1章机构自由度计算
机械设计基础IA--第一章平面机构的自由度及速度分析--习题与答案

第1章 平面机构的自由度和速度分析本章要点:1、理解运动副及其分类,熟识各种平面运动副的一般表示方法;了解平面机构的组成。
2、熟练看懂教材中的平面机构的运动简图。
3、能够正确判断和处理平面机构运动简图中的复合铰链、局部自由度和常见的虚约束,综合运用公式F=3n-2P L -P H 计算平面机构的自由度并判断其运动是否确定。
第一节 平面机构的组成基本概念1、平面机构的定义:所有构件都在互相平行的平面内运动的机构2、自由度:构件所具有的独立运动个数3、运动副:两个构件直接接触组成的仍能产生某些相对运动的联接 第二节 平面机构的运动简图平时观察机构的组成及运动形式时,不可能将复杂的机构全部绘制下来观看,应该将不必要的零件去掉,用简单的线条表示机构的运动形式:机构的运动简图、机构简图 步 骤1、运转机械,搞清楚运动副的性质、数目和构件数目;2、测量各运动副之间的尺寸,选投影面(运动平面);3、按比例绘制运动简图;简图比例尺:μl =实际尺寸 m / 图上长度mm4、检验机构是否满足运动确定的条件。
第三节 平面机构的自由度 一、平面机构自由度计算公式机构的自由度保证机构具有确定运动,机构中各构件相对于机架的独立运动数目 一个原动件只能提供一个独立运动 机构具有确定运动的条件为 自由度=原动件的个数平面机构的每个活动构件在未用运动副联接之前,都有三个自由度 经运动副相联后,构件自由度会有变化:自由度的计算公式 F=3n -(2PL +Ph )二、计算平面机构自由度的注意事项活动构件 构件总自由度 3×n 低副约束数 2 × P高副约束数1 × P h n1、复合铰链:两个以上的构件在同一处以转动副相联2、局部自由度:与输出件运动无关的自由度出现在加装滚子的场合,计算时应去掉Fp3、虚约束:对机构的运动实际不起作用的约束计算自由度时应去掉虚约束第四节速度瞬心及在机构速度分析上的应用机构运动分析的任务、目的和方法(1)任务:在已知机构尺寸及原动件运动规律的情况下,确定机构中其他构件上某些点的轨迹、位移、速度及加速度和构件的角位移、角速度及角加速度。
机械设计基础第1章平面机构的自由度和速度分析

2 齿轮或摆动从动件凸轮机构 P16
3 直动从动件凸轮机构(求速度)
已知凸轮转速ω1,求推杆的速度。3
P23
∞
解: ①直接观察求瞬心P13、 P23 。
②根据三心定律和公法线 n-n求瞬心的位置P12 。
③求瞬心P12的速度 。
n2
ω1 1 V2
P13
P12
n
V2=V P12= L(P13P12)·ω1
⑥计算图示圆盘锯机构的自由度。
解:活动构件数n=7; 低副数PL= 10 高副数PL=0
F=3n - 2PL - PH
=3×7 -2×10-0
B
=1
可以证明:F点的轨迹为一直线。
D
5
F
6Hale Waihona Puke 41E7C
2 3
8A
圆盘锯机构
2.局部自由度 --机构中与输出构件运动无关的自由度,称为局 部自由度或多余自由度。
n
2
P ω2 12
ω 3 3
1
P23
P13
n
VP23
方向:与ω2相反。
相对瞬心位于两绝对瞬心之间,两构件转向相反。
3.求传动比
定义:两构件角速度之比传动比。
ω3 /ω2 = P12P23 / P13P23 推广到一般:
ωi /ωj =P1jPij / P1iPij
P ω2
12
2
ω3 3
1
P23
P13
=1
特别注意:此例存在虚约束的几何条件是:
虚约束
AB=CD=EF
出现虚约束的场合: 1).两构件联接前后,联接点的轨迹重合, 如平行四边形机构,火车轮 椭圆仪等。(需要证明)
《机械设计基础》课件 第1章 平面机构的自由度和速度分析

13
§1-2 平面机构运动简图
机构示意图 —— 不按比例绘制
三、机构运动简图的作用
是机构分析和设计的工具
四、机构中构件的分类
分为三类:
1)固定构件(机架):用来支承活动构件的构件。在研究机构
中活动构件的运动时,常以固定构件作为参考坐标系;
2)原动件(主动件):运动规律已知(外界输入)的构件;
61
3. 直动从动件凸轮机构
求构件2的速度?
62
课后作业:
5、7、9、11、13、15
63
1
1
1
2)移动副
17
§1-2 平面机构运动简图
3)高副:应画出接触处的曲线轮廓
18
§1-2 平面机构运动简图
六、机构运动简图中构件的表示方法
轴、杆
机架
永久连接
固定连接,如轴和齿轮
19
§1-2 平面机构运动简图
参与组成两转动副的构件
一个转动副+一个移动副的构件
参与组成三个转动副的构件
20
§1-2 平面机构运动简图
4
3
2
2
1
4
32
§1-3 平面机构的自由度★
平面机构自由度:
所有活动构件相对于机架所能具有的独立运动数目之和。
作用:
讨论机构具有确定运动的条件。
C
C
D
B
A
B
D
A
E
F
33
§1-3 平面机构的自由度★
一、平面机构自由度计算公式
1. 每个低副引入两个约束,使构件失去两个自由度
34
2. 每个高副引入一个约束,使构件失去一个自由度
大连理工大学 机械设计基础 作业解答:第1章-自由度、瞬心

∞
∞
根据三心定理得到 P24、P13 。 P13是构件 1、3 的同速点,所以 ω1*P13P14 = ω3*P13P34 ,
F
I
8
9
H
7
J G
6
活动构件数 n=8(构件1~8),
低副 PL=11 (8个转动副:A~H,3个移动副:I、J、K), 高副 PH=0, 所以,机构自由度 F=3n-2PL-PH =3×8-2×11 -0 =2。
1-9 计算机构自由度
1A
2
G
C
B E
35
I6 F
7
D
4
H
活动构件数 n=6(构件1~6),
C
1
A
4
活动构件数 n=3(构件1~3)1, 低副 PL=3 (3个转动副:A~C), 高副 PH=0, 所以,机构自由度 F=3n-2PL-PH =3×3-2×3 -0 =3。
1-14 找出瞬心位置,计算构件1、3的角速度之比
根据三心定理得到 P24、P13 。 P13是构件 1、3 的同速点,所以 ω1*P13P14 = ω3*P13P34 ,
1-11 计算机构自由度
局部自由度 F
A
1
复合铰链
4
LMN
G5
9
H
6
I
7
K
焊接
J
8
CB
2
ED
3
凸轮、齿轮为同一构建
活动构件数 n=9(构件1~9), 低副 PL=12 (12个转动副:A~L), 高副 PH=2 (高副M、N),
所以,机构自由度 F=3n-2PL-PH =3×9-2×12G
机械原理第一章 平面机构组成原理及其自由度分析

机构自由度与能运动的条件为:机构自由度数大于等于1。 (二)机构具有确定运动的条件为:机构输入的独立运动数目等 于机构的自由度数。 由于平面机构的每个驱动副一般只有一个自由度,此时,机 构具有确定运动的条件又可表述为:机构驱动副数应等于机构的 自由度数。对驱动副位于机架的机构,与驱动力相连的构件为主 动构件,或称为原动件。故这时该类机构具有确定运动的条件又 可表述为:机构原动件数应等于自由度数。
按运动副的运动空间分:
平面运动副——指构成运动副的两构件之间的相对运动为平面 运动的运动副;
空间运动副——指构成运动副的两构件之间的相对运动为空间 运动的运动副。
按运动副对被联接的两构件相对运动约束数的不同分为: 低副——两构件通过面接触而构成的运动副; 高副——凡两构件系通过点或线接触而构成的运 动副。
4)选择适当的长度比例尺l( l =实际尺寸/图示长度),定出 各运动副的相对位置,绘制机构运动简图。从原动件开始,按运 动传递路线,顺序标出各构件的编号和运动副的代号。在原动件 上标明箭头方向即其运动方向。
例1-1-1:绘制图示颚式破碎机的运动简图 分析:该机构有6个构件和7个转动副。
颚式破碎机构
机构运动简图
第二节 平面机构自由度分析及应用举例
一、运动副的自由度和约束
运动副对该两构件独立运动所加的限制称为约束。约束数目 等于被其限制的自由度数。组成运动副两构件间约束的特点和数 目取决于该运动副的型式。 (一)转动副
只能绕垂直于xoy平面的轴的相对转动 (二)移动副 只能沿x轴方向移动
(三)高副
绘制机构运动简图的步骤与方法:
1)对照实物或实物图,分析机构的动作原理、组成情况和运动 情况,确定其组成的各构件,哪些构件为原动件、哪一构件为机 架和哪些构件为从动件 。 2)沿着运动传递路线,从原动件开始,逐一分析每两个构件间 相对运动的性质,并确定运动副的类型和数目。
第1章平面机构运动简图及自由度

转动副(铰链)-两构件间的相对运动为转动
( 2 ) -两构件通过点或线接触构成的运动副 高 副
凸轮高副
齿轮高副
空间运动副
运动副类型及其代表符号
球 面 副 转 动 副 移 动 副
球 销 副 圆 柱 副 螺 旋 副
平 面 高 副
§1-2 平面机构运动简图
实际构件的外形和结构往往很复杂,在研
y
2
1
移动副约束
x
转动副 约束了沿 X 、 Y 轴移动的自由度,只保留一个 转动的自由度。 1
z
2
y
x
回转副约束
(2)高副
约束了沿接触处
n
2
t
公法线n-n方向移动
的自由度,保留绕接 触处的转动和沿接触 处公切线t-t方向移 动的两个自由度。
t
A
1
n
高副约束
结论:
① 每个低副引入两个约束,使机构失 去两个自由度,只保留一个自由度;
(b) 牛 头 刨 床 机 构
解 (a) F 3n 2PL PH 3 5 2 7 0 1
(b) F 3n 2P P 3 6 2 8 1 1 L H
3. 机构具有确定运动的条件
机构的自由度也即是机构所具有的独立 运动的个数。 从动件是不能独立运动的,只有原动件
轴线重合的虚约束
③机构中对传递运动不起独立作用的对称部分,也为虚 约束。如图所示的轮系中,中心轮经过两个对称布置的小 齿轮1和2驱动内齿轮3,其中有一个小齿轮对传递运动不起 独立作用。但由于第二个小齿轮的加入,使机构增加了一 个虚约束。 3 1
2
对称结构的虚约束
(a) AB、CD、EF平行且相等 (b)平行导路多处移动副 (c)同轴多处转动副 (d) AB=BC=BD且A在D、C 轨 迹交点 (e)两构件上两点始终等距 (f)轨迹重合 (g)全同的多个行星轮 (h)等径凸轮的两处高副 (i) 等宽凸轮的两处高副
【课程思政优秀案例】《机械原理》:机构自由度的计算

课程思政优秀案例——《机械原理》:机构自由度的计算一、课程和案例的基本情况课程名称:机械原理授课对象:机械类专业大二本科生课程性质:专业核心必修课课程简介:机械原理是机械类专业必修课,以机构设计和分析为主线,培养学生具有一定的机械系统运动方案创新设计能力,教学内容涵盖机构组成理论、运动学、动力学及各种常用机构的设计方法等机构和机器的共性问题,具有较强的综合性和工程实践性,在学生整个学习过程中起着承上启下和培养学生创新思维、综合设计能力及工程实践能力的重要作用。
结合我校人才培养定位及机械类专业特色,机械原理课程不断强化以学生为中心的顶层设计和教学实施,针对课程重点难点,精心设计课堂学习、研究性学习、实验学习和综合性课程实践等教学环节,通过科教融合、资源建设、教学模式改革、课赛结合等,从不同维度提升课程的高阶性、创新性和挑战度,培养学生的创新意识、辩证思维、现代工具应用能力、综合设计能力和解决复杂工程问题能力,并通过学生形成性考核评价和课程质量评价促进课程持续改进。
与此同时,深入挖掘课程育人功能,提出“四融合一示范”课程思政建设思路,将教书育人贯穿于课程教学及实践活动全过程,强化学生在智能制造强国战略中的责任意识和使命担当,实现价值塑造、知识传授和能力培养同向同行。
案例简介:机构结构分析是机构运动分析、力分析和机构设计的基础,是机械系统方案设计和机构创新设计的重要环节。
本案例的教学内容为“机构自由度的计算”,是机构结构分析一章的重点,具体包括“机构具有确定运动的条件、机构自由度的计算和计算平面机构自由度时应注意的事项”,机构自由度计算结果正确与否,直接影响机构运动的可能性和确定性判断,进而影响机构设计方案可行性的评价。
本讲的学习目标:知识传授:①理解平面机构自由度计算公式及其内涵;②准确识别并正确处理机构中的复合铰链、局部自由度和虚约束;③正确运用自由度计算公式计算机构的自由度,并判断其是否具有确定的运动。
机械设计基础第一章 平面机构的自由度和速度分析

F=3n - 2PL - PH =3×7 -2×6 -0 =9
计算结果肯定不对!
D5
F
46 1E 7 C
2
3
B
8A
1.复合铰链 -两个以上的构件在同一处以转动副相联。
两个低副
计算:m个构件, 有m-1转动副。
上例:在B、C、D、E四处应各有 2 个运动副。
④计算图示圆盘锯机构的自由度。
定义:具有确定运动的运动链称为机构 。
机架-作为参考系的构件,如机床床身、车辆底盘、 飞机机身。
原(主)动件-按给定运动规律运动的构件。 从动件-其余可动构件。
机构的组成:
机构 = 机架 + 原动件 + 从动件
1个
1个或几个
若干
§1-2 平面机构运动简图
机构运动简图-用以说明机构中各构件之间的相对 运动关系的简单图形。
⑦已知:AB=CD=EF,计算图示平行四边形
机构的自由度。 B 2 E
C
1
4
3
A
F
D 虚约束
重新计算:n=3, PL=4,
F=3n - 2PL - PH =3×3 -2×4 =1
PH=0
特别注意:此例存在虚约束的几何条件是:
AB=CD=EF
出现虚约束的场合: 1.两构件联接前后,联接点的轨迹重合,
约束数
回转副
移动副 高副
1(θ) +
1(x) + 2(x,θ) +
2(x,y) = 3 自由构 2(y,θ)= 3 件的自 1(y) = 3 由度数
结论:构件自由度=3-约束数 =自由构件的自由度数-约束数
推广到一般:
活动构件数 构件总自由度 低副约束数
机械设计基础-平面机构运动简图及自由度

F=3n-2PL-PH
(1-1)
机械设计基础-平面机构运动简图 及自由度
式(1-1)就是平面机构自由度的 计算公式。由公式可知,机构自由度F 取决于活动构件的数目以及运动副的 性质和数目。
机构的自由度必须大于零,机构才 能够运动,否则成为桁架。
机械设计基础-平面机构运动简图 及自由度
图1-9 回转副约束 机械设计基础-平面机构运动简图 及自由度
2. 高副 如图1-10所示,只约束了沿接触
处公法线n-n方向移动的自由度,保 留绕接触处的转动和沿接触处公切线 t-t方向移动的两个自由度。
图1-10 高副约束 机械设计基础-平面机构运动简图 及自由度
结论:在平面机构中,
①每个低副引入两个约束,使机构失去 两个自由度;
例1-3 计算图1-6b)所示活塞泵自由度。
机械设计基础-平面机构运动简图 及自由度
解:除机架外,活塞泵有四个活动构件, n=4;
四个回转副和一个移动副共5个低副, PL=5; 一个高副,PH=1。
由式(1-1)得:
F=3n-2PL-PH=34-25-11=1
该机构的自由度等于1。
机械设计基础-平面机构运动简图 及自由度
例1-2 绘制图1-6a)所示活塞泵机构的运 动简图。
图1-6 活塞泵及其机构简图
机械设计基础-平面机构运动简图 及自由度
§1-3 平面机构的自由度
自由度是构件可能出现的独立运动。任何 一个构件在空间自由运动时皆有六个自由度。
它可表达为在直角坐标系内沿着三个坐标 轴的移动和绕三个坐标轴的转动。
而对于一个作平面运动的构件,则只有 三个自由度,如图1-7所示。即沿x轴和y轴移 动,以及在Oxy平面内的转动。
第1章平面机构的自由度计算PPT课件

• F = 3n - 2 P L - P H • = 3 8 - 2 11 -1 = 1 • 一个原动件,运动确定
• 活动构件数为:n = 8 • 低副数为: P L = 11 • 高副数为: P H = 0 • 自由度数为:
定
• 缝纫机送布机构
练习
• 注意事项: • 1处局部自由度 • 2 处虚约束 • 活动构件数为:n = 4 • 低副数为: P L = 4 • 高副数为: P H = 2 • 自由度数为:
• F = 3n - 2 P L - P H • = 3 4 -2 4 -2 = 2 • 2个原动件,运动确定。
• 1个原动件,运动确定
• 活动构件数为:n = 4 • 低副数为: P L = 4 • 复合铰链1处 • 高副数为: P H = 2 • 自由度数为:
• F = 3n - 2 P L - P ห้องสมุดไป่ตู้ • = 3 4 -2 4 -2 = 2 • 2个原动件,运动确定
• 局部自由度、复合铰链、 虚约束各1处
• 活动构件数为:n = 8 • 低副数为: P L = 11 • 高副数为: P H = 1 • 自由度数为:
• F = 3n - 2 P L - P H • = 3 8 -2 11 -1 = 1 • 1个原动件,运动确定
• F = 3n - 2 P L - P H • = 3 8 - 2 11 - 0 = 2 • 2个原动件,运动确定
测量仪表机构
• 活动构件数为: • n=6 • 低副数为: P L = 8 • 高副数为: P H = 1 • 自由度数为: • F = 3n - 2 P L - P H • = 3 6 -2 8 -1 = 1 • 一个原动件,运动确
0 第1章(1-4)平面机构运动简图及自由度

两构件以点、线的形式接触而组成的运动副
常见的平面运动副:
转
移
动
动
副
副
平面机构的组成
高
高
副
副
常见的空间运动副:
转
柱
动
面
副
高
副
圆
线
柱
高
副
副
平面机构的组成
常见的空间运动副:
球
球
销
副
副
点
螺
高
旋
副
副
平面机构的组成
平面机构的组成
案例1-1分析
自行车机构中由人力直接驱动的构件是脚 踏,而它与大链轮是固连在一起的同一构 件,故大链轮是原动件;在分析自行车的 运动时,应该以车架为静参考系,故车架 是固定件;除大链轮和车架之外的其余构 件都是从动件。
卓越工程师教育培养机械类创新系列规划教材
机械设计基础
(PPT课件)
ppt包含大量高质量的动画如下
第1章 平面机构的运动简图和自由度
开门时,门把手和锁芯相对于门是转动,弹子相对于锁 芯是平行移动;撑开雨伞时,伞骨轴套相对于伞柄的运动为 平行移动,伞骨各节之间是转动。机构中各构件如何连接才 能实现上述的移动或转动呢?只要把构件连接到一起就能得 到具有确定相对运动的机构吗?如何方便的研究机构中各构 件的相对运动关系呢?
= 3×5 -2×7 – 0 = 1
复合铰链
惯性筛机构
计算中注意观察是否有复合铰链,以免漏算转动副数目, 出现计算错误。
复合铰链
案例1-3分析 活动毛巾杆中的立杆为连接件,它将4个横 杆和机架连接在一起,所以共有5个构件参 与形成复合铰链。图中可以数出共有4个转 动副,因而4个横杆均可独自转动。
第1章平面机构运动简图及自由度

作用,另一个在计算机构的自由度时应除去不计。
上一页 下一页 返回
1.3 平面机构自由度
(3)机构中对传递运动不起独立作用的对称部分的约束是虚 约束。如图1-13所示的行星轮机构,为了受力均衡,采用了 两个对称布置的行星轮2及2′,在计算该机构的自由度时,只
能算其中一个引起的约束。F=3X4-2X4-2=2,注意1、3机架
上一页 下一页 返回
1.3 平面机构自由度
2.局部自由度 图1-10表明,要有两个原动件该机构的运动才能确定。事 实上当凸轮1作为原动件转动时,从动件3就具有确定的运动,
即表明该机构的自由度为1。多余的自由度是滚子2绕其中心
转动带来的局部自由度,它并不影响整个机构的运动,在计 算机构的自由度时,应该去掉。若把滚子2与杆件3焊为一体,
式。
上一页 下一页 返回
1.1 平面机构的组成
1.低副 两构件通过面接触而构成的运动副称为低副。低副引入2个 约束,保留1个自由度。根据两构件间的相对运动形式,低副
又可分为转动副和移动副。
(1)转动副。两构件只能组成在一个平面内作相对转动的运 动副称为转动副(或铰链),如图1-3所示。
个。
若计算:F=3X3-2X5=-1(与实际情况不符);应为:F=3X3-
2X4=1。
上一页 下一页 返回
1.3 平面机构自由度
(2)两构件组成多个转动副,其轴线互相重合时,其中只有 一个起约束作用,其他都是虚约束。如图1-12所示的轮轴机 构,轴与机架组成两个转动副A、B,只有一个起独立的约束
上一页 返回
1.3 平面机构自由度
1. 3. 1平面机构的自由度计算
机械设计基础第一章机构自由度计算

机械设计基础第一章机构自由度计算机构自由度是机械设计中的重要概念,用于描述机构的自由运动能力。
在机械设计中,机构是由多个刚性杆件和连接件组成,起到连杆传动或者变换运动的作用。
机构的自由度计算是机械设计的基础,它能够帮助工程师确定机构的设计方案,确保机构能够完成预期的运动任务。
机构的自由度是机构中自由运动的最大数量。
也就是说,机构在特定约束下能够独立运动的最大自由度数目。
在机构设计中,自由度计算通常用于确定机构的可运动数量,以及判断机构设计是否满足要求,为机械设计提供指导。
机构的自由度计算基于以下几个原则:1.机构中刚性杆件的数量与连接件的数量是一致的。
每个连接点都需要一个连接件连接至少两个刚性杆件。
2.每个刚性杆件的两个连接点分别属于两个连接件,除非这个杆件是机构的基座。
3.每个连接点至少有一个约束,包括固定约束(连接点位置固定)、转动约束(杆件绕连接点旋转)和滑动约束(杆件在连接点滑动)。
在实际的机构设计计算中,可以通过以下步骤进行机构自由度的计算:1.确定机构中的刚性杆件数量和连接点数量。
2.根据连接点的约束情况,计算机构中的自由度。
-如果连接点有固定约束,则自由度减1-如果连接点有转动约束,则自由度减1-如果连接点有滑动约束,则自由度减2-如果连接点既有转动约束又有滑动约束,则根据实际情况确定减1或者减23.将所有刚性杆件加起来得到总刚性杆件数量,减去连接件数量,即可得到机构的自由度。
需要注意的是,在机构自由度的计算中,每个连接点只能属于一个连接件,而且一个连接件只能连接两个刚性杆件。
如果机构中存在复杂的连接关系,可以将其分解为多个简单的子机构,再分别计算子机构的自由度。
机构自由度的计算在机械设计中具有重要的意义,它能够帮助机械工程师理解机构的运动特性,优化机构设计方案。
通过合理的自由度计算,可以保证机构能够顺利完成预期的运动任务,提高机械系统的性能。
因此,机构自由度的计算是机械设计中不可忽视的一环。
第1章 平面机构的自由度计算

1处局部自由度 活动构件数为:n = 8 低副数为: P L = 11 高副数为: P H = 1 自由度数为: F = 3n - 2 P L - P H = 3 8 - 2 11 -1 = 1 一个原动件,运动确定
• • • • • • •
活动构件数为:n = 8 低副数为: P L = 11 高副数为: P H = 0 自由度数为: F = 3n - 2 P L - P H = 3 8 - 2 11 - 0 = 2 2个原动件,运动确定
测量仪表机构
• • • • • • • • 活动构件数为: n=6 低副数为: P L = 8 高副数为: P H = 1 自由度数为: F = 3n - 2 P L - P H = 3 6 -2 8 -1 = 1 一个原动件,运动确 定
练习
• 缝纫机送布机构
• • • • • • • • • • 注意事项: 1处局部自由度 2 处虚约束 活动构件数为:n = 4 低副数为: P L = 4 高副数为: P H = 2 自由度数为: F = 3n - 2 P L - P H = 3 4 -2 4 -2 = 2 2个原动件,运动确定。
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重 ,相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人 。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
第1章平面机构自由度

二 计算平面机构自由度注意事项
1.复合铰链 1.复合铰链 复合 两个以上的构件同 时在一处用转动副相 联接构成复合铰链. 复合铰链 联接构成复合铰链. F= 3×7-2×10-0 = 1 10-
计算平面机构自由度注意事项 2.局部自由度:与输出构件运动无关的自由度. 2.局部自由度:与输出构件运动无关的自由度. 局部自由度 3.虚约束:重复的而对机构运动不起限制作用的约束. 3.虚约束:重复的而对机构运动不起限制作用的约束. 虚约束
试计算图示航空照相机快门机构的自由度。 例 试计算图示航空照相机快门机构的自由度。 该机构的构件总数N=6,活动构件数n=5,6个转动副、 N=6,活动构件数n=5,6个转动副 解:该机构的构件总数N=6,活动构件数n=5,6个转动副、一个移 动副, 没有高副。由此可得机构的自由度数为: 动副, 没有高副。由此可得机构的自由度数为: F=3n=3× F=3n-2PL-PH=3×5-2×7-0=1
平面机构自由度 第1章 平面机构自由度
• 机构(平面机构、凸轮机构、间歇机构) 机构(平面机构、凸轮机构、间歇机构) • 平面机构: 平面机构: 所有构件都在同一平面或相互平行的平面内运 动的机构,否则称为空间机构。 动的机构,否则称为空间机构。 • 空间机构: 空间机构: ..\..\周全申\平面连杆机构动画\车门.avi ..\..\周全申\平面连杆机构动画\车门.avi ..\..\周全申\平面连杆机构动画\起重机.swf ..\..\周全申\平面连杆机构动画\起重机.swf
机构运动简图绘制: 例1-1 机构运动简图绘制:鄂式破碎机
机构运动简图绘制: 机构运动简图绘制:鄂式破碎机
..\..\周全申 平面连杆机构动画 破碎机 周全申\平面连杆机构动画 破碎机.avi 周全申 平面连杆机构动画\破碎机
机械原理第1章平面机构的自由度

机械原理第1章平面机构的自由度平面机构是由若干个刚体连接而成的机械装置,在平面内具有一定的运动自由度。
自由度可以理解为机构在平面内可以自由运动的独立变量数量。
平面机构的自由度决定了机构能够完成的运动类型和运动方式。
本文将介绍平面机构的自由度及其计算方法。
1.平面机构的自由度概述平面机构的自由度是指机构在平面内可以独立变化的运动数量。
自由度主要用来衡量机构的可动性。
平面机构的自由度与机构中连杆数量、铰链数量和约束数量有关。
2.平面机构的自由度计算方法计算平面机构的自由度需要考虑以下几个因素:(1)每个连接处的约束数量:连接处的约束数量主要包括铰链和滑动副的数量。
每个铰链都会增加机构的一个自由度,而滑动副不会增加机构的自由度。
(2)连杆数量:连杆数量决定了机构的自由度上限。
当机构的连杆数量等于自由度时,机构将达到满足完整约束的状态。
(3)约束条件:约束条件包括几何约束和运动约束。
几何约束是由机构的结构确定的,它限制了机构的运动范围。
运动约束是由机构的运动特性确定的,它限制了机构可进行的运动类型。
根据以上因素,计算平面机构的自由度的一般方法如下:(1)确定机构中的连杆数量和连接处的约束数量;(2)根据每个连接处的约束数量计算机构的几何约束;(3)根据机构的几何约束和运动约束计算机构的自由度。
3.平面机构自由度的实例分析以常见的四杆机构为例来说明平面机构自由度的计算方法。
四杆机构由四个连杆和四个铰链连接而成。
(1)连杆数量:四杆机构中连杆的数量为4(2)连接处的约束数量:四杆机构中每个连接处都是铰链连接,因此约束数量为4(3)几何约束:四杆机构中的几何约束是由四个连杆的长度和位置确定的。
根据欧拉公式,每个连接处的铰链都会增加一个约束条件。
因此,四杆机构中总共有4个几何约束。
(4)运动约束:四杆机构中的运动约束主要来自于连杆的连接方式和几何约束。
通过分析四杆机构的连杆和铰链的连接方式,可以得出四杆机构中由于几何约束而引入的自由度为1、因此,四杆机构的运动约束为1根据以上计算方法,四杆机构的自由度等于约束数量减去几何约束和运动约束的数量,即自由度=4-4-1=-1、这表明四杆机构无法进行独立的运动,它不是一个有效的机构。
机械原理__第1章__平面机构的自由度

1
= 3? 3 2? 3 1 = 2
对于图b) 的机构,有: F=3×2 -2×2 -1=1 事实上,两个机构的运动相同,且F=1
2
1
处理的方法:
计算前先将小滚轮焊接在推杆上 a) b)
§1—3 平面机构自由度的计算
三、虚约束 :对机构的运动不起实际约束作用的约束。 例:平行四边形机构,AB = CD 连杆2作平动,BC线上各点轨迹均为圆 B 2
n K 1
运动副联接前自由度: 3 n 通过运动副联接后,低副产生的约束数 : 2 Pl 高副产生的约束数: 1 Ph
计算公式: F = 3n - 2Pl - Ph
§1—3 平面机构自由度的计算
例1、计算曲柄滑块机构的自由度。 解:活动构件数n= 低副数Pl = 4 高副数Ph = 0 1
原动件数=F 机构运动确定
§1—3 平面机构自由度的计算
例4、计算自由度 ,Ph = 0 解: n = 2, P l =3
F = 3n - 2Pl - Ph = 3? 2 2? 3 0
1 3 例5、计算自由度 2
,Ph = 0 解: n = 3, P l =5
F = 3n - 2Pl - Ph = 3? 3 2? 5 0 = - 1
2
3
4
F = 3n - 2Pl - Ph = 3? 3 2? 4 0
=1
§1—3 平面机构自由度的计算
二、机构具有确定运动的条件 对不同的机构,自由度不同,给定原动件的个数也应不同, 那么,原动件数与自由度有什么关系,才能使机构具有确定的运 动呢? 2 3 例2、计算铰链四杆机构的自由度 1 解:活动构件数n= 3 低副数Pl= 4 高副数Ph= 0 F = 3n - 2Pl - Ph = 3? 3 2? 4 1 4
1章机构自由度计算

第1章习题1-1绘出图1-7所示的唧筒机构的机构运动简图。
1-2绘出图1-8所示叶片式油泵的机构运动简图。
1-3 绘出图1-9所示回转柱塞泵的机构运动简图。
1-4 绘出图1-10所示冲床架机构的机构运动简图。
1-5试判断图1-11、图1-12所示运动链能否成为机构,并说明理由。
若不能成为机构,请提出修改办法。
1-6计算图1-13至图1-20所示各机构的自由度,并指出其中是否含有复合铰链、局 部自由度或虚约束,说明计算自由度时应做何处理。
1-7计算图1-21至图1-26所示各机构的自由度,用低副代替高副,并确定机构所含 杆组的数目和级别以及机构的级别。
"zl I 夕/I I X W A /Z1 |\\//夕圈1-7 1-M 图1-9图1 13图1-14图1-17第1章综合测试题1-1填空题及简答题(1) _____________________________________________ 平面机构中若引入一个高副将带入 _____________________________________________________ 个约束,而引入一个低副将带 4 图 1-19 團 1-21 图 1-20 | 閤 J-23图4图115 图倾入__________ 人约束。
(2)高副低代必须满足的条件是_________________ , ______________________(3)何谓运动链?运动链具备什么条件才具有运动的可能性?具备什么条件才具有运动的确定性?运动链具备什么条件才能成为机构?(4)何谓机构运动简图?绘制的步骤如何?(5)机构具有确定运动的条件是什么?(6)在计算平面机构自由度时应注意哪些事项?(7)杆给具有什么特点?如何确定杆组的级别?(8)如果确定机构的级别?选择不同原动件对机构的级别有无影响?1-2画出图1-27所示油泵的机构运动简图,并计算其自由度。
图)-271-3判别图1-28、图1-29所示运动链能否成为机构,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章习题
1-1 绘出图1-7所示的唧筒机构的机构运动简图。
1-2 绘出图1-8所示叶片式油泵的机构运动简图。
1-3 绘出图1-9所示回转柱塞泵的机构运动简图。
1-4 绘出图1-10所示冲床架机构的机构运动简图。
1-5 试判断图1-11、图1-12所示运动链能否成为机构,并说明理由。
若不能成为机构,请提出修改办法。
1-6 计算图1-13至图1-20所示各机构的自由度,并指出其中是否含有复合铰链、局部自由度或虚约束,说明计算自由度时应做何处理。
1-7 计算图1-21至图1-26所示各机构的自由度,用低副代替高副,并确定机构所含杆组的数目和级别以及机构的级别。
第1章综合测试题
1-1 填空题及简答题
(1)平面机构中若引入一个高副将带入个约束,而引入一个低副将带
入人约束。
(2)高副低代必须满足的条件是,。
(3)何谓运动链?运动链具备什么条件才具有运动的可能性?具备什么条件才具有运动的确定性?运动链具备什么条件才能成为机构?
(4)何谓机构运动简图?绘制的步骤如何?
(5)机构具有确定运动的条件是什么?
(6)在计算平面机构自由度时应注意哪些事项?
(7)杆给具有什么特点?如何确定杆组的级别?
(8)如果确定机构的级别?选择不同原动件对机构的级别有无影响?
1-2 画出图1-27所示油泵的机构运动简图,并计算其自由度。
1-3 判别图1-28、图1-29所示运动链能否成为机构,并说明理由。
如果有复合铰链、局部自由度或虚约束,需一一指出。
1-4 试用低副代替图1-30所示机构中的高副,并说明高副低代的一般方法。
1-5 图1-31所示为一机构的初拟设计方案,试从机构自由度的概念分析其设计是否会理,并提出修改措施。
又问,在此初似设计方案中,是否存在复合铰链、局部自由度和虚约束?
1-6 计算图1-32所示机构的自由度,并在高副低代后,确定机构所含杆组的数目和级别并判断机构的级别。
第1章习题参考答案
1-5 F=0,机构不能运动
F=0,机构不能运动
1-6 F=1
F=1
F=1
F=2
F=1
F=1
F=1
F=1
1-7 F=1,Ⅱ级机构
F=1,Ⅱ级机构
F=1,Ⅱ级机构
F=1,Ⅲ级机构,一个Ⅱ级杆组,一个Ⅱ级杆组
F=1,Ⅱ级机构
F=1,Ⅲ级机构
第1章综合测试题参考答案
1-2 F=1
1-3 F=0,不能成为机构;F=1,能成为机构,F(G)为虚约束1-5 E为虚约束,B为局部自由度
1-6 F=1,一个Ⅲ级杆组,一个Ⅰ级杆组,Ⅲ级机构。