广东省广州市中考数学二模考试试卷

合集下载

2024年广东省广州市广州外国语学校中考二模数学试题

2024年广东省广州市广州外国语学校中考二模数学试题

2024年广东省广州市广州外国语学校中考二模数学试题一、单选题1.9-的绝对值是( )A .9B .9-C .19D .19- 2.一个由圆柱和圆锥组成的几何体如图水平放置,其俯视图为( )A .B .C .D . 3.在一次科技作品制作比赛中,某小组6件作品的成绩(单位:分)分别是:6、10、9、8、7、9,对于这组数据,下列说法正确的是( )A .众数是9B .中位数是8C .平均数是8D .方差是7 4.实数a ,b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A .22a b +<+B .1a <C .0a b +>D .22a b -<- 5.用配方法解一元二次方程2630x x --=,下列变形正确的是( )A .2(6)39x -=B .2(3)3x -=C .2(3)6x -=D .2(3)12x -=6.下列运算正确的是( )A .336a a a +=B .326a a a ⋅=C .76a a a ÷=D .()23622a a = 7.某工厂为了提高生产效率,更新了工厂设备,现在每台机器平均每天比原来多生产25件产品,若该工厂的机器台数不变,现在每天总的生产能力由2000件提高到了3000件,求原来每台机器平均每天生产多少件产品?设原来每台机器每天生产x 件产品,根据题意可列方程为( )A .2000300025x x =-B .2000300025x x+=C .3000200025x x =-D .2000300025x x =+ 8.若双曲线21k y x-=经过第二、四象限,则直线32y x k =+-经过的象限是( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 9.如图,点A 是⊙O 外一点,过点A 作⊙O 的切线AB 、AC ,切点分别为B 、C 两点,连结AC 并延长交BO 的延长线于点D .若AB =3,BD =4,则⊙O 的半径为( )A .94B .83C .52D .3210.如图,等腰Rt ABC V 与矩形DEFG 在同一水平线上,2,3AB DE DG ===,现将等腰Rt ABC V 沿箭头所指方向水平平移,平移距离x 是自点C 到达DE 之时开始计算,至AB 离开GF 为止.等腰Rt ABC V 与矩形DEFG 的重合部分面积记为y ,则能大致反映y 与x 的函数关系的图象为( )A .B .C .D .二、填空题11.分解因式46xy xz -=.1213.“一带一路”建设是伟大的事业,这10年来取得了丰硕的成果,例如中欧之间运送货物超过7400000箱,数据7400000用科学计数法表示为.14.如图,D 为Rt ABC △斜边AB 上的中点,E 为AC 的中点,若8AC =,10AB =,则DE =.15.如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为.16.如图,已知O e 的半径长为2,AB 为O e 直径,点P 是O e 一动点,2BC =,连结CP ,以CP 为斜边,在CP 上方构造直角三角形CPQ 且满足30CPQ ∠=︒,90CQP ∠=︒.(1)若CP 是O e 的切线,求OQ =.(2)求OQ 的最大值为.三、解答题17.解不等式组:()354213x x x -≤⎧⎨->-⎩. 18.如图,在ABCD Y 中,点E ,BC 上,且AE CF =,BD 相交于点O ,求证:OE OF =.19.已知213124x T x x -⎛⎫=-÷ ⎪--⎝⎭. (1)化简T ;(2)已知2230x x --=,求T 的值.20.某校数学实践小组利用所学数学知识测量某塔的高度.下面是两个方案及测量数据: 方案一:借助太阳光线,测量:标杆长 1.6m CD =,影长 1.2m ED =,塔影长39m DB =. 方案二:测量:距离35m CD =,仰角37α=︒,仰角26.5β=︒.请你选择一个方案,求出塔AB 的高度.(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,sin 26.50.45︒≈,cos 26.50.89︒≈,tan 26.50.50︒≈)21.如图,一次函数y 1=﹣x ﹣1的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数y 2=k x图象的一个交点为M (﹣2,m ). (1)求反比例函数的解析式;(2)求△MOB 的面积.22.某中学举行了迎国庆中华传统文化节活动.本次文化节共有五个活动:A -书法比赛;B -国画竞技;C -诗歌朗诵;D -汉字大赛;E -古典乐器演奏.活动结束后,某班数学兴趣小组开展了“我最喜爱的活动”的抽样调查(每人只选一项),根据收集的数据绘制了两幅不完整的统计图,请根据图中信息,解答下列问题:“我最喜欢的活动”条形统计图 “我最喜欢的活动”扇形统计图(1)此次随机抽取的初三学生共________人,m =________,并补全条形统计图;(2)若该校共有3000名学生,请估计选D 活动的学生人数;(3)初三年级准备在五名优秀的书法比赛选手中任意选择两人参加学校的最终决赛,这五名选手中有三名男生和两名女生,用树状图或列表法求选出的两名选手正好是一男一女的概率是多少.23.如图,已知ABC V 的外接圆为O e ,BC 是O e 的直径.(1)尺规作图,在直线BC 下方,在圆O e 的弧上取一点D ,使得BAD CAD ∠=∠(不要求写作法);(2)在(1)条件下,若圆O e 的半径长为ABDC S 四边形的最大值;(3)在(1)条件下,点B 关于直线AD 的对称点E 在AC 上,若4=AD ,1tan 3ACB ∠=,求sin CED ∠的值.24.如图,在正方形ABCD 中,4AB =,点E ,F 分别为边,AB CD 上的动点,且AE CF =,将线段EF 绕点F 逆时针旋转()090αα︒<≤︒得到线段FG ,连接DG .(1)连接AC ,交EF 于点O ,证明:O 为EF 的中点;(2)当1AE =,90α=︒时,求DG 的长;(3)若60α=︒,当点E 从A 开始向上运动到点B 时,求点G 运动路径的长度. 25.已知抛物线21y ax x =--和直线2y kx k =-,抛物线的顶点为M .(1)若抛物线与x 轴有两个交点,求实数a 的取值范围;(2)存在实数02x >,使得当0x x =时,2136ax x x --<-,并且存在实数k ,使212ax x kx k -->-对于任意实数x 都成立,求a 的取值范围;(3)已知直线2y kx k =-与抛物线21y ax x =--交于()11,A x y ,()22,B x y ,且()()121221122k x x k x x x ++-+=-.①求a 的取值范围; ②求抛物线的顶点M 到直线2y kx k =-距离的最小值.。

2024年广东省广州市中考二模数学试题【附答案】

2024年广东省广州市中考二模数学试题【附答案】

2023学年第二学期初三综合练习(二)一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中.只有一个是正确的)1.我国新能源汽车发展迅猛,下列新能源汽车标志既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.为了加强学生的体育锻炼意识,某校定期举行体育竞技.在一次体育竞技中,该校初三10名学生的得分依次为39,40,38,39,37,38,36,39,40,39.则这组数据的众数和中位数分别是( )A .38,39B .39,38C .39,39D .39,403.2024年全国高考报名人数约为13530000人,数13530000用科学记数法表示为( )A .80.135310´B .71.35310´C .81.35310´D .713.5310´4.下列运算正确的是( )A .236(2)6a a -=-B .3227722a b ab ab -¸=-C .222(3)9a b a b +=+D .22(2)(2)4a b a b a b -+--=- 5.实数a ,b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .33a b ->-B .a b <C .0a b +>D .0b a>6.如图,AB 是半径为1的O e 的切线,C 为切点,连接,OA OB ,OA OB =,若4AB =,则sin OAC Ð的值为( )A .12B .14C D 7.关于x 的一元二次方程220x kx +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.如图,A ,B ,C 为O e 上的三个点,4AOB BOC Ð=Ð,若60ACB Ð=°,则BOC Ð的度数是( )A .20°B .30°C .15°D .60°9.如图,ABC V 是一个等腰直角三角形纸板,90ABC Ð=°,在此三角形内部作一个正方形DEFG ,使DE 在AC 边上,点F ,G 分别在BC ,AB 边上.将一个飞镖随机投掷到这个纸板上,则飞镖落在阴影区域的概率为( )A .12B .13C .49D .5910.如图,抛物线2y ax bx c =++(0a ¹)与x 轴交于点()1,0x ,()2,0,其中101x <<,下列四个结论:①0abc <;②0a b c ++>;③230b c +<;④不等式22c ax bx c x c ++<-+的解集为02x <<.其中正确结论的是( )A .①②B .②③C .①③④D .①④二、填空题(本题有6个小题,每小题3分,共18分)11.分解因式:22ab ab a -+= .12.已知关于x 的一元二次方程260ax bx ++=的一个根是3,则3a b += .13.如图所示,在平行四边形ABCD 中,8BC =,5AB =,BE 平分ABC Ð交AD 于点E ,则DE = .14.若点(3,2)P -关于原点的对称点在反比例函数k y x=的图象上,则该反比例函数的解析式为 .15.已知二次函数223y x x =-++,当12x -££时,y 的取值范围为 .16.如图,在平面直角坐标系中,四边形ABOC 是正方形,点A 的坐标为()1,1,弧1AA 是以点B 为圆心,BA 为半径的圆弧;弧12A A 是以点O 为圆心,1OA 为半径的圆弧,弧23A A 是以点C 为圆心,2CA 为半径的圆弧,弧34A A 是以点A 为圆心,3AA 为半径的圆弧.继续以点B ,O ,C ,A 为圆心按上述作法得到的曲线12345AA A A A A …称为正方形的“渐开线”,则点2022A 的坐标是三、解答题17()20126tan 302p -æö+---°ç÷èø18.如图,在ABC V 中,D 、E 是边BC 上两点,且ADB AEC B C Ð=ÐÐ=Ð,.求证:BD CE =.19.某校举行了主题为“落实双减政策,增强学生体质”的调研活动,旨在了解学生每天参与体育锻炼的平均时长,其中平均每天锻炼时长超过80min (含80min )的可参与“运动达人”的评选.为了解学生平均每天锻炼时长的分布情况,从调研结果中随机抽取了200名学生的平均每天锻炼时长进行统计,得到如下两幅不完整的统计图表.时长x /min频数频率6070x £<150.0757080x £<a 0.38090x £<45b 90100x £<80c(1)表中=a ______,b =______,c =______;(2)请补全频数分布直方图;(3)若某班恰有3名女生和1名男生的平均每天锻炼时长超过80min ,从这4名学生中随机选取2名学生参与“运动达人”的评选,请用列表法或画树状图法求选出的2名学生恰好为一名男生和一名女生的概率.20.先化简,再求值:2344111a a a a a æö-++-¸ç÷--èø,其中a 是4的平方根.21.爬山能强身健体,亲近自然,陶冶情操.黄老师周末到附近的山区爬山,山的形状如图①,爬山路线示意图如图②,黄老师从山脚A 出发,沿AB 走420米到达B 点,再沿BC 到山顶C 点,已知山高CF 为360米,BE AF ∥,BD AF ^,CE BE ^交AD 的延长线于点F ,130Ð=°,250Ð=°.(图中所有点均在同一平面内)(1)求BD 的长;(2)求黄老师从山脚A 点到达山顶C 点共走了多少米?(结果精确到1米).(参考数据:sin 500.77°»,cos500.64°»,tan 50 1.19°»)22.如图,已知ABC V ,D 是AC 的中点,DE AC ^于点D ,交AB 于点E ,过点C 作CF BA ∥交ED 的延长线于点F ,连接CE ,AF .(1)求证:四边形AECF 是菱形;(2)若4AE =,6BE =,30BAC Ð=°,求ABC V 的面积.23.某个农场有一个花卉大棚,是利用部分墙体建造的.其横截面顶部为抛物线型,大棚的一端固定在墙体OA 上,另一端固定在墙体BC 上,其横截面有2根支架DE ,FG ,相关数据如图1所示,其中支架DE BC =,OF DF BD ==,这个大棚用了400根支架.为增加棚内空间,农场决定将图1中棚顶向上调整,支架总数不变,对应支架的长度变化,如图2所示,调整后C 与E 上升相同的高度,增加的支架单价为60元/米(接口忽略不计),需要增加经费32000元.(1)分别以OB 和OA 所在的直线为x 轴和y 轴建立平面直角坐标系.①求出改造前的函数解析式.②当1CC ¢=米,求GG ¢的长度.(2)只考虑经费情况下,求出CC ¢的最大值.24.如图,AB 是O e 的直径,C ,D 是O e 上两点,EC 为O e 的切线,且EC AE ^,垂足是E ,连接AC 交BD 于点F .(1)求证:AC 平分EAB Ð;(2)求证:()22CD BD BD DF =-;(3)若DC DF=,求sin ACD Ð的值.25.已知:抛物线()21:0C y ax bx c a =++>.(1)若顶点坐标为()1,1,求b 和c 的值(用含a 的代数式表示);(2)当0c <时,求函数220241y ax bx c =-++-的最大值;(3)若不论m 为任何实数,直线()214m y m x =--与抛物线1C 有且只有一个公共点,求a ,b ,c 的值;此时,若1k x k ££+时,抛物线的最小值为k ,求k 的值.1.B【分析】本题考查了中心对称图形与轴对称图形的识别.解题的关键在于熟练掌握:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形.根据中心对称与轴对称的定义进行判断即可.【详解】解:A中图形不是中心对称图形,是轴对称图形,故此选项不合题意;B中图形既是中心对称图形,也是轴对称图形,故此选项符合题意;C中图形不是中心对称图形,也不是轴对称图形,故此选项不合题意;D中图形不是中心对称图形,是轴对称图形,故此选项不合题意.故选:B.2.C【分析】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.根据众数和中位数的概念求解即可.【详解】这10个数据中出现次数最多的数据是39,故这组数据的众数是39,把这组数据按从小到大顺序排列为36,37,38,38,39,39,39,39,40,40,位于中间的两个数据为39,39,故这组数据的中位数为3939392+=.故选C.3.B【分析】本题考查了科学记数法:把一个大于10的数表示成10na´的形式(a大于或等于1且小于10,n是正整数);n的值为小数点向左移动的位数.根据科学记数法的定义,计算求值即可;【详解】解:713530000 1.35310=´,故选:B.4.D【分析】根据整式的乘除法运算,积的乘方,乘法公式的运用即可求解.【详解】解:A 、236(2)8a a -=-,故原选项错误,不符合题意;B 、3227722a b ab a b -¸=-,故原选项错误,不符合题意;C 、222(3)69a b a ab b +=++,故原选项错误,不符合题意;D 、22(2)(2)4a b a b a b -+--=-,故原选项正确,符合题意;故选:D .【点睛】本题主要考查整式的乘除法,积的乘方,乘法公式的运用,掌握其运算法则是解题的关键.5.A【分析】本题主要考查了数轴的特征、实数大小比较、绝对值的意义理解,逐项判断即可,根据数轴得出“21a -<<-,01b <<,0a b <<”是解题的关键.【详解】解:∵实数a ,b 在数轴上的对应点的位置如图所示,∴21a -<<-,01b <<,0a b <<,∴30a ->,30b -<,则33a b ->-,故A 成立,12a <<,01b <<,则a b >,故B 不成立,0a b +<,故C 不成立,0b a<,故D 不成立,故选:A .6.D【分析】本题考查圆切线的性质,等腰三角形的性质,勾股定理,求正弦值,根据切线的性质及等腰三角形三线合一的性质得到122AC BC AB ===,利用勾股定理求出OA ,由正弦的定义求解即可.【详解】解:连接OC ,Q AB 是半径为1的O e 的切线,C 为切点,90OCA OCB \Ð=Ð=°,1OC =,Q OA OB =,4AB =,122AC BC AB \===,OA \==\sin OC OAC OA Ð==故选:D .7.A 【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=¹中,当0D >时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解:Q △()2241280k k =-´´-=+>,\方程有两个不相等的实数根.故选:A .8.B【分析】本题主要考查了圆周角定理,根据同圆中同弧所对的圆周角度数是圆心角度数的一半得到2120AOB ACB Ð=Ð=°,再根据4AOB BOC Ð=Ð即可得到答案.【详解】解:∵60ACB Ð=°,∴2120AOB ACB Ð=Ð=°,∵4AOB BOC Ð=Ð,∴30BOC Ð=°,故选:B .9.C【分析】利用阴影的面积除以ABC V 的面积即可.【详解】解:如图,ABC QV 是一个等腰直角三角形,90ABC Ð=°,设==AB BC x ,ABC \V 的面积为212x ,AC =,Q 四边形DEFG 为正方形,ABC V 是一个等腰直角三角形∴145A C Ð=Ð=Ð=°,13AD DG DE EC EF AC \======,\阴影区域的面积为2229x ö=÷÷ø,\飞镖落在阴影区域的概率为22249192x x =.故选:C .【点睛】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.10.C【分析】本题考查二次函数的图象和性质,利用二次函数的图象和性质依次判断即可,掌握二次函数的图象和性质是求解本题的关键.【详解】解:Q 抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴,0a \>,0b <,0c >,<0abc \,\①正确.Q 当1x =时,0y <,0a b c \++<,\②错误.Q 抛物线过点(2,0),420a b c \++=,22c b a \=--,1124a b c =--,0a b c ++<Q ,202c a a c \--+<,20a c \->,102b c c \--->,302b c \-->,230b c \-->,230b c \+<,\③正确.如图:设21y ax bx c =++,22c y x c =-+,由图知,12y y <时,02x <<,故④正确.故选:C .11.()21a b -【分析】先提取公因式a ,再利用完全平方公式分解因式即可.【详解】解:22ab ab a-+()221a b b =-+()21a b =-,故答案为:()21a b -.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.12.2-【分析】解题考查一元二次方程根的定义(使方程左右两边相等的未知数的值),解题的关键是根据一元二次方程根的定义得9360a b ++=,即可得解.【详解】解:∵关于x 的一元二次方程260ax bx ++=的一个根是3,∴9360a b ++=,∴320a b ++=,∴32a b +=-.故答案为:2-.13.3【分析】本题考查了平行四边形的性质、等腰三角形的判定、角平分线的性质,根据平行四边形的性质及角平分线的性质得ABE AEB Ð=Ð,进而可得AB AE =,根据DE AD AE =-即可求解,熟练掌握平行四边形的性质是解题的关键.【详解】解:Q 四边形ABCD 是平行四边形,8BC =,8AD BC \==,AD BC ∥,AEB CBE \Ð=Ð,Q BE 平分ABC Ð,ABE CBE \Ð=Ð,ABE AEB \Ð=Ð,AB AE =∴,5AB =Q ,5AE \=,3DE AD AE \=-=,故答案为:3.14.6y x=-【分析】本题考查反比例函数图象上点的坐标特征和关于原点对称坐标的特征;先求出点(3,2)P -关于原点的对称点,再代入反比例函数k y x =即可求解.【详解】点(3,2)P -关于原点的对称点是(3,2)-把(3,2)-代入k y x=得:6k =-∴该反比例函数的解析式为6y x =-故答案为:6y x=-.15.04y ££【分析】本题主要考查了二次函数的性质,根据10-<可可知二次函数223y x x =-++开口向下,且对称轴为12b x a =-=,进而根据二次函数的性质求解即可.【详解】解:∵10-<∴二次函数223y x x =-++开口向下,∵对称轴为()21221b x a =-=-=´-,且112211--=>-=,∴离对称轴距离越远的,函数值越小,即当=1x -时,y 取的最小值为:()212130y =-+´-+=当1x =时,y 取的最大值为:212134y =-+´+=,∴当12x -££时,,y 的取值范围为04y ££.故答案为:04y ££.16.(0,-2022)【分析】根据画弧的方法以及罗列部分点的坐标发现:点A x 的坐标满足“A 4n =(1,4n +1),A 4n +1=(4n +2,0),A 4n +2=(0,﹣(4n +2)),A 4n +3=(﹣(4n +3),1)”,根据这一规律即可得出A 2022点的坐标.【详解】解:观察,找规律:A (1,1),A 1(2,0),A 2(0,﹣2),A 3(﹣3,1),A 4(1,5),A 5(6,0),A 6(0,﹣6),A 7(﹣7,1),A 8(1,9)…,∴A 4n =(1,4n +1),A 4n +1=(4n +2,0),A 4n +2=(0,﹣(4n +2)),A 4n +3=(﹣(4n +3),1).∵2022=505×4+2,∴A 2022的坐标为(0,-2022).故答案为:(0,-2022).【点睛】本题考查了规律型中的点的坐标,解题的关键是罗列出部分点的坐标找出“A 4n =(1,4n +1),A 4n +1=(4n +2,0),A 4n +2=(0,﹣(4n +2)),A 4n +3=(﹣(4n +3),1)”这一规律.本题属于基础题,难度不大,解决该题型题目时,结合画弧的方法以及部分点的坐标寻找出来点的排布规律是关键.17.0【分析】先将二次根式化简、分别得出零指数幂、负指数幂、特殊角的三角函数值,然后根据实数的运算法则求得计算结果即可.【详解】解:原式3146=++--0=【点睛】本题主要考查二次根式化简、零指数幂、负指数幂、特殊角的三角函数值,熟练掌握二次根式化简、零指数幂、负指数幂、特殊角的三角函数值的化简计算是解决本题的关键.18.见解析【分析】本题主要考查对全等三角形判定定理的理解和掌握,先由等角对等边证AB AC =,再在利用AAS 即可证明ABD ACE △△≌,即可证得结论.熟练掌握全等三角形的判定定理并灵活运用.【详解】证明:B C Ð=ÐQ ,AB AC \=,在ABD △与ACE △中ADB AEC B CAB AC Ð=ÐìïÐ=Ðíï=î()AAS ABD ACE \V V ≌,BD CE \=.19.(1)60,0.225,0.4;(2)见解析;(3)12.【分析】本题考查分布表和直方图,树状图法求概率,从统计图表中有效的获取信息,是解题的关键.(1)利用频数等于总数乘以频率,进行求解即可;(2)根据表中数据,补全直方图即可;(3)画出树状图,利用概率公式进行计算即可.【详解】(1)解: 由题意得2000.360=´=a ,452000.225b =¸=,802000.4c =¸=.故答案为60,0.225,0.4.(2)补全直方图如图:(3)画树状图如图:共有12种等可能的结果,其中选出的2名学生恰好为一名男生和一名女生的结果有6种,∴选出的2名学生恰好为一名男生和一名女生的概率为61122=.20.22a a +-,0【分析】先计算括号内分式的减法、将除法转化为乘法,再约分即可化简原式,继而由平方根的定义和分式有意义的条件确定a 的值,代入计算即可.【详解】解:2344111a a a a a æö-++-¸ç÷--èø2244411a a a a a --+=¸--,()()()222112a a a a a +--=´--22a a +=-,由题意知2a ==±,又1a ¹且2a ¹,2a \=-,则原式22022-+==--.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.21.(1)BD 的长为210米;(2)黄老师从山脚点到达山顶C 点的路程为615米.【分析】本题考查了含30度的三角形的性质,矩形的判定性质,解直角三角形,解题的关键是理解三角函数的概念.(1)在Rt △ABD 中,根据130Ð=°,可得12BD AB =即可求解;(2)根据BE AF ∥,CE BE ^,得出CF AF ^,再根据四边形BDFE 是矩形结合250Ð=°即可求解.【详解】(1)解:在Rt △ABD 中,130Ð=°,1142021022BD AB ==´=米,∴BD 的长为210米;(2)解:BE AF ∥,CE BE ^,∴90DFE FEB BDF Ð=Ð=Ð=°,∴四边形BDFE 是矩形,CF AF ^,210BD EF ==米,360210150CE CF EF =-=-=米,在Rt BCE V 中,250Ð=°,sin 500.77CE BC°=»∴195BC »米,∴420195615AB BC +=+=米.∴黄老师从山脚点到达山顶C 点的路程为615米.22.(1)见详解(2)【分析】(1)首先根据垂直平分线的性质可得AE CE =,AF CF =,AD CD =,再证明AED CFD ≌V V ,由全等三角形的性质可得AE CF =,进而可得AE CE CF AF ===,即可证明结论;(2)过点C 作CH AB ^于点H ,根据题意可得在Rt CEH △中,30ECH Ð=°,4CE =,由含30度角的直角三角形的性质可得122EH CE ==,再利用勾股定理解得CH 的值,然后根据三角形面积公式求解即可.【详解】(1)证明:∵D 是AC 的中点,DE AC ^,∴AE CE =,AF CF =,AD CD =,∵CF AB ∥,∴EAC FCA Ð=Ð,在AED △与CFD △中,EAC FCA AD CDADE CDF Ð=Ðìï=íïÐ=Ðî,∴()ASA AED CFD V V ≌,∴AE CF =,∴AE CE CF AF ===,∴四边形AECF 为菱形;(2)解:过点C 作CH AB ^于点H ,如下图,∵AE CE =,30BAC Ð=°,∴30BAC ECA Ð=Ð=°,∴60CEH BAC ECA Ð=Ð+Ð=°,∴9030ECH CEH Ð=°-Ð=°,∵4AE =,6BE =,,∴4CE AE ==,∴114222EH CE ==´=,∴CH ===∴()()11146222ABC S AB CH AE BE CH =×=+×=´+´=V .【点睛】本题主要考查了垂直平分线的性质、菱形的判定、全等三角形的判定与性质、勾股定理、含30度角的直角三角形的性质等知识,熟练掌握相关知识并灵活运用是解题关键.23.(1)①21110y x x =-++;②23米(2)1.6米【分析】(1)①设改造前的函数解析式为2y ax bx c =++,根据所建立的平面直角坐标系得到()0,1A ,()4,3.4E ,()6,3.4C ,然后代入解析式得到关于a 、b 、c 的方程组,求解即可;②根据已知条件得到函数的解析式,再利用函数解析式得到C ¢、E ¢的坐标即可得到结论;(2)根据已知条件表示出G ¢、E ¢的坐标得到a 的不等式,进而得到CC ¢的最大值.【详解】(1)解:①如图,以O 为原点,分别以OB 和OA 所在的直线为x 轴和y 轴建立如图所示的平面直角坐标系,由题意可知:()0,1A ,()4,3.4E ,()6,3.4C ,设改造前的抛物线解析式为2y ax bx c =++,∴1164 3.4366 3.4c a b c a b c =ìï++=íï++=î,解得:11011a b c ì=-ïï=íï=ïî,∴改造前的抛物线的函数表达式为21110y x x =-++;②如图,建立与(1)相同的平面直角坐标系,由①知改造前抛物线的解析式为21110y x x =-++,∴对称轴为直线151210x =-=æö´-ç÷èø,设改造后抛物线解析式为:221y cx dx =++,∵调整后C 与E 上升相同的高度,且1CC ¢=,∴对称轴为直线5x =,则有52d c-=,当6x =时, 4.4y =,∴3661 4.4c d ++=,∴17120c =-,1712d =,∴改造后抛物线解析式为:221717112012y x x =-++,当2x =时,改造前:21113221105y =-´++=,改造后:221717492211201215y =-´+´+=,∴21491321553GG y y ¢=-=-=(米),∴GG ¢的长度为23米;(2)如(2)题图,设改造后抛物线解析式为2101y ax ax =-+,∵当2x =时,221021161y a a a =´-´+=-+,当4x =时,241041241y a a a =´-´+=-+,∴()2,161G a -¢+,()4,241E a -¢+,∴13241161 3.44045EE GG a a a æö+=-+-+-+=--ç÷è¢ø¢,由题意可列不等式:()4042006032000a --´´£,解得:16a ³-,∵''241 3.4CC EE a ==-+-,要使最大,需a 最小,∴当16a =-时,CC ¢的值最大,最大值为1.6米.【点睛】本题考查用待定系数法求二次函数的解析式,二次函数的对称轴,二次函数的实际应用,一元一次不等式的实际应用等知识点.掌握二次函数的性质及是一元一次不等式的应用解题的关键.24.(1)见解析;(2)见解析;(3)12.【分析】(1)连接OC ,利用切线的性质,平行线的性质,等腰三角形的性质,结合角的平分线的定义证明即可;(2)连接BC ,设OC 交BD 于点G ,证明CBG FBC V V ∽,利用等量代换,垂径定理,证明即可;(3)设DF x =,DC DF=,则DC BC ==,结合()22CD BD BD DF =-,勾股定理,三角函数计算即可.【详解】(1)证明:连接OC ,如图.∵EC 为O e 的切线,∴90ECO Ð=°.∵AE EC ^,∴90E ECO Ð=Ð=°,∴OC AE ∥,∴EAC ACO Ð=Ð.又∵OA OC=∴OAC ACO Ð=Ð,∴CAO EAC Ð=Ð,即EAC CAB Ð=Ð,∴AC 平分EAB Ð.(2)证明:如图,连接BC ,设OC 交BD 于点G ,由(1)得DAC BAC Ð=Ð,∴C 为劣弧 BD的中点,∴CO BD ^,DG GB =.∵AB 为O e 的直径,∴90ACB Ð=°,∵CBF CBG Ð=Ð,∴CBG FBC V V ∽,∴CB BG FB BC=,即2BC BG FB =×.∵12BG DB =,FB DB DF =-,DC BC =,∴()212DC DB DB DF =×-,即()22CD BD BD DF =-.(3)解:设DF x =,DC DF=则DC BC ==,代入()22CD BD BD DF =-中,得)()22BD BD x =-,解得3BD x =,∴32BG GD x==.在Rt DGC△中,GC==,∵DAC GCFÐ=Ð,DFA CFGÐ=Ð,∴CGF ADF△∽△,∴FG GCFD DA=,又12FG DG DF x=-=,∴AD=.在Rt ADBV中,AB==,∴1sin sin2ADACD ABDABÐ=Ð==.【点睛】本题考查了切线的性质,三角形相似的判定和性质,垂径定理,勾股定理,三角函数,角的平分线的定义,熟练掌握切线的性质,勾股定理,三角函数,三角形相似的判定和性质是解题的关键.25.(1)21b ac a=-=+,;(2)1-;(3)k的值为0【分析】(1)根据抛物线顶点式可得()221121y a x ax ax a=-+=-++,即可得出答案;(2)由题意可得Δ²40b ac=->,可得²0,ax bx c++³进而可得2202411ax bx c-++-£-,即可得出答案;(3)由直线()214my m x=--与抛物线1C有且只有一个公共点,可得方程()2204max b m x m c+-+++=有两个相等的实数根,即Δ0=,可得()22404mb m a m cæö--++=ç÷èø,进而可得()21022a b0b40aac-=ìï-+=íï-=î即可求得1a=,2,1b c=-=,抛物线解析式为()22211y x x x =-+=-,由于抛物线的对称轴为直线 1x =,开口向上,当1k x k ££+时,抛物线的最小值为k ,分三种情况:0k <或 01k ££或1k >,分别根据二次函数的性质讨论即可.【详解】(1)∵抛物线的顶点坐标为()11,,∴()221121y a x ax ax a =-+=-++,∴21b a c a =-=+,;(2)∵2y ax bx c =++,00a c ><,,∴240b ac D =->,∴抛物线2y ax bx c =++与x 轴有两个交点,∴20ax bx c ++³,∴220240ax bx c -++£,∴2202411ax bx c -++-£-,∴函数220241y ax bx c =-++-的最大值为1-;(3)∵直线()214m y m x =--与抛物线1C 有且只有一个公共点,∴方程组()2214m y m x y ax bx c ì=--ïíï=++î只有一组解,∴()2ax b m x +-+24m 0m c ++=有两个相等的实数根,∴Δ0=,∴()24(b a a --24m )0m c ++=,整理得:()()2212240a m a b m b ac --++-=,∵不论m 为任何实数,()()2212240a m a b m b ac --++-=恒成立,∴()21022040a a b b ac -=ìï-+=íï-=î,∴121a b c ==-=,,.此时,抛物线解析式为()22211y x x x =-+=-,∴抛物线的对称轴为直线1x =,开口向上,∵当1k x k ££+时,抛物线的最小值为k ,∴分三种情况:0k <或01k ££或1k >,①当0k <时,11k +<,当1k x k ££+时,y 随着x 的增大而减小,则当1x k =+时,y 的最小值为k ,∴()211k k +-=,解得:0k =或1,均不符合题意,舍去;②当01k ££时,当1x =时,抛物线的最小值为0,∴0k =;③当1k >时,y 随着x 的增大而增大,则当x k =时,y 的最小值为k ,∴()21k k -=,解得:k =∵1k >∴k =综上所述,若1k x k ££+时,抛物线的最小值为k ,k 的值为0【点睛】本题是二次函数综合题,考查了二次函数的性质,一元二次方程根的情况和根的判别式,解方程组等知识,综合性很强,难度较大,能把函数交点问题转化成一元二次方程根的问题是解题关键.。

2024年广东省广州市广东广雅中学中考二模数学试题(解析版)

2024年广东省广州市广东广雅中学中考二模数学试题(解析版)

2024年广州市中考数学模拟试卷本试卷共 6页,25小题,满分120分.考试用时120分钟第一部分 选择题(共30 分)一、选择题(本大题共10小题,每小题 3 分,满分 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 的倒数是( )A.B. C. D. 【答案】B 【解析】【分析】此题考查了倒数的定义:乘积为1的两个数互为倒数,据此解答即可.【详解】∵,∴的倒数是,故选:B2. 下列计算正确的是( )A. B. C.D.【答案】C 【解析】【分析】本题考查了二次根式的除法,减法,化简二次根式,熟练掌握知识点是解题的关键.分别利用二次根式的的除法,减法,化简二次根式的方法进行计算即可.【详解】解:A不是同类二次根式,不能合并,故本选项不符合题意;B,故本选项不符合题意;CD,故本选项不符合题意.故选:C .3. 下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( )2-1212-22-1212⎛⎫-⨯-= ⎪⎝⎭2-12-=3=±=3=-3==3=A. 1个B. 2个C. 3个D. 4个【答案】D 【解析】【详解】分析:直接利用轴对称图形的性质画出对称轴得出答案.详解:如图所示:直线l 即为各图形的对称轴.,故选D .点睛:此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.4. 某种零件模型如图所示,该几何体空心圆柱的主视图是 A. B. C. D.【答案】B 【解析】【分析】根据主视图是从正面看得到的图形,可得答案.【详解】解:从正面看是一个矩形被分成三部分,分割线是虚线,故选B .【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5. 如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()()()A. 16,10.5B. 8,9C. 16,8.5D. 8,8.5【答案】B 【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9;故选:B .【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.6. 已知3是关于x 的方程的一个实数根,并且这个方程的两个实数根恰好是等腰的两条边的边长,则的周长为( )A. 7B. 10C. 11D. 10或11【答案】D 【解析】【分析】本题主要考查了解一元二次方程,一元二次方程解的定义,构成三角形的条件,等腰三角形的定义,先把代入原方程求出m 的值,进而解方程求出或,再分当腰长为3时,则底边长为4,当腰长为4时,则底边长为3,两种情况利用构成三角形的条件进行求解即可.【详解】解:∵3是关于x 的方程的一个实数根,∴,解得,()2120x m x m -++=ABC ABC 3x =3x =4x =()2120x m x m -++=()231320m m ++=-6m =∴原方程为,解方程得或,当腰长为3时,则底边长为4,∵,∴此时能构成三角形,∴此时的周长为;当腰长4时,则底边长为3,∵,∴此时能构成三角形,∴此时的周长为,综上所述,的周长为10或11,故选D .7. 如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交于点,交于点,则图中阴影部分的面积是( )A. B. C. D. 【答案】B 【解析】【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴,为27120x x -+=27120x x -+=3x =4x =334+>ABC 33410++=344+>ABC 34411++=ABC ABCD 60DAB ∠=︒D DF AD E CD G 183π-9π-92π-3π-∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积.故选B .【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.8. 如图,点A 是反比例函数y =(x >0)上的一个动点,连接OA ,过点O 作OB ⊥OA ,并且使OB =2OA ,连接AB ,当点A 在反比例函数图象上移动时,点B 也在某一反比例函数y =图象上移动,则k 的值为( )A. ﹣4B. 4C. ﹣2D. 2【答案】A 【解析】【详解】解:∵点A 是反比例函数(x >0)上的一个动点,∴可设A (x ,),∴OC =x ,AC =,∵OB ⊥OA ,∴∠BOD +∠AOC =∠AOC +∠OAC =90°,∴∠BOD =∠OAC ,且∠BDO =∠ACO ,∴△AOC ∽△OBD ,∵OB =2OA ,∴,∴OD =2AC =,BD =2OC =2x ,∴B (﹣,2x ),∵点B 反比例函数图象上,∴k =﹣•2x =﹣4,故选A .点睛:本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A 点坐标表示出B 点坐标是解题的关键.9. 如图,在Rt△ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP ,BP ,1xkx1y x =1x 1x12AC OC AO OD BD BO ===2x 2x k y x=2xAP+BP 的最小值为( ).A.B. 6C.D. 4【答案】A 【解析】【详解】试题解析:如图,连接CP ,在CB 上取点D ,使CD=1,连结AD ,,∴,又∵∠PCD=∠BCP ,∴△PCD ∽△BCP .∴,∴PD=BP ,∴AP+BP=AP+PD ,当点A,P ,D 在同一条直线时,AP+BP 的值最小,Rt △ACD 中,∵CD=1,CA=6,∴,∴AP+BP .故选A .在1212CD CP CP PB ==12PD BP =12121212【方法点睛】首先连接CP ,在CB 上取点D ,使CD=1,连结AD,则有;然后根据相似三角形判定的方法,判断出△PCD∽△BCP,即可推得,AP+BP=AP+PD ,再应用勾股定理,求出AP+BP 的最小值为多少即可.10. 高斯函数也称取整函数,记作,表示不超过的最大整数.例如,.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是( )A. B. C. D. 或 【答案】D 【解析】【分析】本题考查了对高斯函数的理解,以及对方程的解和函数图象交点之间联系的理解,解题的关键在于利用数形结合的方式找出临界点.根据题意可得与有三个不同的交点,恒过点,画出函数图象,找出临界点,即可求出实数的取值范围.【详解】解:关于的方程有三个不同的实根,与有三个不同的交点,有恒过点,如下图:当过点时,,当过点时,,当过点时,,当过点时,,12CD CP CP PB ==12PD BP =1212[]x x []2.22=[]2.13-=-[]y x x =-x []()1x x k x -=+k 113k -<<112k -<≤-1124k -≤≤112k -<≤-1143k ≤<()1y k x =+[]y x x =-y kx k =+()1,0-k x []()1x x k x -=+∴()1y k x =+[]y x x =-y kx k =+()1,0-y kx k =+()2,113k =y kx k =+()3,114k =y kx k =+()2,1-1k =-y kx k =+()3,1-12k =-关于的方程有三个不同的实根,则实数的取值范围是或 .故选:D .第二部分 非选择题(共 90 分)二、填空题(本大题共 6 小题,每小题3分, 满分 18 分.)11. 据报道,2016年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学记数法表示为____________.【答案】6.05×104【解析】【分析】科学记数法的表示形式为a ×的形式,其中1≤<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:60500=6.05×10000=6.05×104,故答案为6.05×104.【点睛】本题考查的是利用科学记数法表示绝对值较大的数,掌握“科学记数法的表示方法”是解本题的关键.12. 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,则三辆车全部同向而行的概率是_____.【答案】【解析】【分析】首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案.【详解】分别用A ,B ,C 表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴x []()1x x k x -=+k 112k -<≤-1143k ≤<10n a 19∴三辆车全部同向而行的概率是=,故答案为.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.13. 若抛物线y =ax 2+bx +c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为____.【答案】y =﹣x 2+4x ﹣3.【解析】【分析】抛物线的解析式为y =a (x ﹣2)2+1,把点B (1,0)代入即可求出a =﹣1,再写出解析式即可.【详解】∵抛物线y =ax 2+bx +c 的顶点是A (2,1),∴可设抛物线的解析式为y =a (x ﹣2)2+1.又∵抛物线y =a (x ﹣2)2+1经过点B (1,0),∴(1,0)满足y =a (x ﹣2)2+1.∴将点B (1,0)代入y =a (x ﹣2)2得,0=a (1﹣2)2即a =﹣1.∴抛物线的函数关系式为y =﹣(x ﹣2)2+1,即y =﹣x 2+4x ﹣3.故答案为:y =﹣x 2+4x ﹣3.【点睛】本题考查了用待定系数法求二次函数的解析式,设顶点式是解题的关键.14. 如图,圆O 与正方形的两边相切,且与圆O 相切于E 点.若圆O 的半径为2,且,则 的长度为____.【答案】4【解析】【分析】本题考查了正方形的性质和判定,切线的性质,切线长定理等知识点的应用,解题的关键是根据切线长定理得出.设与正方形的边,切于点F ,H ,先证四边形是正方形,求出,再根据切线长定理可得.【详解】解:如图,设与正方形的边,切于点F ,H ,连接3271919ABCD AB AD ,DE 6AB =DE DE DF =O ABCD AD AB AHOF DF DE DF =O ABCD AD AB ,,OH OF OE则,∵四边形是正方形,∴,,,,四边形是正方形,的半径为2,, ,与相切于点E ,,故答案为:4.15. 如图,在菱形中,,将菱形折叠,使点A 恰好落在对角线上的点G 处(不与B ,D 重合),折痕为,若,则点E 到的距离为____.【解析】【分析】本题考查的是翻转变换的性质、菱形的性质、勾股定理、解直角三角形,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.作于H ,,根据折叠的性质得到,根据菱形的性质、等边三角形的判定定理得到为等边三角形,得到,设,则, 在中,,,90OFD OFA OHA ∠=∠=∠=︒ABCD 90A ∠=︒6AD AB ==90A ∠=︒ OH OF =∴AHOF O 2OF AF OH ∴===624DF AD AF ∴=-=-=DE O 4DE DF ∴==ABCD 120ABC ∠=︒BD EF 26DG BG ==,BD EH BD ⊥EG EA =ABD △AB BD =BE x =8EG AE x ==-Rt EHB △12BHx =EH x =则, 根据勾股定理列出方程,解方程即可.【详解】解:作于H ,由折叠的性质可知,,由题意得,,四边形是菱形,∴,,∴为等边三角形,∴,设,则,在中,,,∴在中,,即,解得,,∴16. 在数学拓展课上,蔡老师给大家讲了一个有趣定理:若点C ,D 在线段所在直线的两侧,并且,那么A ,B ,C ,D 四个点在同一个圆上.小雅同学在学习了该定理后积极思考:的162GH x =-EH BD ⊥EG EA =8BD DG BG =+=ABCD AB BD =1602ABD CBD ABC ∠=∠=∠=︒ABD △8AB BD ==BE x =8EG AE x ==-Rt EHB △1cos cos 602BH BE ABD x x =⋅∠=⋅︒=sin sin 60EH BE ABD x x =⋅∠=⋅︒=162GH BG BH x =-=-Rt EHG △222EG EH GH =+()2221862x x x ⎫⎛⎫-=+-⎪ ⎪⎪⎝⎭⎭145x =145EH ===AB 180ACB ADB ∠+∠=︒若限定正三角形的顶点都只能在正方形的边上,则她可以很快在边长为2的正方形纸片上剪出一个面积最大的正三角形,请你计算一下小雅剪出的这个正三角形的边长为____.【答案】【解析】【分析】过点G 作于点M ,连结,,先根据蔡老师给的定理证明,E ,M ,G 四个点在同一个圆上,G ,M ,F ,D 四个点在同一个圆上,再利用圆周角定理证明是正三角形,从而得到点M 为一个定点,再根据的位置,得到当经过点C 时,即点F 与点C 重合时,取最大值,的面积也最大,设,利用勾股定理列方程并求解,即得答案.【详解】如图1,为正方形的内接正三角形,,过点G 作于点M ,连结,,四边形是正方形,,根据蔡老师讲的定理可知,,,E ,M ,G 四个点在同一个圆上,,同理G ,M ,F ,D 四个点在同一个圆上,,,,即是正三角形,则点M 必为一个定点,正的面积取决于它的边长,当经过点C 时,即点F 与点C 重合时,取最大值,的面积也最大(如图2),在图2中,在和中,,,,-GM EF ⊥AM DM A ADM △EF EF EF EFG AE AF x ==EFG ABCD 60GEF GFE ∴∠=∠=︒GM EF ⊥AM DM ABCD 90BAD ADC B ∴∠=∠=∠=︒180GAE GME ︒∠+∠=A ∴60GAM GEM ∴∠=∠=︒60GDM GFM ∴∠=∠=︒60GAM GDM AMD ∴∠=∠=∠=︒AM DM AD ∴==ADM △ EFG ∴EF EF EFG Rt BCE Rt DCG △BC DC CE CG =⎧⎨=⎩Rt Rt (HL)BCE DCG ∴△≌△BE DG ∴=,,,,设,则,,,,,解得,(舍去),,.故答案为:.【点睛】本题考查了正方形的性质,等边三角形的判定与性质,圆周角定理,全等三角形的判定与性质,添加辅助线证明四点共圆是解题的关键.三、解答题(本大题共 9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.解方程:.【答案】【解析】【分析】本题考查解分式方程,将分式方程转化整式方程,求解后,进行检验即可.【详解】解:原方程去分母得:,移项,合并同类项得:,经检查:是原方程的解,为AB AD = AE AG ∴=90BAD ∠=︒Q EG ∴=AE AG x ==EG EC ==2BE x =-90B ∠=︒ 222BE BC CE ∴+=222(2)2)x ∴-+=12x =-12x =-2AE ∴=EG ∴==312422x x x +=--5x =-322x x +=-5x =-5x =-故原方程的解为.18.先化简,再求值:,其中.【答案】,【解析】【分析】本题考查了分式的化简求值,熟练掌握知识点和运算法则是解题的关键.先化简括号,再将除法转化为乘法,最后进行加减运算,再将代入求值即可.【详解】解:原式,当时,原式.19. 如图,,是⊙O 的切线,点A ,B 为切点,是⊙O 的直径,,求的度数.【答案】40°【解析】【分析】根据切线长定理,可知,再由是⊙O 的直径可得,求出,是⊙O 的切线,则,再利用三角形内角和可求的度数.5x =-22112111x x x x x x ⎛⎫+÷-+ ⎪--+⎝⎭13x =221x x -34-13x =22221111x x x x x x x x ⎛⎫=÷+ ⎪⎝⎭+--+-2221111x x x x x x =-÷+++-()()211111x x x x x -=⋅++-1111x x =+-+2111x x x ++-=-221x x =-13x =2331419==--PA PB AC 70ACB ∠=︒P ∠PA PB =AC 90ABC ∠=︒20CAB ∠=︒PA 70PAB ∠=︒P ∠【详解】解:∵是⊙O 的直径∴∵∴∵,是切线∴,∴【点睛】本题主要考查切线长定理及三角形内角和定理,掌握切线长定理是解题的关键.20. 如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a ,b (没有指针指向交线的情况发生),把a ,b 作为点A 的横、纵坐标.(1)请你通过列表法或树状图法求点的个数;(2)求点在函数的图象上的概率.【答案】(1)16(2)【解析】【分析】此题考查是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.(1)根据题意采用列表法,即可求得所有点的个数;(2)求得所有符合条件的情况,根据概率公式即可求得答案.【小问1详解】解:列表得:的AC 90ABC ∠=︒70ACB ∠=︒20CAB ∠=︒PA PB PA PB =70PAB PBA ∠=︒=∠180707040P ∠=︒-︒-︒=︒(,)A a b (,)A a b 4y x=316(1,4)(2,4)(3,4)(4,4)(1,3)(2,3)(3,3)(4,3)(1,2)(2,2)(3,2)(4,2)点的个数是16;【小问2详解】解:当点在函数上,则,∴符合条件的点有这3个,∴点在函数的图象上的概率为.21. 如图,在中.(1)利用尺规作图, 在边上求作一点P ,使得点到的距离(的长)等于的长;(要求:不写作法,保留作图痕迹)(2)画出(1)中的线段.若,求的长.【答案】(1)作图见详解(2)作图见详解,【解析】【分析】本题考查了尺规作图,角平分线,垂线,考查了角平分线的性质定理,勾股定理,熟练掌握知识点是解题的关键.(1)由点到的距离的长)等于的长知点在平分线上,再根据角平分线的尺规作图即可得;(2)根据过直线外一点作已知直线的垂线的尺规作图即可得,先对运用勾股定理求得,可得,设,则,在中,由勾股定理得:,解方程即可.【小问1详解】解:如图,点P 即为所求:(1,1)(2,1)(3,1)(4,1)∴(,)A a b (,)A a b 4y x=4ab =()()()1,4,2,2,4,1(,)A a b 4y x=316Rt ABC △BC P AB PD PC PD 5,12AC BC ==PB 263PB =P AB (PD PC P BAC ∠Rt ABC △13AB =Rt Rt APC APD ≌PC PD x ==12BP x =-Rt BDP ()222812x x +=-【小问2详解】解:如图,线段即为所求:在中,由勾股定理得:,由作图知平分,∵,∴,∵,∴,∴,∴,设,则,在中,由勾股定理得:,解得:,∴.22. 某梁平特产专卖店销售“梁平柚”,已知“梁平柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?【答案】(1)1;(2)将单价定为每个19元时,可以获得最大利润810元.PD Rt ABC △13AB ==AP CAB ∠90,C PD AB ∠=︒⊥PC PD =AP AP =Rt Rt APC APD ≌5AC AD ==1358BD =-=PC PD x ==12BP x =-Rt BDP ()222812x x +=-103x =10261233PB =-=【解析】【详解】试题分析:(1)设应涨价x 元,利用每一个的利润×售出的个数=总利润,列出方程解答即可;(2)分两种情况探讨:涨价和降价,列出函数,利用配方法求得最大值,比较得出答案即可.(1)设售价应涨价x 元,则:(16+x-10)(120-10x )=770,解得:x 1=1,x 2=5.又要尽可能的让利给顾客,则涨价应最少,所以x 2=5(舍去).∴x=1.答:专卖店涨价1元时,每天可以获利770元.(2)设单价涨价x 元时,每天的利润为w 1元,则:w 1=(16+x-10)(120-10x )=-10x 2+60x+720=-10(x-3)2+810(0≤x≤12),即定价为:16+3=19(元)时,专卖店可以获得最大利润810元.设单价降价z 元时,每天的利润为w 2元,则:w 2=(16-z-10)(120+30z )=-30z 2+60z+720=-30(z-1)2+750(0≤z≤6),即定价为:16-1=15(元)时,专卖店可以获得最大利润750元.综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元.考点:1.二次函数的应用;2.一元二次方程的应用.23. 已知抛物线,其中.(1)求证:该抛物线与轴有两个不同的交点;(2)设该抛物线与轴的交点分别为,,且,求的值;(3)试判断:无论取任何实数,该抛物线是否经过定点?若是,求出定点坐标;若不是,说明理由.【答案】(1)见解析(2) (3)是过定点,【解析】【分析】此题考查了抛物线的性质,抛物线与x 轴交点,一元二次方程根与系数的关系,(1)令,利用根的判别式证明即可;()21213y mx m x m =+++-0m ≠x x (),0A a (),0B b ()()225a b a b ++=m m 29m =-()1,20y =(2) 由一元二次方程根与系数的关系得到,将其代入化简后的方程求出m 即可;(3) 将代入抛物线解析式,求出,由此得到抛物线过顶点【小问1详解】证明:令,则,,∴该抛物线与轴有两个不同的交点;【小问2详解】∵该抛物线与轴的交点分别为,,∴,∵,∴,∴,∴,解得,经检验,是分式方程的解;【小问3详解】抛物线是过定点,令中,得,∴抛物线过点,即无论取任何实数,该抛物线必经过定点24. 如图1是初中平面几何中非常经典的“半角模型”,即在正方形中,E ,F 分别是,上的点,,, 分别交对角线于P ,Q 两点.我们很容易得到下面三个结论:结论1:1213,m m a b ab m m+-+=-=1x =2y =()1,20y =()212130mx m x m +++-=()()2224214131610b ac m m m m ∆=-=+--=+>x x (),0A a (),0B b 1213,mma b ab m m +-+=-=()()225a b a b ++=222425a ab b ab +++=()225a b ab ++=2121325m mm m +-⎛⎫-+= ⎪⎝⎭29m =-29m =-()21213y mx m x m =+++-1x =12132y m m m =+++-=()1,2m ()1,2ABCD BC CD45EAF ∠=︒AE AF BD BE DF EF +=结论2:结论3:A ,B ,E ,Q 四个点在同一个圆上,A ,P ,F ,D 四个点在同一个圆上(本题若用到以上三个结论,可不用证明)有题目如下:(1)如图1,条件不变.求证:①;②.(2)如图2,在矩形中,E ,F 分别是,上的点,,且.请写出,,三者之间满足的数量关系,并加以证明.【答案】(1)①见解析;②见解析(2);理由见解析【解析】【分析】(1)①连接,证明为等腰直角三角形,得出,证明为等腰直角三角形,得出,证明,得出;②延长,过点A作,交的延长线于点G ,证明,得出,证明,得出,,根据三角形的面积得出得出,根据,,得出,即可证明结论;(2)延长,交于点M ,延长,交于点K ,过点B 作,取,连接,过点G 作于点H ,延长,过点G 作于点N ,根据等腰直角三角形性质证明,,,证明,得出,,求出,222PQ PB DQ =+EF PQ=AE AF BD EF ⋅=⋅ABCD AD CD 45EBF ∠=︒DE DF =CF AE EF ()2222EF AE CF=+PF AEQ △AE AQ=APF AF AP=APQ AFE ∽EF AF PQ AP ==CB AG AF ⊥CB AGB AFD ≌AG AF =GAE FAE ≌△△GE EF =GAE FAE S S = 1122EG AB AF EQ ⨯=⨯EQ AE =AB =1122EF AF AE ⨯=⨯BA FE EF BC BG BF ⊥BG BF =GE GH BM ^DA GN DN ⊥AM AE =CF CK =BM BK =GBH FBC ≌GH CF =BH BC =MH CK CF ==证明,得出,证明四边形为矩形,得出,,根据勾股定理得出,求出结果即可.【小问1详解】证明:①连接,如图所示:∵四边形为正方形,∴,∵A ,B ,E ,Q 四个点在同一个圆上,∵,∴为直径,∴,∵,∴为等腰直角三角形,∴∵A ,P ,F ,D 四个点在同一个圆上,,∴为直径,∴,∵,∴为等腰直角三角形,∴,∴,∵,∴,GBE FBE △≌△GE EF =ANGH GH AN CF ===GN AH 222GE GN AE =+PF ABCD 90ABC C ADC BAD ∠=∠=∠=∠=︒90ABE ∠=︒AE 90AQE ∠=︒45EAF ∠=︒AEQ △AE AQ=90ADF Ð=°AF 90APF ∠=︒45EAF ∠=︒APF AF AP=AF AE AP AQ=PAQ EAF =∠∠APQ AFE ∽∴;②延长,过点A作,交的延长线于点G ,如图所示:∵四边形为正方形,∴,,,∵,∴,∵,∴,∴,∵,∴,∵,∴,∴,,∴,∵为等腰直角三角形,∴,∵,∴,EFAF PQ AP==CB AG AF ⊥CB ABCD 90ABC C ADC BAD ∠=∠=∠=∠=︒AB AD =AB =90GAB BAF BAF FAD +=+=︒∠∠∠∠GAB FAD ∠=∠90ABG ADF ∠=∠=︒AGB AFD ≌AG AF =45GAE GAF EAF =-=︒∠∠∠GAE FAE ∠=∠AE AE =GAE FAE ≌△△GE EF =GAE FAE S S = 1122EG AB AF EQ ⨯=⨯AEQ △EQ AE =AB BD =1122EF AF AE =⨯∴;【小问2详解】解:.理由如下:延长,交于点M ,延长,交于点K ,过点B 作,取,连接,过点G 作于点H ,延长,过点G 作于点N ,如图所示:∵四边形为矩形,∴,∵,∴,∴,,∵,,∴为等腰直角三角形,为等腰直角三角形,为等腰直角三角形,∴,,,∵,∴,∵,,∴,∴,,∴,即,∵,AE AF BD EF ⋅=⋅()2222EF AE CF =+BA FE EF BC BG BF ⊥BG BF =GE GH BM ^DA GN DN ⊥ABCD 90C D ABC BAD ∠=∠=∠=∠=︒DE DF =190452DEF DFE ==⨯︒=︒∠∠45AEM DEF ==︒∠∠45CFK DFE ==︒∠∠1809090EAM =︒-︒=︒∠1809090FCK =︒-︒=︒∠AEM △CFK BMK △AM AE =CF CK =BM BK =90GBH HBF HBF CBF +=+=︒∠∠∠∠GBH CBF ∠=∠90GHB BCF ==︒∠∠BG BF =GBH FBC ≌GH CF =BH BC =BM BH BK BC -=-MH CK CF ==45EBF ∠=︒∴,∴,∵,,∴,∴,∵,∴四边形为矩形,∴,,在中,根据勾股定理得:,∴,即.【点睛】本题主要考查了三角形全等的判定和性质,正方形的性质,矩形的判定和性质,三角形相似的判定和性质,等腰直角是三角形的判定和性质,勾股定理,圆周角定理,解题的关键是作出辅助线,熟练掌握相关的判定和性质.25. 在平面直角坐标系中,已知,,,那么可以得到线段的中点和的重心.根据以上信息解决如下问题:如图所示, 等边的边长为,是的中点,是的重心.顶点在射线(,射线与轴正方向所成夹角为)上,顶点在射线关于轴的对称射线上,顶点在边的上方.904545GBE =︒-︒=︒∠GBE EBF ∠=∠BG BF =BE BE =GBE FBE △≌△GE EF =90ANG NAH GHA ===︒∠∠∠ANGH GH AN CF ===GN AH Rt GEN △222GE GN AE =+()222EF AH AN AE =++()()22AM MH CF AE =-++()()22AE CF CF AE =-++()222AE CF =+()2222EF AE CF =+()11,A x y ()22,B x y ()33,C x y BC 2323,22x x y y M ++⎛⎫ ⎪⎝⎭ABC 123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭ABC 2M BC G ABCB 1:l y =0y ≥x 60︒C 1l y 2l A BC(1)若设,则求其横纵坐标,满足的等量关系(不用写出,的取值范围).(2)若点B ,C 的横坐标分别为a ,b ;①求出的取值范围;②求点B 从原点开始运动时,当点C 回到原点时,点G 运动路径的长度.【答案】(1) (2)①【解析】【分析】(1)可求,设,,则,由,化简得:,而,化简得;(2)①先求得得到,可得,继而,则,可得;②先得到G 、C 、O、B 四点共圆,则,而,可得到点G 在y 轴上,当点B 在原点时,求得,当点B 运动到轴时,可求.【小问1详解】解:∵,与关于y 轴对称,(),M x y x y x y a b -2293x y +=12a b -≤≤2:l y =()B b (),C c 2b c M ⎛+ ⎝2BC ==()()2234b c b c -++=,2M M b c x y +==2293x y +=0M y ≤≤2293x y y ⎧+=⎪⎨=⎪⎩12x =±214M x ≤234M y ≥M y ≥M y ≤≤≤≤12a b ≤-≤30GCB BOG ∠=∠=︒30BOy ∠=︒OG =BC y ⊥OG '==1:l y =1l 2l∴设上任意一点为,则在上,设,代入,解得:∴,设,,则,∵,化简得:,而,∴代入得:,∴,即:.【小问2详解】解:由,得,∴联立,解得:,∴,∴,而,1l ()m ()m -2l ()2:0l y kx k =≠()m -km =-k =2:l y =()B b (),C c 2b c M ⎛+ ⎝2BC ==()()2234b c b c -++=,2M M b c x y +==2241243M M x y +=2293M M x y +=2293x y +=2293M M x y +=22930M M x y =-≥0M y ≤≤2293x y y ⎧+=⎪⎨=⎪⎩12x =±1122M x -≤≤214M x ≤2239M M y x =-∴,∴,,∵∴,∴,即;②∵为等边三角形,∴,∵点G 是等边重心,∴点G 也是等边外心,∴,,∴,∵,∴,∴,∴,∴G 、C 、O 、B 四点共圆,∴,而,∴点G 在y 轴上,当点B 在原点时,如图:234M y ≥M y ≥M y ≤≤≤≤0,0a b ≥≤a b a b -=-12a b ≤-≤12a b ≤-≤ABC 60BAC ∠=︒ABC ABC 2120BGC BAC ∠=∠=︒GC GB =180120302GBC GCB ︒-︒∠=∠==︒60BOx ∠=︒30BOy ∠=︒60COB ∠=︒180BGC BOC ∠+∠=︒30GCB BOG ∠=∠=︒30BOy ∠=︒过点G 作,由得:,∴当点B 运动到轴时,如图:此时,∵在点B 运动中,长度不变,则,∴∴当点C 回到点O.【点睛】本题考查了等边三角形的性质,已知两点求距离,待定系数法求正比例函数解析式,四点共圆,圆周角定理,解直角三角形的相关计算,正确添加辅助线,准确理解题意是解题的关键.GM OC ⊥GC GB=1BM =cos30BM OG ==︒BC y ⊥306090OBG '∠=︒+︒=︒BG BG BG '==sin 30BG OG ''==︒=。

2024年广东省广州市越秀区中考数学二模试卷+答案解析

2024年广东省广州市越秀区中考数学二模试卷+答案解析

2024年广东省广州市越秀区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.当前,手机移动支付已成为当下流行的消费支付方式.如果在微信零钱记录中,收入100元,记作元,那么支出50元应记作为()A.元B.元C.元D.元2.剪纸是中国的传统艺术.下列剪纸图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.如图是某一物体的三视图,则此三视图对应的物体是()A.B.C.D.5.若点在平面直角坐标系的第三象限内,则x的取值范围在数轴上可表示为()A.B.C.D.6.如图,将沿BC方向平移到,若A,D之间的距离为2,,则BF等于()A.6B.7C.8D.97.若关于x的一元二次方程有两个不相等的实数根,则实数m的值可以是()A.5B.4C.3D.28.正方形网格中,如图放置,则的值为()A.B.C.D.29.已知二次函数为常数,且的图象上有四点,,,,则,,的大小关系是()A. B. C. D.10.如图,在正方形ABCD中,E是边BC上一点,F是CD延长线上一点,连接EF交对角线BD于点G,连接AG,若,,则()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。

11.“白日不到处,青春恰自来,苔花如米小,也学牡丹开”.这是一首用苔藓比喻人生的励志小诗.目前在全世界约有23000种苔藓植物.将数据23000用科学记数法表示为______.12.分解因式:______.13.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图扇形的弧长为______结果用表示14.如图,一束光线从点出发,经过y轴上的点反射后经过点,则的值是______.15.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为点A、B、E在x轴上,若正方形BEFG的边长为6,则C点坐标为______.16.如图,是的外接圆,,于点D,BO的延长线交CD于点______填“>,<或=”;若,,则______.三、解答题:本题共9小题,共72分。

2024年广东省广州市黄埔区北京师范大学广州实验学校中考二模数学试卷

2024年广东省广州市黄埔区北京师范大学广州实验学校中考二模数学试卷

2024年广东省广州市黄埔区北京师范大学广州实验学校中考二模数学试卷一、单选题(★) 1. 若式子在实数范围内有意义,则的取值范围是()A.B.C.D.(★★) 2. 中国航天科工集团公司的技师们可以运用数控微雕这项技术,在一个直径只有一角硬币大小的金属片上打孔,这个孔的直径是一根头发丝的三分之一.若一根头发丝的直径大约为,且,则金属片上这个孔的直径用科学记数法表示为()A.B.C.D.(★★) 3. 某市举办了“传诵经典”青少年演讲比赛,其中综合荣誉分占,现场演讲分占,小明参加并在这两项中分别取得90分和80分的成绩,则小明的最终成绩为()A.81分B.82分C.83分D.84分(★★) 4. 下列计算正确的是()A.B.C.D.(★★★)5. 如图,在中,轴,点、在反比例函数的图象上,若的面积是8,则的值是A.2B.4C.6D.8(★★) 6. 如图是两个形状、大小完全一样的小长方形拼接而成的图形,已知,,则此图形的面积为()A.6B.8C.10D.12(★★★) 7. 如图,正六边形的半径为4,则该正六边形的边心距为()A.B.C.D.(★★★) 8. 如图,平面直角坐标系中,已知矩形,为原点,点、分别在轴、轴上,点的坐标为,连接,将沿直线翻折,点落在点的位置,则的值是()A.B.C.D.(★★) 9. 如图,把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,若,则截面的半径等于()A.B.C.D.(★★★★) 10. 如图,在正方形中,点E在对角线上,连接,作交于点F,连接交于点H,延长交点K,连接.下列结论:①,②;③;④若,则.其中结论正确的序号是()A.①②④B.②③④C.①②③D.①②③④二、填空题(★★) 11. 不等式的解集为 ___________ .(★★) 12. 若,则 __________________ .(★★) 13. 如图,在中,过点分别作于点于点.若,且的周长为32,则的长为 _________ .(★★★) 14. 已知一次函数不过第一象限,则的取值范围是________ .(★★★) 15. 如图,数轴上点A表示的数为a,化简________ .(★★★) 16. 如图,在中,,,将绕点逆时针旋转得到,是的中点,是的中点,连接,若,则线段的最小值是 ________ .三、解答题(★★) 17. 解方程:.(★★★) 18. 如图,点在上,与交于点,且.求证:.(★★) 19. 先化简,再求值:,且a的值满足.(★★) 20. 为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费元并加收元的城市污水处理费;超过7立方米的部分每立方米收费元并加收元的城市污水处理费.设某户每月用水量为x(立方米),应交水费为y(元).(1)分别写出未超过7立方米和多于7立方米时,y与x的函数关系式;(2)如果小明家11月用水 12立方米,应付水费多少元?(★★★) 21. 某校为落实“双减”政策,增强课后服务的丰富性,充分用好课后服务时间,3月份学校开展数学学科活动,其中七年级开展了五个项目(每个学生只能参加一个项目);A.阅读数学名著;B、讲述数学故事;C、制作数学模型;D、参与数学游戏;E、挑战数学竞赛.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果.绘制了如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了________名学生;②补全条形统计图(要求在条开图上方注明名数);③扇形统计图中圆心角_________度.(2)若该年级有学生1100名,请你估计该年级参加D项目的学生大约有多少名?(3)在C项目展示活动中,某班获得一等奖的学生有3名男生,2名女生,则从这5名学生中随机抽取2名学生代表本班参加学校制作数学模型活动,请画树状图或列表法求出恰好抽到2名男生的概率.(★★★) 22. 如图,在平面直角坐标系中,一次函数.所在直线与反比例函数的图象在第一象限内交于和两点,连接,把沿x轴向右平移3个单位长度得到线段恰好过点B且点.(1)求一次函数与反比例函数的表达式;(2)请结合函数图象,直接写出关于x的不等式的解集;(3)求梯形的面积.(★★★) 23. 如图,在中,以为直径的交于D.(1)尺规作图:过点B作,交于点E(不写作法,请保留作图痕迹);(2)在(1)的条件下,当时,求的长度.(★★★) 24. 如图1,点E是正方形的对角线上一个动点(不与重合),连接,作等腰直角,其中与相交,连接.(1)求证:;(2)如图2,点G为的中点,连接.①是什么特殊三角形,并说明理由;②线段与之间的有什么数量关系,并证明你的结论.(★★★★★) 25. 已知抛物线与x轴相交于A,B两点 (点A在点B的左侧),与y轴相交于点C,过抛物线的顶点D作轴于点M,点N在y轴正半轴上,,点P在抛物线上,过点P作x轴垂线,交x轴于点E,交直线MN于点F.(1)若;①求抛物线顶点D和点A的坐标;②若点P在第一象限,过点P作垂直直线于点H,,求点E的坐标;(2)若,点P与点C关于抛物线的对称轴对称,射线交直线于点G,当时,求顶点D的坐标.。

2024年广东省广州市花都区中考二次模数学试题【答案】

2024年广东省广州市花都区中考二次模数学试题【答案】

2023学年第二学期九年级第二次调研测试数学(问卷)(本试卷分选择题和非选择题两部分,共6页,满分120分.考试用时120分钟.)注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写镇(街)、学校、试室号、姓名、座位号及准考证号,并用2B 铅笔填涂准考证号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改漫,不按以上要求作答的答案无效.4.本次考试不允许使用计算器.5.考生必须保持答题卡的整洁,考试结束将问卷与答题卡一并交回.一.选择题(本大题共10题,每题3分,满分30分,在每题给出的四个选项中,题只有一项符合题目的要求.)1.1海里等于1852米.如果用科学记数法表示,1海里等于( )米.A .40.185210´B .31.85210´C .218.5210´D .1185.210´2.点A 在数轴上的位置如图所示,已知点A 所表示的数是一个无理数,则点A 表示的数可能为( )A .1.5B .53C D 3.据益阳气象部门记载,2018年6月30日益阳市最高气温是33℃,最低气温是24℃,则当天益阳市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ££4.方程2141x x =-+的解为( )A .6x =-B .2x =-C .2x =D .6x =5.下列运算正确的是( )A .321a a -=B .()11a a --=-C .()22236ab a b -=D .()6240a a a a ¸=¹6.在四边形ABCD 中,AB CD =,AB CD ∥,如果再添加一个条件,可得出四边形ABCD 是矩形,那么这个条件可以是( )A .AB BC =B .BC AD ∥C .BC AD =D .AB BC^7.已知二次函数,当1x =时有最大值8,其图象经过点()1,0-,则其与y 轴的交点坐标为( )A .()0,2B .()0,4C .()0,6D .()0,78.如图,在矩形ABCD 中,8AB =,6AD =,AC 是矩形ABCD 的对角线,将ABC V 绕点A 逆时针旋转得到AEF △,使点E 在线段AC 上,EF 交CD 于点G ,AF 交CD 于点H ,则tan FGH Ð的值为( ).A .23B .43C .34D 9.如图,Rt ABC △中,90C Ð=°,O e 是ABC V 的内切圆,切点分别为点D 、E 、F ,4CF =,则劣弧EF 的长是( )A .2πB .4πC .8πD .16π10.如图,面积为2的矩形ABCD 在第一象限,BC 与x 轴平行,反比例函数()0k y k x =¹经过B 、D 两点,直线BD 所在直线y kx b =-+与x 轴、y 轴交于E 、F 两点,且B 、D 为线段EF 的三等分点,则b 的值为( )A .B .C .D .二、填空题(本题共6小题,每小题3分,共18分)11x 的取值范围是 .12.方程230x x -=的解是13.如图:小文在一个周长为22cm 的ABC V 中,截出了一个周长为14cm 的ADC △,发现点D 刚好落在AB 的垂直平分线上,请问AB 的长是 cm .14.关于x 的方程()22210x k x k +-+=无解,则反比例函数k y x =图象在第 象限.15.如图ABC V ,D 、E 分别是AB AC 、上两点,点A 与点A ¢关于DE 轴对称,DA BC ¢P ,34A Ð=°,54CEA ¢Ð=°,则BDA ¢Ð= .16.如图,在矩形ABCD 中,2AB =,120BOC Ð=°,点E 是BC 上一个点,连接OE ,90BOE Ð=°,若OEC △绕点O 顺时针旋转,旋转角为a ,点E 对应点G ,点C 对应点F .①当0180a °<<°时,a 等于°时,AOG COE ≌△△;②当0360a <£°°且BG 长度最大时,DF 的长度为 .三、解答题(本大题共9题,满分72分.解答须写出文字说明、证明过程和演算步骤.)17.解方程组:10216x y x y +=ìí+=î18.如图,AD 和CB 相交于点O ,AB CD ∥,OA OD =,求证:OC OB =.19.已知22a b ab b P a a a æö--=¸-ç÷èø(1)化简P ;(2)若2a b -=,且点()a b ,在第二象限,求P 的值.20.某校组织学生参加“亲子共劳”的主题实践活动,为了解学生参与本次活动的情况,随机抽取本校部分学生进行调查.根据调查结果绘制如下不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了________名学生,并补全条形统计图.(2)现从参与本次主题活动的甲、乙、丙、丁4名学生中,随机抽取2名学生谈一谈劳动感受,请用列表或画树状图的方法,求甲、乙两人同时被抽中的概率.21.某商场在世博会上购置A ,B 两种玩具,其中B 玩具的单价比A 玩具的单价贵25元,且购置2个B 玩具与1个A 玩具共花费200元.(1)求A ,B 玩具的单价;(2)若该商场要求购置B 玩具的数量是A 玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A 玩具?22.如图,ABC V 内接于O e ,AB 为直径.(1)尺规作图:作∥OD BC 交O e 于点D 、交AC 于点E .(保留作图痕迹,不写作法).(2)连接CD ,若OE ED =,试判断四边形OBCD 的形状,并说明理由.23.如图,一次函数1(0)y kx b k =+¹与函数为2(0)m y x x =>的图象交于1(4,1),,2A B a æöç÷èø两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足120y y ->时x 的取值范围;(3)点P 在线段AB 上,过点P 作x 轴的垂线,垂足为M ,交函数2y 的图象于点Q ,若POQ △面积为3,求点P 的坐标.24.已知抛物线21:22C y ax ax =--,点O 为平面直角坐标系原点,点A 坐标为()42,.(1)若抛物线1C 过点A ,求抛物线解析式;(2)若抛物线1C 与直线OA 只有一个交点,求a 的值.(3)把抛物线1C 沿直线OA 方向平移0t t >()个单位(规定:射线OA 方向为正方向)得到抛物线2C ,若对于抛物线2C ,当23x -£<时,y 随x 的增大而增大,求t 的取值范围.25.如图,在菱形ABCD 中,604DAB AB Ð=°=,,点E 为线段BC 上一个动点,边AB 关于AE 对称的线段为AF ,连接DF .(1)当AF 平分DAE Ð时,BAE Ð的度数为 .(2)延长DF ,交射线AE 于点G ,当2BE =时,求AG 的长.(3)连接AC ,点H 为线段AC 上一动点(不与点A ,C 重合),且BE =,求DE 的最小值.1.B【分析】由科学记数法的表示方法可直接得到答案.【详解】解:31852=1.85210´ 故选:B .【点睛】本题考查科学记数法,熟练掌握科学记数法的表示方法是解题的关键.2.C【分析】本题考查了实数与数轴、无理数、无理数的估算等知识点,掌握无理数的估算成为解题的关键.根据点A 在线段数轴上,且点A 表示的数为无理数,可排除A 、B 选项,然后再确定C 、D 两项无理数的取值范围即可解答.【详解】解:∵点A 在数轴上的位置如图所示,已知点A 所表示的数是一个无理数,∴1<点C 表示的数2<,∵1.5,53是有理数,12<<2>,∴故选:C .3.D【分析】根据题意和不等式的定义,列不等式即可.【详解】解:根据题意可知:当天益阳市气温t (℃)的变化范围是2433t ££故选D .【点睛】此题考查的是不等式的定义,掌握不等式的定义是解决此题的关键.4.A【分析】本题考查了解分式方程.先去分母,转化为整式方程,再求解,检验即可.【详解】解:()214x x +=-,去括号得224x x +=-,解得:6x =-,经检验:6x =-是原方程的根,故选:A .5.D【分析】本题主要考查了合并同类项、整式加减运算、积的乘方、同底数幂除法等知识点,灵活运用相关运算法则成为解题的关键.根据合并同类项、整式加减运算、积的乘方、同底数幂除法逐项判断即可解答.【详解】解:A. 32a a a -=,故该选项错误,不符合题意;B. ()1121a a a a a --=-+=-,故该选项错误,不符合题意;C. ()22239ab a b -=,故该选项错误,不符合题意;D. ()6240a a a a ¸=¹,故该选项正确,符合题意.故选:D .6.D【分析】本题考查了矩形的判定,平行四边形的判定与性质.根据“有一个是直角的平行四边形是矩形”可得出结论.【详解】解:∵AB CD =,AB CD ∥,∴四边形ABCD 是平行四边形,若添加AB BC ^,则该四边形是矩形.故选:D .7.C【分析】本题考查了用待定系数法求二次函数的解析式,由于已知顶点坐标,则可设顶点式()218y a x =-+,再把点()1,0-代入求出a 即可得到抛物线解析式,然后把顶点式化为一般式,再确定其与y 轴的交点坐标即可.【详解】解:由已知条件可得抛物线的顶点坐标为()1,8,可设解析式为()218y a x =-+,代入点()1,0-,得2a =-.所以该二次函数的解析式为()2218y x =--+,化成一般式为2246y x x =-++.当0x =时,6y =,所以,抛物线与y 轴的交点坐标为()0,6,故选:C .8.B【分析】本题主要考查了矩形的性质、正切的定义、旋转的性质、相似三角形的判定与性质等知识点,灵活运用相关性质和定理成为解题的关键.根据矩形的性质和勾股定理可得10AC ==、A ECG Ð=Ð,再结合旋转的性质可得2,90CE AC AE CEG B =-=Ð=Ð=°,易证CGE ACB V V ∽,运用相似三角形的性质列比例式可得32GE =,最后根据正切的定义即可解答.【详解】解:∵在矩形ABCD 中,8AB =,6AD =,∴6,8,90AD BC DC AB D ====Ð=°,DC AB ∥,∴10AC ==,A ECG Ð=Ð,∵将ABC V 绕点A 逆时针旋转得到AEF △,使点E 在线段AC 上,∴10,8AF AC AE AB ====,90AEF B Ð=Ð=°,∴2,90CE AC AE CEG B =-=Ð=Ð=°,∵A ECG Ð=Ð,90CEG B Ð=Ð=°,∴CGE ACB V V ∽,∴GE CE BC AB =,即268GE =,解得:32GE =,∴24tan 332CE FGH GE Ð===故选B .9.A【分析】本题考查切线长的性质、弧长公式.根据切线的性质证明四边形OFCE 为正方形,再弧长公式求解即可.【详解】解:连接OE OF 、,在四边形OFCE 中,90OFC C OEC Ð=Ð=Ð=°,\四边形OFCE 为矩形.又因为OF OE =,\四边形OFCE为正方形.则4OF CF ==,90EOF Ð=°,劣弧EF 的长是90π42π180×=.故选:A .10.C【分析】本题主要考查反比例函数图象上点的坐标特征,根据B 、D 为线段EF 的三等分点,ABCD 的面积为2,可求出反比例函数的关系式,确定k 的值,再利用一次函数与x 轴、y 轴的交点坐标,及EOF V 的面积即可求出b 的值.【详解】解:延长AB DC 、交x 轴于点Q 、P ,延长AD BC 、交y 轴于点M 、N ,∵B 、D 为线段EF 的三等分点,∴BE BD DF ==,∵AM BC EO ∥∥,∴OP PQ QE ON MN MF ====,,∵ABCD 的面积为2,∴24QBNO ABCD S S ==矩形矩形,∴4k =,∴反比例函数的关系式为4y x=,∴4k =,∵一次函数的关系式为4y x b =-+,即:()0,,04b F b E æöç÷èø,由题意得EOF V 的面积为9,∴1924b b ´´=,解得:b b ==-,故选:C .11.2x £【分析】根据二次根式有意义的条件:被开方数为非负数可求出x 的取值范围.【详解】解:∴20x -³,解得:2x £.故答案为:2x £.【点睛】本题考查二次根式有意义的条件,解题的关键正确理解二次根式有意义的条件.12.0或3【分析】本题考查解一元二次方程-因式分解法解题的关键是掌握因式分解法解方程,属于中考常考题型;提公因式法因式分解,可得结论;【详解】解:∵230x x -=(3)0,x x \-=0x \=或30,x -=120, 3.x x \==故答案为:0或3.13.8【分析】本题主要考查了线段垂直平分线的性质、三角形的周长等知识点,掌握线段垂直平分线的性质成为解题的关键.根据线段垂直平分线的性质可得BD AD =,再根据三角形周长公式可得22cm AD DC AC ++=、22cm AB BC AC ++=、即22cm AB BD DC AC +++=,然后将22cm AB BC AC ++=整体代入即可解答.【详解】解:∵点D 刚好落在AB 的垂直平分线上,∴BD AD =,∵ADC △的周长为14cm ,∴22cm AD DC AC ++=,∴ABC V 的周长为22cm ,∴22cm AB BC AC ++=,即22cm AB BD DC AC +++=,∴22cm AB AD DC AC +++=,即()22cmAB AD DC AC +++=∴()22cm 22cm 14cm=8cm AB AD DC AC =-++=-.故答案为:8.14.一、三【分析】本题考查了一元二次方程根的判别式,反比例函数的性质.根据一元二次方程根的判别式,求得14k >,再判断反比例函数k y x=图象所在象限即可.【详解】解:∵关于x 的方程()22210x k x k +-+=无解,∴()222140k k D =--<,解得14k >,∴反比例函数k y x=图象在第一、三象限,故答案为:一、三.15.122°##122度【分析】本题主要考查了轴对称的性质、平行线的性质、三角形内角和定理、三角形外角的性质等知识点,灵活运用相关性质成为解题的关键.先说明ADE V 和A DE ¢V 关于DE 轴对称可得34A A ¢Ð=Ð=°,再根据三角形外角的性质可得88DOA Ð=°,进而得到88C Ð=°,再根据三角形内角和定理可得58B Ð=°,最后运用平行线的性质即可解答.【详解】解:∵点A 与点A ¢关于DE 轴对称,∴ADE V 和A DE ¢V 关于DE 轴对称,∴34A A ¢Ð=Ð=°,∵54CEA ¢Ð=°,∴88DOA CEA A ¢¢Ð=Ð+Ð=°,∵DA BC ¢P ,∴88C DOA Ð=Ð=°,∴18058B C A Ð=°-Ð-Ð=°,∵DA BC ¢P ,∴180122BDA B ¢Ð=°-Ð=°.故答案为:122°.16. 120 【分析】本题考查了矩形的性质,解直角三角形,旋转的性质.先求得OAB V 是等边三角形,再求得OE CE ==,30EOC OCE Ð=Ð=°,根据全等三角形的性质可求得第一问;当点G 在线段OD 上时,BG 长度最大,画出图形,根据含30度角的直角三角形的性质和勾股定理求解即可.【详解】解:∵120BOC Ð=°,∴60AOB Ð=°,∵矩形ABCD ,∴OA OB =,∴OAB V 是等边三角形,∴2OA OB AB ===,2OC OD CD ===,∴30ACB DBC Ð=Ð=°,∵90BOE Ð=°,∴tan 30OE OB =×°=60BEO Ð=°,∴30EOC OCE Ð=Ð=°,∵AOG COE ≌△△,∴30AOG COE Ð=Ð=°,∴1803030120EOG a =Ð=°-°-°=°;∴a 等于120°时,AOG COE ≌△△;当点G 在线段OD 上时,BG 长度最大,如图,∴OG OE FG ===,∵2OD =30=°,∴2DG =,∴112HG DG ==,∴1HD ==,1HF FG HG =-=,∵90FHD Ð=°,∴DF ==故答案为:12017.64x y =ìí=î【分析】利用加减消元法进行求解即可得.【详解】解:10216x y x y +=ìí+=î①②,②﹣①得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =ìí=î.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.见解析【分析】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.由平行线的性质先得到,A D B C Ð=ÐÐ=Ð,继而利用AAS 证明AOB DOC △≌△,最后根据全等三角形的性质即可证明结论.【详解】解:∵AB CD ∥,∴,A D B C Ð=ÐÐ=Ð,∵OA OD=∴()AAS AOB DOC △≌△,∴OC OB =.19.(1)1b a -;(2)12P =.【分析】本题考查了分式的化简求值,点的坐标.(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果;(2)根据点的位置,求得a<0,0b >,推出0a b -<,求得2a b -=-,据此求解即可.【详解】(1)解:22a b ab b P a a a æö--=¸-ç÷èø222a b ab b a a a---=¸()2a b a a a b -=-×-1b a=-;(2)解:∵点()a b ,在第二象限,∴a<0,0b >,∴0a b -<,∵2a b -=,∴2a b -=-,∴112P b a ==-.20.(1)200,补全条形统计图见解析(2)1 6【分析】本题主要考查了条形统计图、扇形统计图、列表法求概率等知识点,掌握列表法或树状图求概率是解题的关键.(1)由做饭的人数及其所占百分比即可求得调查学生数,利用总人数减去其他的人数即可求得扫地人数,然后补全统计图即可;(2)先列表求出所有可能结果数和甲、乙两人同时被抽中的情况数,然后运用概率公式计算即可.【详解】(1)解:本次共调查学生数为:4020%200¸=(名),扫地人数为2004050302060----=(名),故答案为200.补全条形统计图如下:(2)解:根据题意列表如下:第二人第一人甲乙丙丁甲乙甲丙甲丁甲乙甲乙丙乙丁乙丙甲丙乙丙丁丙丁甲丁乙丁丙丁由列表可知共有12种可能出现的结果,其中甲、乙同时被抽中的有2种,所以甲、乙同时被抽中的概率为21 126=.答:甲、乙两人同时被抽中的概率为16.21.(1)A 、B 玩具的单价分别为50元、75元;(2)最多购置100个A 玩具.【分析】(1)设A 玩具的单价为x 元每个,则B 玩具的单价为()25x +元每个;根据“购置2个B 玩具与1个A 玩具共花费200元”列出方程即可求解;(2)设A 玩具购置y 个,则B 玩具购置2y 个,根据“购置玩具的总额不高于20000元”列出不等式即可得出答案.【详解】(1)解:设A 玩具的单价为x 元,则B 玩具的单价为()25x +元;由题意得:()225200x x ++=;解得:50x =,则B 玩具单价为2575x +=(元);答:A 、B 玩具的单价分别为50元、75元;(2)设A 玩具购置y 个,则B 玩具购置2y 个,由题意可得:5075220000y y +´£,解得:100y £,∴最多购置100个A 玩具.【点睛】本题考查一元一次方程和一元一次不等式的应用,属于中考常规考题,解题的关键在于读懂题目,找准题目中的等量关系或不等关系.22.(1)见解析(2)四边形OBCD 是菱形,见解析【分析】(1)作AOE B Ð=Ð,得到∥OD BC 即可;(2)证明AOE ABC V V ∽,得到2BC OE =,由OE ED =,得到BC OD =,据此即可证明四边形OBCD 是菱形.【详解】(1)解:如图,OD 即为所作,;(2)解:四边形OBCD 是菱形,由作图知,AOE B Ð=Ð,则∥OD BC ,∴AOE ABC V V ∽,∴12OE AO BC AB ==,∴2BC OE =,∵OE ED =,∴BC OD =,∴四边形OBCD 是平行四边形,∵OB OD =,∴四边形OBCD 是菱形.【点睛】本题考查了圆的基本性质,相似三角形的判定和性质,菱形的判定,平行四边形的判定和性质,尺规作图.解题的关键是灵活运用所学知识解决问题.23.(1)129y x =-+,24(0)y x x=>(2)142x <<(3)点P 的坐标为()2,5或5,42æöç÷èø【分析】(1)将(4,1)A 代入2(0)m y x x=>可求反比例函数解析式,进而求出点B 坐标,再将(4,1)A 和点B 坐标代入1(0)y kx b k =+¹即可求出一次函数解析式;(2)直线AB 在反比例函数图象上方部分对应的x 的值即为所求;(3)设点P 的横坐标为p ,代入一次函数解析式求出纵坐标,将x p =代入反比例函数求出点Q 的纵坐标,进而用含p 的代数式表示出PQ ,再根据POQ △面积为3列方程求解即可.【详解】(1)解:将(4,1)A 代入2(0)m y x x =>,可得14m =,解得4m =,\反比例函数解析式为24(0)y x x=>;Q 1,2B a æöç÷èø在24(0)y x x =>图象上,\4812a ==,\1,82B æöç÷èø,将(4,1)A ,1,82B æöç÷èø代入1y kx b =+,得:41182k b k b +=ìïí+=ïî,解得29k b =-ìí=î,\一次函数解析式为129y x =-+;(2)解:142x <<,理由如下:由(1)可知1(4,1),,82A B æöç÷èø,当120y y ->时,12y y >,此时直线AB 在反比例函数图象上方,此部分对应的x 的取值范围为142x <<,即满足120y y ->时,x 的取值范围为142x <<;(3)解:设点P 的横坐标为p ,将x p =代入129y x =-+,可得129y p =-+,\(),29P p p -+.将x p =代入24(0)y x x=>,可得24y p =,\4,Q p p æöç÷èø.\429PQ p p=-+-,\11429322POQ P S PQ x p p p æö=×=´-+-×=ç÷èøV ,整理得229100p p -+=,解得12p =,252p =,当2p =时,292295p -+=-´+=,当52p =时,5292942p -+=-´+=,\点P 的坐标为()2,5或5,42æöç÷èø.【点睛】本题属于一次函数与反比例函数的综合题,考查求一次函数解析式、反比例函数解析式,坐标系中求三角形面积、解一元二次方程等知识点,解题的关键是熟练运用数形结合思想.24.(1)2122y x x =--(2)12a ³或52a =-;(3)a<0时,t ³.【分析】本题主要考查了运用待定系数法求函数解析式、二次函数的性质、二次函数图像的平移等知识点,掌握二次函数图像的性质是解题的关键.(1)把A 点坐标代入解析式求出a 的值即可;(2)首先确定抛物线的对称轴为直线1x =,顶点为()12a --,,再分0a >和0a <两种情况分别画出图形分析即可解答;(3)先求出OA ==,即可求得水平方向和垂直方向的平移距离,然后求得新的抛物线的对称轴,然后再分0a >和0a <两种情况,分别运用抛物线的增减性即可解答.【详解】(1)解:∵抛物线21:22C y ax ax =--过点A ,点A 坐标为()42,,∴2162a a =--8,解得:12a =,∴抛物线解析式为2122y x x =--.故答案为:2122y x x =--.(2)∵抛物线()221:2212C y ax ax a x a =--=---,∴抛物线的对称轴是:直线1x =,顶点为()12a --,,∵点A 坐标为()42,,∴线段OA 为()1042y x x =££,抛物线1C 与线段OA 只有一个交点分两种情况:①当0a >,如答图1:由(1)知当抛物线过点A 时,12a =,由图可知当a 变大,抛物线开口变小,抛物线过点()0,2-;线段OA 始终与抛物线有一个交点,所以当0a >时,a 越大抛物线开口越小,故12a ³,②若0a <,如答图2,对称轴与线段OA 交于点B ,在12y x =中令1x =,得12y =,即112B æöç÷èø,,当抛物线顶点在线段OA 上恰好有一个交点,即122a --=解得52a =-,综上所述,抛物线C 1与线段OA 只有一个交点,12a ³或52a =-.(3)解:∵()42A ,,∴OA ==∴抛物线1C 沿直线OA 方向平移t 个单位相当于水平移动了个单位再竖直方向移动了个单位,∴抛物线2C 的对称轴为1x =,当23x -£<时,y 随x 的增大而增大,分两种情况:①2x =-或在直线2x =-左侧,∴12£-得0t £,不符合题意;②3x =或在直线3x =右侧,∴13³得t ³综上:当a<0时,t ³符合题意.25.(1)20°(3)8【分析】本题考查了菱形的性质、轴对称的性质、勾股定理、矩形的性质等知识点,掌握数形结合思想是解题的关键.(1)由折叠的性质可得BAE EAF Ð=Ð,由角平分线的性质可得FAE DAF Ð=Ð,即FAE DAF BAE Ð=Ð=Ð,最后结合60DAB Ð=°即可解答;(2如图:过E 作EH AB ^于其延长上点H ,延长DF 交BC 于M 设BAE x Ð=,连接EF ;由折叠的性质、等腰三角形的性质、平行线的性质等知识点可得FGE ABE Ð=Ð;再说明30BEH Ð=°,根据直角三角形的性质及勾股定理可得112BH BE ==,HE ==AE ==然后证明FGE AEB V V ∽,根据相似三角形的性质列式计算可得EG =(3)如图:过B 作BG AC ^,根据菱形的性质、直角三角形的性质、勾股定理可得AC ==;如图:过B 作BF AC ∥交DC 延长线于F ,可得31230Ð=Ð=Ð=°;再证明四边形ABFC 是平行四边形可得8DF =、BF =,再证明BEF CHD V V ∽易得EF =,即DE DE EF =+,然后求得DE EF +的最小值即可.【详解】(1)解:∵边AB 关于AE 对称的线段为AF ,∴BAE EAF Ð=Ð,∵边AB 关于AE 对称的线段为AF ,∴DAF EAF Ð=Ð,∴FAE DAF BAE Ð=Ð=Ð,∵60DAB Ð=°,∴60FAE DAF BAE Ð+Ð+Ð=°,即360BAE Ð=°,解得:20BAE Ð=°.故答案为:20°.(2)解:如图:过E 作EH AB ^于其延长上点H ,延长DF 交BC 于M设BAE x Ð=,连接EF由轴对称的性质可得:4AF AB ==,2EF BE ==,,120FAE BAE AFE ABE a Ð=Ð=Ð=Ð=°,∴602DAF DAB FAE BAE a Ð=Ð-Ð-Ð=°-,∵4AD AF ==,∴180602DAF ADF a °-ÐÐ==°+,∵AD BC ∥,∴60GME ADF a Ð=Ð=°+,60AEB DAE DAB BAE a Ð=Ð=Ð-Ð=°-,∴120FGE AEB GME Ð=Ð+Ð=°,即FGE ABE Ð=Ð,∵120,ABC Ð=°∴60,ABE Ð=°即30BEH Ð=°∵EH AB ^,∴112BH BE ==,HE ,∴AE ==,∵,FGE ABE FEG AEB Ð=ÐÐ=Ð,∴FGE AEB V V ∽,∴EF EG AE EB=∴EF EB EG AE ×===∴AG AE EG =-==.(3)解:如图:过B 作BG AC ^,∵四边形ABCD 是菱形,∴4AB BC CD AD ====,12AG CG AC ==,∵60BAD Ð=°,∴1230BAG Ð=Ð=Ð=°,∴122BG AB ==,∴CG AG ===,即AC ==,如图:过B 作BF AC ∥交DC 延长线于F ,∴31230Ð=Ð=Ð=°,∵DF AB P ,∴四边形ABFC 是平行四边形,∴,4AC BF CF AB ===,∴8DF =,BF =,∵BE =,∴BF BE CD CH==∵31Ð=Ð,∴BEF CHD V V ∽,∴BF EF BE CD DH CH===,即EF =,∴DE DE EF +=+,当D 、E 、F 三点不共线时,8DE EF DF +>=,当D 、E 、F 三点共线时,8DE EF DF +==,∴8DE EF DF +³=,即8DE ³,∴DE +的最小值为8.。

2024年广东省广州市第二中学中考二模数学试题

2024年广东省广州市第二中学中考二模数学试题

2024年广东省广州市第二中学中考二模数学试题一、单选题1.下列各数中,最大的是( )A .3-B .0C .4D .1-2.下列几何体中,正视图是圆形的几何体是( )A .B .C .D . 3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4500000000人,将这个数用科学计数法表示为( ) A .100.4510⨯ B .104.510⨯ C .94.510⨯ D .84.510⨯ 4.有一组数据:19,19,18,19,20,19,18,这组数据的众数和中位数分别是( ) A .19,19 B .19,18 C .18,18 D .18,19 5.下列各式计算正确的是( )A .11123a a a +=B 4C .5=-D .33(2)6x x -=- 6.下列说法中错误..的是( ). A .对角线互相垂直且相等的四边形是矩形B .角的内部,到角的两边距离相等的点在这个角的角平分线上C .顺次连接四边形各边中点所得图形是平行四边形D .在同圆或等圆中,同弧所对的圆心角是圆周角的2倍7.已知点()26,4P x x +-在第三象限,则实数x 的取值范围在数轴上表示正确的为( ) A . B .C .D .8.关于一次函数113y x =-,下列说法正确的是( ) A .图象经过第二、三、四象限 B .当3x <时,0y >C .函数值y 随自变量x 的增大而减小D .图象与y 轴交于点()0,1-9.如图,DE 为ABC V 的中位线,ABC ∠的角平分线交DE 于点F ,若210EF BC ==,,则AB 的长为( )A .5B .6C .8D .910.如图,在平面直角坐标系xOy 中,点A ,B 分别在函数()60y x x =>,()0k y x x =<的图象上,AB x ∥轴,点C 是y 轴上一点,线段AC 与x 轴正半轴交于点D .若ABC V 的面积为8,35CD AD =,则k 的值为( )A .2B .4C .-2D .-4二、填空题11(填“<”,“=”或“>”).12.分解因式:328x x -=.13.如图,圆锥的底面半径为1cm ,母线AB 的长为3cm ,则这个圆锥侧面展开图扇形的圆心角为度.14.如图,在平行四边形ABCD 中,点E 在BA 的延长线上,2AB AE =,EC 、BD 交于点F .10BD =,则DF 的长为.15.在矩形ABCD 中,8AB =,6BC =,点P 在边AB 上.若将DAP V 沿DP 折叠,使点A 落在矩形对角线上的点A '处,则AP 的长为.16.如图,正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M .过点M 作MN AQ ⊥交BC 于点N ,作NP BD ⊥于点P ,连接NQ ,下列结论:①AM MN >;②12MP BD =;③BN DQ NQ +=;④+AB BN BM为定值,其中正确的结论有(填序号).三、解答题17.解二元一次方程组:326x y x y +=⎧⎨-=-⎩. 18.如图,点E 、F 在CD 上,且CE DF AE BF AE BF ==,,∥.求证:AEC BFD ≌△△.19.已知两个多项式223,1A x B x x =-=-+.(1)化简2B A -;(2)若221B A -=,求x 的值.20.某校九年级1班班主任计划对班级每位学生进行家访,家访的形式有到家家访、电话家访、信息家访、到校家访,以下是该班级家访的条形统计图和扇形统计图.(1)扇形统计图中到家家访的圆心角为__________;(2)补全条形统计图;(3)若选择“到家家访”的四位学生分别为A 、B 、C 、D ,班主任决定本周从这4人中随机选取两人进行到家家访,用列表法或画树状图法求本周恰好选中A 、B 两人的概率. 21.我市准备在相距2千米的M ,N 两工厂间修一条笔直的公路,但在M 地北偏东45°方向、N 地北偏西60°方向的P 处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这)22.某服装店老板到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比每套B 品牌服装进价多25元,若用2000元购进A 种服装的数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元?(2)若A 品牌服装每套售价为130元,B 品牌服装每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A 品牌服装的数量的2倍还多4套,两种服装全部售出后,要使总的获利超过1200元,则最少购进A 品牌的服装多少套?23.如图,AB 为O e 的直径,点C 在O e 上.(1)尺规作图:求作»BC 的中点D (保留作图痕迹,不写作法);(2)过点D 作DE AC 交AC 延长线于点E (画出图形即可,不必尺规作图),求证:ED 与O e 相切;(3)连接EO ,若2DE CE =,求EO AO的值. 24.已知抛物线22y x x c =-+与x 轴交于(1,0),(,0)A B b -两点,且A 在B 的左边,与y 轴交于点C .(1)求c 的值;(2)若点P 在抛物线上,且PBA ACO ∠=∠,求点P 的坐标;(3)抛物线的对称轴与x 轴交于D 点,点Q 为x 轴下方的抛物线上任意一点,直线AQ BQ ,与抛物线的对称轴分别交于E ,F 两点,求11DE DF+的取值范围. 25.已知线段2OA OB AOB α==∠=,.(1)如图1,当60α=︒时,求OAB ∠的度数;(2)如图2,当90α=︒时,作BC OB ⊥,AC 与OB 交于点D ,求OC AC的最小值,并直接写出此时线段BC 的长:(3)如图3,当120α=︒时,点E 是线段AB 上,OA 关于OE 对称线段为OF ,延长FB 交OE 的延长线于点G ,求当点E 在AB 方向上运动时,点G 的运动路径长.。

广东省广州市中考数学二模试卷

广东省广州市中考数学二模试卷

广东省广州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题(满分30分) (共10题;共30分)1. (3分)(2017·浙江模拟) 下列各数中,是有理数是()A .B .C .D .2. (3分) (2020九上·南岗期末) 下列四个图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (3分)计算12a5b6c4÷(﹣3a2b3c)÷(2a3b3c3),其结果是()A . -2B . -1C . 1D . 24. (3分)如图,任意抛掷一只纸质茶杯,下列与此事有关的描述正确的是()A . 杯口向下的概率为B . 杯口朝上可能性很小,所以是不可能事件C . 小红掷了5次,有4次杯子横卧,所以杯子横卧的概率为0.8D . 当抛掷次数充分大时,杯口向上发生的频率可用来估计抛掷茶杯杯口向上的概率5. (3分)(2019·上海模拟) 已知一次函数y=mx+n的图象如图所示,则m、n的取值范围()A . m>0,n<0B . m<0,n>0C . m>0,n>0D . m<0,n<06. (3分)小颖同学借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是()A .B .C .D .7. (3分)正方形网格中,∠AOB如图放置,则sin∠AOB=()A .B .C .D . 28. (3分)(2017·南漳模拟) 如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD 于点P,则∠FPC的度数为()A . 55°B . 50°C . 45°D . 35°9. (3分) (2011七下·广东竞赛) 已知二次函数的图象如图所示,有下列4个结论,其中正确的结论是()A .B .C .D .10. (3分)(2018·深圳模拟) 如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2= AE•EG;④若AB=4,AD=5,则CE=1.A . ①②③④B . ①②③C . ①③④D . ①②二、填空题(满分18分) (共6题;共18分)11. (3分) (2020八下·绍兴月考) 为丰富学生的课余生活,某中学开展了手工制作比赛,如图是该校八年级进入了校决赛的15名学生制作手工作品所需时间(单位:分钟)的统计图,则这15名学生制作手工作品所需时间的众数是________.12. (3分)如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为________.13. (3分)(2017·陕西模拟) 如图,点A在双曲线y= (x>0)上,点B在双曲线y= (x>0)上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k=________.14. (3分) (2017九上·宜城期中) 若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=6,则△ABC的面积为________.15. (3分) (2017八下·西城期中) 如图,三个边长均为的正方形重叠在一起,,是其中两个正方形的中心,则阴影部分的面积是________.16. (3分) (2019八上·海曙期末) 有一组平行线过点A作AM⊥ 于点M,作∠MAN=60°,且AN=AM,过点N作CN⊥AN交直线于点C,在直线上取点B使BM=CN,若直线与间的距离为2,与间的距离为4,则BC=________.三、解答题(共9小题,满分102分) (共9题;共102分)17. (9分)(2017·苏州模拟) 解不等式组.18. (9.0分) (2017八下·黄山期末) 先化简,再求值:,其中x=﹣3.19. (10分)(2019·高台模拟) 如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).20. (10.0分)(2017·海淀模拟) 阅读下列材料:厉害了,我的国!近年来,中国对外开放的步伐加快,与世界经济的融合度日益提高,中国经济稳定增长是世界经济复苏的主要动力.“十二五”时期,按照2010年美元不变价计算,中国对世界经济增长的年均贡献率达到30.5%,跃居全球第一,与“十五”和“十一五”时期14.2%的年均贡献率相比,提高16.3个百分点,同期美国和欧元区分别为17.8%和4.4%.分年度来看,2011、2012、2013、2014、2015年,中国对世界经济增长的贡献率分别为28.6%、31.7%、32.5%、29.7%、30.0%,而美国分别为11.8%、20.4%、15.2%、19.6%、21.9%.2016年,中国对世界经济增长的贡献率仍居首位,预计全年经济增速为6.7%左右,而世界银行预测全球经济增速为2.4%左右.按2010年美元不变价计算,2016年中国对世界经济增长的贡献率仍然达到33.2%.如果按照2015年价格计算,则中国对世界经济增长的贡献率会更高一点,根据有关国际组织预测,2016年中国、美国、日本经济增速分别为6.7%、1.6%、0.6%.根据以上材料解答下列问题:(1)选择合适的统计图或统计表将2013年至2015年中国和美国对世界经济增长的贡献率表示出来;(2)根据题中相关信息,2016年中国经济增速大约是全球经济增速的________倍(保留1位小数);(3)根据题中相关信息,预估2017年中国对世界经济增长的贡献率约为________,你的预估理由是________.21. (12分)(2017·岳池模拟) 已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP= :(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.22. (12分)某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.8万元,30秒广告每播1次收费1.5万元.若要求每种广告播放不少于2次.问:(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益较大?23. (12分) (2018九上·杭州期中) 已知等边三角形ABC.(1)用尺规作图找出△ABC外心O.(2)记外心O到三角形三边的距离和为d,到三角形三个顶点的距离和为D,求的值24. (14.0分) (2016九上·鄞州期末) 阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.25. (14.0分)(2019·高新模拟) 如图,在矩形ABCD中,AB=6 ,BC=3 动点P从点A出发,沿AC以每秒4个单位长度的速度向终点C运动.过点P(不与点A、C重合)作EF⊥AC,交AB或BC于点E,交AD或DC于点F,以EF为边向右作正方形EFGH设点P的运动时间为t秒.(1)①AC=________.②当点F在AD上时,用含t的代数式直接表示线段PF的长________.(2)当点F与点D重合时,求t的值.(3)设方形EFGH的周长为l,求l与t之间的函数关系式.(4)直接写出对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值.参考答案一、选择题(满分30分) (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(满分18分) (共6题;共18分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共9小题,满分102分) (共9题;共102分) 17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、25-4、。

2024年广东省广州市培正中学中考二模数学试题

2024年广东省广州市培正中学中考二模数学试题

2024年广东省广州市培正中学中考二模数学试题一、单选题1.从下列一组数2-,π,12-,0.12-,0,率为( )A .56B .23 C .12 D .132.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C .D .3.某小组7位学生的中考体育测试成绩依次为57,60,59,57,60,58,60,则这组数据的众数与中位数分别是( )A .60,59B .60,57C .59,60D .60,58 4.下列运算正确的是( )A .936a a a ÷=B 0,0)x y ≥≥C .236(2)6a a =D .222(2)4a b a b -=-5.如图是一个几何体的三视图,则该几何体的展开图可以是( )A .B .C .D . 6.下列命题中,属于假命题的是( )A .半圆(或直径)所对的圆周角是直角B .五边形的内角和为540°C .四条边相等的四边形是菱形D .16的平方根是4 7a 的取值范围是( ) A .4a ≠- B .4a ≥- C .4a >- D .4a >-且0a ≠ 8.A 、B 两地相距10千米,甲、乙二人同时从A 地出发去B 地,甲的速度是乙的速度的2倍,结果甲比乙早到13小时,设乙的速度为x 千米/时,则可列方程为 ( ) A .1010123x x -= B .1010123x x -= C .101123x x += D .1011032x x += 9.如图,ABC V 是等边三角形,D 是BC 边上一点,将ABD △绕点A 逆时针旋转60︒得到ACE △,连接DE ,则下列说法不一定正确的是( )A .ADE V 是等边三角形B .AB CE PC .BAD DEC∠=∠ D .AC CD CE =+ 10.如图,抛物线21:(1)2G y a x =++与抛物线22:(2)1H y x =---交于点(1,2)B -,且分别与y 轴交于点D ,E .过点B 作x 轴的平行线,交抛物线于点A ,C .则以下结论:①抛物线H 可由抛物线G 向右平移3个单位,再向下平移3个单位得到;②无论x 取何值,2y 总是负数;③当31x -<<时,随着x 的增大,12y y -的值先增大后减小;④四边形AECD 为正方形.其中正确的个数是( )A .1B .2C .3D .4二、填空题11.一元二次方程2890x x --=的解是.12.分解因式:2202340462023x x -+=.13.若函数()252k y k x -=-是反比例函数,则k =.14.若二次函数y =2(x +1)2+3的图象上有三个不同的点A (x 1,4)、B (x 1+x 2,n )、C (x 2,4),则n 的值为.15.如图,O e 是ABC V 的外接圆,45,A BC ∠=︒=,则劣弧»BC 的长是.(结果保留π)16.如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,折叠正方形ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展平后,折痕DE 分别交AB ,AC 于点E ,G ,连接GF ,下列结论:①AE AG =;②tan 2AGE ∠=;③DOG EFOG S S =△四边形;④2BE OG =.其中一定正确的是.三、解答题17.计算:()201326tan 302π-⎛⎫----︒ ⎪⎝⎭ 18.已知:如图,在平行四边形ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,求证:OE OF =.19.随着春天气温变暖,某校组织同学们分别到A ,B ,C ,D 四个景点进行春游活动,学校把学生前往四个地方的人数做了统计,得到下列两幅不完整的统计图,如图所示.(1)本次参加春游活动学生总人数有________人,在扇形统计图中,去D 景点活动的人数对应扇形的圆心角的度数是________度.(2)请你将条形统计图补充完整.(3)本次春游活动中,学校分配给九年级学生甲、乙、丙三辆车,小明与小华都可以从这三辆车中任选一辆搭乘.求小明与小华坐不同车的概率(要求画树状图或列表).20.如图,ABCD Y 中,2AB =,=BC(1)利用尺规作ABC ∠的平分线BE ,交AD 于点E ;(保留作图痕迹,不写作法)(2)记DE a =,先化简212392a a T a a a +=÷---+,再求T 的值. 21.如图,AB 是⊙O 的直径,点C 在⊙O 上,点D 在AB 延长线上,且∠BCD =∠A .(1)求证:DC 是⊙O 的切线;(2)若∠A =30°,AC22.如图,活动课上,小玥想要利用所学的数学知识测量某个建筑地所在山坡AE 的高度,她先在山脚下的点E 处测得山顶A 的仰角是30°,然后,她沿着坡度i=1:1的斜坡按速度20米/分步行15分钟到达C 处,此时,测得点A 的俯角是15°.图中点A 、B 、E 、D 、C 在同一平面内,且点D 、E 、B 在同一水平直线上,求出建筑地所在山坡AE 的高度AB .(精确到0.1).23.如图,直线26y x =+与反比例函数(0)k y x x=>的图象交于点()1,A m ,与x 轴交于点B ,直线(06)y n n =<<交反比例函数的图象于点M ,交AB 于点N .(1)直接写出:m 的值为_________,k 的值为_________;(2)连接BM ,当n 为何值时,BMN V 的面积最大?(3)当BMN V 的面积最大时,直接写出不等式k n x>的解集.24.如图,半径为4的O e 中,弦AB 的长度为C 是劣弧»AB 上的一个动点,点D 是弦AC 的中点,点E 是弦BC 的中点,连接DE ,OD ,OE .(1)求AOB ∠的度数;(2)当点C 沿着劣弧»AB 从点A 开始,逆时针运动到点B 时,求ODE ∆的外心P 所经过的路径的长度;(3)分别记,ODE CDE ∆∆的面积为12,S S ,当221221S S -=时,求弦AC 的长度.25.已知抛物线22y x x m m =---.(1)求证:抛物线与x 轴必定有公共点; (2)若P (a ,y 1),Q (-2,y 2)是抛物线上的两点,且y 1>y 2,求a 的取值范围; (3)设抛物线与x 轴交于点()1,0A x 、()2,0B x ,点A 在点B 的左侧,与y 轴负半轴交于点C ,且123x x +=,若点D 是直线BC 下方抛物线上一点,连接AD 交BC 于点E ,记△ACE 的面积为S 1,△DCE 的面积为S 2,求21S S 是否有最值?若有,求出该最值;若没有,请说明理由.。

2024年广东省广州市白云区初三二模数学试题含答案解析

2024年广东省广州市白云区初三二模数学试题含答案解析

2024年广东省广州市白云区中考二模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,是无理数的是()A 2B .0C .2-D .14【答案】A【分析】本题考查无理数,根据无限不循环小数是无理数,进行判断即可.【详解】解:A 、2是无理数,符合题意;B 、0是有理数,不是无理数,不符合题意;C 、2-是有理数,不是无理数,不符合题意;D 、14是有理数,不是无理数,不符合题意;故选A .21x-x 应满足的条件是()A .1x ≥B .1x >-C .1x <D .1x ≤-【答案】C【分析】本题考查代数式有意义的条件,根据分式的分母不为0,被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,∴1x <;故选C .3.下列几何体中,其侧面展开图是扇形的是()A .B .C .D .【答案】B【分析】本题考查几何体的展开图,根据圆锥的侧面展开图是扇形,即可得出结果.【详解】解:在圆柱体,圆锥,三棱锥,长方体中,只有圆锥的侧面展开图是扇形;故选:B .4.下列运算正确的是()A .321--=-B .()3131x x -=-C .()224ab ab -=D .()()22a b a b a b+-=-【答案】D【分析】根据有理数的减法运算,单项式乘以多项式,积的乘方,平方差公式对各选项进行判断作答即可.【详解】A 中3251--=-≠-,故不符合要求;B 中()313331x x x =--≠-,故不符合要求;C 中()22244ab a b ab -=≠,故不符合要求;D 中()()22a b a b a b +-=-,故符合要求;故选:D .【点睛】本题考查了有理数的减法运算,单项式乘以多项式,积的乘方,平方差公式等知识.熟练掌握有理数的减法运算,单项式乘以多项式,积的乘方,平方差公式是解题的关键.5.已知关于x 的方程.20x x a -+=的一个根为2,则另一个根是()A .3-B .2-C .1-D .2【答案】C6.长方形ABCD 的三个顶点的坐标是()1,1A 、()3,1B 、()3,5C ,那么D 点坐标是()A .()1,3B .()1,5C .()5,3D .()5,1【答案】B【分析】根据长方形的性质求出点D 的横坐标和纵坐标即可.本题考查了平面直角坐标系中的坐标、长方形的性质.【详解】解:∵长方形ABCD 的三个顶点的坐标是()1,1A 、()3,1B 、()3,5C ,∴点D 的横坐标与点A 的横坐标相同,点D 的纵坐标与点C 的纵坐标相同,∴点D 的横坐标为1,纵坐标为5,∴点D 的坐标为()1,5,故选B .7.某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A .12B .13C .14D .168.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.设甲、乙两人每小时分别走x 、y 千米,则可列出方程组()A .101050{2250x y x y -=+=B .101050{2250x y x y +=+=C .101050{2250y x x y -=+=D .101050{2250x y x y -=-=【答案】C【详解】设甲、乙两人每小时分别走x 千米、y 千米,根据题意得:101050{2250y x x y -=+=故选C9.如图,AB 是O 的弦,CD 是O 的直径,CD AB ⊥于点E .在下列结论中,不一定成立的是()A .AE BE =B .90CBD ∠=︒C .2COBD ∠=∠D .COB C∠=∠【答案】D【分析】此题考查了圆周角定理、垂径定理,熟练掌握圆周角定理、垂径定理是解题的关键.根据垂径定理、圆周角定理判断求解即可.【详解】解:CD 是O 的直径,CD AB ⊥,AE BE ∴=,90CBD ∠=︒,2COB D ∠=∠,CBO C ∠=∠,故A、B、C不符合题意,D符合题意;故选:D.10.定义新运算:()()a aba bb aa⎧≥⎪⎪⊗=⎨⎪<⎪⎩例如1113,2132⊗=-⊗=-,则2y x=⊗的大致图象是()A .B.C.D.二、填空题11.因式分解:23a-2a=.【答案】2a(a+1)(a-1)【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解即可得到答案.【详解】解:322a a-()221a a=-()()211a a a =-+故答案为:()()211a a a -+.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先应该提公因式,然后再用其他方法进行因式分解,同时切记因式分解一定要彻底.12.甲、乙两人在100米短跑训练中,记录了5次测试的成绩:两人的平均成绩相等,甲的方差是0.14,乙的方差是0.06,这5次短跑测试的成绩较稳定的是.(填“甲”或“乙”)【答案】乙【分析】本题考查利用方差判断稳定性,根据方差越小,成绩越稳定,即可得出结果.【详解】解:∵两人的平均成绩相等,甲的方差是0.14,乙的方差是0.06,0.060.14<,∴这5次短跑测试的成绩较稳定的是乙;故答案为:乙.13.命题“两个全等三角形的面积相等”的逆命题可以写成:,所写出的命题是命题(填“真”或“假”).【答案】两个面积相等的三角形是全等三角形假【分析】本题考查了逆命题,命题的真假,全等三角形的判定.正确的写逆命题并判断命题的真假是解题的关键.根据题意写出逆命题,然后判断命题的真假即可.【详解】解:由题意知,“两个全等三角形的面积相等”的逆命题为两个面积相等的三角形是全等三角形,该命题为假命题,故答案为:两个面积相等的三角形是全等三角形,假.14.已知一次函数()2y k x b =++(k ,b 是常数)的图象上有两点()11,A x y ,()22,B x y ,若当12x x <时,12y y >,则k 的取值范围是.【答案】2k <-【分析】本题考查一次函数的图象和性质,根据当12x x <时,12y y >,得到20k +<,求解即可.【详解】解:∵12x x <时,12y y >,∴20k +<,∴2k <-;故答案为:2k <-.15.如图,在等腰ABC 中,AB AC =,延长边AB 到点D ,延长边CA 到点E ,连接DE ,若AD BC CE DE ===,则BAC ∠=.【答案】100︒/100度【分析】过点D 作DF BC ∥,CF BD ∥,易得四边形DBCF 为平行四边形,进而得到,DF BC BD CF ==,证明DAE ECF ≌,推出DEF 为等边三角形,设BAC α∠=,根据等边对等角,表示出,ADE ADF ∠∠,根据60ADE ADF ∠+∠=︒,列出方程进行求解即可.【详解】解:过点D 作DF BC ∥,CF BD ∥,连接EF ,则:四边形DBCF 为平行四边形,∴,DF BC BD CF ==,∵AD BC CE DE ===,AB AC =,∴AD AB CE AC -=-,DE DF =,∴AE BD =,∴AE CF =,∵CF AD ∥,∴ECF EAD ∠=∠,∴DAE ECF ≌,∴DE EF =,∵DE DF =,∴DE EF DF ==,∴DEF 为等边三角形,16.两块三角板(ABD△中,90BAD AB AD∠=︒=,,BCD△中,90BCD∠=︒,30CBD∠=︒)按如图方式放置,下列结论正确的是(填写所有正确结论的序号).①75AOB∠=︒;②AB=;③BC CD+=;④:3:2BOC AODS S=.又∵90BAD ∠=︒,BCD ∠∴EA EB EC ED ===,∴A B C D 、、、四点共圆,∵90BAD AB AD ∠=︒=,∴45ABD ADB ∠=∠=︒∵ CDCD =,∴30CAD CBD ∠=∠=∴AOB CAD ADB ∠=∠+∠由题意知,cos 45AB BD =∴22AB CD =,即AB 如图,作DM AC ⊥于设DM a =,则tan AM =三、解答题17.解不等式组()13293x x ⎧-->⎨+≥⎩并把它的解集在数轴上表示出来.【答案】32x -≤<-,图见解析【分析】本题考查解不等式组,并在数轴上表示出解集,先求出每一个不等式的解集,找到它们的公共部分,即为不等式的解集,进而在数轴上表示出解集即可.【详解】解:()13293x x ⎧-->⎨+≥⎩①②由①,得:<2x -;由②,得:3x ≥-,∴不等式组的解集为:32x -≤<-,数轴表示解集如图:18.如图,点D 在AB 上.点E 在AC 上,,AD AE ADC AEB =∠=∠.求证:AB AC =.【答案】见解析【分析】本题考查全等三角形的判定和性质,证明ADC AEB △≌△,即可得出结论.【详解】证明:在ADC △和AEB △中:A A AD AEADC AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ADC AEB △≌△,∴AB AC =.19.已知()()211T a a a =++-(1)化简T ;(2)若a 满足613a +=,求T 的值.20.人工智能火遍全球,某校数学兴趣小组为了调查九年级学生对人工智能的了解程度,设计了一张含10个问题的调查问卷,在该校九年级中随机抽取20名学生进行调查,得到这20名学生答对题数的情况如下表:答对题数5678910人数33α622占总人数比例15%15%20%b10%10%根据以上信息,解答下列问题:(1)表格中的=a_____,b=_____;(2)被抽取的九年级学生答对问题数量众数是_____,中位数是____;(3)若答对7题及以上视为比较了解人工智能,该校九年级有600名学生,估计该校九年级比较了解人工智能的学生总人数.21.新能源汽车环保节能,越来越受到消费者的喜爱,各种品牌相继投放市场一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去~月份每辆车的销售年降低2万元,销售数量与去年相同,销售总额比去年少20%,今年15价格是多少万元【答案】今年1~5月份每辆车的销售价格是8万元~月份每辆车的销售价格是x万元,根据销售量相同列出方程,求解并检【分析】设今年15验即可.22.如图,一次函数47y x =与反比例函数y x=的图象相交于点()4C n ,,正方形ABCD 的顶点A ,B 分别落在y 轴和x 轴上.(1)求k ,n 的值;(2)求ABO ∠的正切值.∵正方形ABCD ,∴AB BC =,90ABC ∠=︒,∵90OAB ABO ∠+∠=︒=∠∴OAB EBC ∠=∠,又∵90AOB BEC ∠=︒=∠,23.如图,在ABC 中,90A ∠=︒,点O 在边BC 上,O 经过点B 并且与AC 相切于点D ,连接BD OD 、.(1)尺规作图:过点D 作DE BC ⊥,垂足为点E ;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,①求证:BD 平分ABC ∠;②若四边形ABED 的周长与面积均为18,求BD 的长.(2)①∵O 经过点B ∴OD CD ⊥,∴90ODC A ∠=︒=∠,∴OD AB ∥,24.已知抛物线()21y x mx m =+-+,(1)当4m =-时,求抛物线与x 轴交点的坐标;(2)抛物线的顶点为A .①若当0x <时,都有y 随x 的增大而减小.求此时顶点A 的纵坐标的取值范围;②抛物线与y 轴交于点B ,对称轴与x 轴交于点C ,直线AB 与x 轴交于点D ,抛物线在①的条件下,求AOD △的面积1S 与BCD △的面积2S 满足的数量关系.25.如图,在菱形ABCD 中,6,60AB ABC =∠=︒,(1)连接BD ,求BD 的值;(2)点E 以每秒2个单位长度的速度从B 点出发向点C 运动,同时点Q度的速度从D 点出发向点B 运动,当其中一点达到终点,另外一点随之停止运动.①连接EQ ,BEQ 能否为等腰三角形?如果能,求点E ,Q 的运动时间;如果不能,请说明理由;②连接,AE AQ ,当30EAQ ∠=︒时,求AE AQ +的值.∵在菱形ABCD 中,6,AB =∵1302CBD ABC ∠=∠=︒,∴3cos302BH BE ︒==,∴3BH BE =,即:33∵菱形ABCD ,60ABC ∠=∴AD BC ∥,60ADC ∠=︒,∴120,60DAB BAF ∠=︒∠=︒∴30ABF ADQ ∠=︒=∠,。

2024年中考数学第二次模拟考试+解析(广东广州卷)

2024年中考数学第二次模拟考试+解析(广东广州卷)

2024年中考第二次模拟考试(广州卷)数学·全解全析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.若一个数与它的相反数在数轴上对应的点之间的距离为4,则这个数是()A.-2B.0C.±2D.±4【答案】C【分析】根据相反数的性质,结合数轴确定出所求即可.【详解】解:若一个数与它的相反数在数轴上对应点之间的距离为4,则这个数是±2,故选:C.【点睛】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】D【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行解答即可.2【详解】解:根据主视图和左视图为矩形可判断出该几何体是柱体, 根据俯视图是两个矩形可判断出该几何体为.故选:D .【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.3.如图,ABC 内接于⊙O ,30A ∠=︒,则BOC ∠的度数为( )A .30︒B .60︒C .75°D .120°【答案】B【分析】本题考查了圆周角定理,直接利用圆周角定理即可得出答案. 【详解】解:∵弧BC 对的圆心角是BOC ∠,对的圆周角是A ∠,∴12A BOC ∠=∠,∴223060BOC A ∠=∠=⨯︒=︒. 故选:B .4.下列运算结果正确的是( ) A .347a a a += B .3332a a a ⋅= C .339236a a a ⋅=D .()362-a a =−【答案】D【分析】依次根据合并同类项,同底数幂的乘法(m n mna a a ⋅= ),单项式乘单项式,幂的乘方公式(()m n mna a =)对各选项判断即可.【详解】A .3a 与4a 不是同类项不能合并,故该选项错误;B .33336a a a a +⋅==,故该选项错误;C .633236a a a ⋅=,故该选项错误;D .()362-a a =−,故该选项正确.故选:D .【点睛】本题考查合并同类项、幂的相关计算和单项式乘单项式.解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及单项式乘单项式的运算法则. 5.一个不等式组12322x x x x−⎧<⎪⎨⎪−≥⎩,那么它的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【分析】先求出每个不等式的解集,后把解集表示到数轴上即可. 【详解】解:12322 x x x x −⎧<⎪⎨⎪−≥⎩①②,解不等式①,得:1x >−, 解不等式②,得:2x ≥, ∴该不等式组的解集为2x ≥, 其解集在数轴上表示如下:故选:B .【点睛】本题考查了一元一次不等式组的解法,解集的数轴表示,熟练求得不等式组的解集是解题的关键.6.如果当0x >时,反比例函数(0)ky k x=≠的函数值随x 的增大而增大,那么一次函数123y kx k =−的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限4【答案】B【分析】本题考查了一次函数的图象性质:y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴,直线与y 轴交于负半轴.①0,0k b y kx b >>⇔=+的图象在一、二、三象限;②0,0k b y kx b ><⇔=+的图象在一、三、四象限;③0,0k b y kx b <>⇔=+的图象在一、二、四象限;④0,0k b y kx b <<⇔=+的图象在二、三、四象限.反比例函数的图象性质,反比例函数(0)ky k x =≠的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.由反比例函数的性质可判断k 的符号,再根据一次函数的性质即可判断一次函数的图象经过的象限. 【详解】解:由题意得:0k <, 103k ∴<,20k −>,∴一次函数123y kx k=−的图象经过第一、二、四象限,故选:B .7.某班进行演讲比赛,其中6人的成绩如下:9.4,9.0,9.6,9.6,9.3,9.5(单位:分),则下列说法不正确的是( ) A .这组数据的众数是9.6分 B .这组数据的方差是13300C .这组数据的平均数是9.4分D .这组数据的中位数是9.5分【答案】D【分析】根据平均数、众数、中位数和方差的定义分别计算即可. 【详解】解:这组数据从大到小排列为9.6,9.6,9.5,9.4,9.3,9.0,9.6分出现次数最多,则这组数据的众数是9.6分,故A 选项正确,不符合题意;处于中间的两个数是9.5,9.4,则这组数据的中位数是9.45分,故D 选项错误,符合题意;这组数据的平均数为9.629.59.49.399.46⨯++++=,故C 选项正确,不符合题意; 方差为()()()()()22222129.69.49.59.49.49.49.39.49.09.46⎡⎤⨯⨯−+−+−+−+−⎣⎦ 13300=,故B 选项正确,不符合题意;故选:D .【点睛】本题主要考查方差,解题的关键是掌握平均数、众数、中位数和方差的定义. 8.如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC 为9m ,则这两棵树之间的坡面AB 的长为( )A .18mB .C .D .【答案】C【分析】AB 是Rt ABC △的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB 的长.【详解】解:如图,30BAC ∠=︒,90ACB ∠=︒,9AC =m , ∴AB=2BC ,∴222AC BC AB +=,即22294BC BC +=,解得:BC =,∴AB =, 故选:C .【点睛】本题考查了坡度坡角问题,直角三角形的性质,勾股定理.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.9.课本习题:“A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?”下列四位同学列方程正确的是( ) ①设A 型机器人每小时搬运x kg 化工原料,则: 甲列的方程为:90060030x x =+;乙列的方程为:90060030x x =− ②设A 型机器人搬运900kg 化工原料需要x 小时,则: 丙列的方程为:90060030x x +=;丁列的方程为:60090030x x+=6A .甲、丙B .甲、丁C .乙、丙D .乙、丁【答案】D【分析】分别从不同角度设未知数列出方程进行判断即可.【详解】解:设A 型机器人每小时搬运xkg 化工原料,则B 型机器人每小时搬运(x -30)kg 化工原料, 则90060030xx =− 故乙正确;设A 型机器人搬运900kg 化工原料需要x 小时,则60090030x x +=故丁正确. 故选:D .【点睛】本题考查由实际问题抽象出分式方程,解题关键是合理设元,找到等量关系列出方程.10.已知关于x 的方程()21210−−−=k x 有实数根,则k 的取值范围为( )A .2k ≥B .1k ≥−且12k ≠C .12k −≤≤且12k ≠D .12k −≤≤ 【答案】D【分析】根据已知分1-2k=0和1-2k≠0分别讨论求出k 的取值范围,再结合即可.【详解】解:∵关于x 的方程()21210−−−=k x 有实数根,若1-2k=0,则k=12,方程为10−=,此时方程有解,∴k=12;若1-2k≠0,则(()()24121k −⨯−⨯−−≥0,k+1≥0,分别解得:k≠12,k≤2,k≥-1,则k 的取值范围是:-1≤k≤2,且k≠12,综上:-1≤k≤2. 故选:D .【点睛】本题考查了根的判别式的应用,能根据题意分1-2k=0和1-2k≠0分别讨论求出k 的取值范围,当1-2k≠0时还需要满足(()()24121k −⨯−⨯−−≥0,k+1≥0.二、填空题(本大题共6个小题,每小题3分,共18分)11.5月5日,记者从襄阳市文化和旅游局获悉,五一长假期间,我市41家A 级景区全部开放,共接待游客约2270000人次.数据2270000用科学记数法表示为 . 【答案】62.2710⨯【分析】科学记数法的表现形式为10na ⨯的形式,其中110a ≤<,n 为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n 是负整数. 【详解】解:2270000用科学记数法表示为 62.2710⨯,故答案为:62.2710⨯.【点睛】本题考查了科学记数法—表示较大的数,科学记数法的表现形式为10na ⨯的形式,其中110a ≤<,n 为整数,表示时关键是要正确确定a 的值以及n 的值.12.若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y 2y (选填:﹥,﹤,=) 【答案】<【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.【详解】解:∵二次函数2y x k =+的对称轴为直线0x =,且图象开口向上, 又()011−−=,303−=,13<,∴1y 2y <故答案为:<13.明德华兴中学自2021年下学期恢复高中办学后,街舞社按四个年级分A 、B 、C 、D 四个学习小组,小明同学根据各小组的成员人数绘制了条形统计图(1),小华同学绘制了扇形统计图(2),其中m = .8【答案】72【分析】用360°乘以D 组的人数和总人数得出D 组所占的百分比即可得出答案. 【详解】解:四个小组的总人数为:4+8+12+6=30(人),D 组的人数在扇形统计图中所对应的圆心角的度数为:6360=7230⨯︒︒, ∴m=72, 故答案为:72.【点睛】本题考查了条形统计图、扇形统计图,以及用样本估计总体,弄清题意是解题的关键.14.若正方形的面积为36,则该正方形的对角线长为 .【答案】【分析】根据正方形面积公式,求出边长,再根据勾股定理即可求解. 【详解】解:∵正方形的面积为36, ∴6=,∴=,故答案为:【点睛】本题主要考查了正方形的性质,勾股定理,解题的关键是掌握正方形四条边相等.15.如图,已知BD CD ,分别是ABC ∠和ACE ∠的平分线,连接AD ,46DAC ∠=︒,BDC ∠= .【答案】44︒/44度【分析】过点D 作DF BA ⊥,交BA 的延长线于点F ,过点D 作DH AC ⊥于点H ,过点D 作DG BA ⊥,交BC 的延长线于点G ,根据角平分线的判定和性质可得DF DG DH ==,46DAC FAD ∠=∠=︒,从而得到88BAC ∠=︒,再由角平分线的性质和三角形外角的定义可得111222BDC ABC BAC ABC∠+∠=∠+∠,进行计算即可得到答案.【详解】解:如图,过点D 作DF BA ⊥,交BA 的延长线于点F ,过点D 作DH AC ⊥于点H ,过点D 作DG BA ⊥,交BC 的延长线于点G ,BD CD ,分别是ABC ∠和ACE ∠的平分线,DF BA ⊥,DH AC ⊥,DG BA ⊥, DF DG DH ∴==,DH AC DF BA ⊥⊥,,DF DH =,AD ∴平分CAF ∠, 46DAC FAD ∴∠=∠=︒, 180DAC FAD BAC ∠+∠+∠=︒, 180464688BAC ∴∠=︒−︒−︒=︒,BD CD ,分别是ABC ∠和ACE ∠的平分线,12DCE ACE ∠=∠∴,12DBC ABC∠=∠,DCE BDC DBC ACE ABC BAC ∠=∠+∠∠=∠+∠,,()1122BDC DBC ACE BAC ABC ∴∠+∠=∠=∠+∠,111222BDC ABC BAC ABC∴∠+∠=∠+∠,11884422BDC BAC ∴∠=∠=⨯︒=︒,故答案为:44︒.【点睛】本题主要考查了角平分线的判定与性质,三角形外角的定义及性质,熟练掌握角平分线的判定与性质,三角形外角的定义及性质,添加适当的辅助线是解题的关键.1016.如图,在Rt △ABC 中∠BAC =90°,点D 和点E 分别是AB ,AC 的中点,点F 和点G 分别在BA 和CA 的延长线上,若BC =10,GF =6,EF =4,则GD 的长为 .【答案】【分析】先利用三角形的中位线的性质求得线段152DE BC ==,然后在ADE ∆,AEF ∆,ADG ∆,AGF ∆中分别利用勾股定理即可求解.【详解】解:∵点D 和点E 分别是AB ,AC 的中点,BC =10, ∴152DE BC ==,∵Rt △ABC 中∠BAC =90°,∴ADE ∆,AEF ∆,ADG ∆,AGF ∆都是直角三角形, ∵GF =6,EF =4,∴由勾股定理得,22236AF AG GF +== ①,22216AF AE EF +==②, 22225AD AE DE +==③,∴−+①②③,得2245AD AG +=,∵在Rt ADG ∆中,222AD AG GD +=,∴245GD =,解得GD =GD =−故答案为:【点睛】本题考查了三角形的中位线的性质及勾股定理的应用,此处勾股定理的灵活运算是解题的关键.三、解答题(本大题共9小题,共72分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分4分) 解方程:(21)2(21)x x x −=−. 【答案】12122x x ==,【分析】运用因式分解法求解即可.【详解】解:移项得:(21)2(21)0x x x −−−=, 因式分解得:()()2210x x −−=,∴20x −=或210x −=, 解得:12122x x ==,.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解法解一元二次方程的一般步骤是解题的关键. 18.(本小题满分4分)如图,点B 在线段AC 上,BD CE ∥,AB EC =,DB BC =.求证:AD EB =.【答案】见解析【分析】首先根据平行线的性质得到ABD C ∠=∠,然后证明出()SAS ABD ECB ≌,最后根据全等三角形的性质求解即可. 【详解】证明:∵BD CE ∥, ∴ABD C ∠=∠,∴在ABD △和ECB 中,AB CE ABD C DB BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ECB ≌,∴AD EB =.【点睛】本题考查的知识点是全等三角形的性质和判定,解题的关键是熟练的掌握全等三角形的判定. 19.(本小题满分6分)12如图,ABC 在平面直角坐标系中,其中点()3,2A −−,点()4,1B −,点()1,3C −.(1)将ABC 向右平移4个单位得到111A B C △,在图中画出111A B C △,并写出点1A 的坐标; (2)求111A B C △的面积. 【答案】(1)见解析,()11,2A −(2)5.5【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点1A ,1B ,1C 并顺次连接即可得到111A B C △,根据点1A 在坐标系中的位置即可写出坐标;(2)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可. 【详解】(1)如图所示,111A B C △为所求,()11,2A −(2)111A 1113532313251535 5.52222B C S =⨯−⨯⨯−⨯⨯−⨯⨯=−−−=△【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质学会用割补法求三角形的面积. 20.(本小题满分6分)已知三个整式24x x +,44x +,2x .(1)从中选出两个进行加法运算,使所得整式可以因式分解,并进行因式分解; (2)从中选出两个分别作为分式的分子与分母,要求这个分式不是最简分式,并对这个分式进行约分. 【答案】(1)见解析 (2)见解析【分析】(1)先找出两个整式的和,再看看能否分解因式即可;(2)先找出两个整式分别作为分式的分子与分母,再看看能否约分即可 【详解】(1)解:()2244(2)x x x ++=+或()()22242422x x x x x x x ++=+=+;(2)解:()222444x x x x x x x x +++==或()222444x x x x x x x x ==+++.【点睛】本题考查了最简分式,因式分解,约分等知识点,能熟记完全平方公式和能正确约分是解此题的关键. 21.(本小题满分8分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.【答案】(1)见解析,23;(2)不公平,见解析【分析】(1)用列表法表示所有可能出现的结果,进而求出相应的概率即可; (2)求出小明、小亮获胜的概率即可.14【详解】(1)解:根据题意可列表或树状图如下:从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23=;(2)解:不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,2133≠, ∴不公平.【点睛】本题考查了列表法或树状图法求简单随机事件发生的概率,列举出所有可能出现的结果是正确解答的关键. 22.(本小题满分10分)金百超市经销某品牌童装,单价为每件50元时,每天销量为60件,当单价每件从50元降了20元时,一天销量为100件.设降x 元时,一天的销量为y 件.已知y 是x 的一次函数.(1)求y 与x 之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少? 【答案】(1)y 与x 之间的关系式为y=2x+60 (2)该天童装的单价是每件40元【分析】(1)根据题意先设出y 与x 的函数关系式y=kx+b ,再根据题目中的数据,即可求出该函数的解析式;(2)将y= 80代入(1) 中函数关系式,求出相应的x 的值即可. 【详解】(1)因为y 是x 的一次函数.所以,设y 与x 的函数关系式为y=kx+b ,由题意知,当x=0时, y=60 ;当x=20时, y= 100,所以,6020100b k b =⎧⎨+=⎩,解之得:602b k =⎧⎨=⎩ 所以y 与x 之间的关系式为y=2x+60 ; (2)当y=80时,由80=2x+60, 解得x=10, 所以50- 10= 40(元),所以该天童装的单价是每件40元.【点睛】本题考查一次函数的应用, 解答本题的关键是明确题意,求出相应的函数关系式.23.(本小题满分10分)已知抛物线224y ax ax a =++−的顶点为点P ,与x 轴分别交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点C(1)直接写出点P 的坐标为 ;(2)如图,若A 、B 两点在原点的两侧,且3OA OB =,四边形MNEF 为正方形,其中顶点E 、F 在x 轴上,M 、N 位于抛物线上,求点E 的坐标; (3)若线段2AB =,点Q 为反比例函数ky x=与抛物线224y ax ax a =++−在第一象限内的交点,设Q 的横坐标为m ,当13m <<时,求k 的取值范围. 【答案】(1)()1,4P −−;(2))2,0E;(3)12180k <<.16【分析】(1)利用配方把解析式配成顶点式即可;(2)根据正方形的性质则可以得出EF EN =,再由抛物线点的特征列出一元二次方程,求解即可得出点E 坐标;(3)利用二次函数和反比例函数的增减性即可求解. 【详解】(1)∵()222414y ax ax a a x =++−=+−,∴顶点()1,4P −−,故答案为:()1,4−−,(2)设()1,0A x ,()2,0B x ,∵抛物线对称轴为直线=1x −, ∴122x x +=−, 又∵3OA OB =, ∴123x x −=, ∴13x =−,21x =, ∴()30A −,,()10B ,,将()10B ,代入224y ax ax a =++−,解得1a =,∴抛物线解析式为:223y x x =+−, 设(),0(0)E m m >,则()2,0F m −−,∴()21EF m =+,()223EN m m =−+−,根据题意,得:()()22123m m m +=−+−,解得:12m =,22m =(舍去), ∴点)2,0E,(3)∵线段2AB =,抛物线对称轴为直线1x =, ∴()2,0A −,()0,0B ,∴02040a a a ⨯+⨯+−=,解得4a =,∴抛物线解析式为:248y x x =+,当13m <<时,对于抛物线248y x x =+,y 随x 的增大而增大, 对于反比例函数ky x =,y 随x 的增大而减小,∴1x =时,双曲线在抛物线上方, 即:241811k>⨯+⨯,解得:12k >,∴当3x =时,双曲线在抛物线下方, 即:43833k<⨯+⨯,解得:180k <,∴k 的取值范围:12180k <<.【点睛】此题考查了二次函数的图象及其性质、反比例函数的性质,熟练运用二次函数与反比例函数的性质是解题的关键. 24.(本小题满分12分) 问题发现:(1)如图1,在ABC 中,AB BC =,90ABC D ∠=︒.为BC 的中点,以CD 为直角边,在BC 下方作等腰直角CDE ,其中90CDE ∠=︒.以BD 为直角边,在BC 上方作等腰直角BDG ,其中90BDG ∠=︒,AE 与BG 交于点F .求证:AF EF =. 类比探究:(2)如图2,若将CDE 绕点C 顺时针旋转90︒,则()1中的结论是否仍然成立?请说明理由; 拓展延伸:(3)如图3,在()2的条件下,再将等腰直角CDE 沿直线BC 向右平移k 个单位长度,得到'''CDE,若AB a =,试求'AFFE 的值.(用含k ,a 的式子表示)【答案】(1)证明见解析 (2)成立,理由见解析18(3)'AF aFE k a =+【分析】(1)利用AAS 证明ABF △≌EGF △,可得结论;(2)连接EG ,BE ,首先利用SAS 证明DEG △≌DCB △,得GE BC =,DBC DGE ∠∠=,再利用AAS 证明ABF △≌EGF △,得AF EF =;(3)连接'EG ,由()2同理得''BCD ≌''GED ,再说明ABF △∽'EGF ,得''AF AB aFE GE k a ==+.【详解】(1)证明:由题意可得:点E 、D 、G 三点共线,且EG BC AB ==,AB EG ,BAE AEG ∴∠=∠,AFB EFG ∠∠=,ABF ∴≌()EGF AAS , AF EF ∴=.(2)解:(1)中的结论仍然成立,理由如下: 如图2,连接EG ,BE ,由题意得,BD GD =,DE DC =,90BDG CDE ∠∠==︒,点E 为AC 的中点,BDG BDE CDE BDE ∠∠∠∠∴−=−, GDE BDC ∠∠∴=, DEG ∴≌()DCB SAS , GE BC ∴=,DBC DGE ∠∠=,AB BC EG ∴==,又4545ABF DBC DGE EGF ∠∠∠∠=︒−=︒−=,AFB EFG ∠=∠, ABF ∴≅()AAS EGF ,AF EF ∴=.(3)解:由题意得,BC AB a ==,'CC k =, 则'BC k a =+,如图3,连接'EG, 由()2同理得BC D ''≅GE D '',''GE BC ∴=,D BC D GE ∠''=∠'',又45''45'''ABF DBC DGE EGF ∠∠∠∠=︒−=︒−=,'AFB EFG∠∠=, ABF ∴∽'EGF ,''AF AB aFE GE k a ∴==+.【点睛】本题是相似形综合题,主要考查了等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、旋转和平移的性质等知识点,熟练掌握旋转相似的基本模型是解题的关键. 25.(本小题满分12分)问题探究:数学课上老师让同学们解决这样的一个问题:如图①,已知E 是BC 的中点,点A 在DE 上,且BAE CDE ∠=∠.求证:AB CD =.分析:证明两条线段相等,常用的方法是应用全等三角形或者等腰三角形的性质.本题中要证相等的两条线段不在同一个三角形中,所以考虑从全等三角形入手,而AB 与CD 所在的两个三角形不全等.因此,要证AB CD =,必须添加适当的辅助线构造全等三角形.以下是两位同学添加辅助线的方法.第一种辅助线做法:如图②,延长DE 到点F ,使DE EF =,连接BF ;第二种辅助线做法:如图③,作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F .20(1)请你任意选择其中一种对原题进行证明:方法总结:以上方法称之为“倍长中线”法,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线构造全等三角形来解决问题.(2)方法运用:如图④,AD 是ABC 的中线,BE 与AD 交于点F 且AE EF =.求证:BF AC =.【答案】(1)证明见解析; (2)证明见解析.【分析】(1)第一种辅助线做法:延长DE 到点F ,使DE EF =,连接BF .只要证明△BEF ≌△CED ,即可解决问题.第二种辅助线做法:作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F ,先证明△BEF ≌△CEG ,再证明△ABF ≌△DCG 即可.(2)延长AD 到点Aˊ,使得DAˊ=AD ,连接BAˊ,只要证得△BDAˊ≌△CDA 即可. 【详解】(1)第一种辅助线做法:证明:如图1,延长DE 到点F ,使得DE=EF ,连接BF , ∵E 是BC 的中点 ∴BE=CE在△BEF与△CED中,BE CEBEF CEDDE FE=⎧⎪∠=∠⎨⎪=⎩∴△BEF≌△CED(SAS)∴BF=CD ,∠F=∠CDE又∵∠BAE=∠CDE∴∠BAE=∠F∴BF=AB∴AB=CD第二种辅助线做法:证明:如图2,作CG⊥DE于点G,BF⊥DE交DE延长线于点E;则∠F=∠CGE=∠CGD=90°,∵E是BC的中点,∴BE=CE在△BEF与△CEG中,F CGEBEF CEG BE CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEF≌△CEG (AAS)∴BF=CG,在△ABF与△DCG中,BAE CDEF CGDBF CG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△DCG(AAS),∴AB=CD .(2)如图3,延长AD到点Aˊ,使得DAˊ=AD,连接BAˊ,∵AD是△ABC的中线,∴BD=CD.在△BDAˊ与△CDA中,BD CDBDA CDADA DA=⎧⎪∠=∠⎨⎪=⎩ˊˊ,∴△BDAˊ≌△CDA (SAS)∴BAˊ=AC,∠Aˊ=∠CAD,又∵AE=EF,∴∠CAD=∠EFA=∠BFAˊ,∠Aˊ=∠BFAˊ∴BF=BAˊ∴BF=AC.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、三角形的中线等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考常考题型.22。

广东省专版广州市中考数学二模试卷(附答案)

广东省专版广州市中考数学二模试卷(附答案)

广东省广州市中考数学二模试卷题号 一 二三总分得分一、选择题(本大题共 10 小题,共 分)1.- 的倒数是()A. B. 2C. D.2. 以下所给图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.3. 如图,点 A . B . C 在 ⊙ D 上, ∠ABC=70 °,则 ∠ADC 的度数为()A. B. C. D.4.已知一组数据: 5, 7, 4, 8, 6,7, 2,则它的众数及中位数分别为( )A. 7 , 8B. , 6C. , 7D. 7 ,47 6 5. 以下图的几何体是由一些小立方块搭成的, 则这个几何体的俯视图是()A.B.C.D.6. 以下图,直线 AB ⊥CD 于点 O ,直线 EF 经过点 O ,若 ∠1=26 °,则 ∠2 的度数是()A. B. C.D. 以上答案都不对7. 某同学参加数学、 物理、化学三科比赛均匀成绩是93 分,此中数学 97 分,化学 89分,那么物理成绩是( )A. 91分B. 92分C. 93分D. 94分8.如图, A 、 B 两点在数轴上表示的数分别为a 、b ,下列式子建立的是()9.以下三个命题中,是真命题的有()①对角线相互均分且垂直的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.④对角线相互均分且相等的四边形是矩形A.3个B.2个C.1个D.4个10.如图,点 A, B 为直线 y=x 上的两点,过 A, B 两点分别作 y 轴的平行线交双曲线y=( x> 0)于 C,D 两点.若BD=3AC,则 9?OC2-OD 2的值为()A.16B.27C.32D.48二、填空题(本大题共 6 小题,共18.0 分)11.若 a3?a m=a9,则 m=______.12.因式分解: x3-4x=______.13.在 Rt△ABC 中,∠C=90 °, BC=8 且 cosB= ,则 AB=______ .14.如图,点 D、E 分别是△ABC 的边 AC、BC 上的点,AD=DE ,AB=BE,∠A=80 °,则∠BED=______ °.15.如图,将△ABC 绕点 C 顺时针旋转至△DEC ,使点 D 落在 BC 的延伸线上,已知∠A=27 °,∠B=40 °,则∠ACE=______ .216.抛物线 y=ax +bx+c( a≠0)的对称轴为直线 x=-1,与 x 轴的一个交点 A 在点( -3,0)和( -2,0)之间,其部分图象以下图,则以下 4 个结论:① b2 -4ac<0;② 2a-b=0;③a+b+c< 0;④点 M( x1, y1)、 N( x2, y2)在抛物线上,若 x1< x2,则 y1≤y2,此中正确的选项是 ______.三、解答题(本大题共9 小题,共102.0 分)17.解方程:- =1.18.如图,四边形 ABCD 是菱形,对角线 AC、 BD 订交于点 O, AB=5、AO=3,求菱形的面积.19.跟着交通道路的不停完美,带动了旅行业的发展,某市旅行景区有A、 B、 C、 D 、E 等有名景点,该市旅行部门统计绘制出2018 年“五 ?一”长假时期旅行中 A 景点所对应的圆心角的度数是______,并补全条形统计图.( 2)依据近几年到该市旅行人数增加趋向,估计2019 年“五 ?一”节将有80 万游客选择该市旅行,请估计有多少万人会选择去 E 景点旅行?(3)甲、乙两个旅行团在 A、B、D 三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举全部等可能的结果.20.已知A=?( x-y).(1)化简 A;(2)若 x2-6xy+9y2=0,求 A 的值.21.如图,△ABC 是等边三角形, D 为 BC 的中点,(1)尺规作图:(保存作图印迹,不写作法);①过点 B 作 AC 的平行线 BH;②过 D 作 BH 的垂线,分别交 AC, BH, AB 的延伸线于 E, F ,G(2)在图中找出一对全等的三角形,并证明你的结论.22.某小区为更好的提升业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购置 3 个温馨提示牌和 4 个垃圾箱共需580 元,且每个温馨提示牌比垃圾箱廉价40 元.( 1)问购置 1 个温馨提示牌和 1 个垃圾箱各需多少元?( 2)假如需要购置温馨提示牌和垃圾箱共100 个,花费不超出8000 元,问最多购23.如图,直线y=2x+2与y轴交于A点,与反比率函数(x>0)的图象交于点M,过 M 作 MH ⊥x 轴于点 H,且 tan∠AHO =2.( 1)求 k 的值;( 2)点 N( a, 1)是反比率函数(x>0)图象上的点,在x 轴上能否存在点P,使得 PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明原因.24.二次函数y=x2+px+q 的极点 M 是直线 y=-和直线y=x+m的交点.2+px+q 的分析( 1)若直线 y=x+m 过点 D( 0,-3 ),求 M 点的坐标及二次函数y=x式;( 2)试证明不论 m 取任何值,二次函数 y=x2+px+q 的图象与直线y=x+m 总有两个不一样的交点;( 3)在( 1)的条件下,若二次函数y=x2+px+q 的图象与 y 轴交于点 C,与 x 的右交点为 A,试在直线y=-上求异于M的点P,使P在△CMA的外接圆上.(1)求证: BC=CD ;(2)分别延伸 AB, DC 交于点 P,过点 A 作 AF ⊥CD 交 CD 的延伸线于点 F,若PB=OB, CD =,求DF的长.答案和分析1.【答案】D【分析】解:∵-×(-2)=1,∴-的倒数是-2,应选:D.依据乘积为 1 的两个数互为倒数,直接解答即可.本题主要考察倒数的定义,解决此类题目时,只需找到一个数与这个数的积为 1,那么此数就是这个数的倒数,特别要注意:正数的倒数也必定是正数,负数的倒数也必定是负数.2.【答案】D【分析】解:A 、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.应选:D.依据轴对称图形与中心对称图形的观点求解.本题考察了中心对称图形与轴对称图形的观点,轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转 180 度后两部分重合.3.【答案】B【分析】解:由圆周角定理得,∠ADC=2 ∠ABC=140°,应选:B.依据圆周角定理计算即可.本题考察的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的重点.4.【答案】B【分析】解:这组数据依据从小到大的次序摆列为:2、4、5、6、7、7、8,则众数为:7,中位数为:6.应选:B.依据众数和中位数的观点求解.本题考察了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据依据从小到大(或从大到小)的次序摆列,假如数据的个数是奇数,则处于中间地点的数就是这组数据的中位数;假如这组数据的个数是偶数,则中间两个数据的均匀数就是这组数据的中位数.5.【答案】A【分析】解:从几何体上边看,是左边 2 个,右边 1 个正方形.应选:A.依据俯视图的定义,从上往下看到的几何图形是俯视图即可判断.本题考察了三视图的知识,俯视图是从物体上边看所获得的图形,解答时学生易将三种视图混杂而错误的选其余选项.6.【答案】B【分析】解:∵∠1=26°,∠DOF 与∠1 是对顶角,∴∠DOF=∠1=26 °,又∵∠DOF 与∠2 互余,∴∠2=90 °-∠DOF=90°-26 °=64°.应选:B.已知∠1,且∠DOF 与∠1 是对顶角,可求∠DOF,再利用∠DOF 与∠2 互余,求∠2.本题主要考察了垂线的定义和对顶角的性质,难度不大.7.【答案】C【分析】解:物理成绩是:93×3-97-89=93(分).应选:C.直接利用数学、物理、化学三科比赛均匀成绩是 93 分,可得出总分,再减去数学 97 分,化学 89 分,即可得出答案.本题主要考察了算术均匀数,正确得出总分是解题重点.8.【答案】C【分析】解:a、b 两点在数轴上的地点可知:-1<a<0,b> 1,∴ab< 0,a+b> 0,故A 、B 错误;∵-1<a<0,b>1,∴b-1>0,a+1>0,a-1< 0 故 C 正确,D 错误.应选:C.依据 a、b 两点在数轴上的地点判断出其取值范围,再对各选项进行逐个剖析即可.本题考察的是数轴的特色,依据 a、b 两点在数轴上的地点判断出其取值范围是解答此题的重点.9.【答案】A【分析】解:① 对角线相互均分且垂直的四边形是菱形,故① 是假命题;② 三个角是直角的四边形是矩形,正确,故② 是真命题;③ 有一个角是直角的平行四边形是矩形,正确,故③ 是真命题;④ 对角线相互均分且相等的四边形是矩形,正确,故④ 是真命题;应选:A.依据矩形的判断方法一一判断即可;本题考察矩形的判断,解题的重点是记着矩形的判断方法,属于中考常考 题型.10.【答案】 C【分析】解:设点 A 的坐标为(m ,m ),点B 的坐标为(n ,n ),则点 C 的坐标为(m , ),点 D 的坐标为(n , ),∴BD=n- ,AC=-m ,∵BD=3AC ,∴n- =3( -m ).9?OC 2-OD 2=9(m 2+ )-(n 2+ ),=9[(m- 2 (n- 2 ,)+4]-[ )+4] =9(m-22,)+36-9(m- )-4 =32.应选:C .设 点A 的坐 标为 (m ,m ),点B 的坐 标为则 标为 (m , ),点 (n ,n ), 点 C 的坐D 的坐 标为 进 结(n , ), 而可得出 BD=n- 、AC= -m , 合 BD=3AC 可得出 n- =3( -m ),再利用勾股定理及配方法可得出 9?OC 2-OD 2=9[(m- )2+4]-[ (n-2,代入 n- =3( -m )即可求出结论 .)+4]本题考察了反比率函数 图象上点的坐 标特色、一次函数图象上点的坐 标特色以及勾股定理,利用勾股定理及配方找出 22 2) 9?OC -OD =9[ (m- )+4]-[ (n-2+4]是解题的重点.11.【答案】 6【分析】解:由题意可知:3+m=9,∴m=6,故答案为:6依据同底数 幂的运算即可求出答案.本题考察同底数幂的乘除法,解题的重点是正确理解同底数 幂的乘法运算,本题属于基础题型.12.【答案】 x ( x+2)( x-2)【分析】解:x 3-4x=x (x 2-4)=x (x+2)(x-2).故答案为:x (x+2)x (-2 ).第一提取公因式 x ,从而利用平方差公式分解因式得出即可.本题主要考察了提取公因式法以及公式法分解因式,熟 练应用平方差公式是解题重点.13.【答案】 16【分析】解:以下图:∵cosB= ,∴∠B=60 °, ∴∠A=30 °,则 BC= AB=8 ,故 AB=16 .故答案为:16.直接利用特别角的三角函数 值得出 ∠B 的度数,再利用直角三角形的性 质得出答案.本题主要考察了特别角的三角函数 值,正确得出∠B 度数是解 题重点 .14.【答案】 80【分析】解:在△ABD 与△EBD 中,,∴△ABD ≌△EBD , ∴∠BED= ∠A=80 °.先利用 SSS 证明 △ABD ≌△EBD ,再依据全等三角形 对应角相等即可求出∠BED .本题考察了全等三角形的判断与性 质,证明出 △ABD ≌△EBD 是解题的重点.15.【答案】 46°【分析】解:∵∠A=27°,∠B=40°,∴∠ACD= ∠A+ ∠B=27 °+40 °=67 °,∵△ABC 绕点 C 按顺时针方向旋转至△DEC ,∴△ABC ≌△DEC , ∴∠ACB= ∠DCE , ∴∠BCE=∠ACD , ∴∠BCE=67°,∴∠ACE=180°-∠ACD- ∠BCE=180°-67 °-67 °=46 °.故答案为:46°.先依据三角形外角的性 质求出 ∠ACD=67° ,再由△ABC 绕点 C 按顺时针方向旋转至△DEC ,获得△ABC ≌△DEC ,证明∠BCE=∠ACD ,利用平角为 180°即可解答.本题考察了旋转的性质,三角形外角的性质,解决本题的重点是由旋转获得△ABC ≌△DEC . 16.【答案】 ②③【分析】解:∵抛物线与 x 轴有 2 个交点,∴△=b 2-4ac > 0,因此① 错误;∵抛物 线的对称轴为直线 x=-=-1,∴b=2a ,因此② 正确;∵抛物 线对称轴为直线 x=-1,抛物线与 x 轴的一个交点 A 在点(-3,0)和(-2,0)之间,∴抛物 线与 x 轴的另一个交点在(0,0)和(1,0)之间,∴x=1 时,y < 0,∴a+b+c < 0,因此③ 正确;∵抛物线张口向下,故答案为②③ .利用抛物线与 x 轴的交点个数对①进行判断;利用抛物线的对称轴方程对②进行判断;利用抛物线的对称性获得抛物线与 x 轴的另一个交点在(0,0)和(1,0)之间,因此 x=1 时,y< 0,则可对③进行判断;利用二次函数的性质对④进行判断.本题考察了二次函数图象与系数的关系:对于二次函数 y=ax 2+bx+c(a≠0),二次项系数 a 决定抛物线的张口方向和大小.当 a>0 时,抛物线向上张口;当 a<0 时,抛物线向下张口;一次项系数b 和二次项系数a共同决定对称轴的地点.当 a 与 b 同号时(即ab>0),对称轴在 y 轴左边;当a 与 b 异号时(即ab <0),对称轴在 y 轴右边;常数项 c 决定抛物线与 y 轴交点地点:抛物线与 y轴交于(0,c).抛物线与 x 轴交点个数由△决定:△=b 2-4ac> 0 时,抛物线与 x轴有 2 个交点;△=b 2-4ac=0时,抛物线与 x 轴有 1 个交点;△=b2-4ac<0 时,抛物线与 x 轴没有交点.217.【答案】解:(x+3)-4(x-3)=(x-3)(x+3)2 2x +6x+9-4x+12=x -9,x=-15 ,查验: x=-15 代入( x-3)( x+3)≠0,∴原分式方程的解为:x=-15 ,【分析】依据分式方程的解法即可求出答案.本题考察分式的方程的解法,解题的重点是娴熟运用分式方程的解法,本题属于基础题型.18.【答案】解:∵四边形ABCD是菱形,∴AC ⊥BD ,∴∠AOB=90 °∴,又∵AC=2OA=6 ,BD =2OB=8.∴菱形.【分析】本题考察了勾股定理在直角三角形中的运用,本题中依据勾股定理求BO 的值是解题的重点.19.【答案】解:(1)50;108°;补全条形统计图以下:( 2)∵E 景点招待旅客数所占的百分比为:×100%=12%,∴2019 年“五?一”节选择去 E 景点旅行的人数约为:80 ×(万人);( 3)画树状图可得:∵共有 9 种可能出现的结果,这些结果出现的可能性相等,此中同时选择去同一个景点的结果有 3 种,∴同时选择去同一个景点的概率= = .【分析】【剖析】(1)依据A 景点的人数以及百分比进行计算即可获得该市周边景点共招待旅客数;依据圆心角的度数=部分占整体的百分比×360°进行计算,即可求得A 景点所对应的圆心角的度数;依据B 景点招待旅客数补全条形统计图;(2)依据E 景点招待旅客数所占的百分比,即可估计2019年“五?一”节选择去E景点旅行的人数;(3)依据甲、乙两个旅行团在 A 、B、D 三个景点中各选择一个景点,画出树状图,依据概率公式进行计算,即可获得同时选择去同一景点的概率.本题考察的是条形统计图、扇形统计图、用样本估计整体以及概率的计算的时,可用树形图列举,也能够列表列举.解题时注意:概率=所讨状况数与总状况数之比.【解答】解:(1)15÷30%=50;360°×30%=108°;故答案为 50;108°;补全条形统计图以下:(2)见答案;(3)见答案.20. 【答案】解:( 1) A= ?(x-y)=?(x-y)=;(2)∵x2-6xy+9y2=0,2∴( x-3y) =0,则 x-3y=0,故 x=3 y,则A===.【分析】(1)直接利用分式的基天性质化简得出答案;(2)第一得出 x,y 之间的关系,从而代入求出答案.本题主要考察了分式的乘除运算,正确分解因式是解题重点.21.【答案】解:(1)作图以下:①如图1;②如图 2:(2)△DEC ≌△DFB证明:∵BH ∥AC,∴∠DCE=∠DBF ,又∵D 是 BC中点,∴DC =DB .在△DEC 与△DFB 中,∵,∴△DEC≌△DFB ( ASA).【分析】(1)依据平行线及垂线的作法画图即可;(2)依据ASA 定理得出△DEC≌△DFB 即可.本题考察的是作图-基本作图,熟知等边三角形的性质是解答此题的重点.22.【答案】(1)解:设购置1个温馨提示牌需要x元,购置1个垃圾箱需要y元,依题意得,解得:答:购置 1 个温馨提示牌需要60 元,购置 1 个垃圾箱需要100 元.( 2)解:设购置垃圾箱m 个,则购置温馨提示牌(100-m)个,依题意得60( 100-m) +100m≤ 8000,解得 m≤50,答:最多购置垃圾箱50 个.【分析】(1)依据题意可得方程组,依据解方程组,可得答案;(2)依据花费不超过8000 元,可得不等式,依据解不等式,可得答案.本题考察了一元一次不等式的应用,理解题意得出不等关系是解题重点.23.【答案】解:(1)由 y=2x+2 可知 A( 0, 2),即 OA=2.∵tan∠AHO =2,∴OH=1.∵MH ⊥x 轴,∴点 M 的横坐标为1.∵点 M 在直线 y=2x+2 上,∴点 M 的纵坐标为4.即 M( 1, 4).∵点 M 在 y= 上,∴k=1 ×4=4 .( 2)存在.过点 N 作 N 对于 x 轴的对称点N1,连结 MN 1,交 x轴于 P(以下图).此时PM +PN 最小.∵点 N(a, 1)在反比率函数(x>0)上,∴a=4.即点 N 的坐标为( 4,1).∵N 与 N1对于 x 轴的对称, N 点坐标为( 4, 1),∴N1的坐标为( 4, -1).设直线 MN 1的分析式为y=kx+b.由解得 k=- , b=.∴直线 MN 1的分析式为.令 y=0 ,得 x= .∴P 点坐标为(, 0).【分析】(1)依据直线分析式求 A 点坐标,得 OA 的长度;依据三角函数定义可求 OH 的长度,得点 M 的横坐标;依据点M 在直线上可求点 M 的坐标.从而可求 K 的值;(2)依据反比率函数分析式可求 N 点坐标;作点N 对于 x 轴的对称点 N1,连结MN1 与 x 轴的交点就是知足条件的 P 点地点.本题考察一次函数的综合应用,波及线路最短问题,难度中等.24.【答案】解:(1)把D(0,-3)坐标代入直线y=x+m 中,得 m=-3,从而得直线 y=x-3,由 M 为直线 y=-与直线y=x-3的交点,解得,,∴得 M 点坐标为M( 2, -1),M y=x2+px+q 的极点,∵ 为二次函数∴其对称轴为x=2,由对称轴公式:x=-,得- =2,∴p=-4;由=-1,=-1 ,解得, q=3.∴二次函数y=x2+px+q 的分析式为:y=x2-4x+3;( 2)∵M 是直线 y=-和y=x+m的交点,∴,解得,,∴M 点坐标为 M(- ,),-、= ,∴ =-解得, p= , q= + ,由,得 x2 +(p-1) x+q-m=0,2△=(p-1) -4( q-m)=(-1 2-4(+-m =1 0 ))>,∴二次函数y=x2+px+q 的图象与直线y=x+m 总有两个不一样的交点;(3)由( 1)知,二次函数的分析式为: y=x2-4x+3,当 x=0 时, y=3.∴点 C 的坐标为C( 0, 3),令 y=0 ,即 x2-4x+3=0,解得 x1=1, x2=3,∴点 A 的坐标为A( 3, 0),由勾股定理,得AC=3 .∵M 点的坐标为 M( 2, -1),过 M 点作 x 轴的垂线,垂足的坐标应为(2,0),由勾股定理得, AM= ,过 M 点作 y 轴的垂线,垂足的坐标应为(0,-1),∴△CMA 是直角三角形, CM 为斜边, ∠CAM=90 °.直线 y=-与 △CMA 的外接圆的一个交点为 M ,另一个交点为 P ,则 ∠CPM =90°.即 △CPM 为 Rt △,设 P 点的横坐标为 x ,则 P ( x , - ).过点 P 作 x 轴垂线, 过点 M 作 y 轴垂线,两条垂线交于点E ,则 E ( x ,-1).过 P 作 PF ⊥y 轴于点 F ,则 F ( 0 , - ).在 Rt △PEM 222中, PM =PE +EM=( - +1) 2+( 2-x )2=-5x+5 .22222在 Rt △PCF 中, PC =PF +CF =x +( 3+ )=+3x+9.222, 在 Rt △PCM 中, PC +PM =CM得 +3x+9+ -5x+5=20,化简整理得 5x 2-4x-12=0 ,解得 x 1=2, x 2=- .当 x=2 时, y=-1,即为 M 点的横、纵坐标. ∴P 点的横坐标为 - ,纵坐标为 ,∴P (- , ).【分析】(1)依据题意求出 m ,解方程组 求出 M 点坐 标,依据二次函数的性 质求出 p 、q ,获得二次函数的分析式;(2)依据一元二次方程根的判 别式进行判断;(3)依据二次函数的性质求出点 C 的坐标、点 A 的坐标,依据勾股定理求出 CM ,依据勾股定理的逆定理判断 △CMA 是直角三角形,依据三角形的外接圆的性质计算.本题考察 的是二次函数知 识的综 合运用,掌握二次函数的性 质、一元二次方程根的判 别式是解题的重点.25.【答案】 ( 1)证明: ∵DC 2=CE ?CA ,∴∠CDB=∠DAC ,∵四边形 ABCD 内接于⊙ O,∴BC=CD ;( 2)解:方法一:如图,连结OC,∵BC=CD ,∴∠DAC=∠CAB ,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO ,∴AD ∥OC,∴= ,∵PB=OB,CD=,∴=∴PC=4又∵PC?PD =PB?PA∴4 ?( 4 +2)=OB?3OB∴OB=4,即 AB=2OB=8, PA=3OB=12 ,在 Rt△ACB 中,AC===2,∵AB 是直径,∴∠ADB=∠ACB=90 °∴∠FDA +∠BDC =90 °∠CBA+∠CAB=90 °∵∠BDC=∠CAB ,∴∠FDA =∠CBA,又∵∠AFD =∠ACB=90°,∴△AFD ∽△ACB∴在 Rt△AFP 中,设 FD =x,则 AF=,∴在 Rt△APF 中有,,求得 DF=.广东省专版广州市中考数学二模试卷(附答案)易证△PCO ∽△PDA ,可得=,△PGO ∽△PFA ,可得=,可得,=,由方法一中PC=4代入,即可得出DF =.【分析】(1)求出△CDE∽△CAD ,∠CDB=∠DAC 得出结论.(2)连结 OC,先证 AD ∥OC,由平行线分线段成比率性质定理求得 PC= ,再由割线定理 PC?PD=PB?PA求得半径为 4,依据勾股定理求得 AC= ,再证明△AFD ∽△ACB,得则设FD=x,AF= ,,可在 Rt△AFP 中,利用勾股定理列出对于x 的方程,求解得 DF.本题主要考察相像三角形的判断及性质,勾股定理及圆周角的相关知识的综合运用能力,重点是找准对应的角和边求解.第21 页,共 21页。

2024年中考数学二模试卷(广东省卷)(考试版A4)

2024年中考数学二模试卷(广东省卷)(考试版A4)

2024年中考第二次模拟考试(广东省卷)数学本试卷共23小题,满分120分,考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将将自己的准考证号、姓名、考场号和座位号填写在答题卡上。

用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡上各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进小麦6吨,记为+6吨,那么仓库运出小麦8吨应记为()吨.A .+8B .-8C .±8D .-22.下列图案中,是轴对称图形的是()A .B .C .D .3.赤道长约为40000000m ,用科学记数法可以把数字40000000表示为()A .4×107B .40×106C .400×105D .4000×1034.一条公路两次转弯后又回到原来的方向(即AB CD ),如图所示,如果第一次转弯时140B ∠=︒,那么C ∠应等于()A .140°B .40°C .100°D .180°25.化简:2(11x xx x +=++)A .1B .0C .xD .2x 6.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AB 与从轮子底部到拉杆顶部的高度CD 之比是黄金比(约等于0.618).已知80CD =cm ,则AB 约是()A .30cmB .49cmC .55cmD .129cm7.不等式组2234x x ≥-⎧⎨+<⎩的解在数轴上表示为()A .B .C.D.8.某校为庆祝中国共产党建党100周年举行“传承红色基因,沐浴阳光成长”歌咏比赛,七年级8个班通过抽签决定出场顺序,七年级(1)班恰好抽到第1个出场的概率为()A .110B .18C .810D .149.如图,四边形ABCD 内接于O DE ,是O 的直径,连接BD ,若120BCD ∠=︒,则BDE ∠的度数是()A .25︒B .30︒C .32︒D .35︒10.如图,抛物线与x 轴交于点A ,B ,与y 轴交于点G ,正方形CDEF 的边CD 在x 轴上,E ,F 在抛物线上,连结GA ,GB ,ABG 是正三角形,2AB =,则阴影部分的面积为()A 12B .3C .2D .2二、填空题(本大题共5个小题,每小题3分,共15分)11.分解因式:214a -=.12sin45°=.13.长方体的体积为103m 3,底面积为S ,高度为d ,则S 与d 之间的函数关系式为;当S =500时,d =.14.某服装的进价为400元,出售时标价为600元,由于换季,商场准备打折销售,但要保证利润率不低于5%,那么该服装至多打折.15.如图,四边形ABCD 是边长为2的正方形,点P 在正方形ABCD 内,PBC 是等边三角形,则PBD △的面积为.三、解答题(一)(本大题共3小题,第16题10分,第17、18题个7分,共24分)16.(104(1-;(2)一次函数的图像与25y x =-平行且与x 轴交于点(-2,0)求解析式17.新能源电动汽车与燃油汽车相比,因用车成本低逐渐广受大众的喜欢.经试测,燃油汽车的百公里成本是新能源电动汽车的5倍,在不考虑汽车其他损耗的情况下,100元的成本可使新能源电动汽车比燃油汽车多行驶800公里,求新能源电动汽车和燃油汽车的百公里成本.(备注:百公里成本指的是汽车每行驶100公里需要的成本)18.在如图所示平面直角坐标系中,每个小正方形的边长均为1,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.4(1)画出ABC 绕点O 顺时针旋转90︒后得到111A B C △;(2)在(1)的条件下,求点A 旋转到点1A 的过程中所经过的路径长(结果保留π).四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,在ABC 中,∠ACB为钝角.(1)尺规作图:在边AB 上确定一点D ,使∠ADC =2∠B (不写作法,保留作图痕迹,并标明字母);(2)在(1)的条件下,若∠B =15°,∠ACB =105°,CD =3,AC 3ABC 的面积.20.某校从甲、乙两个班各随机抽取10名学生参加全市义务教育质量监测.样本学生中体育学科的测试成绩(满分100分)如下表,学校进一步对样本学生每周课外锻炼时间进行了问卷调查,并绘制了条形统计图,数据如下:样本学生测试成绩甲班53656565787981828493乙班61636875787878808183平均数方差中位数众数甲班129.6578.565乙班74.553.8578请根据以上调查报告,解答下列问题:(1)请完成样本学生成绩表中所缺数据;(2)甲班有50名学生,估计在这些学生中课外锻炼时间达到3小时以上的人数;(3)从表中分析甲、乙两班样本学生测试成绩(从平均数、方差、中位数、众数中选一个统计量分析即可).21.某县消防大队到某小区进行消防演习.已知,图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC 可伸缩()15m 26m AC ≤≤,且起重臂AC 可绕点A 在一定范围内转动,张角为()90150CAE CAE ∠︒∠︒≤≤转动点A 距离地面BD 的高度AE 为3m .(1)当起重臂AC 长度为20m ,张角127CAE ∠=︒,求云梯消防车最高点C 距离地面BD 的高度CF ;(2)已知该小区层高为2.7m ,若某居民家突发险情,请问该消防车有效救援能达到几层?请说明理由.(结果精确到0.1,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈ 1.73≈)五、解答题(三)(本大题共2小题,每小题12分,共24分)22.综合与探究:如图,抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标是()10-,,点C 的坐标是()03,,点F 在对称轴上运动.(1)求抛物线的解析式及顶点D 的坐标;6(2)如图1,点D 关于y 轴的对称点是点E ,连接FE ,以EF 为边作等腰直角三角形EFG ,使EF FG =,90EFG ∠=︒,点G 恰好落在该抛物线上,求点F 的坐标;(3)点H 在抛物线上运动,请借助图2探究以点O ,B ,F ,H 为顶点的四边形是平行四边形,请直接写出点H 的坐标.23.定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,简称“四点共圆”.我们学过了“圆的内接四边形的对角互补”这一定理,它的逆命题“对角互补的四边形四个顶点共圆”是证明“四点共圆”的一种常用方法.除此之外,我们还经常用“同旁张角相等”来证明“四点共圆”.如图1,在线段AB 同侧有两点C ,D .连接AD ,AC ,BC ,BD ,如果C D ∠=∠,那么A ,B ,C ,D “四点共圆”(1)如图2,已知四边形ABCD 中,对角线AC 、BD 相交于点P ,点E 在CB 的延长线上,下列条件:①12∠=∠;②24∠∠=:③5ADC ∠∠=:④PA PC PB PD ⋅=⋅.其中,能判定A ,B ,C ,D “四点共圆”的条件有___________:(2)如图3,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,点D 在y 轴负半轴上,若A ,B ,C ,D “四点共圆”,且105ADC ∠=o ,求四边形ABCD 的面积;(3)如图4,已知ABC 是等腰三角形,AB AC =,点D 是线段BC 上的一个动点(点D 不与点B 重合,且BD CD <,连结AD ,作点C 关于AD 的对称点E ,连接EB 并延长交AD 的延长线于F ,连接AE ,DE .①求证:A ,D ,B ,E “四点共圆”;②若AB =AD AF ⋅的值是否会发生变化,若不变化,求出其值:若变化,请说明理由.。

广东省专版 广州市中考数学二模试卷(附答案)

广东省专版   广州市中考数学二模试卷(附答案)

广东省广州市中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.-的倒数是()A. B. 2 C. D.2.下列所给图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.3.如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()A.B.C.D.4.已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为()A. 7,8B. 7,6C. 6,7D. 7,45.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A. B. C. D.6.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.B.C.D. 以上答案都不对7.某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是()A. 91分B. 92分C. 93分D. 94分8.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A. B. C. D.9.下列三个命题中,是真命题的有()①对角线互相平分且垂直的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.④对角线互相平分且相等的四边形是矩形A. 3个B. 2个C. 1个D. 4个10.如图,点A,B为直线y=x上的两点,过A,B两点分别作y轴的平行线交双曲线y=(x>0)于C,D两点.若BD=3AC,则9•OC2-OD2的值为()A. 16B. 27C. 32D. 48二、填空题(本大题共6小题,共18.0分)11.若a3•a m=a9,则m=______.12.因式分解:x3-4x=______.13.在Rt△ABC中,∠C=90°,BC=8且cos B=,则AB=______.14.如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=______°.15.如图,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=______.16.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图所示,则下列4个结论:①b2-4ac<0;②2a-b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确的是______.三、解答题(本大题共9小题,共102.0分)17.解方程:-=1.18.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,AB=5、AO=3,求菱形的面积.19.随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2018年“五•一”期间,该市周边景点共接待游客______万人,扇形统计图中A景点所对应的圆心角的度数是______,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2019年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.20.已知A=•(x-y).(1)化简A;(2)若x2-6xy+9y2=0,求A的值.21.如图,△ABC是等边三角形,D为BC的中点,(1)尺规作图:(保留作图痕迹,不写作法);①过点B作AC的平行线BH;②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G(2)在图中找出一对全等的三角形,并证明你的结论.22.某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买3个温馨提示牌和4个垃圾箱共需580元,且每个温馨提示牌比垃圾箱便宜40元.(1)问购买1个温馨提示牌和1个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8000元,问最多购买垃圾箱多少个?23.如图,直线y=2x+2与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求k的值;(2)点N(a,1)是反比例函数(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.24.二次函数y=x2+px+q的顶点M是直线y=-和直线y=x+m的交点.(1)若直线y=x+m过点D(0,-3),求M点的坐标及二次函数y=x2+px+q的解析式;(2)试证明无论m取任何值,二次函数y=x2+px+q的图象与直线y=x+m总有两个不同的交点;(3)在(1)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x的右交点为A,试在直线y=-上求异于M的点P,使P在△CMA的外接圆上.25.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.答案和解析1.【答案】D【解析】解:∵-×(-2)=1,∴-的倒数是-2,故选:D.根据乘积为1的两个数互为倒数,直接解答即可.本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2.【答案】D【解析】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:由圆周角定理得,∠ADC=2∠ABC=140°,故选:B.根据圆周角定理计算即可.本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.4.【答案】B【解析】解:这组数据按照从小到大的顺序排列为:2、4、5、6、7、7、8,则众数为:7,中位数为:6.故选:B.根据众数和中位数的概念求解.本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.【答案】A【解析】解:从几何体上面看,是左边2个,右边1个正方形.故选:A.根据俯视图的定义,从上往下看到的几何图形是俯视图即可判断.本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.6.【答案】B【解析】解:∵∠1=26°,∠DOF与∠1是对顶角,∴∠DOF=∠1=26°,又∵∠DOF与∠2互余,∴∠2=90°-∠DOF=90°-26°=64°.故选:B.已知∠1,且∠DOF与∠1是对顶角,可求∠DOF,再利用∠DOF与∠2互余,求∠2.此题主要考查了垂线的定义和对顶角的性质,难度不大.7.【答案】C【解析】解:物理成绩是:93×3-97-89=93(分).故选:C.直接利用数学、物理、化学三科竞赛平均成绩是93分,可得出总分,再减去数学97分,化学89分,即可得出答案.此题主要考查了算术平均数,正确得出总分是解题关键.8.【答案】C【解析】解:a、b两点在数轴上的位置可知:-1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵-1<a<0,b>1,∴b-1>0,a+1>0,a-1<0故C正确,D错误.故选:C.根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.9.【答案】A【解析】解:①对角线互相平分且垂直的四边形是菱形,故①是假命题;②三个角是直角的四边形是矩形,正确,故②是真命题;③有一个角是直角的平行四边形是矩形,正确,故③是真命题;④对角线互相平分且相等的四边形是矩形,正确,故④是真命题;故选:A.根据矩形的判定方法一一判断即可;本题考查矩形的判定,解题的关键是记住矩形的判定方法,属于中考常考题型.10.【答案】C【解析】解:设点A的坐标为(m,m),点B的坐标为(n,n),则点C的坐标为(m,),点D的坐标为(n,),∴BD=n-,AC=-m,∵BD=3AC,∴n-=3(-m).9•OC2-OD2=9(m2+)-(n2+),=9[(m-)2+4]-[(n-)2+4],=9(m-)2+36-9(m-)2-4,=32.故选:C.设点A的坐标为(m,m),点B的坐标为(n,n),则点C的坐标为(m,),点D的坐标为(n,),进而可得出BD=n-、AC=-m,结合BD=3AC可得出n-=3(-m),再利用勾股定理及配方法可得出9•OC2-OD2=9[(m-)2+4]-[(n-)2+4],代入n-=3(-m)即可求出结论.本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及勾股定理,利用勾股定理及配方找出9•OC2-OD2=9[(m-)2+4]-[(n-)2+4]是解题的关键.11.【答案】6【解析】解:由题意可知:3+m=9,∴m=6,故答案为:6根据同底数幂的运算即可求出答案.本题考查同底数幂的乘除法,解题的关键是正确理解同底数幂的乘法运算,本题属于基础题型.12.【答案】x(x+2)(x-2)【解析】解:x3-4x=x(x2-4)=x(x+2)(x-2).故答案为:x(x+2)(x-2).首先提取公因式x,进而利用平方差公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.13.【答案】16【解析】解:如图所示:∵cosB=,∴∠B=60°,∴∠A=30°,则BC=AB=8,故AB=16.故答案为:16.直接利用特殊角的三角函数值得出∠B的度数,再利用直角三角形的性质得出答案.此题主要考查了特殊角的三角函数值,正确得出∠B度数是解题关键.14.【答案】80【解析】解:在△ABD与△EBD中,,∴△ABD≌△EBD,∴∠BED=∠A=80°.故答案为80.先利用SSS证明△ABD≌△EBD,再根据全等三角形对应角相等即可求出∠BED.本题考查了全等三角形的判定与性质,证明出△ABD≌△EBD是解题的关键.15.【答案】46°【解析】解:∵∠A=27°,∠B=40°,∴∠ACD=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=67°,∴∠ACE=180°-∠ACD-∠BCE=180°-67°-67°=46°.故答案为:46°.先根据三角形外角的性质求出∠ACD=67°,再由△ABC绕点C按顺时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.16.【答案】②③【解析】解:∵抛物线与x轴有2个交点,∴△=b2-4ac>0,所以①错误;∵抛物线的对称轴为直线x=-=-1,∴b=2a,所以②正确;∵抛物线对称轴为直线x=-1,抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,∴a+b+c<0,所以③正确;∵抛物线开口向下,∴当x1<x2<-1时,则y1<y2;当-1<x1<x2时,则y1>y2;所以④错误.故答案为②③.利用抛物线与x轴的交点个数对①进行判断;利用抛物线的对称轴方程对②进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在(0,0)和(1,0)之间,所以x=1时,y<0,则可对③进行判断;利用二次函数的性质对④进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x 轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.17.【答案】解:(x+3)2-4(x-3)=(x-3)(x+3)x2+6x+9-4x+12=x2-9,x=-15,检验:x=-15代入(x-3)(x+3)≠0,∴原分式方程的解为:x=-15,【解析】根据分式方程的解法即可求出答案.本题考查分式的方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.18.【答案】解:∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°∴,又∵AC=2OA=6,BD=2OB=8..∴菱形【解析】根据菱形的面积等于对角线乘积的一半可以求菱形ABCD的面积.本题考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.19.【答案】解:(1)50;108°;补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2019年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率==.【解析】【分析】(1)根据A景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;根据圆心角的度数=部分占总体的百分比×360°进行计算,即可求得A 景点所对应的圆心角的度数;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2019年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.本题考查的是条形统计图、扇形统计图、用样本估计总体以及概率的计算的综合应用,读懂统计图、从中获取正确的信息是解题的关键.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.【解答】解:(1)15÷30%=50;360°×30%=108°;故答案为50;108°;补全条形统计图如下:(2)见答案;(3)见答案.20.【答案】解:(1)A=•(x-y)=•(x-y)=;(2)∵x2-6xy+9y2=0,∴(x-3y)2=0,则x-3y=0,故x=3y,则A===.【解析】(1)直接利用分式的基本性质化简得出答案;(2)首先得出x,y之间的关系,进而代入求出答案.此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.【答案】解:(1)作图如下:①如图1;②如图2:(2)△DEC≌△DFB证明:∵BH∥AC,∴∠DCE=∠DBF,又∵D是BC中点,∴DC=DB.在△DEC与△DFB中,∵ ,∴△DEC≌△DFB(ASA).【解析】(1)根据平行线及垂线的作法画图即可;(2)根据ASA定理得出△DEC≌△DFB即可.本题考查的是作图-基本作图,熟知等边三角形的性质是解答此题的关键.22.【答案】(1)解:设购买1个温馨提示牌需要x元,购买1个垃圾箱需要y元,依题意得,解得:答:购买1个温馨提示牌需要60元,购买1个垃圾箱需要100元.(2)解:设购买垃圾箱m个,则购买温馨提示牌(100-m)个,依题意得60(100-m)+100m≤8000,解得m≤50,答:最多购买垃圾箱50个.【解析】(1)根据题意可得方程组,根据解方程组,可得答案;(2)根据费用不超过8000元,可得不等式,根据解不等式,可得答案.本题考查了一元一次不等式的应用,理解题意得出不等关系是解题关键.23.【答案】解:(1)由y=2x+2可知A(0,2),即OA=2.∵tan∠AHO=2,∴OH=1.∵MH⊥x轴,∴点M的横坐标为1.∵点M在直线y=2x+2上,∴点M的纵坐标为4.即M(1,4).∵点M在y=上,∴k=1×4=4.(2)存在.过点N作N关于x轴的对称点N1,连接MN1,交x轴于P(如图所示).此时PM+PN最小.∵点N(a,1)在反比例函数(x>0)上,∴a=4.即点N的坐标为(4,1).∵N与N1关于x轴的对称,N点坐标为(4,1),∴N1的坐标为(4,-1).设直线MN1的解析式为y=kx+b.由解得k=-,b=.∴直线MN1的解析式为.令y=0,得x=.∴P点坐标为(,0).【解析】(1)根据直线解析式求A点坐标,得OA的长度;根据三角函数定义可求OH 的长度,得点M的横坐标;根据点M在直线上可求点M的坐标.从而可求K 的值;(2)根据反比例函数解析式可求N点坐标;作点N关于x轴的对称点N1,连接MN1与x轴的交点就是满足条件的P点位置.此题考查一次函数的综合应用,涉及线路最短问题,难度中等.24.【答案】解:(1)把D(0,-3)坐标代入直线y=x+m中,得m=-3,从而得直线y=x-3,由M为直线y=-与直线y=x-3的交点,得,解得,,∴得M点坐标为M(2,-1),∵M为二次函数y=x2+px+q的顶点,∴其对称轴为x=2,由对称轴公式:x=-,得-=2,∴p=-4;由=-1,=-1,解得,q=3.∴二次函数y=x2+px+q的解析式为:y=x2-4x+3;(2)∵M是直线y=-和y=x+m的交点,∴ ,解得,,∴M点坐标为M(-,),∴-=-、=,解得,p=,q=+,由,得x2+(p-1)x+q-m=0,△=(p-1)2-4(q-m)=(-1)2-4(+-m)=1>0,∴二次函数y=x2+px+q的图象与直线y=x+m总有两个不同的交点;(3)由(1)知,二次函数的解析式为:y=x2-4x+3,当x=0时,y=3.∴点C的坐标为C(0,3),令y=0,即x2-4x+3=0,解得x1=1,x2=3,∴点A的坐标为A(3,0),由勾股定理,得AC=3.∵M点的坐标为M(2,-1),过M点作x轴的垂线,垂足的坐标应为(2,0),由勾股定理得,AM=,过M点作y轴的垂线,垂足的坐标应为(0,-1),由勾股定理,得CM===2.∵AC2+AM2=20=CM2,∴△CMA是直角三角形,CM为斜边,∠CAM=90°.直线y=-与△CMA的外接圆的一个交点为M,另一个交点为P,则∠CPM=90°.即△CPM为Rt△,设P点的横坐标为x,则P(x,-).过点P作x轴垂线,过点M作y轴垂线,两条垂线交于点E,则E(x,-1).过P作PF⊥y轴于点F,则F(0,-).在Rt△PEM中,PM2=PE2+EM2=(-+1)2+(2-x)2=-5x+5.在Rt△PCF中,PC2=PF2+CF2=x2+(3+)2=+3x+9.在Rt△PCM中,PC2+PM2=CM2,得+3x+9+-5x+5=20,化简整理得5x2-4x-12=0,解得x1=2,x2=-.当x=2时,y=-1,即为M点的横、纵坐标.∴P点的横坐标为-,纵坐标为,∴P(-,).【解析】(1)根据题意求出m,解方程组求出M点坐标,根据二次函数的性质求出p、q,得到二次函数的解析式;(2)根据一元二次方程根的判别式进行判断;(3)根据二次函数的性质求出点C的坐标、点A的坐标,根据勾股定理求出CM,根据勾股定理的逆定理判断△CMA是直角三角形,根据三角形的外接圆的性质计算.本题考查的是二次函数知识的综合运用,掌握二次函数的性质、一元二次方程根的判别式是解题的关键.25.【答案】(1)证明:∵DC2=CE•CA,∴=,△CDE∽△CAD,∴∠CDB=∠DAC,∵四边形ABCD内接于⊙O,∴BC=CD;(2)解:方法一:如图,连接OC,∵BC=CD,∴∠DAC=∠CAB,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∴=,∵PB=OB,CD=,∴=∴PC=4又∵PC•PD=PB•PA∴4•(4+2)=OB•3OB∴OB=4,即AB=2OB=8,PA=3OB=12,在Rt△ACB中,AC===2,∵AB是直径,∴∠ADB=∠ACB=90°∴∠FDA+∠BDC=90°∠CBA+∠CAB=90°∵∠BDC=∠CAB,∴∠FDA=∠CBA,又∵∠AFD=∠ACB=90°,∴△AFD∽△ACB∴在Rt△AFP中,设FD=x,则AF=,∴在Rt△APF中有,,求得DF=.方法二;连接OC,过点O作OG垂直于CD,易证△PCO∽△PDA,可得=,△PGO∽△PFA,可得=,可得,=,由方法一中PC=4代入,即可得出DF=.【解析】(1)求出△CDE∽△CAD,∠CDB=∠DAC得出结论.(2)连接OC,先证AD∥OC ,由平行线分线段成比例性质定理求得PC=,再由割线定理PC•PD=PB•PA求得半径为4,根据勾股定理求得AC=,再证明△AFD∽△ACB,得,则可设FD=x,AF=,在Rt△AFP中,利用勾股定理列出关于x的方程,求解得DF.本题主要考查相似三角形的判定及性质,勾股定理及圆周角的有关知识的综合运用能力,关键是找准对应的角和边求解.第21页,共21页。

广东省专版 广州市中考数学二模试卷(附答案)

广东省专版   广州市中考数学二模试卷(附答案)

广东省广州市中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.方程x+1=3的解是()A. B. C. D.2.∠α=35°,则∠α的余角的度数为()A. B. C. D.3.人类的遗传物质是DNA,DNA是很大的链,最短的22号染色体长达30000000个核苷酸,30000000用科学记数法表示为()A. B. C. D.4.一个多边形的内角和是1260°,这个多边形的边数是()A. 7B. 8C. 9D. 105.若点P(a,b)在第一象限,则点P1(-a,-b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.一组数据:-2,-1,0,1,2的方差是()A. 1B. 2C. 3D. 47.下列二次根式中的最简二次根式是()A. B. C. D.8.下列说法不正确的是()A. 三角形的中线在三角形的内部B. 三角形的角平分线在三角形的内部C. 三角形的高在三角形的内部D. 三角形必有一高线在三角形的内部9.甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等()A. 6天B. 5天C. 4天D. 3天10.如图,在▱ABCD中,若M为BC边的中点,AM与BD交于点N,那么S△BMN:S=▱ABCD ()A. 1:12B. 1:9C. 1:8D. 1:6二、填空题(本大题共6小题,共18.0分)11.正比例函数y=3x的图象经过第______ 象限.12.若反比例函数y=的图象在第一、第三象限,则m的取值范围是______ .13.菱形的两条对角线长分别为16和12,则它的面积为______ .14.已知一组数据:0,x,2,4,5的众数是4,那么这组数据的中位数是______ .15.若2•4m•8m=216,则m= ______ .16.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D.已知BD:CD=3:2,点D到AB的距离是6,则BC的长是______.三、计算题(本大题共1小题,共6.0分)17.解方程:x2+2x-8=0.四、解答题(本大题共8小题,共64.0分)18.如图,E、F分别是矩形ABCD对角线上的两点,且BE=DF,求证:AE=CF.19.已知式子:(a-b)2+(a+b)(a-b)-2a2.(1)化简上式(2)若a,b互为倒数,请你取一对具体的值代入化简后的式子中计算求值.20.为喜迎新年,九三班上学期期末开展了“元旦游园”活动.其中一项是抽奖获奖品的活动:抽奖箱中有4个标号分别为1,2,3,4的质地、大小完全相同的小球.参与的同学任意摸取一个小球,然后放回,搅匀后再摸取一个小球.若两次摸出的数字之和是“8”为一等奖,可获签字笔一支;数字之和是“6”为二等奖,可获铅笔一支;数字之和其他数字则为三等奖,可获橡皮擦一个.(1)参与抽奖的获三等奖的概率为______ ;(2)分别求出参与抽奖获一等奖和二等奖的概率.21.如图,一次函数y=mx+1的图象经过点A(-1,0),且与反比例函数y=(k≠0)交于点B(n,2).(1)求一次函数和反比例函数的解析式;(2)求当1≤x≤6时,反比例函数y的取值范围.22.某单位购买了420棵树苗在3月12日植树节带领全体员工去附近景区义务植树,因今年植树节是周六,所以不少家属也参加了此次植树活动.这样,每小时植树量是原计划的1.2倍,结果提前了2小时完成植树任务.(1)原计划每小时植树多少棵?(2)求实际完成植树任务的小时数.23.海滨城市某校九(2)班张华(图5中的A处)与李力(图中的B处)两同学在东西方向的沿海路上,分别测得海中灯塔P的方位角为北偏东60°、北偏东30°,此时他们相距800米.(1)∠PBC= ______ °.(2)求灯塔P到沿海路的距离(结果用根号表示)24.如图,在△ABC中,AB=10,BC=12,以AB为直径的⊙O交BC于点D.过点D的⊙O的切线垂直AC于点F,交AB的延长线于点E.(1)连接OD,则OD与AC的位置关系是______.(2)求AC的长.(3)求sin E的值.25.已知关于x的二次函数y=x2+(2k-1)x+k2-1,且关于x的方程x2+(2k-1)x+k2-1=0的两根的平方和等于9.(1)求函数的解析式.(2)设这个二次函数的图象与x轴从左至右分别交于AB两点,在图7所给的平面直角坐标系中画出函数的大致图象,点M是位于对称轴右侧函数图象上的一点,且锐角△AMB的面积的等于3,求点M的坐标.(3)在(2)的条件下,过点M及点E(,0)的直线与抛物线交于点P,求证:△AMP是直角三角形,并求△AMP的面积.答案和解析1.【答案】C【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.方程移项合并,把x系数化为1,即可求出解.【解答】解:方程x+1=3,移项,得:x=3-1合并同类项,得:x=2,故选C.2.【答案】B【解析】解:∵∠α=35°,∴∠α的余角=90°-35°=55°.故选B.根据互余两角之和为90°求出∠α的余角的度数.本题考查了余角和补角的知识,解答本题的关键是掌握互余两角之和为90°.3.【答案】B【解析】解:30000000用科学记数法表示为3×107.故选B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:设这个多边形的边数是n,则(n-2)•180°=1260°,解得n=9.故选C.根据多边形的内角和公式列式求解即可.本题考查了多边形的内角和公式,熟记公式是解题的关键,是基础题,比较简单.5.【答案】C【解析】【分析】根据各象限内点的坐标特征解答即可得到结果.本题主要考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【解答】解:∵点P(a,b)在第一象限,∴a>0,b>0,∴-a<0,-b<0,∴点P1(-a,-b)在第三象限.故选C.6.【答案】B【解析】解:数据的平均数=(-2-1-0+2+1)=0,方差s2=[(-2-0)2+(-1-0)2+(0-0)2+(1-0)2+(2-0)2]=2.故选B.直接利用方差计算公式计算方差.熟练掌握方差的定义.它反映数据波动大小的量.7.【答案】D【解析】解:A、=2,故不是最简二次根式,本选项错误;B、=2,故不是最简二次根式,本选项错误;C、=,故不是最简二次根式,本选项错误;D、是最简二次根式,本选项正确.故选D.根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.8.【答案】C【解析】【分析】本题考查了三角形的角平分线、中线、高线,是基础题,熟记概念以及在三角形中的位置是解题的关键.根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.【解答】解:A.三角形的中线在三角形的内部正确,故本选项不符合题意;B.三角形的角平分线在三角形的内部正确,故本选项符合题意;C.只有锐角三角形的三条高在三角形的内部,故本选项不符合题意;D.三角形必有一高线在三角形的内部正确,故本选项不符合题意.故选C.9.【答案】D【解析】解:设x天后两仓库存煤相同,则200-15x=80+25x,解得x=3.答:3天后两仓库存煤相同.故选D.设x天后两仓库存煤相同,则根据题干中给出条件列出方程式即可解题.本题考查了一元一次方程的应用,本题中设x天后两仓库存煤相同,根据仓库存煤相同列出方程式是解题的关键.10.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵M为BC边的中点,∴BC=2BM=AD,∵AD∥BC,∴△AND∽△MNB,∴DN:BN=AD:BM=2:1,∴=()2=,=2,∴S△ABN=2S△BMN,S△AND=4S△BMN,∴S=2S△ABD=2(S△AND+S△ABN)=12S△BMN,平行四边形ABCD=1:12,即S△BMN:S▱ABCD故选A.根据平行四边形的性质得出AD=BC,AD∥BC,求出BC=2BM=AD,根据相似三角形的判定得出△AND∽△MNB,求出DN:BN=AD:BM=2:1,根据相似三角形的性质和三角形的面积公式求出S△ABN=2S△BMN,S△AND=4S△BMN,即可得出答案.本题考查了平行四边形的性质,相似三角形的性质和判定的应用,能灵活运用定理进行变形是解此题的关键,注意:相似三角形的面积之比等于相似比的平方.11.【答案】一、三【解析】解:∵k=3>0,∴正比例函数y=3x的图象经过一、三象限.故答案为:一、三.根据k=3>0和正比例函数的性质即可得到答案.本题主要考查对正比例函数的性质的理解和掌握,能熟练地运用正比例函数的性质进行说理是解此题的关键.12.【答案】m>【解析】【分析】根据反比例函数的图象在第一、第三象限列出关于m的不等式,求出m的取值范围即可.本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.【解答】解:∵反比例函数y=的图象在第一、第三象限,∴2m-1>0,解得m>.故答案为:m>.13.【答案】96【解析】解:∵菱形的两条对角线长分别为16和12,∴它的面积为:×16×12=96.故答案为:96.由菱形的两条对角线长分别为16和12,根据菱形的面积等于对角线积的一半,即可求得答案.此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.14.【答案】4【解析】解:∵该组数据中的众数为4,∴x=4,将这组数据按照从小到大的顺序排列为:0,2,4,4,5,故中位数为:4,故答案为:4.根据众数为4,可得x等于4,然后根据中位数的概念,求解即可.本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.【答案】3【解析】解:∵2•4m•8m=216,∴2•22m•23m=216,∴1+5m=16,解得:m=3.故答案为:3.首先利用幂的乘方运算法则得出2•22m•23m=216,再利用同底数幂的乘法运算法则即可得出关于m的等式,求出m的值即可.本题主要考查了同底数幂的乘法运算和幂的乘方运算,正确应用运算法则是解题的关键.16.【答案】15【解析】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴CD=DE=6,又BD:CD=3:2,∴BD=9,∴BC=BD+DC=15,故答案为:15.作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据题意求出BD的长,计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.【答案】解:x2+2x-8=0,分解因式得:(x+4)(x-2)=0,∴x+4=0,x-2=0,解方程得:x1=-4,x2=2,∴方程的解是x1=-4,x2=2.【解析】分解因式后得到(x+4)(x-2)=0,推出方程x+4=0,x-2=0,求出方程的解即可.本题主要考查对解一元一次方程,等式的性质,解一元二次方程等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.18.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△DCF中,,∴△ABE≌△DCF(SAS).∴AE=CF.【解析】根据已知条件利用SAS来判定△ABE≌△DCF,从而得出AE=CF.此题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.19.【答案】解:(1)(a-b)2+(a+b)(a-b)-2a2=a2-2ab+b2+a2-b2-2a2=-2ab;(2)当a=1,b=1时,原式=-2×1×1=-2.【解析】(1)根据完全平方公式、平方差公式可以化简本题;(2)根据题意,取一组符合要求的a、b的值代入化简后的式子即可解答本题.本题考查整式的混合运算-化简求值,解题的关键是明确题意,明确整式混合运算的计算方法.20.【答案】【解析】解:(1)由题意可得,抽取两次所有的可能性为:(1,1)、(1,2)、(1,3)、(1,4)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(4,1)、(4,2)、(4,3)、(4,4),抽取两次所有可能性的和为:2、3、4、5、3、4、5、6、4、5、6、7、5、6、7、8,∴参与抽奖的获三等奖的概率为:=,故答案为:;(2)由(1)列出所有可能性以及所有可能性之和可得,参与抽奖获一等奖的概率为:,参与抽奖获二等奖的概率为:.(1)根据题意可以写出所有的可能性以及所有的可能性之和,从而可以求得参与抽奖的获三等奖的概率;(2)根据第(1)问中写出数据可以得到参与抽奖获一等奖和二等奖的概率.本题考查列表法与树状图法,解题的关键是明确题意,写出所有的可能性以及所有可能性之和.21.【答案】解:(1)∵一次函数y=mx+1的图象过点A(-1,0),∴m=1,∴一次函数的解析式为:y=x+1,把点B(n,2)代人y=x+1,∴n=1,把点B的坐标(1,2)代入y=,得k=2,∴反比例函数解析式为:y=;(2)当x=1时,y==2,当x=6时,y==,所以当1≤x≤6时,反比例函数y的取值范围为≤y≤2.【解析】(1)把A(-1,0)代入一次函数y=mx+1的解析式即可求得m,即得一次函数解析式,把点B(n,2)代入一次函数的解析式,求得B点坐标,把点B的坐标代入y=,求得k,得到反比例函数解析式;(2)当x=1,x=6时,求出y的值,根据图象求得结论.此题主要考查了一次函数与反比例函数的交点问题,解题的关键是利用待定系数法求出解析式,再再利用性质求反比例函数y的取值范围.22.【答案】解:(1)设原计划每小时植树x棵,可得:,解得:x=30,经检验x=30是方程的解,答:原计划每小时植树30棵;(2),答:实际完成植树任务的小时数是10小时.【解析】关键描述语为:提前2小时完成任务;等量关系为:原计划用的时间-提前的时间=实际用的时间.此题考查分式方程的应用,列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意时间的单位的统一.23.【答案】60【解析】解:(1)∵P在北偏东30°,∴∠PBC=90°-30°=60°,故答案为:60;(2)过P作PC⊥AC于C,由已知得,在Rt△PBC中,∠PBC=60°,PC=BCtan60°=BC.在Rt△APC中,∠PAC=30°,AC=PC=×BC=3BC=800+BC.解得,BC=400.∴PC=400(m).答:灯塔P到沿海路的距离是400m.(1)由余角的定义可以求出结论;(2)在图中两个直角三角形中,先根据已知角的正切函数,分别求出AC和BC,根据它们之间的关系,构建方程解答.此题考查的知识点是解直角三角形的应用,关键明确解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.【答案】平行【解析】解:(1)连接OD,则OD与AC的位置关系是平行,理由为:∵EF与圆O相切,∴OD⊥EF,∵AF⊥EF,∴OD∥AC;故答案为:平行;(2)∵O为AB中点,OD∥AC,且OD=AO=OB=5,∴OD为△BAC在底AC边上的中位线,∴OD=AC,∴AC=2OD=10;(3)由(2)知D为BC的中点,∴BD=CD=6,过B点作EF的垂线BH,垂足为H点,连接AD,则有BH∥OD∥AC,∵AB是直径,∴∠ADB=90°,∵∠HDB=∠DAB,∠ADB=∠DHB=90°,∴△DBH∽△ABD,∴=,即=,解得:BH=3.6,设BE=x,∵BH∥OD,∴△EHB∽△EDO,∴=,即=,解得:x=,即BE=,∴sinE==3.6÷=.(1)连接OD,则OD与AC的位置关系式是平行,理由为:由EF为圆O的切线,利用切线的性质得到OD垂直与EF,再由AF与EF垂直,利用垂直于同一条直线得到两条直线平行得证;(2)根据O为AB的中点,且OD与AF平行,得到OD为三角形ABC的中位线,得到OD为AC的一半,由OD的长求出AC的长即可;(3)由(2)得到D为BC中点,求出BD与DC长,过B点作EF的垂线BH,垂足为H点,连接AD,可得BH,OD,AC三直线平行,由AB为圆O的直径,利用直径所对的圆周角为直角,得到∠ADB=90°,再利用弦切角等于夹弧所对的圆周角,得到三角形DBH与三角形ABD相似,由相似得比例求出BH的长,再由BH与OD平行得到三角形BHE与三角形ODE相似,由相似得比例求出设BE为x,求出BE的长,在直角三角形BHE中,利用锐角三角函数定义求出sinE的值即可.此题属于圆综合题,涉及的知识有:相似三角形的判定与性质,直线与圆相切的性质,圆周角定理,平行线的性质,三角形中位线定理,以及圆周角定理,熟练掌握性质及定理是解本题的关键.25.【答案】解:(1)∵关于x的方程x2+(2k-1)x+k2-1=0有两个根,∴根的判别式△≥0,即(2k-1)2-4(k2-1)≥0,解得k≤;设方程的两个根分别为x1、x2,则x12+x22=9,即(x1+x2)2-2x1x2=9,又x1+x2=-(2k-1),x1•x2=k2-1,分别代入上式,得[-(2k-1)]2-2(k2-1)=9,解得k1=-1或k2=3,∵k≤,∴k=-1.∴函数的解析式为y=x2-3x;(2)∵y=x2-3x,∴令y=0,得x2-3x=0,解得x1=0,x2=3,∴A(0,0),B(3,0).∵y=x2-3x=(x-)2-,即抛物线的对称轴为直线x=,顶点坐标为(,-),大致图象如图1所示;如图2,设M(x m,y m)是位于对称轴右侧函数图象上的一点,且锐角△AMB的面积等于3,则<x m<3,y m<0.∵S△AMB=•AB•|y m|=×3×|y m|=3,∴|y m|=2,y m=±2,舍去正值,∴y m=-2,当y m=-2时,x m2-3x m=-2,解得x m=1或x m=2,∵<x m<3,∴x m=1舍去,∴x m=2满足条件,∴这样的点存在,其坐标为M(2,-2);(3)如图3,设直线ME的解析式为y=ax+b,(,0),∵M(2,-2),E∴ ,解得,∴直线ME的解析式为y=3x-8.由,解得,或,∴P(4,4).∵A(0,0),M(2,-2),∴AP2=42+42=32,AM2=22+22=8,MP2=(4-2)2+(4+2)2=40,∴AP2+AM2=MP2,∴△AMP是直角三角形,∠PAM=90°,∴S△AMP=•AP•AM=××=8.【解析】(1)利用根的判别式△≥0,求出k的取值范围,再利用根与系数的关系即可得出k的值,从而求出二次函数的解析式;(2)根据(1)中所求解析式,求出A,B两点的坐标,利用配方法求出二次函数的顶点坐标与对称轴,画出图象;设M(x m,y m),根据△AMB的面积等于3,列出关于y m的方程,解方程求出y m的值,再求出x m的值,即可确定M的坐标;(3)由M(2,-2),E(,0),利用待定系数法求出直线ME的解析式,再与二次函数解析式联立组成方程组,求出P点坐标,根据勾股定理逆定理可证明△AMP是直角三角形,进而求出△AMP的面积.此题是二次函数的综合题,考查了一元二次方程根的判别式,根与系数的关系,待定系数法求函数的解析式,二次函数的性质,三角形的面积,两点间的距离公式,勾股定理的逆定理,直线与抛物线交点坐标的求法等知识,综合性较强,难度适中.正确求出二次函数的解析式是解题的关键.。

2023年广东省广州一中中考数学二模试卷

2023年广东省广州一中中考数学二模试卷

广州一中教育集团2022学年第二学期九年级数学阶段性检测(二)第Ⅰ卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2023的相反数是( )A.2023B.2023-C.12023D.12023- 2.下列图形中既是轴对称图形,也是中心对称图形的是( )A. B.C. D. 3.下列运算正确的是( )A.()326a a -=-B.336a a a +=C.3=D.62322a a a ÷= 4.如图,四边形ABCD 内接于O ,如果130BOD ∠=︒,则BAD ∠的度数是( )A.120°B.130°C.115°D.125°5.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗,设清洒有斗,那么可列方程为( )A.()310530x x +-=B.305310x x -+=C.305103x x -+= D.()103530x x +-= 6.为了解某小区居民的用水情况,随机抽算了若干户家庭的某月用水丝,统计结果如下表所示:) A.中位数是5B.平均数是7C.众数是5D.方差是1 7.如图,一块含30°角的直角三角板的最短边长为6cm ,现以较长的直角边所在直线为轴旋转一周,形成一个圆锥,则圆锥的侧面积为( )A.248cm πB.272cm πC.280cm πD.296cm π8.如图,函数()0y kx b k =+≠与()0m y m x =≠的图象相交于点()2,3A -、()1,6B -两点,则不等式m kx b x+>的解集为( )A.2x >-B.20x -<<或1x >C.1x >D.2x <-或01x <<9.如图,矩形ABCD 的对角线交于点O ,已知AB m =,BAC α∠=∠,则下列结论错误..的是( )A.BDC α∠=∠B.tan BC m α=⋅C.2sin m AO α=D.cos m BD α= 10.如图,在正方形ABCD 中,AEF △的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,连接BD 分别交AE ,AF 于点M ,N ,下列说法:①45EAF ∠=︒;②连接MG ,NG ,则MGN △为直角左角形;③AMN AFE △△;④若2BE =,3FD =,则MN )A.4B.3C.2D.1第Ⅱ卷 非选择题(共90分)二、填空题(本大题共6小题,每小题3分,共18分)11.计算:13tan30︒=______.12.近年,科学家在实验室中检测出某种病毒的直径的为0.000000103米,该直径用科学记数法表示为______米.13.分解因式:3269x x x -+=______.14已知()1,2M -和N 都在抛物线22y x x c =-+上,且有MN x ∥轴,则点N 的坐标为______. 15.如图,AB 为O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是______.16.如图,Rt ABC △中,90C ∠=︒,15AB =,9BC =,点P ,Q 分别在BC ,AC 上,PQ AB ∥.把PCQ △绕点P 旋转得到PDE △(点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上.若AD 平分BAC ∠,则CP =______.三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤.)17.(本小题4分)解不等式组322212x x x x -<⎧⎨-≥-⎩,并把解集在数轴上表示出来.18.(本小题4分)如图,平行四边形ABCD 中,点E 、F 分别在AB 、CD 上,且BE DF =.求证:AF CE =.19.(本小题6分)已知:()()()()225T m n m n m n m m n =++-+--.(1)化简;T (2)若m 、n 是矩形ABCD T 的值.20.(本小题6分)春笋含有丰富的营养成分,是春天的重要食材.今年4月初,某蔬菜批发市场一店主张先生用2000元购进一批春笋,很快售完;张先生又用3200元购进第二批春笋,所购春笋的重量是第一批的2倍,由于进货量增加,第二批春笋的进价比第一批每千克少2元,求第一批春笋每千克进价多少元?21.(本小题8分)吸食毒品极易上瘾,不但对人的健康危害极大,而且严重影响家庭和社会的稳定,为了解同学们对禁毒知识的掌握情况,从我市某校1500名学生中随机抽取部分学生进行问卷调查,调查评价结果分为:“了解较少”,“基本了解”,“了解较多”,“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有______人,其中“了解较多”的占______%;(2)请补全条形统计图;(3)估计此校“非常了解”和“了解较多”的学生共有______人;(4)“了解较少”的四名学生中,有3名学生1A ,2A ,3A 是初三学生,1名学生B 为初二学生,为了提高学生对禁毒知识的认识,对这4人进行了培训,然后从中随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到初二、初三学生各1名的概率.22.(本小题10分)如图,直线AC 与反比例函数()60y x x=-<的图象相交于点()1,A m -,与x 轴交于点()5,0C ,点D 是线段AC 上任意一点,连接OD .(1)求m 的值及直线AC 的解析式;(2)若D 是线段AC 上一点,将OD 绕点O 逆时针旋转90°得到OD ',点D '恰好落在函数()60y x x =-<的图象上,求点D 的坐标.23.(本小题10分)如图,已知ABC △,1tan 3C =,30A ∠=︒.(1)在AC 边上求作点P ,连接PB ,使30PBA ∠=︒(要求:尺规作图,不写作法,保留作图痕迹);(2)在第(1)问图中,若AB =①求PBC S △;②已知经过点P 的圆O 与AB 相切于点A ,求劣弧AP 的长.24.(本小题12分)如图,直线12y x c =+与x 轴交于点()4,0B ,与y 轴交于点C ,抛物线212y x bx c =++经过点B 、C ,与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,求四边形ACPB 面积最大时点P 的坐标;(3)在抛物线上是否存在点M ,使MCB ABC ∠=∠,若存在,请求出点M 的坐标;若不存在,请说明理由.25.(本小题12分)如图①,在四边形ABCD 中,AB BC AD ==,90ABC ∠=︒,60BAD ∠=︒.(1)求ACD ∠的度数;(2)如图②,F 为线段CD 的中点,连接BF ,求证:2BF CD =;(3)如图③,若125OB AB ==,线段BC 上有一动点M ,连接OM ,将OBM △沿OM 所在直线翻折至OPM △的位置,P 为B 的对应点,连接PA ,PC ,请直接写出4PC PA +的最小值.。

广东中考数学试卷2023题

广东中考数学试卷2023题

2023年广东省广州市中考数学二模试卷一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中只有一项是符合题目要求的。

)1.榫卯是我国古代建筑、家具的一种结构方式,它通过两个构件上凹凸部位相结合来将不同构件组合在一起,如图是其中一种榫,其主视图是()A.B.C.D.2.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.6个B.15个C.12个D.13个3.化简m +n ﹣(m ﹣n )的结果是()A.2mB.2nC.﹣2mD.﹣2n4.一次函数y =kx ﹣3中,y 随着x 的增大而增大,那么它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.下列命题的逆命题中,是假命题的是()A.对角线相等的四边形是矩形B.)对角线互相平分的四边形是矩形C.对角线互相垂直的四边形是矩形D.有一个角是直角的四边形是矩形6.有4张分别印有实数0,0.5-,,2-的纸牌,除数字外无其他差异。

从这4张纸牌中随机抽取2张,恰好抽到2张均印有负数的纸牌的概率为()A.12B.34C.35D.237.如图1,△ABC 的内切圆⊙O 与BC ,CA ,AB 分别相切于点D ,E ,F ,已知△ABC 的周长为36,AB =9,BC =14,则AF 的长为()A.4B.5C .9D.138.抛物线2y ax bx c =++经过点(﹣1,0),(1,2),(3,0),则当x =5时,y 的值为()A.6B.1C.﹣1D.﹣6 9.如图,把△ABC绕着点A顺时针转40°,得到△ADE,若点E恰好在边BC上,AB⊥DE于点F,则∠BAE的大小是()A.10°B.20°C.30°D.40°10.如图,已知正方形ABCD的边长为4,E是AB边延长线上一点,BE=2,F是AB边上一点,将△CEF沿CF翻折,使点E的对应点G落在AD边上,连接EG交折痕CF于点H,则FH的长是()A.B.C.1D.二.填空题(共6小题,满分18分,每小题3分)11.若,则=.12.抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是.13.已知反比例函数y(k是常数,且k≠2)的图象有一支在第三象限,那么k的取值范围是.14.如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP长的取值范围是.15.如图,广州塔与木棉树间的水平距离BD 为600m ,从塔尖A 点测得树顶C 点的俯角α为44°,测得树底D 点俯角β为45°,则木棉树的高度CD 是.(精确到个位,参考数据:sin44°≈0.69,cos44°≈0.72,tan44°≈0.96)16.在菱形ABCD 中,60D ∠=︒,4CD =,E 为菱形内部一点,且2AE =,连接CE ,点F 为CE 中点,连接BF ,取BF 中点G ,连接AG ,则AG 的最大值为.三、解答题(本大题共9小题,满分72分,解答要求写出文字说明、证明过程或计算步骤。

2024年广东省广州市番禺区广东仲元中学附属学校中考二模数学试题

2024年广东省广州市番禺区广东仲元中学附属学校中考二模数学试题

2024年广东省广州市番禺区广东仲元中学附属学校中考二模数学试题一、单选题1.2024的相反数是( )A .2024B .2024-C .12024D .12024- 2.下面四个图形中,既是轴对称图形也是中心对称图形的是( )A .B .C .D . 3.如图几何体的俯视图是( )A .B .C .D . 4.下列计算正确的是( )A .623a a a ÷=B .()527a a -=-C .()()2111a a a +-=-D .()2211a a +=+ 5.使分式24x x -有意义的x 的取值范围是( ) A .2x = B .2x ≠ C .2x =- D .0x ≠ 6.下列说法正确的是( )A .一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖 B .为了了解一批炮弹的杀伤半径,应采用全面调查的方式C .一组数据8,8,7,10,6,8,9的众数和中位数都是8D .若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小 7.在二次函数221y x x =-++的图像中,若y 随x 的增大而增大,则x 的取值范围是A .x 1<B .x 1>C .x 1<-D .x 1>-8.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A .x 1≠x 2 B .x 1+x 2>0 C .x 1•x 2>0 D .x 1<0,x 2<0 9.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为 ( ) A .120° B .180° C .240° D .300°10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到An .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题11.如图,AB CD ∥,直线l 分别与AB ,CD 相交,若1130∠=︒,则2∠度数为.12.某红外线的波长为0.00000094米,用科学记数法表示这个数是米.13.方程组722x y x y +=⎧⎨-=⎩的解是:. 14.分解因式:29xy x -=.15.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶6千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C .小明发现古镇C 恰好在A 地的正北方向,则B 、C 两地的距离是千米.16.如图,DE 平分等边ABC V 的面积,折叠BDE △得到,△FDE AC 分别与,DF EF 相交于,G H 两点.若,==DG m EH n ,用含,m n 的式子表示GH 的长是.三、解答题17.解不等式组,并在数轴上表示解集:11,12 1.3x x +>-⎧⎪-⎨≥⎪⎩ 18.如图,已知菱形ABCD ,点E 和点F 分别在BC 、CD 上,且BE =DF ,连接AE ,AF .求证:∠BAE =∠DAF .19.先化简,再求值:259123x x x -⎛⎫+÷ ⎪--⎝⎭,其中x 是方程2410x x -+=的实数根. 20.“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知A ,B ,C ,D ,E 五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;(3)甲、乙两位同学计划从A ,B ,C 三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.21.如图,一次函数94y kx =+(k 为常数,0k ≠)的图象与反比例函数(m y m x =为常数,0)m ≠的图象在第一象限交于点()1,A n ,与x 轴交于点()3,0B -.(1)求一次函数和反比例函数的解析式.(2)点P 在x 轴上,ABP V 是以AB 为腰的等腰三角形,请直接写出点P 的坐标. 22.如图,在ABC V 中,AB AC =,以AB 为直径的O e 交边AC 于点D ,连接BD ,过点C 作CE AB ∥.(1)请用无刻度的直尺和圆规作图:过点B 作O e 的切线,交CE 于点F ;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD BF=.23.2024年4月25日20点58分,神舟十八号载人飞船在酒泉发射中心发射升空,某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,要求购买的A款文化衫的数量不少于B款文化衫数量的两倍,学校应如何设计采购方案才能使得购买费用最低,最低费用为多少?24.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线CD交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD 于点F.(1)求证:DP∥AB;(2)试猜想线段AE、EF、BF之间的数量关系,并加以证明;(3)若AC=6,BC=8,求线段PD的长.25.在平面直角坐标系xOy中,已知抛物线2=+经过A(4,0),B(1,4)两点.Py ax bx是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△P AB面积的2倍,求点P的坐标;(3)如图,OP 交AB 于点C ,PD BO ∥交AB 于点D .记△CDP ,△CPB ,△CBO 的面积分别为1S ,2S ,3S .判断1223S S S S 是否存在最大值.若存在,求出最大值;若不存在,请说明理由.。

【6套打包】广州市中考二模数学试卷及答案

【6套打包】广州市中考二模数学试卷及答案

【6套打包】广州市中考二模数学试卷及答案中学数学二模模拟试卷一、选择题1. 某车间2019年4月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的 【 】A.众数是4B.中位数是1.5C.平均数是2D.方差是1.252. 如图所示,A ,B ,C 均在⊙O 上,若∠OAB =40O ,ACB 是优弧,则∠C 的度数为 【 】A. 40OB.45OC. 50OD. 55O3. 若二次函数y=ax 2+bx +c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则x 取x 1+x 2时,函数值为 【 】A. a +cB. a - cC. - cD. c4. 已知在锐角△ABC 中,∠A =550 ,AB ﹥BC 。

则∠B 的取值范围是 【 】A.35o ﹤∠B ﹤55oB. 40o ﹤∠B ﹤55oC. 35o ﹤∠B ﹤70oD. 70o ﹤∠B ﹤90o5. 正比例函数y 1=k 1x (k 1>0)与反比例函数22k y x= (k 2>0)部分图象如图所示,则不等式k 1x>2k x的解集在数轴上表示正确的是 【 】A. B.C.D.6. 定义运算符号“*”的意义为(a 、b 均不为0).下面有两个结论: ①运算“*”满足交换律; ②运算“*”满足结合律 其中 【 】A.只有①正确B. 只有②正确C.①和②都正确 D. ①和②都不正确7. 已知00x y >>,且22231x xy y xy ⎧-=⎪⎨⎪+=⎩,那么()2x y +的值为 【 】 A. 2 B. 3 C. 4 D.58. 如图,点A 的坐标为(0,1),点 B 是 x 轴正半轴上的一动点,以 AB 为边作等腰直角 △ABC ,使∠BAC=90O ,设点 B 的横坐标为 x ,点 C 的纵坐标为 y ,能表示 y 与x 的函数关系的图象大致是( )A BC D9.已知△ABC 是⊙O 的内接正三角形,△ABC 的面积为a ,DEFG 是半圆O 的内接正方形,面积等于b ,那么ab 的值为 【 】A. 2B.2 C. 5 D. 1610. 横坐标、纵坐标都是整数的点叫做整点,函数1236-+=x x y 的图象上整点的个数是【 】A .2个B .3个C .4个D .5个二、填空题11.如图,五边形ABCDE 是正五边形,若12//l l , 则12∠-∠= .12.实数a 、b 、c 满足a 2-6b = -17,b 2+8c = - 23,c 2+2a =14,则a +b +c =_______ 13.把抛物线2y x bx c =++的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是221y x x =-+,则b=_______,c=________ 14.对于正数x ,规定21()21x f x x +=-,则122018()()()______201920192019f f f +++=15.如图,在△ABC 内的三个小三角形的面积分别 是10、16、20,若△ABC 的面积S ,则S=_____16.工人师傅在一个长为25cm 、宽为18cm 的矩形铁皮上剪去一个和三边都相切的⊙A 后,在剩余部分的废料上再剪出一个最大的⊙B ,则圆B 的半径是___cm 三、解答题17. (本题满分10分)甲、乙两船从河中A 地同时出发,匀速顺水下行至某一时刻,两船分别到达B 地和C 地.已知河中各处水流速度相同,且A 地到B 地的航程大于A 地到C 地的航程.两船在各自动力不变情况下,分别从B 地和C 地驶回A 地所需的时间为t 1和t 2.试比较t 1和t 2的大小关系.18. (本题满分10分) 关于三角函数有如下的公式:()sin sin cos cos sin αβαβαβ+=+① ()cos cos cos sin sin αβαβαβ+=-②()()tan tan tan 1tan tan 01tan tan αβαβαβαβ++=-≠-其中③利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:()(2tan 45tan 60tan105tan 45601tan 45tan 601422o o oooo o +=+==-++===-+-根据上面的知识,你可以选择适当的公式解决下面实际问题:如图所示,直升机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60o,底端C点的俯角 为75 o,此时直升机与建筑物CD的水平距离BC为42米,求建筑物CD的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省广州市中考数学二模考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题(本大题共10小题,每小题4分,共40分) (共10题;共38分)
1. (2分)一个数是8,另一个数比8的相反数小2,这两个数的和是()
A . +2
B . 14
C . -2
D . 18
2. (4分) (2016九上·黑龙江月考) 下列运算中,计算结果正确的是()
A . a2×a3=a6
B . 2a+3b=5ab
C . a5÷a2=a3
D . (a2b)2=a4b
3. (4分) (2020九下·长春模拟) 下图是由5个完全相同的小正方体组成的立体图形,此立体图形的左视图是()
A .
B .
C .
D .
4. (4分)中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们应该为中国节水,也为世界节水。

若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为()
A . 3.2×107L
B . 3.2×106L
C . 3.2×105L
D . 3.2×104L
5. (4分) (2019八上·保定期中) 如图所示,将一个长方形纸片沿对角线折叠.点B落在点E处,交于点F,已知,则折叠后重合部分的面积为()
A . 6
B . 8
C . 10
D . 12
6. (4分) (2020八下·杭州期中) 某超市一月份的营业额为200万元,三月份的营业额为288万元,若每月比上月营业额增长的百分率相同,则每月营业额增长的百分率为()
A . 10%
B . 15%
C . 20%
D . 25%
7. (4分) (2017八上·济南期末) 下列函数中,y随x的增大而减小的函数是()
A . y=2x+8
B . y=﹣2+4x
C . y=﹣2x+8
D . y=4x
8. (4分) (2020九上·镇海开学考) 如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,则C到直线AF的距离是()
A .
B .
C .
D . 2
9. (4分)(2019·陕西模拟) 一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()
A . (﹣1,3)
B . (﹣1,﹣3)
C . (1,3)
D . (1,﹣3)
10. (4分)在□ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=
A . 1:2
B . 1:3
C . 2:3
D . 2:5
二、填空题(本大题共4小题,每小题5分,共20分) (共4题;共20分)
11. (5分)(2017·吴忠模拟) 分解因式:x﹣xy2=________.
12. (5分) (2017七上·丹江口期末) 如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为________.
13. (5分)(2020·遂宁) 若关于x的不等式组有且只有三个整数解,则m的取值范围是________.
14. (5分)(2020·宁波模拟) 已知:如图,矩形OABC中,点B的坐标为,双曲线的一支与矩形两边AB,BC分别交于点E,F. 若将△BEF沿直线EF对折,B点落在y轴上的点D处,则点D的坐标是________
三、(本大题共2小题,每小题8分,满分16分) (共4题;共32分)
15. (8分) (2020九下·西安月考) 计算:
16. (8分) (2017七下·宁波期中) 把下列多项式因式分解:
(1)
(2) -4x3+16x2-16x
17. (8分)(2017·蒸湘模拟) 如图,四边形ABCD是矩形,△ABD沿AD方向平移得△A1B1D1 ,点A1在AD 边上,A1B1与BD交于点E,D1B1与CD交于点F.
(1)求证:四边形EB1FD是平行四边形;
(2)若AB=3,BC=4,AA1=1,求B1F的长.
18. (8.0分) (2019七上·普兰店期末) 对于三位正整数:121、253、374、495、583、671、880、…,它们都能11整除。

若设百位数字是十位数字是个位数字是
(1)观察这些三位数,根据你的观察、总结, 应满足的关系式是________;
(2)为了说明满足上述关系式的三位正整数都能被11整除,请利用代数式的运算证明你得出的结论的正确性;
(3)除此之外,还有一类三位正整数,例:429、506、528、638、517、759、…,它们也能被11整除。

请观察这组数字的特点,发现有什么规律?再自选一个异于上面3个数字且满足“规律”的三位数,来验证你所发现的“规律”的正确性。

四、(本大题共2小题,每小题10分,满分20分) (共2题;共20分)
19. (10分) (2019七下·新泰期末) 已知:如图,中,,,于
,点在的延长线上,,若,求的长.
20. (10分)(2017·老河口模拟) 如图,抛物线y=ax2+bx经过A(2,0),B(3,﹣3)两点,抛物线的顶点为C,动点P在直线OB上方的抛物线上,过点P作直线PM∥y轴,交x轴于M,交OB于N,设点P的横坐标为m.
(1)求抛物线的解析式及点C的坐标;
(2)当△PON为等腰三角形时,点N的坐标为________;当△PMO∽△COB时,点P的坐标为________;(直接写出结果)
(3)直线PN能否将四边形ABOC分为面积比为1:2的两部分?若能,请求出m的值;若不能,请说明理由.
五、(本大题满分12分) (共2题;共24分)
21. (12分)(2019·通辽模拟) 某校260名学生参加植树活动,活动结束后学校随机调查了部分学生每人的植树棵数,并绘制成如下的统计图①和统计图②.请根据相关信息,解答下列问题:
(1)本次接受调查的学生人数为________,图①中m的值为________;
(2)求本次调查获取的样本数据的众数和中位数;
(3)求本次调查获取的样本数据的平均数,并根据样本数据,估计这260名学生共植树多少棵?
22. (12分) (2018九上·台州期中) 某农户承包荒山种植某产品蜜柚.已知该蜜柚的成本价为8元/千克,
投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y(千克)与销售单价x(元/千克)之间的函数关系
(1)求y与x的函数关系式,并写出x的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
六、(本题满分14分) (共1题;共14分)
23. (14.0分)(2015·杭州) 如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.
(1)若 = ,AE=2,求EC的长;
(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD 于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.
参考答案
一、选择题(本大题共10小题,每小题4分,共40分) (共10题;共38分) 1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题(本大题共4小题,每小题5分,共20分) (共4题;共20分) 11-1、
12-1、
13-1、
14-1、
三、(本大题共2小题,每小题8分,满分16分) (共4题;共32分)
15-1、
16-1、
16-2、
17-1、
17-2、
18-1、
18-2、
18-3、
四、(本大题共2小题,每小题10分,满分20分) (共2题;共20分)
19-1、
20-1、
20-2、
五、(本大题满分12分) (共2题;共24分)
21-1、
21-2、
21-3、
22-1、
22-2、
六、(本题满分14分) (共1题;共14分)
23-1、
第11 页共13 页
第12 页共13 页23-2、
第13 页共13 页。

相关文档
最新文档