点的坐标是()(-A.)1,1(-,2(- D.)2,2- B.)1,2( C.)1(-4.若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为()A.m=-6,n=-4 B.m=O,n=-4 C.m=6,n=4 D.m=6,n=-45.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上 B.在y轴上 C.是坐标原点 D.在x轴上或在y轴上6.若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是()A.(2,2) B.(-2,-2)C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)7.点(2,3),(1,0),(0,-2),(0,0),(-3,2)中,不属于任何象限的有()A.1个 B.2个 C.3个 D.4个8.将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形()A.与原图形关于y轴对称 B.与原图形关于x轴对称C.与原图形关于原点对称 D.向x轴的负方向平移了一个单位9.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0) B.(﹣1,6) C.(﹣3,﹣6) D.(﹣1,0)10.若点P(a,-b)在第三象限,则M(ab,-a)应在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题11.已知点)12,mP在y轴上,则P点的坐标是。

m(-12.在如图所示的象棋盘上,若“将”位于点(1,-2)上,“象”位于点(3,-2)上,则“炮”位于点上。

13.在平面直角坐标系中,点A(-2,a),B(b,3),点A在点B的左边,已知AB=3,且AB ∥x轴,则a= ;b= 。

三、解答题14.已知点P(-3a-4,2+a),解答下列各题:(1)若点P在x轴上,则点P的坐标为;(2)若Q(5,8),且PQ∥y轴,则点P的坐标为;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2018+2018的值.15.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , ),B( , );(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.四、典型例题讲解考点1:点的坐标与象限的关系2.在平面直角坐标系中,点P (-2,3)在第( )象限. B .一 B .二 C .三 D .四 参考答案:B2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )B. 02<<-a B.20<<aC.2>aD.0<a 参考答案:B3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 参考答案:B考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( ) A .)2,0(- B.)0,2( C.)0,4( D.)4,0(- 参考答案:B2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。

参考答案:)1,0(-3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上(除原点)参考答案:D考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.(2,3) 参考答案:C2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 参考答案:C3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( ) B .a=4,b=-1 B .a=-4,b=1 C .a=-4,b=-1 D .a=4,b=1 参考答案:C考点4:点的平移1.已知点A(-2,4),将点A往上平移2个单位长度,再往左平移3个单位长度得到点A′,则点A′的坐标是()A.(-5,6) B.(1,2) C.(1,6) D.(-5,2)参考答案:A2.已知A(2,3),其关于x轴的对称点是B,B关于y轴对称点是C,那么相当于将A经过()的平移到了C.A.向左平移4个单位,再向上平移6个单位B.向左平移4个单位,再向下平移6个单位C.向右平移4个单位,再向上平移6个单位D.向下平移6个单位,再向右平移4个单位参考答案:B3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5参考答案:A考点5:点到坐标轴的距离考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()B.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同参考答案:C2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.3参考答案:C3.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)参考答案:D考点7:角平分线的理解1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)参考答案:A考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.参考答案:123.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.参考答案:12.5考点10:根据坐标或面积的特点求未知点的坐标1.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为()A.2 B.4 C.0或4 D.4或-4参考答案:D2.如图,已知:)4,5-B、)2,0(C。

相关文档
最新文档