用霍尔效应测量螺线管磁场 物理实验报告
霍尔效应测量螺线管磁场实验报告
![霍尔效应测量螺线管磁场实验报告](https://img.taocdn.com/s3/m/748d0b99f605cc1755270722192e453610665b93.png)
霍尔效应测量螺线管磁场实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量螺线管磁场的方法。
3、学会使用霍尔效应实验仪,并对实验数据进行处理和分析。
二、实验原理1、霍尔效应当电流 I 沿垂直于磁场 B 的方向通过导体时,在导体垂直于电流和磁场的方向上会产生一个横向电位差 UH,这种现象称为霍尔效应。
霍尔电压 UH 与电流 I、磁感应强度 B 以及导体的厚度 d 等因素有关,其关系式为:UH = KHIB/d,其中 KH 为霍尔元件的灵敏度。
2、螺线管磁场对于一个长直螺线管,其内部的磁场近似为均匀磁场,磁场强度 B 与电流 I、螺线管的匝数 N 和长度 L 有关,其关系式为:B =μ0nI,其中μ0 为真空磁导率,n = N/L 为单位长度上的匝数。
三、实验仪器霍尔效应实验仪、螺线管、直流电源、数字电压表、毫安表等。
四、实验步骤按照实验电路图,将霍尔效应实验仪、螺线管、直流电源、数字电压表、毫安表等仪器正确连接。
2、调整仪器(1)将霍尔元件置于螺线管的中间位置,确保霍尔元件与螺线管的轴线平行。
(2)调节直流电源的输出电压,使通过螺线管的电流逐渐增大,观察数字电压表的读数变化,确保仪器正常工作。
3、测量霍尔电压(1)保持通过螺线管的电流不变,改变磁场方向(即改变电流方向),分别测量正、反向磁场下的霍尔电压 UH1 和 UH2,计算平均值UH =(UH1 + UH2)/2,以消除副效应的影响。
(2)改变通过螺线管的电流 I,每次改变一定的值,测量对应的霍尔电压 UH,记录数据。
4、数据处理(1)根据测量数据,绘制 UH I 曲线。
(2)利用曲线的斜率和已知的霍尔元件灵敏度 KH,计算出螺线管内部的磁感应强度 B。
五、实验数据记录与处理|通过螺线管的电流 I (mA) |霍尔电压 UH1 (mV) |霍尔电压UH2 (mV) |平均霍尔电压 UH (mV) ||||||| 10 | 125 |-120 | 1225 || 20 | 250 |-245 | 2475 || 30 | 370 |-365 | 3675 || 40 | 490 |-485 | 4875 || 50 | 610 |-605 | 6075 |2、绘制 UH I 曲线以通过螺线管的电流 I 为横坐标,平均霍尔电压 UH 为纵坐标,绘制 UH I 曲线。
霍尔效应测量螺线管磁场实验报告
![霍尔效应测量螺线管磁场实验报告](https://img.taocdn.com/s3/m/3656d06b443610661ed9ad51f01dc281e53a56e8.png)
霍尔效应测量螺线管磁场实验报告一、实验目的。
本实验旨在通过霍尔效应测量螺线管中的磁场强度,进一步了解霍尔效应在磁场测量中的应用,加深对磁场的理解。
二、实验仪器和设备。
1. 螺线管。
2. 直流电源。
3. 示波器。
4. 霍尔元件。
5. 电阻箱。
6. 万用表。
三、实验原理。
当螺线管通以电流时,产生的磁场会使螺线管内的载流子受到洛伦兹力的作用,从而在螺线管的两端产生电势差。
这种现象被称为霍尔效应。
利用霍尔效应,我们可以测量螺线管中的磁场强度。
四、实验步骤。
1. 将螺线管连接至直流电源,并调节电流强度为一定数值。
2. 将霍尔元件连接至示波器,观察示波器的显示情况。
3. 调节电流强度,使示波器显示出最大的霍尔电压信号。
4. 利用万用表测量霍尔电压和电流的数值。
5. 调节电流强度,重复步骤3和步骤4,记录不同电流强度下的霍尔电压和电流数值。
五、实验数据处理。
根据实验记录的霍尔电压和电流数值,利用公式计算出不同电流强度下的磁场强度,并绘制出磁场强度随电流强度变化的曲线图。
六、实验结果分析。
根据实验数据处理得到的曲线图,我们可以清晰地观察到螺线管中磁场强度随电流强度的变化规律。
通过分析曲线图,我们可以得出螺线管中磁场强度与电流强度之间的定量关系,进一步验证了霍尔效应在磁场测量中的应用。
七、实验结论。
本实验通过霍尔效应成功测量了螺线管中的磁场强度,得出了磁场强度与电流强度之间的定量关系。
实验结果符合霍尔效应的理论预期,验证了霍尔效应在磁场测量中的应用。
八、实验总结。
通过本次实验,我们进一步了解了霍尔效应在磁场测量中的应用,掌握了利用霍尔效应测量螺线管磁场的方法。
同时,实验中我们也发现了一些操作上的注意事项,对于今后的实验操作有了更加深入的认识。
九、参考文献。
1. 《霍尔效应在磁场测量中的应用》,物理学报,2008年。
2. 《霍尔效应测量螺线管磁场实验指导书》,XX大学物理实验室,2019年。
十、致谢。
感谢实验指导老师对本次实验的指导与帮助,让我们更加深入地了解了霍尔效应在磁场测量中的应用。
霍尔法测螺线管磁场实验报告
![霍尔法测螺线管磁场实验报告](https://img.taocdn.com/s3/m/9e4176a8534de518964bcf84b9d528ea81c72fb4.png)
在一定磁场强度范围内,霍尔元件的输出电压与磁场强度呈线性关 系。
03 实验步骤
搭建实验装置
准备实验器材
01
螺线管、霍尔元件、电源、测量仪表等。
搭建实验装置
02
将螺线管放置在测量台上,将霍尔元件与测量仪表连接,并将
电源接入螺线管。
检查装置
03
ቤተ መጻሕፍቲ ባይዱ
确保所有连接正确无误,电源正常工作,测量仪表处于校准状
误差来源
实验中可能存在的误差来源包括测量 设备的精度问题、环境因素等。
误差分析
我们对误差来源进行了详细分析,并 计算了误差对实验结果的影响程度。 结果显示,误差对实验结果的影响较 小,实验结果可靠。
05 实验结论与建议
实验结论
01
霍尔效应法能够准确测量螺线管磁场强度,测量结果与理论值 基本一致。
掌握霍尔元件的使用方法
霍尔元件的安装
将霍尔元件放置在螺线管内部 导体上,确保连接牢固,避免
接触不良。
霍尔元件的校准
在测量前需要对霍尔元件进行 校准,以确保测量结果的准确 性。
霍尔元件的读数
根据霍尔元件的输出电压,可 以计算出磁场强度的大小。
注意事项
使用霍尔元件时要避免过载和 高温,以免损坏元件。
02 实验原理
磁场方向与电流方向的关系: 右手定则,即四指环绕电流方 向,大拇指指向即为磁场方向。
磁场强度与电流大小的关系: 电流越大,磁场强度越大。
霍尔元件的工作原理
霍尔元件的构造
通常由半导体材料制成,具有两个平行的电极,当电流通过时, 在电极之间产生电势差。
霍尔元件的输出信号
当霍尔元件处于磁场中时,由于霍尔效应产生的电势差会使得电极 之间产生电压输出。
大学物理实验报告 螺线管磁场的测量
![大学物理实验报告 螺线管磁场的测量](https://img.taocdn.com/s3/m/89e6da07482fb4daa58d4be5.png)
实验报告螺线管磁场的测量霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。
目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。
在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。
本实验采取电放大法,应用霍尔效应对螺线管磁场进行测量。
关键词:霍尔效应;霍尔元件;电磁场;磁场一、实验目的1.了解螺线管磁场产生原理。
2.学习霍尔元件用于测量磁场的基本知识。
3.学习用“对称测量法”消除副效应的影响,测量霍尔片的UH -IS(霍尔电压与工作电流关系)曲线和UH -IM,B-IM(螺线管磁场分布)曲线。
二、实验原理霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛伦兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如图所示,磁场B位于Z轴的正向,与之垂直的半导体薄片上沿X轴正向通以电流IS(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流IS相反的X轴负向运动。
由于洛伦兹力fL作用,电子即向图中虚线箭头所指的位于Y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。
700223霍尔效应法测螺线管磁场(实验23)
![700223霍尔效应法测螺线管磁场(实验23)](https://img.taocdn.com/s3/m/de9146c177eeaeaad1f34693daef5ef7ba0d122f.png)
700223霍尔效应法测螺线管磁场(实验23)霍⽿效应法测螺线管磁场实验报告【⼀】实验⽬的及实验仪器实验⽬的1.了解和熟悉霍尔效应的重要物理规律2.熟悉集成霍尔传感器的特性和应⽤,掌握测试霍尔效应器件的⼯作特性3.学习⽤霍尔效应测量磁场的原理和⽅法4.学习⽤霍尔器件测绘长直螺线管的轴向磁场分布实验仪器FD-ICH-II 新型螺线管磁场测定仪【⼆】实验原理及过程简述霍尔元件如图4-23-1所⽰。
若电流I流过厚度为d的半导体薄⽚,且磁场B垂直于该半导体,于是电⼦流⽅向由洛伦磁⼒作⽤⽽发⽣改变,在薄⽚两个横向⾯a,b之间应产⽣电势差,这种现象称为霍尔效应。
在与电流I、磁场B垂直⽅向上产⽣的电势差称为霍尔电势差,通常⽤UH 表⽰。
霍尔效应的数学表达式为:随着科技的发展,新的集成元件不断被研制成功。
本实验采⽤的SS95A型集成霍尔传感器,是⼀种⾼灵敏度集成化传感器,它由霍尔元件放⼤器和薄膜电阻剩余电压补偿组成,测量时输出信号⼤,并且剩余电压的影响已被消除。
SS95A型集成霍尔传感器,他的⼯作电流已设定被称为标准,⼯作电流使⽤传感器时,必须使⼯作电流处在该标准状态,在实验室只要在磁感应强度为零条件下调节v+v-所接的电源电压是输出电压为2.500伏,则传感器就可处在标准⼯作状态之下。
当螺线管内有磁场且集成霍尔传感器的标准⼯作电流时螺线管是由绕在圆柱⾯上的导线构成的,对于密绕的螺线管可以看成是⼀列有共同轴线的圆形线圈的并列组合,因此⼀个载流长直螺线管轴线上某点的磁感应强度,可以从对各圆电流在轴线上该点所产⽣的磁感应强度进⾏积分求和得到,对于⼀限长的螺线管,在距离两端等远的中⼼点磁感应强度为最⼤,且等于过程简述1.装置接线2.断开开关K2,调节使集成霍尔传感器达到标准化⼯作状态。
3.测量霍尔传感器的灵敏度4.测量通电螺线管中的磁场分布【三】实验数据处理及误差计算:5让风吹1.根据实验所测,描绘螺线管中间位置霍尔电势差与螺线管通电电流的关系;2.求出K/ 和r以及K;∴K’=0.4169V/Ar=13.计算通电螺线管内各处的磁感应强度(见数据记录纸);4.描绘通电螺线管内磁感应强度B-x分布图;5.⽐较实验值与书上提供的技术指标,计算误差;【四】实验结果表达:对测量及计算的最终结果做出定量(定性)的总结,并回答书中对应思考题的问题。
用霍尔效应测量螺线管磁场
![用霍尔效应测量螺线管磁场](https://img.taocdn.com/s3/m/2f30bbc52f60ddccdb38a04d.png)
用霍尔效应测量螺线管磁场20112401075,陈史洁,化教6班实验八 用霍尔效应测量螺线管磁场用霍尔传感器测量通电螺线管内励磁电流与输出霍尔电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法。
一、实验目的1.了解霍尔效应现象,掌握其测量磁场的原理。
2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。
二、实验原理图1所示的是长直螺线管的磁力线分布,有图可知,其内腔中部磁力线是平行于轴线的直线系,渐近两端口时,这些直线变为从两端口离散的曲线,说明其内部的磁场在很大一个范围内是近似均匀的,仅在靠近两端口处磁感应强度才显著下降,呈现明显的不均匀性。
根据电磁学毕奥-萨伐尔)Savat Biot (-定律,通电长直螺线管线上中心点的磁感应强度为: 22MD L I N B +••μ=中心(1)图理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁感应强度的1/2:22M D L I N 21B 21B +••μ•==中心端面 (2)式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7(T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D为螺线管的平均直径。
附加电势差的消除应该说明,在产生霍尔效应的同时,因伴随着多种副效应(见附录),以致实验测得的电压并不等于真实的V H 值,而是包含着各种副效应引起的附加电压,因此必须设法消除。
根据副效应产生的机理可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是Is 和B (即l M )的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的Is 和B 组合的A 、A ′两点之间的电压V 1、 V 2、V 2、和V 4,即 +Is +B V 1 +Is -B V 2 -Is -B V 3 -Is +B V 4然后求上述四组数据V 1、V 2、V 3和V 4 绝对值的平均值,可得:44321V V V V V +++=(3)通过对称测量法求得的V H ,虽然还存在个别无法消除的副效应,但其引入的误差甚小,可以略而不计。
霍尔效应法测定螺线管磁场分布
![霍尔效应法测定螺线管磁场分布](https://img.taocdn.com/s3/m/5419fba583d049649b66582d.png)
实验四 霍尔效应法测定螺线管磁场分布霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于半导体材料的霍尔效应显著而得到了发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。
一、实验目的1.了解霍尔效应现象,掌握其测量磁场的原理。
2.测绘霍尔元件的S H I -U ,M H I -U 曲线,了解霍尔电压H U 与霍尔元件工作电流S I ,霍尔电压H U 与励磁电流M I 之间的关系。
3.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。
4.学习用“对称交换测量法”消除负效应产生的系统误差。
二、实验仪器螺线管磁场实验仪,电压表,电流表,电流源。
三、实验原理1.霍尔效应图4-1 霍尔效应霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在两侧的聚积,从而形成附加的横向电场。
如图4-1所示,磁场B 位于z 的正向,与之垂直的半导体薄片上沿x 正方向通以电流S I (称为工作电流),假设载流子为电子(N 型半导体材料),它沿着与电流S I 相反的x 负向运动。
由于洛仑兹力L F 作用,电子向图中虚线箭头所指的y 轴负方向偏转,并使B 侧电子积累,A 侧正电荷积累,形成从A 到B 的电场,这个电场称为霍尔电场H E ,相应的电势差称为霍尔电压H U 。
此时,运动的电子受到向上的电场力E F 的作用,随着电荷的积累,E F 增大,当两力大小相等时,电子积累达到动态平衡。
设电子以平均速度v 向x 负方向运动(图1),在磁场B 的作用下,电子所受的洛仑兹力为B v e F L =式中,e 为电子电量,v 为电子漂移平均速度,B 为磁感应强度。
大学物理实验报告螺线管磁场的测量
![大学物理实验报告螺线管磁场的测量](https://img.taocdn.com/s3/m/d8dfe10ca66e58fafab069dc5022aaea998f4168.png)
⼤学物理实验报告螺线管磁场的测量实验报告螺线管磁场得测量霍尔效应就就是导电材料中得电流与磁场相互作⽤⽽产⽣电动势得效应。
1879年美国霍普⾦斯⼤学研究⽣霍尔在研究⾦属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有⼈利⽤霍尔效应制成测量磁场得磁传感器,但因⾦属得霍尔效应太弱⽽未能得到实际应⽤。
随着半导体材料与制造⼯艺得发展,⼈们⼜利⽤半导体材料制成霍尔元件,由于它得霍尔效应显著⽽得到实⽤与发展,现在⼴泛⽤于⾮电量得测量、电动控制、电磁测量与计算装置⽅⾯。
在电流体中得霍尔效应也就就是⽬前在研究中得“磁流体发电”得理论基础。
近年来,霍尔效应实验不断有新发现。
1980年原西德物理学家冯·克利青研究⼆维电⼦⽓系统得输运特性,在低温与强磁场下发现了量⼦霍尔效应,这就就是凝聚态物理领域最重要得发现之⼀。
⽬前对量⼦霍尔效应正在进⾏深⼊研究,并取得了重要应⽤,例如⽤于确定电阻得⾃然基准,可以极为精确地测量光谱精细结构常数等。
在磁场、磁路等磁现象得研究与应⽤中,霍尔效应及其元件就就是不可缺少得,利⽤它观测磁场直观、⼲扰⼩、灵敏度⾼、效果明显。
本实验采取电放⼤法,应⽤霍尔效应对螺线管磁场进⾏测量。
关键词:霍尔效应;霍尔元件;电磁场;磁场⼀、实验⽬得1、了解螺线管磁场产⽣原理。
2、学习霍尔元件⽤于测量磁场得基本知识。
3、学习⽤“对称测量法”消除副效应得影响,测量霍尔⽚得UH -IS(霍尔电压与⼯作电流关系)曲线与UH -IM,B-IM(螺线管磁场分布)曲线。
⼆、实验原理霍尔效应从本质上讲,就就是运动得带电粒⼦在磁场中受洛伦兹⼒得作⽤⽽引起得偏转。
当带电粒⼦(电⼦或空⽳)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得⽅向上产⽣正负电荷在不同侧得聚积,从⽽形成附加得横向电场。
如图所⽰,磁场B位于Z轴得正向,与之垂直得半导体薄⽚上沿X轴正向通以电流IS(称为⼯作电流),假设载流⼦为电⼦(N型半导体材料),它沿着与电流IS相反得X轴负向运动。
用霍尔效应法测螺线管线圈磁场
![用霍尔效应法测螺线管线圈磁场](https://img.taocdn.com/s3/m/2619cde9294ac850ad02de80d4d8d15abf230076.png)
(2)爱廷豪森效应
(3)能斯脱效应
(4)里纪—勒杜克效应
在一个测试点,①通过励 磁电流的改变,②通过霍耳 元件上工作电流的改变,测 量四个霍耳电压值,再通过 下式计算,就可得到较为准 确的霍耳电压。
1 U H 4 (U1 U 2 U3 U 4 )
四、实验内容
1、通电螺线管轴向磁场分布测量
霍尔电流 IS 4.00mA ,螺线管通电励磁电流
IM 500 mA KH 194 mV (mA.T)
• (1)按下表记录实验数据
• (2)以位置坐标X为横坐标,磁感应强度B为纵
坐标在方格纸上画出B-X的图线
其中:
B UH KHIS
UH
UH1
UH2
UH3 4
UH4
X (cm)
X/
(cm)
U H 1 (mV) IS , IM
UH 2 (mV) IS , IM
Fm Fe
eUH
b
vB
U
H
b
附加电场的作用力 方向向下
霍耳元件 的灵敏度
在实验仪 器上注明
2、系统误差的消除方法
上面讨论的霍耳电压是在理想状态下的情况,而实际测 量的电压还包含了由热电效应和热磁效应所引起的各种附加 电压如下四种。除个别附加效应外,在实验中可采用相应的 实验方法来消除。
(1)不等势效应
UH 3 (mV)
IS , IM
UH 4 (mV)
IS , IM
UH
(mV)B(mT)
0.00 2.10
1.00 3.10
2.00 4.10
3.00 5.10
4.00 6.10
5.00 7.10
6.00 8.10
大学物理实验报告 螺线管磁场的测量
![大学物理实验报告 螺线管磁场的测量](https://img.taocdn.com/s3/m/89e6da07482fb4daa58d4be5.png)
实验报告螺线管磁场的测量霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。
目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。
在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。
本实验采取电放大法,应用霍尔效应对螺线管磁场进行测量。
关键词:霍尔效应;霍尔元件;电磁场;磁场一、实验目的1.了解螺线管磁场产生原理。
2.学习霍尔元件用于测量磁场的基本知识。
3.学习用“对称测量法”消除副效应的影响,测量霍尔片的UH -IS(霍尔电压与工作电流关系)曲线和UH -IM,B-IM(螺线管磁场分布)曲线。
二、实验原理霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛伦兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如图所示,磁场B位于Z轴的正向,与之垂直的半导体薄片上沿X轴正向通以电流IS(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流IS相反的X轴负向运动。
由于洛伦兹力fL作用,电子即向图中虚线箭头所指的位于Y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。
5.霍尔效应测量磁场 实验报告
![5.霍尔效应测量磁场 实验报告](https://img.taocdn.com/s3/m/845d9a29f7ec4afe04a1dffb.png)
霍尔效应测量螺线管磁场实验时间:2020年9月8日周二一、实验目的1、了解霍尔效应原理2、测绘霍尔元件的Vh-Is,Vh-I曲线,了解霍尔电势差Vh与霍尔元件工作电流Is,励磁电流I之间的关系及计算霍尔元件的灵敏度KHo3、利用霍尔效应测量螺线管磁场分布。
4、学习用“对称交换测量法”消除负效应产生的系统误差。
二、实验原理1、霍尔效应运动的带电粒子在磁场中受洛仑兹力的作用而偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如图1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以工作电流厶,假设载流子为电子(N型半导体材料),它沿着与电流人相反的X负向运动。
洛伦兹力用矢量式表示为:f L =-e V• B式中e为电子电量,诺为电子运动平均速度,B为磁感应强度。
由于洛伦兹力内的作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力左的作用。
随着电荷积累量的增加,队增大,当两力大小相等(方向相反)时,则电子积累便达到动态平衡。
这时A、B两端面之间建立的电场称为霍尔电场%,相应的电势差称为霍尔电势V H。
电场作用于电子的力为:即霍尔电压与Is,B的乘积成正比,与霍尔元件的厚度成反比,比例系数称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。
当霍尔元件的厚度确定时,设:K H=R H /d = 1/ned(6)则(5)式可表示为:V H=K H I S B(7)K H称为霍尔元件的灵敏度,它表示霍尔元件在单位磁感应强度和单位工作电流下的霍尔电压大小,其单位是[V/A-T}, 一般要求K"愈大愈好。
由于金属的电子浓度n很高,所以它的或K H都不大,因此不适宜作霍尔元件。
此外元件厚度d愈薄,V H愈高,所以制作时,往往釆用减少d的办法来增加灵敏度。
用霍尔元件测螺线管磁场实验报告
![用霍尔元件测螺线管磁场实验报告](https://img.taocdn.com/s3/m/b144bb0187c24028915fc3f8.png)
竭诚为您提供优质文档/双击可除用霍尔元件测螺线管磁场实验报告篇一:用霍尔元件测螺线管磁场.实验三十用霍尔元件测螺旋磁场【实验目的】1.学习用霍尔效应测量磁场的原理和方法。
2.学习用霍尔元件测绘长直螺线管的轴向磁场分布。
【实验仪器】Th—h型霍尔效应实验组合仪。
【实验原理】1.霍尔效应霍尔效应从本质上讲是运动的带电粒子在磁场中受洛伦兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场eh。
如图*1*所示的半导体试样,若在x方向通以电流Is,在Z方向加磁场b,则在Y方向即试样A-A电极两侧就开始聚集异号电荷而产生相应的附加电场。
电场的指向取决于式样的导电类型。
对于图*1a*所示的n型试样,霍尔元件逆Y方向,图*1b*的p型试样则沿Y方向。
即有eh(Y)?0?(n型)eh(Y)?0?(p型)*(注(a)载流子为电子(n型)(b)载流子为空穴(p 型))显然,霍尔电场eh是阻止载流电子继续向侧面偏移,当载流电子所受的横向电场力eeh洛伦兹力evb相等时,样品两侧电荷的积累就达到动态平衡,故有eeh?evb式中,eh为霍尔电场;v是载流电子在电流方向上的平均漂流速度。
设试样的宽为b,厚度d,载流子浓度为n,则Is?nevbd由式(1)、式(2)可得Vh?ehb?Ib1Isb?Rhsnedd即霍尔电压Vh(A、A电极之间的电压)与Isb乘积成正比与试样厚度d成反比。
比例系数Rh?称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。
只要测出Vh(V)以及3d(cm)知道I(和,可按下式计算A)、b(gs)R(cm/c)sh Rh?8Vhd?108Isb上式中的10是由于磁感应强度b用电磁单位高斯(gs),d用厘米(cm)单位,而其他各量均采用国际制单位引入。
2.霍尔系数Rh与其他参数之间的关系根据Rh可进一步确定以下参数:(1)由Rh的符号(或霍尔电压的正负)判断样品的导电类型。
霍尔效应测磁场实验报告(共7篇)
![霍尔效应测磁场实验报告(共7篇)](https://img.taocdn.com/s3/m/c6023b9471fe910ef12df884.png)
篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。
由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。
六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。
利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。
由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。
此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。
近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。
了解这一富有实用性的实验,对今后的工作将大有益处。
教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。
2. 掌握用霍尔元件测量磁场的原理和方法。
3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。
教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。
实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。
这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。
图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。
霍尔效应及螺线管磁场的测量实验报告
![霍尔效应及螺线管磁场的测量实验报告](https://img.taocdn.com/s3/m/e5c6016a443610661ed9ad51f01dc281e43a5679.png)
霍尔效应及螺线管磁场的测量实验报告一、引言霍尔效应是指当电流通过导体时,该导体横向施加磁场时,导体中会产生一种电势差,这种现象被称为霍尔效应。
霍尔效应在实际应用中具有重要的地位,例如在传感器、电流测量等领域都有广泛的应用。
本实验旨在通过测量霍尔效应和螺线管磁场,探究霍尔效应的基本原理以及螺线管磁场的特性。
二、实验设备与原理实验所需的设备包括霍尔效应实验装置、数字万用表、螺线管磁场测量仪等。
实验原理如下:1. 霍尔效应实验装置:该装置主要由霍尔效应样品、恒流源、数字万用表等组成。
当通过霍尔效应样品的电流和磁场之间垂直时,会在样品中产生一种电势差,通过数字万用表即可测量到该电势差的数值。
2. 螺线管磁场测量仪:该仪器主要由螺线管和数字显示屏组成。
通过电流通过螺线管产生的磁场,可以通过数字显示屏上的数值来测量磁场的大小。
三、实验步骤及结果1. 霍尔效应实验:首先将霍尔效应样品连接到恒流源和数字万用表上,设置合适的电流和磁场强度。
然后在不同的电流和磁场条件下,测量霍尔电压的数值。
记录实验数据,并进行分析。
实验结果表明,当电流和磁场强度变化时,霍尔电压也会相应变化。
根据实验数据绘制的图表可以看出,霍尔电压与电流和磁场强度之间存在一定的关系。
通过分析数据,我们可以得到霍尔系数和霍尔电阻等参数。
2. 螺线管磁场测量:将螺线管磁场测量仪连接到电源和数字显示屏上,设置合适的电流值。
然后通过数字显示屏上的数值,测量不同位置处的磁场强度。
实验结果表明,在螺线管中心位置处,磁场强度最大;而在螺线管两端,磁场强度较小。
通过进一步测量可以得到磁场强度与电流之间的关系。
四、实验分析与讨论通过实验我们可以得到霍尔效应的基本特性和螺线管磁场的分布情况。
同时,我们还可以通过实验数据计算出霍尔系数和磁场强度与电流的关系等参数。
在霍尔效应实验中,霍尔电压与电流和磁场强度之间的关系是非常重要的。
通过计算霍尔系数,我们可以得到导体材料的特性参数。
测螺线管磁场实验报告
![测螺线管磁场实验报告](https://img.taocdn.com/s3/m/c836954926284b73f242336c1eb91a37f1113205.png)
测螺线管磁场实验报告第一篇:测螺线管磁场实验报告测螺线管磁场———实验原理图1 图1是一个长为2l,匝数为N的单层密绕的直螺线管产生的磁场。
当导线中流过电流I时,由毕奥—萨伐尔定律可以计算出在轴线上某一点P的磁感应强度为式中,为单位长度上的线圈匝数,R为螺线管半径,x为P点到螺线管中心处的距离。
在SI单位制中,B的单位为特斯拉(T)。
图1同时给出B随x的分布曲线。
磁场测量的方法很多。
其中最简单也是最常用的方法是基于电磁感应原理的探测线圈法。
本实验采用此方法测量直螺线管中产生的交变磁场。
下图是实验装置的实验装置的示意图。
图2 当螺线管A中通过一个低频的交流电流i(t)= I0sinωt时,在螺线管内产生一个与电流成正比的交变磁场B(t)= Cpi(t)= B0sinωt其中Cp是比例常数,把探测线圈A1放到螺线管内部或附近,在A1中将产生感生电动势,其大小取决于线圈所在处磁场的大小、线圈结构和线圈相对于磁场的取向。
探测线圈的尺寸比较小,匝数比较多。
若其截面积为S1,匝数为N1,线圈平面的法向平面与磁场方向的夹角为θ,则穿过线圈的磁通链数为:Ψ = N1S1B(t)cosθ根据法拉第定律,线圈中的感生电动势为:通常测量的是电压的有效值,设E(t)的有效值为V,B(t)的有效值为B,则有,由此得出磁感应强度:其中r1是探测线圈的半径,f是交变电源的频率。
在测量过程中如始终保持A和A1在同一轴线上,此时,则螺线管中的磁感应强度为在实验装置中,在待测螺线管回路中串接毫安计用于测量螺线管导线中交变电流的有效值。
在探测线圈A1两端连接数字毫伏计用于测量A1中感应电动势的有效值。
使用探测线圈法测量直流磁场时,可以使用冲击电流计作为探测仪器,同学们可以参考冲击电流计原理设计出测量方法。
测螺线管磁场———实验内容1.研究螺线管中磁感应强度B与电流I和感生电动势V之间的关系,测量螺线管中的磁感应强度。
2.测量螺线管轴线上的磁场分布。
用霍尔元件测螺线管磁场实验报告 PDF
![用霍尔元件测螺线管磁场实验报告 PDF](https://img.taocdn.com/s3/m/e0d5c7bda1116c175f0e7cd184254b35eefd1a6e.png)
用霍尔元件测螺线管磁场实验报告 PDF本次实验的主要目的是利用霍尔元件测量螺线管所产生的磁场,研究其特性并探索影响磁场强度的因素。
实验装置:1. 螺线管:一种通电后可以产生磁场的装置,包括线圈和磁芯。
2. 霍尔元件:一种基于霍尔效应原理的元件,通过测量磁场的垂直分量而得到磁场强度。
3. 直流电源:提供螺线管所需要的电流。
4. 多用表:测量霍尔元件输出的电压。
5. 电位器:用于调整霍尔元件的工作点。
实验步骤:1. 将螺线管连接至电源,设定电流大小,使其产生磁场。
2. 按照实验装置连接图将霍尔元件连接至多用表。
4. 移动霍尔元件位置,测量不同位置下的磁场强度并记录数据。
5. 改变螺线管的电流大小,重复步骤4,记录不同电流下的磁场强度数据。
实验结果及讨论:在实验过程中,我们通过测量霍尔元件在不同位置下的电压输出,得到了螺线管产生的磁场强度数据,如表1所示。
|位置 x(cm)|电流 I(A)|霍尔元件输出电压 V(mV)|磁场强度 B(T)||:- - - - :-|:- - - - :-|:- - - - :-|:- - - - :-||1 |0.5 |25.8 |0.64 ||2 |0.5 |19.2 |0.48 ||3 |0.5 |12.6 |0.315 ||4 |0.5 |6.0 |0.15 ||5 |0.5 |0.6 |0.015 ||1 |1 |51.6 |1.28 ||2 |1 |38.4 |0.96 ||3 |1 |25.2 |0.63 ||4 |1 |12.0 |0.3 ||5 |1 |1.2 |0.03 ||1 |1.5 |77.4 |1.92 ||2 |1.5 |57.6 |1.44 ||3 |1.5 |37.8 |0.945 ||4 |1.5 |18.0 |0.45 ||5 |1.5 |1.8 |0.045 |表1:不同位置、不同电流下的磁场强度及霍尔元件输出电压数据由表1可知,在同一电流下,随着霍尔元件离螺线管距离的增加,磁场强度不断降低。
实验十八 霍尔效应法测定螺线管
![实验十八 霍尔效应法测定螺线管](https://img.taocdn.com/s3/m/a10bff4f33687e21af45a949.png)
实验十八 霍尔效应法测定螺线管 轴向磁感应强度分布一、实验目的1、掌握测试霍尔器件的工作特性2、学习用霍尔效应测量磁场的原理和方法3、学习用霍尔器件测绘长直螺线管的轴向磁场分布二、实验器材GHL-1型霍尔效应法螺线管磁场测定仪、VAA 电压测量双路恒流电源三、实验原理1、霍尔效应法测量磁场原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
对于图18-1所示的半导体试样,若在x 方向通以电流I H ,在y 方向加磁场B ,则在z 方向即试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场。
电场的指向取决于试样的导电类型。
显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力q E H 与洛仑兹力q v B 相等时,样品两侧电荷的积累就达到平衡,故有H qE qvB = (18-1) 其中E H 为霍尔电场,v 是载流子在电流方向上的平均漂移速度。
设试样的宽为b ,高度为d ,载流子浓度为n ,则H I nqvbd = (18-2) 由(1)、(2)两式可得 1H H H H H I BI B V E d R ne b b=== (18-3)即霍尔电压V H (A 、A '电极之间的电压)与I H B 乘积成正比与试样宽为b 成反比。
比例系数R H =ne1称为霍尔系数,它是反映材料的霍尔效应强弱的重要参数。
图18-1霍尔器件就是利用上述霍尔效应制成的电磁转换元件,对于成品的霍尔器件,其R H 和b 已知,在实用上就将(18-3)式写成H H H V K I B = (18-4) 其中HH R K b=,称为霍尔器件的灵敏度(其值由制造厂家给出)它表示该器件在单位D'xy工作电流和单位磁感应强度下输出的霍尔电压。
霍尔效应法测定螺线管磁场分布
![霍尔效应法测定螺线管磁场分布](https://img.taocdn.com/s3/m/5419fba583d049649b66582d.png)
实验四 霍尔效应法测定螺线管磁场分布霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于半导体材料的霍尔效应显著而得到了发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。
一、实验目的1.了解霍尔效应现象,掌握其测量磁场的原理。
2.测绘霍尔元件的S H I -U ,M H I -U 曲线,了解霍尔电压H U 与霍尔元件工作电流S I ,霍尔电压H U 与励磁电流M I 之间的关系。
3.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。
4.学习用“对称交换测量法”消除负效应产生的系统误差。
二、实验仪器螺线管磁场实验仪,电压表,电流表,电流源。
三、实验原理1.霍尔效应图4-1 霍尔效应霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在两侧的聚积,从而形成附加的横向电场。
如图4-1所示,磁场B 位于z 的正向,与之垂直的半导体薄片上沿x 正方向通以电流S I (称为工作电流),假设载流子为电子(N 型半导体材料),它沿着与电流S I 相反的x 负向运动。
由于洛仑兹力L F 作用,电子向图中虚线箭头所指的y 轴负方向偏转,并使B 侧电子积累,A 侧正电荷积累,形成从A 到B 的电场,这个电场称为霍尔电场H E ,相应的电势差称为霍尔电压H U 。
此时,运动的电子受到向上的电场力E F 的作用,随着电荷的积累,E F 增大,当两力大小相等时,电子积累达到动态平衡。
设电子以平均速度v 向x 负方向运动(图1),在磁场B 的作用下,电子所受的洛仑兹力为B v e F L =式中,e 为电子电量,v 为电子漂移平均速度,B 为磁感应强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华南师范大学实验报告
学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分
一、
实验目的:
1.了解霍尔效应现象,掌握其测量磁场的原理。
2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。
二、 实验原理:
根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2
2
M D
L I N B +••μ=
中心 (1)
理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2:
2
2M D L I N 21B 21B +••μ•
==中心端面 (2)
式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7
(T ·m/A),N
为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。
三、 实验仪器:
1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管)
四、 实验内容和步骤:
1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。
把励磁电流接到螺线
管I M 输入端。
把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。
2. 放置测量探头于螺线管轴线中心,即1
3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~
±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。
3. 调节励磁电流为500mA ,调节霍尔电流为
4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动
1cm ,测各位置对应的霍尔电势差。
(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。
与理论值比较,计算相对误差。
按给出的霍尔灵敏度作磁场分布B ~X 图。
)
五、 注意事项:
图1
1.励磁线圈不宜长时间通电,否则线圈发热,会影响测量结果。
2.霍尔元件有一定的温度系数,为了减少其自身发热对测量影响,实验时工作电流不允许超过其额定值
5mA,(建议使用值:I s=0~4mA)。
六、数据处理:
六、思考题:
如果螺线管在绕制中,单位长度的匝数不相同或绕制不均匀,在实验中会出现什么情况?
答:可能会出现霍尔电势差与螺线管内磁感应强度或霍尔电流不成正比例关系。
如有侵权请联系告知删除,感谢你们的配合!。