电路实验讲义(修改版)

合集下载

电路理论实验讲义

电路理论实验讲义

实验一电路元器件伏安特性的测试一、实验目的1、认识常用电路元件。

2、掌握线性电阻、非线性电阻元件伏安特性的测绘。

3、掌握仪器、仪表的使用方法。

二、实验仪器1、RXDI-1A电路原理实验箱1台2、万用表1台三、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表示,这条曲线称为该元件的伏安特性曲线。

图11、线性电阻器的伏安特性曲线是一条通过坐标原点的直线,图1中a曲线所示,该直线的斜率的倒数等于该电阻器的电阻值。

2、一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1中b所示。

正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

3、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性特别,如图1中c所示。

在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。

注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。

四、实验内容及步骤1、测定线性电阻器的伏安特性按图2接线,调节直流稳压电源的输出电压U,从0V开始缓慢地增加,记下相应的电压表和电流表的读数。

图2 图32、测定半导体二极管IN4007的伏安特性按图3接线,R为限流电阻,测二极管的正向特性时,其正向电流不得超过35mA,正向压降可在0~0.75V之间取值。

特别0.5~0.75V之间应多取几个测量点。

测反向特性实验时,只需将图3中的二极管D反接,且其反向电压可加至24V。

电路分析基础实验讲义完稿60278

电路分析基础实验讲义完稿60278

实验一 基本电工仪表的使用与测量误差的计算一、实验目的1.熟悉实验装置上各类测量仪表的布局。

2.熟悉实验装置上各类电源的布局及使用方法。

3.掌握电压表、电流表内电阻的测量方法。

4.熟悉电工仪表测量误差的计算方法。

二、原理说明1.为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的工作状态,这就要求电压表的内阻为无穷大;电流表的内阻为零。

而实际使用的电工仪表都不能满足上述要求。

因此,当测量仪表一旦接入电路,就会改变电路原有的工作状态,这就导致仪表的读数值与电路原有的实际值之间出现误差,这种测量误差值的大小与仪表本身内阻值的大小密切相关。

2.本实验测量电流表的内阻采用“分流法”,如图1-1所示。

A 为被测内阻(R A )R 的直流电流表,测量时先断开开关S ,调节直流恒流源的输出电流I 使A 表指针满偏转,然后合上开关S ,并保持I 值不变,调节电阻箱RB 的阻值,使电流表的指针在1/2满偏转位置,此时有I A =I S =2I ∴R A =R B ∥R 1R 1为固定电阻器之值,R B 由可调电阻箱的刻度盘上读得。

R 1与R B 并联,且R 1选用小阻值电阻,R B 选用较大电阻,则阻值调节可比单只电阻箱更为细微、平滑。

图1-13.测量电压表的内阻采用“分压法”,如图1-2所示。

V 为被测内阻(R V )的电压表,测量时先将开关S 闭合,调节直流稳压电源的输出电压,使电压表V 的指针为满偏转。

然后断开开关S ,调节R B 阻值使电压表V 的指示值减半。

此时有R V =R B +R 1电压表的灵敏度为 S=R V /U (Ω/V )4.仪表内阻引入的测量误差(通常称为方法误差,而仪表本身构造上引起的误差称为仪表基本误差)的计算。

以图1-3所示电路为例,R 1上的电压为U K1=21R R R V U ,若R 1=R 2,则U K1=21U现用一内阻为R V 的电压表来测量U R1值,当R V 与R 1并联后,R AB =11R R R R V V +,以此来替代上式中的R 1,则得U ,R1=U R R R R R R R R R V V V V 21111+++绝对误差为△U=U ,R1-U R1=U (21111R R R R R R R R R V V V V +++-21R R R V +)化简后得△U=()()21212221212212R R R R R R R R R UR R V ++++- 若R 1=R 2=R V ,则得△U=-6U 相对误差△U %=11'1R R R U U U -100%=2/6/U U -×100%=-33.31.根据“分流法”原理测定FM-47型(或其它型号)万用电表直流毫安0.5mA 和5mA 档量限的内阻,线路如图1-1所示。

电路实验讲义

电路实验讲义

目录实验一:电阻元件伏安特性的测绘 (1)实验二:电位、电压的测定及电路电位图的绘制 (4)实验三:基尔霍夫定律的验证 (7)实验四:线性电路叠加性和齐次性的研究 (10)实验五:电压源、电流源及其电源等效变换的研究 (13)实验六:戴维南定理——有源二端网络等小参数的测定 (16)实验七:最大输出功率传输条件的研究 (20)实验八:受控源的研究 (23)实验九:直流双口网络的研究 (28)实验十:正弦稳态交流电路相量的研究 (32)实验十一:一阶电路暂态过程的研究 (35)实验十二:二阶电路暂态过程的研究 (39)实验十三:交流串联电路的研究 (42)实验十四:提高功率因数的研究 (45)实验十五:交流电路频率特性的测定 (48)实验十六:RC网络频率特性和选频特性的研究 (52)实验十七:RLC串联谐振电路的研究 (56)实验十八:三相电路电压、电流的测量 (59)实验十九:三相电路功率的测量 (62)实验二十:单相电度表的校验 (65)实验二十一:功率因数表的使用及相序测量 (68)实验二十二:负阻抗变换器 (70)实验二十三:回转器特性测试 (74)实验二十四:互感线圈电路的 (78)实验二十五:单相铁芯变压器特性的测试 (82)实验一 电阻元件伏安特性的测绘一.实验目的1.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 2.学习恒压源、直流电压表、电流表的使用方法。

二.原理说明任一二端电阻元件的特性可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系U =f(I )来表示,即用U -I 平面上的一条曲线来表征,这条曲线称为该电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1中(a)所示,该直线的斜率只由电阻元件的电阻值R 决定,其阻值为常数,与元件两端的电压U 和通过该元件的电流I 无关;非线性电阻元件的伏安特性是一条经过坐标原点的曲线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的,常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性如图1-1中(b )、(c )、(d )。

电路分析基础实验讲义

电路分析基础实验讲义

第三章实验项目(中文)实验1 基本元件伏安特性的测绘一.实验目的1. 掌握线性、非线性电阻及理想、实际电压源的概念。

2. 掌握测试电压、电流的基本方法。

3. 掌握电阻元件及理想、实际电压源的伏安特性测试方法,学习利用逐点测试法绘制伏安特性曲线。

4. 掌握直流稳压电源、直流电流表、直流电压表的使用方法。

二.实验设备1.电路分析综合实验箱2.直流稳压电源3.万用表4.变阻箱三.实验原理一个二端元件的特性可以用该元件上的端电压U与通过该元件的电流I之间的关系来表示,即用U-I平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

1.线性电阻元件线性电阻元件的伏安特性服从欧姆定律,即在U-I平面上定义的一条通过坐标原点且位于直角坐标平面中的1、3象限(正电阻)的直线,如图3.1(a)所示,该直线的斜率表征了它的电阻值。

伏安特性曲线为直线的电阻称为线性电阻。

在实验室里,我们常用的电阻器通常为碳膜电阻、金属膜电阻、线绕电阻以及线绕电位器、薄膜电位器等,它们在直流或很低的频率下使用时,其线性度较好,伏安特性曲线近似为一条直线。

2.非线性电阻元件非线性电阻元件的伏安特性是在U-I平面上通过坐标原点的一条曲线,其阻值不是常数。

常见的非线性电阻有白炽灯丝、普通二极管、稳压二极管等,下面分别对其进行简单介绍:1)白炽灯丝白炽灯灯丝是一种常见的非线性电阻,当其正常工作时,灯丝处于高温状态,灯丝电阻随温度升高而增大,而灯丝温度又与通过灯丝的电流有关,电流越大,温度越高,相应的阻值也越大。

一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍,其伏安特性曲线如图3.1(b)所示。

2)普通二极管普通的半导体二极管是目前使用最广泛的非线性电阻元件之一。

当向二极管两端加正向电压时(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),其正向电流随电压的升高而急速上升,而加反向电压时,当电压从零一直增加到几十伏,其反向电流增加的却很少,由此可见,二极管具有单向导电性。

电工技术实验讲义

电工技术实验讲义

班级姓名学号成绩实验一电路元件伏安特性的测绘一、实验目的1.学会识别常用电路元件的方法。

2.掌握线性电阻、非线性电阻元件伏安特性的测绘。

3.掌握实验台上直流电工仪表和设备的使用方法。

二、原理说明任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

1.线性电阻器的伏安特性曲线是一条通过坐标原点的直线,如图2-5中a所示,该直线的斜率等于该电阻器的电阻值。

2.一般的白炽灯在工作时灯丝处于高温状态,其灯丝电阻随着温度的升高而增大,通过白炽灯的电流越大,其温度越高,阻值也越大,一般灯泡的“冷电阻”与“热电阻”的阻值可相差几倍至十几倍,所以它的伏安特性如图2-5中b曲线所示。

U(V)3.一般的半导体伏安特性如图2-5中 c 所示。

正向压降很小(一般的锗管约为0.2~0.3V ,硅管约为0.5~0.7V ),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

4.稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特别,如图2-5中d 所示。

在反向电压开始增加时,其反向电流几乎为零,但当电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将基本维持恒定,当外加的反向电压继续升高时其端电压仅有少量增加。

注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。

三、实验设备四、实验内容1.测定线性电阻器的伏安特性 按图2-6接线,调节稳压电源的输出电压U ,从0 伏开始缓慢地增加,一直到10V ,记下相应的电压表和电流表的读数U R 、I 。

U图2-6线性电阻器的伏安特性测定电路图2-7线性电阻器的伏安特性测定电路2.测定非线性白炽灯泡的伏安特性 将图2-6中的R 换成一只12V ,0.1A 的灯泡,重复步骤1。

电路分析基础:实验讲义(最终)

电路分析基础:实验讲义(最终)

目录第一部分绪论 1 第二部分TPE-DG2电路分析实验箱说明 6 第三部分实验7 实验一元件伏安特性的测试7 实验二电源的等效变换13 实验三基尔霍夫定律互宜定理17 实验四叠加定理20 实验五戴维南定理23 实验六含有受控源电路的研究29 实验七信号波形的观察及测试34 实验八一阶动态电路39 实验九二阶动态电路44 实验十R、L、C元件性能的研究47 实验十一RLC串联电路的幅频特性与谐振现象52 实验十二互感电路实验57 第四部分常用仪器的原理与使用1.HG1631型函数发生器622.HG2170型双通道交流毫伏表673.DY2101型数字保护式数字万用表704.SR-8示波器77附录常用电路元件87第一部分绪论一、前言近年来,实验课越来越被人们所重视。

随着国民经济的发展,对外开放政策的实行,学术界、科技界的国际交往日益频繁,我国大批学者、留学生遍布世界各地。

人们发现,我国留学生的理论知识考核成绩在世界各地都能名列前矛、堪称魁首,但普遍感到实验技能和动手能力低下,这个问题引起了我国高等教育界的普遍注意,各高等院校纷纷采取措施,加强了实验环节,力争在尽短的时间内,使我们的学生在实验技能和动手能力上尽快达到世界先进水平。

随着高校教学改革的不断深入,实验课改革收到了可喜的效果,初步改变了以往大学生毕业设计时不能正确选用仪器设备,不能正确使用仪器设备以及毕业后不能很快适应工作的现象。

实验课是验证和巩固所学理论知识,着眼于培养学生灵活运用学到的知识,充分发挥学生的想象力、创造力,培养创造性、开拓性人材。

从这样一个基本目标出发,我们认为实验课程的目的就是:1.培养学生进行科学实验的基本技能,养成严谨的科学作风,学会借助实验手段发现问题和解决问题的能力。

2.掌握仪器仪表的结构和工作原理,熟悉和掌握常用仪器仪表的选择和使用方法。

3.激发学生勇于探索、不断进取的奋斗精神,提高学生的创造能力。

目前,实验教学还很不成熟,很不完善,可以预期在教育体制改革的推动下,实验教学改革必将硕果累累,日臻完善,成为高等学校为培养优秀人才所必不可少重大教学环节之一。

电工学电子技术实验讲义

电工学电子技术实验讲义

电工与电子技术实验讲义实验一 晶体管共射极单管放大电路一、实验目的(1)熟悉电子电路实验中常用的示波器、函数信号发生器的主要技术指标、性能及使用方法。

(2)掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。

(3)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

(4)掌握放大器电压放大倍数、输入电阻*、输出电阻*的测试方法。

二、实验原理图2-1为电阻分压式工作点稳定的共射极单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R F 和R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号i u 后,在放大器的输出端便可得到一个与i u 相位相反、幅值被放大了的输出信号0u ,从而实现了电压放大。

图2-1 共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻RB1和RB2的电流远大于晶体管V 的基极电流IB 时(一般5-10倍),则其静态工作点可用下式估算)(E F C C CC CE FE BEB E R R R I U U R R U U I ++-=+-=电压放大倍数 //(1)C Lu be FR R A r R ββ=-++输入电阻 be B B i r R R R ////21= 输出电阻 C R R ≈0由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据;在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质的放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1.放大器静态工作点的测量与调试 (1)静态工作点的测量测量放大器的静态工作点,应在输入信号i u =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流C I 以及各电极对地的电位B U 、C U 和E U 。

电路实验讲义

电路实验讲义

电路实验指导书电路课程组编写国家电工电子实验教学中心北京交通大学2012电路实验教学可以使学生掌握实验的基本技能和实验方法,从实验数据中找出规律评估问题。

通过电路设计性实验教学,可以使学生提高综合设计能力、工程能力以及分析问题解决问题的能力。

本章在每一个实验题目后面都附有思考题和选做题,供学生参考选做,使优秀学生有发展和创新的空间。

实验一电路元件伏安特性的测试通过对电路基本元件伏安特性的测试,掌握线性电阻和非线性电阻元件的特点及其性能,分析评估在实验中出现误差的原因,加强对相关领域理论的深刻理解,提高工程实践能力。

一、实验目的1. 学会识别常用电路元件的方法2. 掌握线性电阻、非线性电阻元件伏安特性的测试方法3. 熟悉实验台上直流电工仪表和设备的使用方法二、原理说明电路元件的特性一般可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。

实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。

万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。

一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。

1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。

图1-1 元件的伏安特性2. 白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。

一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。

通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I 不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。

电路(一)实验讲义

电路(一)实验讲义

图1-6表示了几种常见的李沙育图形及对应的频率比。
3.同频率两信号相位差角的测量方法
采用双踪示波器,CH1、CH2两通道输入待测相位差的同频率两信号,若测得信号周期所占格数为A,信号的相位差所占的格数为B(如图1-7所示),则相位差角:
= ×360O
频率比
fY:fX
1:2
1:3
3:1
李沙育图形
图1-6
示波器的种类很多,电路实验中常用的有普通示波器、双踪示波器、长余辉示波器等,它们的基本工作原理是相似的。
二、示波器的结构(略)
三、示波器面板上旋钮或开关介绍
示波器种类不同,总体上可把旋钮开关分为主机、垂直方向部分、水平方向部分和触发系统四部分。现以YB4320G双踪示波器为例。面板图如图1-3所示。
通常取R<<Z。
2.频率(周期)的测量方法
用示波器测量频率(周期)的方法基本上可分为两大类,一类是利用扫描工作方式,另一类是用示波器的X—Y工作方式。
(1)用示波器的扫描工作方式测量信号的频率(周期),实质上是确定锯齿波的周期(时间)坐标后(称为定时标),再与被测信号的周期进行比较测量。
将被测信号水平方向的一个周期所占的格数乘以[ TIME/DIV ]开关所指示的刻度即可测出周期。仍以图1-4为例,正弦信号一个周期在水平方向占8.2个方格,[TIME/DIV ]开关指向5ms/DIV,则
(29)X-Y控制键:按入此键,垂直偏转信号接入CH2输入端,水平偏转信号接入CH1输入端。
(18)扫描非校准开关:按入此键,扫描时基进入非校准调节状态,此时调节扫描微调有效。
(19)扫描微调旋钮:顺时针方向旋转到底时,处于校准位置,扫描由TIME/DIV开关指示。当(18)未按入,调解该键无效,即为校准状态。

电路实验完整讲义

电路实验完整讲义

0 100 400 450 500 Req 550 600 800 1k 2k 5k ∞
P (W)
可调电阻调节
三、实验报告
实验原理及方法:叙述戴维宁的内容 实验内容及过程:绘制实验电路,说明实验过程 实验结果:绘制数据表格,填入实验数据 数据分析:1、理论计算实验电路的戴维宁等效电路,给出计
算过程; 2、绘制表3-2和表3-3对应的电路外部电流-电压特 性曲线u=f(i),理论分析利用外特性进行戴维宁等 效参数的求解方法,并比较两个外特性对应的戴维 宁等效电路是否一致; 3、进行开路电压-短路电流法和外特性法实验结 果的比较; 4、进行误差分析 总结或讨论:给出结论,并对实验中出现的问题进行讨论。
二、实验内容 图 基尔霍夫定律与叠加定理的实验线路图
实验线路板
接电压源
固定输出

US1=6V
F
E
电流插座 A
接电压源
连续可调
B
输出端
US2=12V
C
D
(2)数字式直流电压表(或万用表直流电压档)、 直流电流表
1、基尔霍夫定律的验证
(1)按图所示设定三条支路I1、I2、I3的电流参考方向。 (2)开关S1合向左,S2上合向右,S3合向上,分别将两路直 流稳压电源接入电路,令US1=6V,US2=12V。
2. RC一阶电路的测量
(2)RC一阶电路方波信号响应1-激励源 为了使用示波器观察过渡过程,必须使过渡过程 重复出现,所以使用方波作为激励源(f:1kHz, Vpp:3V,占空比:50%,Dcoffset:1.5V)。
2. RC一阶电路的测量 (2)RC一阶电路方波信号响应1
A、用双踪示波器同时观察方波激励源波形和电 容电压的波形。

电路实验讲义

电路实验讲义

实验一 基尔霍夫定律一、实验目的1、 验证基尔霍夫电流、电压定律,加深对基尔霍夫定律的理解。

2、 加深对电流、电压参考方向的理解。

二、实验原理基尔霍夫定律是集总电路的基本定律。

它包括电流定律和电压定律。

基尔霍夫电流定律(KCL ):在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零。

基尔霍夫电压定律(KVL ):在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零。

三、仪器设备1、电路分析实验箱 一台2、直流毫安表 二台3、数字万用表 一台 四、实验内容与步骤1、 实验前先任意设定三条支路的电流参考方向,可采用如图2-1中1I 、2I 、3I 所示。

图2-12、 按图2-1所示接线。

3、 按图2-1分别将E 1,E 2两路直流稳压电源接入电路,令1E =3V ,2E =6V ,1R =1K Ω、 2R =1K Ω、3R =1K Ω。

4、 将直流毫安表串联在1I 、2I 、3I 支路中(注意;直流毫安表的“+、-”极与电流的参考方向)5、 确认连线正确后再通电,将直流毫安表的值记录在表2-1内。

6、用数字万用表分别测量两路电源及电阻元件上的电压值,记录在表2-1内表2-1五、实验报告要求1.选定实路电路中的任一个节点,将测量数据代入基尔霍夫电流定律加以验证。

2.选定实验电路中任一闭合电路,将测量数据代入基尔霍夫电压定律加以验证。

将计算值于测量值比较,分析误差原因。

实验二 叠加定理一、实验目的1.验证叠加定律2.正确使用直流稳压电源和万用电表。

二、实验原理叠加原理不仅适用于线性直流电路,也适用于线性交流电路,为了测量方便,我们用直流电路来验证它。

叠加原理可简述如下;在线性电路中,任一支路中的电流(或电压)等于电路中各个独立源分别单独作用时在该支电路中产生的电流(或电压)的 代数和,所谓一个电源单独作用是指除了该电源外其他所有电源的作用都去掉,即理想电压源电压源所在处用短路代替,理想电流源所在处用开路代替,但保留它们的内阻,电路结构也不作改变。

电路分析实验指导讲义

电路分析实验指导讲义

实验1 电路基本测量一、实验目的1、掌握电流表、电压表、万用电表、稳压电源的使用方法。

2、学习电流、电压的测量及误差分析。

3、掌握电位的测量及电位正负的判定。

4、掌握电路电位图的绘制方法。

5、学会用电流插头、插座测量各支路电流的方法。

6、根据实验电路参数,合理选择仪表量程,掌握档位的选择及正确读数的方法。

二、实验内容1、布置并连接实验线路,调节可调稳压源输出,使用电压表、电流表测量电路电压、电流等,判断被测量的正负,进行误差分析,学会用电流插头、插座测量各支路电流的方法。

2、分别以c、e为参考节点,测量混联电路中各节点电位及相邻两点之间的电压值,判定电位的正负,通过计算验证电路中任意两节点间的电压与参考点的选择无关,并根据实验数据绘制电路电位图。

三、实验仪器与设备四、实验原理1、滑线变阻器的使用滑线变阻器是一种常用的电工设备。

它可作为可变电阻,用以调节电路中的电流,使负载得到大小合适的电流,它也可作为电位器的使用,改变电路的端电压,使负载得到所需要的电压。

它的额定值有最大电阻R N和额定电流I N,在各种使用场合,不论滑动触头处于任何位置,流过它的电流均不允许超过额定电流,否则会烧坏滑线变阻器。

2、电位的测量及电位正负的判定电路中某点的电位等于该点与参考点之间的电压。

电位的参考点选择不同,各节点的电位也相应改变,但任意两点间的电位差不变,即任意两点间电压与参考点电位的选择无关。

测量电位就象测量电压一样,要使用电压表或万用电表电压档。

如果将仪表的接“-”的黑表笔放在电路的正方向(参考方向)的低电位点上,接“+”的红表笔放在正方向的高电位点上,表针正偏转,则读数应取正值。

若表针反偏,则应将表笔对调后再测量,读数取负值。

3、电位图的绘制若以电路中的电位值作纵坐标,电路中各点位置(电阻或电源)作横坐标,将测量到的各点电位在该坐标平面中标出,并把标出点按顺序用直线条相连接,就得到电路的电位变化图。

每一段直线段即表示该两点间电位的变化情况。

电路基础实验讲义word版

电路基础实验讲义word版

电路基础实验讲义word版1.线性与非线性元件伏安特性的测定一.实验目的1.学习直读式仪表和直流稳压电源等仪器的使用方法2.掌握线性电阻元件、非线性电阻元件的伏安特性的测试技能3.加深对线性电阻元件、非线性电阻元件伏安特性的理解.验证欧姆定律二.实验原理电阻元件是一种对电流呈现阻力的元件,有阻碍电流流动的性能。

当电流通过电阻元件时,电阻元件将电能转换成其它形式的能量.并沿着电流流动的方向产生电压降。

电压降的大小等于电流的大小与电阻的乘积。

电压降和电流及电阻的这一关系称为欧姆定律。

U=IR上式的前提条件是电压U和电流I的参考方向相关联.亦即参考方向一致。

如果参考方向相反.则欧姆定律的形式应为U=-IR电阻上的电压和流过它的电流是同时并存的.也就是说,任何时刻电阻两端的电压降只由该时刻流过电阻的电流所确定,与该时刻前的电流的大小无关,因此,电阻元件又被称为“无记忆”元件。

当电阻元件R的值不随电压或电流大小的变化而改变时,则电阻R两端的电压与流过它的电流成正比例。

我们把符合这种条件的元件称为线性电阻元件。

反之.不符合上述条件的电阻元件被叫做非线性电阻元件。

电阻元件的特性除了用电压和电流的方程式表示外,还可以用其电流和电压的关系图形来表示,该图形称为此元件的伏安特性曲线。

线性电阻的伏安特性曲线为一条通过坐标原点的直线,该直线的斜率即为电阻值,它是一个常数。

如图1-1所示。

半导体二极管是一种非线性电阻元件。

它的电阻值随着流过它的电流的大小而变化。

半导体二极管的电路符号用表示.其伏安特性如图1-2所示。

由此可见半导体二极管的伏安特性为非对称曲线。

图1-1线性电阻的伏安特性图l-2半导体二极管伏安特性对比图1-l和图1-2可以发现,线性电阻的伏安特性对称于坐标原点。

这种性质称为双向性,为所有线性电阻元件所具备。

半导体二极管的伏安特性不但是非线性的.而且对于坐标原点来说是非对称性的,又称非双向性。

这种性质为多数非线性电阻元件所具备。

[工学]电路基础实验讲义

[工学]电路基础实验讲义

实验一仪器的使用实验目的:1.掌握不同型号直流稳压电源的使用方法。

2.学会万用表的使用方法,熟练掌握使用万用表测量电压、电流、电阻。

二、实验仪器设备:1. DH1718-4型号直流稳压电源、JWY-30B型号直流稳压电源或模拟电子技术试验箱一台。

2.数字万用表一块。

3.电阻三个,连接线三根。

三、预习要求:1.复习电阻在电路中所起的作用。

2.在如图所示电路中,电源电压Us=5V,若电阻R0=25Ω;R1=2kΩ;R2=1kΩ则电路中的电流I=?U1=? U2=?3.若Us已知,R1 R2,已知,而R0未知,可否用实验的方法求得R的值?四、仪器介绍:1.DH1718-4型号直流稳压电源是两路内置短路保护电路,电压值在0~32V之间连续可调的电压源,其内阻很小,可视为理想电压源。

通常在使用中,接地短路片应与输出接线柱断开,功能键弹起使之处于电压源状态。

调节旋钮,可以选择所需要的电压值。

用万用表的电压档位测量所需要的电压值(因为指针式读数不准确)。

将功能键按下,表头可以显示电压源所在电路中的电流值,此时表头相当于电流表。

在两个表头中间的按钮为同步按钮,这里不作介绍。

2.JWY-30B型号直流稳压电源,为两路、内置短路保护,电压值为分段、连续可调。

调整范围在0~30V,使用时将功能开关置于V,将波段开关选择在合适的范围。

例如若需要9V电压,将波段开关置于10V的档位,旋转微调旋钮调至所需的电压,用万用表测量。

将功能开关置于A,可显示电压源所在电路中的电流。

3.模拟电子线路实验箱中的电压源。

该实验中的电压源不设短路保护,使用中应加注意。

在实验箱的右手边分别有+12V;–12V;+5~12V;–5~–12V;+5~+27V;几组电压源。

使用时,接好实验箱电源线,打开开关,电源指示灯亮起。

若需要+8V点压,可选择+5~27V电源,万用表的红笔接在+5~27V的插孔中,黑表笔接地,调节旋钮,便可得所需的电压值。

4.UT30B/C/D/F型数字万用表该万用表设有直流电压、交流电压、直流电流、交流电流、电阻、二极管、β值的测定等档位。

电路原理实验讲义

电路原理实验讲义

5
图1-7 (1)固定RL=2KΩ,调节直流稳压电源输出电压U1,使其在0~6V范围内取值, 测量U1及相应的U2值,绘制U2=f(U1)曲线,并由其线性部分求出转移电压比μ。 测量值 实验计算值 理论计算值 U1(V) U2(V) μ μ
(2)保持U1=2V,令RL阻值从1KΩ增至∞,测量U2及IL,绘制U2=f(IL)曲线。 RL(KΩ) U2(V) IL(mA) 2.测量受控源VCCS的转移特性IL=f(U1)及负载特性IL=f(U2) 实验线路如图1-8
(3)流控电压源(CCVS)
(4)流控电流源(CCCS)
2
I2=f(I1)
α=I2/I1称为转移电流比(或电流增益)。 如图1-3所示
5、用运放构成四种类型基本受控源的线路原理分析 (1)压控电压源(VCVS)
图1-3 由于运放的虚短路特性,有 up=un=u1 又因运放内阻为∞ 因此 i2=
un R2 u1 R2
直流稳压电源 可调直流稳压电源 直流数字电压表 直流数字毫安表
四、实验内容 实验电路如图2-1所示 1. 按图2-1电路接线,E1为+6V、+12V切换电源,取E1=+12V,E2为可调直流 稳压电源,调至+6V。 2.令E1电源单独作用时(将开关S1投向E1侧,开关S2投向短路侧),用直流数 字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端电压,数据 记入表格中。
8
实验二
一、实验目的
网络定理的验证
验证线性电路叠加原理和基尔霍夫定律的正确性, 从而加深对线性电路的叠 加性和齐次性的认识和理解。 二、原理说明 叠加原理指出: 在有几个独立源共同作用下的线性电路中,通过每一个元件 的电流或其两端的电压, 可以看成是由每一个独立源单独作用时在该元件上所产 生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电 路的响应 (即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小 K倍。 基尔霍夫定律包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 KCL指对于集总参数电路中的任意节点,在任意时刻,流出或流入该节点电流的 代数和等于零。KVL指对于任何集总参数电路,在任意时刻,沿任意闭合路径巡 行一周,各段电路电压的代数和恒等于零。 三、实验设备 序号 1 2 3 4 名 称 型号与规格 +6,12V切换 0~10V 数 量 1 1 1 1 备 注

(完整word版)RLC电路综合实验讲义

(完整word版)RLC电路综合实验讲义

R L C电路的特性研究DH4503型RLC电路实验仪实验讲义RLC 电路特性的研究电容、电感元件在交流电路中的阻抗是随着电源频率的改变而变化的。

将正弦交流电压加到电阻、电容和电感组成的电路中时,各元件上的电压及相位会随着变化,这称作电路的稳态特性;将一个阶跃电压加到RLC 元件组成的电路中时,电路的状态会由一个平衡态转变到另一个平衡态,各元件上的电压会出现有规律的变化,这称为电路的暂态特性。

[实验目的]1、观测RC 和RL 串联电路的幅频特性和相频特性2、了解RLC 串联、并联电路的相频特性和幅频特性3、观察和研究RLC 电路的串联谐振和并联谐振现象4、观察RC 和RL 电路的暂态过程,理解时间常数τ的意义5、观察RLC 串联电路的暂态过程及其阻尼振荡规律6、了解和熟悉半波整流和桥式整流电路以及RC 低通滤波电路的特性[实验仪器]1、DH4503型RLC 电路实验仪2、双踪示波器3、数字存储示波器(选用)[实验原理]一、RC 串联电路的稳态特性 1、RC 串联电路的频率特性在图1所示电路中,电阻R 、电容C 的电压有以下关系式:其中ω为交流电源的角频率,U 为交流电源的电压有效值,φ为电流和电源电压的相位差,它与角频率ω的关系见图2U =I RR U =C IωCψ=-arct an 1ωC R图 1 RC 串联电路 图 2 RC 串联电路的相频特性可见当ω增加时,I 和U R 增加,而U C 减小。

当ω很小时φ→-2,ω很大时φ→0。

2、RC 低通滤波电路如图3所示,其中U i 为输入电压,Uo 为输出电压,则有 它是一个复数,其模为:设ω0= ,则由上式可知:ω=0ω=ω0时ω→∞时可见i o u u 随ω的变化而变化,并且当ω<ω0时,i o u u 变化较小,ω>ω0时,iou u 明显下降。

这就是低通滤波器的工作原理,它使较低频率的信号容易通过,而阻止较高频率的信号通过。

计算机电路实验讲义

计算机电路实验讲义

<<电路电子实验>> 电路部分实验讲义电子与信息工程学院2011 . 07实验一电路元件伏安特性的测绘及电源外特性的测量一.实验目的1.掌握线性和非线性电阻元件伏安特性的逐点测试法2.掌握电源外特性的测试方法3.掌握运用伏安法判定电阻元件类型的方法4.学习使用直流电压表、电流表,掌握电压、电流的测量方法二.实验原理1.电阻元件二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。

通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。

通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。

把电阻元件上的电压取为纵(或横)坐标,电流取为横(或纵)坐标,根据测量所得数据,画出电压和电流的关系曲线,称为该电阻元件的伏安特性曲线。

(1)线性电阻元件线性电阻元件的伏安特性满足欧姆定律。

在关联参考方向下,可表示为:U=IR,其中R为常量,称为电阻的阻值,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,该直线的斜率等于该线性电阻元件的电阻值。

如图1-1(a)所示。

(2)非线性电阻元件非线性电阻元件不遵循欧姆定律,它的阻值R随着其电压或电流的改变而改变,即它不是一个常量,其伏安特性是一条过坐标原点的曲线,如图1-1(b)所示。

(a) 线性电阻的伏安特性曲线(b) 非线性电阻的伏安特性曲线图1-1 伏安特性曲线测量时可在被测电阻元件上施加不同极性和幅值的电压,测量出流过该元件中的电流;或在被测电阻元件中通入不同方向和幅值的电流,测量该元件两端的电压,便得到被测电阻元件的伏安特性。

2.直流电压源理想的直流电压源输出固定幅值的电压,而它的输出电流大小取决于它所连接的外电路。

因此它的外特性曲线是平行于电流轴的直线,如图1-2(a)中实线所示。

实际电压源的外特性曲线如图1-2(a)虚线所示,在线性工作区它可以用一个理想电压源Us和内电阻Rs相串联的电路模型来表示,如图1-2(b)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验7 元件参数测量
一. 实验目的
1. 学会用相位法或功率法测量电感线圈、电阻器、电容器的参数,学会根据测量数据计算出串联参数R 、L 、C 和并联参数G 、B L 、B C 。

2. 阅读附录一,正确掌握多功能智能表的使用方法。

二. 实验原理与说明
电感线圈、电阻器、电容器是常用的元件。

电感线圈是由导线绕制而成的,必然存在一定的电阻R L ,因此,电感线圈的模型可用电感L 和电阻R L 来表示。

电容器则因其介质在交变电场作用下有能量损耗或有漏电,可用电容C 和电阻R C 作为电容器的电路模型。

线绕电阻器是用导线绕制而成的,存
在一定的电感'L ,可用电阻R 和电感'L 作为电阻器的电路模型。

图9-1是它们的串联电路模型。

R 'L L 'L R C '
C R
图9-1
根据阻抗与导纳的等效变化关系可知,电阻与电抗串联的阻抗,可以用电导G 和电纳B 并联的等效电路代替,由此可知电阻器、电感线圈和电容器的并联电路模型如图9-2所示。

电阻器 线圈 电容器
图9-2 电阻器、电感线圈、电容器的并联电路模型
值得指出的是:对于电阻器和电感线圈可以用万用表的欧姆档测得某值,但这值是直流电阻,而不是交流电阻(且频率越高两者差别越大);而在电容器模型中,RC 也不是用万用表欧姆档测出的电阻,它是用来反映交流电通过电容器时的损耗,需要通过交流测量得出。

在工频交流电路中的电阻器、电感线圈、电容器的参数,可用下列方法测量:
方法一:相位表法
在图9-3中,可直接从各电表中读得阻抗Z 的端电压U ,电流I 及其相位角φ。

当阻抗Z 的模I U Z =求得后,再利用相位角便不难将Z 的实部和虚部求出。

如:当测出电感线圈两端电压U 、流过电感线圈电流I 及其相位
角φ,显然I U R L ϕcos =,ω
ϕ
I U L sin =。

其并联参数G 、B L 如何根据U 、I 、
φ值计算,由实验者自行推导。

图9-3
上述的方法叫做相位表法。

方法二:功率表法
在生产部门,功率表较多,相位表较少,将图9-3中的相位表换为电量仪,如图9-4所示,由图9-4可直接测得阻抗的端电压,流过的电流及其功率,根据公式P=UIcosφ即可求得相位角φ,其余与上法相同,从而求得Z 的实部与虚部。

图9-4
功率表法不能判断被测阻抗是容性还是感性,本实验采用如下方法加以判断:在被测网络输入端并接一只适当容量的小电容,如电流表的读数增大,则被测网络为容性,(即虚部为负),若电流表读数减小,则为感性(即虚部为正)。

三. 实验设备
名称数量型号
1.直流稳压电源 1台 MC1032
2.多功能智能表(相位表/电量仪) 1台 MC1050(或MC1098)
3.电阻 1只 15Ω*1
4.电感线圈 1只 10mH*1
5.电容器 1只 235μF(220μF)*1
6.短接桥和连接导线若干 P8-1和50148
7.实验用9孔插件方板 1块 297mm×300mm
四. 实验步骤
1. 按图9-4接线。

2. 图中阻抗Z分别取:R=15Ω、电感线圈L=10mH和电容器C=235μF(220μF)。

调节调压器使电流表的读数为0.5A,测量电压及相位角值,记录于表9-1中。

表9-1
根据步骤2计算出表9-2。

阻抗定义:Z =I
U
即:I
U
jX R =+
=
00∠I U
=φφsin cos I U
j I U + 故:φcos I U R = ,φsin I
U
X =
C L X X X -=
如电感:φsin I U
X X L =
= φωsin I
U
L =
f
I U I U L πφ
ωφ2sin ·sin ⨯==
表9-2
注意事项
每次测量一种阻抗之前先将交流调压器调至0刻度,观察多功能智能表的交流电流读数,缓慢调至0.5A 。

班级 、姓名(学号) 、
实验8 日光灯cosφ的提高
一.实验目的
1.进一步理解交流电路中电压、电流的相量关系
2.学习感性负载电路提高功率因数的方法
3.进一步熟悉日光灯的工作原理
二.预习要求
1.熟悉R、L串联电路中电压与电流的关系
2.在R、L串联与C并联的电路中,你准备如何求cosφ值
3.预习日光灯的工作原理,启动过程
4. 阅读附录一,学习多功能智能仪表的使用方法与操作。

三.原理说明
本实验中RL串联电路用日光灯代替,日光灯原理电路如图12-1所示。

图12-1
灯管工作时,可以认为是一电阻负载。

镇流器是一个铁心线圈,可以认为是一个电感量较大的感性负载,两者串联构成一个RL串联电阻,日光灯起辉过程如下:当接通电源后,启动器内双金属片动片与定片间的气隙被击穿,连续发生火花,双金属片受热伸长,使动片与定片接触。

灯管灯丝接通,灯丝预热而发射电子,此时,启动器两端电压下降,双金属片冷却,因而动片与定片分开。

镇流器线圈因灯丝电路断电而感应出很高的感应电动势,与电源电压串联加到灯管两端,使管内气体电离产生弧光放电而发光,此时启动器停止工作,(因启动器两端所加电压值等于灯管点燃后的管压降,对40W管电压,只有100V左右,这个电压不再使双金属片打火)。

镇流器在正常工作时起限流作用。

日光灯工作时整个电路可用图12-2等效串联电路来表示。

图12-2
四.实验设备
名称数量型号
1.日光灯电路板 1套 MC1056、MC1057
2. 补偿电容板 1块 MC1060
3.交流电压、电流板 1块 MC1028
4.多功能智能仪表 1块 MC1050(或MC1098)5.单相熔断器板 1块 MC1003
五.任务与步骤
1.按图12-1接好线路,接通电源,观察日光灯的启动过程。

先不并联电容测量端电压U,总电流I,功率因数cosψ,无功功率Q,视在功率S,有功功率P 和相位角ψ的值,记录于表12-1。

2.日光灯电路两端并联电容,接线如图12-3。

逐渐加大电容量,每改变一次电容量,都要测量端电压U,总电流I,功率因数cosψ,无功功率Q,视在功率S,有功功率P和相位角ψ的值,记录于表12-1。

图12-3
表12-1
3.渐加大电容容量过程中,注意观察并联谐振现象,并找到最接近谐振的点。

六、结论
预习
1.并联电容提高cosφ时,电容的选择应考虑哪些原则?
2.并联电容后,多功能智能表有何变化?为什么?
附录一 MC1050/MC1098多功能智能仪表板的使用与操作
一、仪表(附图1-1)通电使用前,必须检查端子的接线是否正确,确认无误之后才能通电。

二、仪表共有4个按键,两种操作状态,SET为转换参数类别和确定键,▲/▼为加/减键,
为移位或修改键。

三、仪表操作状态转换图
上电复位
仪表自控
显示“”标志
显示电压/电流满度值
测量状态
进入报警设定状态 HZ SET+△清除电度值
SET
PF(cosψ)
SET
Q
SET
S
SET
P
SET
ψ
测量状态下,处于任何参数显示状态,按SET>5秒都可以进入报警参数设定,电压/电流显示窗口固定不变。

巡显窗口则显示SET选择的参数值,同时相应参数指示灯亮。

如附图1所示。

各参数含意:
Hz――频率值V A――视在功率
PF――功率因数值W/KW――有功功率
V AR――无功功率Kwh――相位角(ψ)
V――伏特AL1――报警设定状态参数(本电路实验不用)
KV――千伏特AL2――报警设定状态参数(本电路实验不用)
mA ――毫安COM――通讯(本电路实验不用)
A――安培
附图1-1 MC1050(或MC1098)多功能智能智能仪表板
四、仪表接线方法
方法一:做交流电压表使用。

交流电压的两相导线并接在U的两个端子。

方法二:做交流电流表使用。

交流电流的两相导线串接在I的两个端子。

方法三:做多功能智能表使用。

1、将带“*”号的同名端用导线短线。

(MC1050板的同名端标错,以附图1-1
的为准)
2、交流电压并接在U的两个端子。

3、交流电流串接在I的两个端子。

相关文档
最新文档