2015届高考数学第一轮复习 第一章 集合与常用逻辑用语章末检测(新人教A版)

合集下载

2015高三复习:第1单元-集合与常用逻辑用语-数学(理科)-人教A版-全国卷地区专用(逐字编辑)

2015高三复习:第1单元-集合与常用逻辑用语-数学(理科)-人教A版-全国卷地区专用(逐字编辑)

集合及其运算 命题及其关系、充分条件与必要条件 简单的逻辑联结词、全称量词与存在量词
单元网络
返回目录
核心导语
一、集合 1.关系——元素与集合之间是从属关系,集合与集 合之间是包含关系. 2.运算——认清集合的元素,通过Venn图理解集合 运算的含义.学会用分类讨论法解决集合运算问题.
返回目录
核心导语
二、常用逻辑用语 1.命题——四种命题及其关系,特别是原命题与逆 否命题的等价性、逆命题与否命题的等价性. 2.充分、必要条件——命题p与q之间能否正确推导, 是判断充分、必要条件的关键. 3.逻辑联结词——“且”是几个简单命题都成立, “或”是几个简单命题至少有一个成立,“非”是对原命 题结论的否定,解题中可类比集合中的交集、并集和补 集. 4.量词——全称量词表述陈述句中所述事物的全体, 存在量词表述陈述句中所述事物的部分.
返回目录
第1讲
双 向 固 基 础
集合及其运算
1. 集合的含义与表示方法 元素 ,把一些元素 (1)集合的含义:把研究对象叫作________ 集合 确定性 组成的总体叫作 ________ .集合元素的性质: ________ 、 互异性 、________ 无序性 . ________ ∈ (2)元素与集合的关系:①属于,记为________ ;②不属 ∉ . 于,记为________ * N N 或N, + (3)常用数集的记号: 自然数集______, 正整数集______ Z Q 整数集 ______ ,有理数集 ______ ,实数集 ______ ,复数集 R C . ______
A___B或B
A
相等 空 集
集合A,B的元素完 A⊆B,B⊆A⇒A= 全相同 ________ B

2015届高考数学(人教,理科)大一轮配套练透:第1章 集合与常用逻辑用语 第1节

2015届高考数学(人教,理科)大一轮配套练透:第1章 集合与常用逻辑用语 第1节

[课堂练通考点]1.(2013·江西高考)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=() A.4B.2C.0 D.0或4解析:选A由ax2+ax+1=0只有一个实数解,可得当a=0时,方程无实数解;当a≠0时,则Δ=a2-4a=0,解得a=4(a=0不合题意舍去).2.(2013·全国卷Ⅰ)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=() A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:选A n=1,2,3,4时,x=1,4,9,16,∴集合B={1,4,9,16},∴A∩B={1,4}.3.(2014·北京东城区统一检测)设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1 B.3C.4 D.8解析:选C根据已知,满足条件的集合B为{3},{1,3},{2,3},{1,2,3}.故选C.4.(创新题)设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题:①集合S={a+b i|a,b为整数,i为虚数单位}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集.其中的真命题是________.(写出所有真命题的序号)()A.①③B.①②C.②③D.③④解析:选B①对,当a,b为整数时,对任意x,y∈S,x+y,x-y,xy的实部与虚部均为整数;②对,当x=y时,0∈S;③错,当S={0}时,是封闭集,但不是无限集;④错,设S={0}⊆T,T={0,1},显然T不是封闭集.因此,真命题为①②.5.(创新题)设P,Q为两个非空实数集合,定义集合P*Q={z|z=a÷b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是()A.2 B.3C .4D .5解析:选B 当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素.6.已知全集U =R ,集合A ={x |x 2-2x >0},B ={x |y =lg(x -1)},则(∁U A )∩B =( ) A .{x |x >2或x <0} B .{x |1<x <2} C .{x |1<x ≤2}D .{x |1≤x ≤2}解析:选C 解不等式x 2-2x >0,即x (x -2)>0,得x <0或x >2,故A ={x |x <0或x >2}; 集合B 是函数y =lg(x -1)的定义域, 由x -1>0,解得x >1,所以B ={x |x >1}.如图所示,在数轴上分别表示出集合A ,B ,则∁U A ={x |0≤x ≤2},所以(∁U A )∩B ={x |0≤x ≤2}∩{x |x >1}={x |1<x ≤2}.[课下提升考能]第Ⅰ组:全员必做题1.(2014·哈尔滨四校统考)已知集合A ={1,2,3,4},B ={(x ,y )|x ∈A ,y ∈A ,xy ∈A },则B 的所有真子集的个数为( )A .512B .256C .255D .254解析:选C 由题意知当x =1时,y 可取1,2,3,4;当x =2时,y 可取1,2;当x =3时,y 可取1;当x =4时,y 可取1.综上,B 中所含元素共有8个,所以其真子集有28-1=255个.选C.2.(2013·佛山一模)设全集U ={x ∈N *|x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{2,4}C .{2,5}D .{1,5}解析:选B 由题意易得U ={1,2,3,4,5},A ∪B ={1,3,5},所以∁U (A ∪B )={2,4}.故选B.3.(2013·全国卷Ⅰ)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD.A ⊆B解析:选B 集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R .4.(2014·太原诊断)已知集合A ={x |x 2-4x +3<0},B ={x |y =ln(x -2)},则(∁R B )∩A =( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}解析:选C 集合A ={x |1<x <3},B ={x |x >2}, 则(∁R B )∩A ={x |1<x ≤2},选C.5.(2013·郑州质检)若集合A ={0,1,2,x },B ={1,x 2},A ∪B =A ,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个解析:选B ∵A ={0,1,2,x },B ={1,x 2},A ∪B =A ,∴B ⊆A ,∴x 2=0或x 2=2或x 2=x ,解得x =0或2或-2或1.经检验当x =2或-2时满足题意.6.(2014·湖北八校联考)已知M ={a ||a |≥2},A ={a |(a -2)(a 2-3)=0,a ∈M },则集合A 的子集共有( )A .1个B .2个C .4个D .8个解析:选B |a |≥2⇒a ≥2或a ≤-2.又a ∈M ,(a -2)·(a 2-3)=0⇒a =2或a =±3(舍),即A 中只有一个元素2,故A 的子集只有2个.7.(2014·江西七校联考)若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的所有实数a 的取值范围为( )A .(1,9)B .[1,9]C .[6,9)D .(6,9]解析:选D 依题意,P ∩Q =Q ,Q ⊆P ,于是 ⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围是(6,9].8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2,所以P ={x |0<x <2};由|x -2|<1,得1<x <3,所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.9.已知全集U ={-2,-1,0,1,2},集合A =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2n -1,x ,n ∈Z ,则∁U A =________.解析:因为A =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2n -1,x ,n ∈Z ,当n =0时,x =-2;n =1时不合题意; n =2时,x =2;n =3时,x =1; n ≥4时,x ∉Z ;n =-1时,x =-1; n ≤-2时,x ∉Z . 故A ={-2,2,1,-1},又U ={-2,-1,0,1,2},所以∁U A ={0}. 答案:{0}10.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0}, 即1-2+a ≤0,∴a ≤1. 答案:(-∞,1]11.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,则m =________.解析:A ={-1,2},B =∅时,m =0;B ={-1}时,m =1;B ={2}时,m =-12.答案:0,1,-1212.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.则S 4的所有奇子集的容量之和为________.解析:∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S 4的所有奇子集的容量之和为7.答案:7第Ⅱ组:重点选做题1.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,求实数a 的取值范围.解:A ={x |x 2+2x -3>0}={x |x >1或x <-3},函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎨⎧a ≥34,a <43,即34≤a <43.故实数a 的取值范围为⎣⎡⎭⎫34,43.2.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎩⎪⎨⎪⎧ log 12(x +2)>-3x 2≤2x +15,B ={x |m +1≤x ≤2m -1}. (1)求集合A ;(2)若B ⊆A ,求实数m 的取值范围. 解:(1)解不等式log 12(x +2)>-3得:-2<x <6.①解不等式x 2≤2x +15得:-3≤x ≤5.② 由①②求交集得-2<x ≤5, 即集合A =(-2,5].(2)当B =∅时,m +1>2m -1, 解得m <2;当B ≠∅时,由⎩⎪⎨⎪⎧m +1≤2m -1,m +1>-2,2m -1≤5解得2≤m ≤3,故实数m 的取值范围为(-∞,3].。

创新设计(全国通用)高考数学一轮复习 第一章 集合与常用逻辑用语 第1讲 集合练习 理 新人教A版

创新设计(全国通用)高考数学一轮复习 第一章 集合与常用逻辑用语 第1讲 集合练习 理 新人教A版

第一章集合与常用逻辑用语第1讲集合练习理新人教A版基础巩固题组(建议用时:25分钟)一、选择题1.(2015·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则( )A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.(2016·全国Ⅱ卷)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}解析由(x+1)(x-2)<0,得-1<x<2,又x∈Z,所以B={0,1},因此A∪B={0,1,2,3}.答案 C3.(2017·肇庆模拟)已知集合A={x|lg x>0},B={x|x≤1},则( )A.A∩B≠∅B.A∪B=RC.B⊆AD.A⊆B解析由B={x|x≤1},且A={x|lg x>0}=(1,+∞),∴A∪B=R.答案 B4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( )A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案 C5.(2016·山东卷)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)解析由y=2x,x∈R,知y>0,则A=(0,+∞).又B={x|x2-1<0}=(-1,1).因此A∪B=(-1,+∞).答案 C6.(2016·浙江卷)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∪Q =( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴(∁U P )∪Q ={1,2,4,6}.答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A.1B.3C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 答案 B8.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( )A.{x |x ≥0}B.{x |x ≤1}C.{x |0≤x ≤1}D.{x |0<x <1}解析 ∵A ={x |x ≤0},B ={x |x ≥1},∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图.∴∁U (A ∪B )={x |0<x <1}.答案 D二、填空题9.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________.解析 ∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1.答案 (-∞,1]10.(2016·天津卷)已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________. 解析 由A ={1,2,3},B ={y |y =2x -1,x ∈A },∴B ={1,3,5},因此A ∩B ={1,3}. 答案 {1,3}11.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.解析 由x (x +1)>0,得x <-1或x >0,∴B =(-∞,-1)∪(0,+∞),∴A -B =[-1,0).答案 [-1,0)12.(2017·石家庄质检)已知集合A ={x |x 2-2 016x -2 017≤0},B ={x |x <m +1},若A ⊆B ,则实数m 的取值范围是________.解析 由x 2-2 016x -2 017≤0,得A =[-1,2 017],又B ={x |x <m +1},且A ⊆B ,所以m +1>2 017,则m >2 016.答案 (2 016,+∞)能力提升题组(建议用时:10分钟)13.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =( )A.[2,3]B.(-∞,-2)∪[3,+∞)C.(2,3)D.(0,+∞) 解析 易知S =(-∞,2]∪[3,+∞),∴∁R S =(2,3),因此(∁R S )∩T =(2,3).答案 C14.(2016·黄山模拟)集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是( )A.{x |x ≥1}B.{x |1≤x <2}C.{x |0<x ≤1}D.{x |x ≤1}解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.答案 B15.(2017·南昌十所省重点中学模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________.解析 由14≤2x ≤16,x ∈N , ∴x =0,1,2,3,4,即A ={0,1,2,3,4}.又x 2-3x >0,知B ={x |x >3或x <0},∴A ∩B ={4},即A ∩B 中只有一个元素.答案 116.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m+n=________.解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n)可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.所以m+n=0.答案0。

2015届高三(理)一轮同步训练:第1单元《集合与常用逻辑用语》(含答案)

2015届高三(理)一轮同步训练:第1单元《集合与常用逻辑用语》(含答案)

学海导航·新课标高中总复习(第1轮)B·理科数学同步训练第一单元集合与常用逻辑用语第1讲集合的概念及运算1.设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}2.(2013·韶关第一次调研)若集合M是函数y=lg x的定义域,N是函数y=1-x的定义域,则M∩N等于()A.(0,1] B.(0,+∞)C.∅D.[1,+∞)3.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1 B.3C.4 D.84.设全集U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}5.(2013·浙江宁波市期末)设集合A={(x,y)|x+a2y+6=0},B={(x,y)|(a-2)x+3ay +2a=0},若A∩B=∅,则实数a的值为()A.3或-1 B.0或3C.0或-1 D.0或3或-16.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={3,6},则集合A*B 的所有元素之和为.7.集合M={3,7,-4m},N={-12,8},若M∩N≠∅,则实数m的值为________.8.设全集U是实数集R,函数f(x)=lg(2x-3)的定义域为集合A,B={x|y=2-1}.求:x-1(1)集合A,B;(2)A∩B,A∪(∁U B).9.已知集合A={x|1<ax<2},集合B={x||x|<1}.当A⊆B时,求a的取值范围.第2讲 命题及其关系、充要条件1.命题“若x 2>y 2,则x >y ”的逆否命题是( )A .“若x <y ,则x 2<y 2”B .“若x >y ,则x 2>y 2”C .“若x ≤y ,则x 2≤y 2”D .“若x ≥y ,则x 2≥y 2”2.“m =1”是“直线x -y =0和直线x +my =0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.“a =2”是“函数f (x )=lg(ax )在(0,+∞)上单调递增”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件4.给出下列命题,其中真命题的个数是( )①命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”;②“x =-1”是“x 2-5x -6=0”的必要不充分条件;③命题“若x =y ,则sin x =sin y ”的逆否命题为真命题.A .0B .1C .2D .35.命题“若x =5,则x 2-8x +15=0”及其逆命题、否命题、逆否命题中正确的个数有______个.6.若“|x -1|<a ”的充分条件是“|x -1|<b ”(其中a ,b >0),则a 、b 之间的关系是________.7.命题“ax 2-2ax +3>0恒成立”是真命题,则实数a 的取值范围是________.8.设A ={x |x -1x +1<0},B ={x ||x -b |<a };若“a =1”是“A ∩B ≠∅”的充分条件,求实数b 的取值范围.9.已知条件p :|5x -1|>a (a >0),条件q :12x 2-3x +1>0.命题“若p ,则q ”为真,其逆命题为假,求实数a 的取值范围.第3讲 逻辑联结词、全称量词与存在量词1.若命题綈(p ∨q )为假命题,则( )A .p 、q 中至少有一个为真命题B .p 、q 中至多有一个为真命题C .p 、q 均为真命题D .p 、q 均为假命题2.(2013·四川卷)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉B B .綈p :∀x ∉A,2x ∉BC .綈p :∀x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B3.已知命题p :∃x ∈R ,使sin x +cos x =2,命题q :集合{x |x 2-6x +9=0,x ∈R }有且只有两个子集.下列结论:(1)命题“p ∧q ”是真命题;(2)命题“p ∧(綈q )”是假命题;(3)命题“(綈p )∧q ”是真命题;(4)命题“(綈p )∨(綈q )”是真命题.其中正确的个数是( )A .1B .2C .3D .44.下列结论错误的是( )A .若“p ∧q ”与“(綈p )∨q ”均为假命题,则p 真q 假B .命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”C .“x =1”是“x 2-3x +2=0”的充分不必要条件D .若“am 2<bm 2,则a <b ”的逆命题为真5.命题“∃x 0∈(0,π2),tan x 0>sin x 0”的否定是________________________. 6.“若x >4,则x >m ”为真命题,则m 的取值范围是 .7.已知命题p :∃x ∈R ,使sin x =103;命题q :∀x ∈R ,都有x 2+2ax +a 2+1>0.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是假命题;③命题“(綈p )∨q ”是真命题;④命题“(綈p )∨(綈q )”是假命题.其中正确命题的序号是________.(写出所有正确命题的序号)8.已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”与命题q :“∃x ∈R ,x 2+2ax -8-6a =0”都是真命题,求实数a 的取值范围.9.(2013·山东省莱州质检测)命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,命题q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.学海导航·新课标高中总复习(第1轮)B·理科数学参考答案同 步 训 练第一单元 集合与常用逻辑用语第1讲 集合的概念及运算1.B 因为P ∩Q ={0},所以0∈P ,即log 2a =0,得a =1,而0∈Q ,所以b =0,所以P ∪Q ={3,0,1}.2.A 因为M =(0,+∞),N =(-∞,1],所以M ∩N =(0,1].3.C 由题意可得集合B 中一定有元素3,1和2不确定,故满足题意的集合B 的个数为集合{1,2}的子集个数,即为22=4,故选C.4.B 由2x (x -2)<1,得x (x -2)<0,解得0<x <2,所以A ={x |0<x <2}.由1-x >0,得x <1,所以B ={x |x <1},于是阴影部分表示的集合A ∩(∁U B )={x |1≤x <2},故选B.5.C 由集合A 、B 的意义可知,A ∩B =∅,则两直线平行,故a -21=3a a 2≠2a 6,解得a =-1,又经检验a =0时也满足题意,故选C.6.21 由题得A *B ={3,6,12},故集合A *B 的所有元素之和为21.7.3或-2 由M ∩N ≠∅,可知-4m =-12或-4m =8,解得m =3或m =-2.8.解析:(1)由2x -3>0,得x >32,所以A ={x |x >32}. 由2x -1-1≥0,得3-x x -1≥0,解得1<x ≤3, 所以B ={x |1<x ≤3}.(2)由(1)得,∁U B ={x |x ≤1或x >3},所以A ∩B ={x |32<x ≤3}, A ∪(∁U B )={x |x ≤1或x >32}. 9.解析:由已知,B ={x |-1<x <1}.(ⅰ)当a =0时,A =∅,显然A ⊆B .(ⅱ)当a >0时,A ={x |1a <x <2a}, 要使A ⊆B ,必须⎩⎨⎧ 2a ≤11a≥-1,所以a ≥2. (ⅲ)当a <0时,A ={x |2a <x <1a}, 要使A ⊆B ,必须⎩⎨⎧1a ≤12a ≥-1,即a ≤-2. 综上可知,a ≤-2或a =0或a ≥2.第2讲 命题及其关系、充要条件1.C2.C 若m =1,则直线x -y =0和直线x +y =0互相垂直.又若x -y =0与直线x +my =0互相垂直,则1×1+(-1)×m =0,所以m =1,故“m =1”是“直线x -y =0和直线x +my =0互相垂直”的充要条件,所以选C.3.A 若a =2,则f (x )=lg(2x )在(0,+∞)上单调递增,但f (x )=lg(ax )在(0,+∞)上单调递增,则a >0,故不能推出a =2.所以“a =2”是“函数f (x )=lg(ax )在(0,+∞)上单调递增”的充分而不必要条件.4.B ①中,否命题应为“若x 2≠1,则x ≠1”,因此①错;②中,x =-1⇒x 2-5x -6=0,应为充分条件,因此②错;③中,由于原命题是真命题,因此③说法正确.故选B.5.2 原命题和逆否命题正确,其他命题是错误的,所以填2.6.b ≤a 由条件知|x -1|<b 的解集是|x -1|<a 的解集的子集,则b ≤a .7.[0,3) 当a =0时,不等式3>0,命题为真命题;当a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=(-2a )2-4a ×3<0,解得0<a <3. 综上所述,实数a 的取值范围是[0,3).8.解析:因为A ={x |-1<x <1},当a =1时,B ={x |b -1<x <b +1},且A ∩B ≠∅,所以-1≤b -1<1或-1<b +1≤1,即0≤b <2或-2<b ≤0,所以-2<b <2,所以实数b 的取值范围是(-2,2).9.解析:条件p :|5x -1|>a ,即x <1-a 5或x >1+a 5,设对应的集合为A , 条件q :12x 2-3x +1>0,即2x 2-3x +1>0,所以x <12或x >1,设对应的集合为B . 由“若p ,则q ”为真,其逆命题为假,则A B , 所以⎩⎨⎧1-a 5≤121+a 5≥1(两不等式不同时取等号),解得a ≥4,所以实数a 的取值范围是[4,+∞).第3讲 逻辑联结词、全称量词与存在量词1.A 易知p ∨q 为真,故选A.2.D 本题考查全称命题的否定,∀改为∃,将2x ∈B 改为2x ∉B ,选D.3.C 因为sin x +cos x =2sin(x +π4)≤2, 故p 为假命题.又{x |x 2-6x +9=0,x ∈R }={3},其子集为∅,{3},故q 为真命题.因此命题“p ∧q ”为假,p ∧(綈q )为假,“(綈p )∧q ”为真,(綈p )∨(綈q )为真,故选C.4.D 对于A ,“p ∧q ”为假,则p ,q 至少有一个为假,“綈p ∨q ”为假,则綈p 与q 全假,因此p 真,q 假,故A 正确,易知B 、C 正确,故选D.5.∀x ∈(0,π2),tan x ≤sin x 解析:特称命题的否定是全称命题,所以否定是∀x ∈(0,π2),tan x ≤sin x . 6.m ≤4 “若x >4,则x >m ”为真命题,即x >4⇒x >m ,则{x |x >4}⊆{x |x >m },所以m ≤4.7.②③ 因为|sin x |≤1,所以命题p 为假命题,又因为x 2+2ax +a 2+1=(x +a )2+1>0,所以命题q 为真命题,綈p 为真命题,綈q 为假命题,因此②③正确.8.解析:因为∀x ∈[1,2],12x 2-ln x -a ≥0, 所以a ≤12x 2-ln x ,x ∈[1,2].令f (x )=12x 2-ln x ,x ∈[1,2],则f ′(x )=x -1x, 因为f ′(x )=x -1x>0(x ∈[1,2]), 所以函数f (x )在[1,2]上是增函数,所以f (x )min =12,所以a ≤12. 又由命题q 是真命题得Δ=4a 2+32+24a ≥0,解得a ≥-2或a ≤-4.因为命题p 与q 均为真命题,所以a 的取值范围为(-∞,-4]∪[-2,12]. 9.解析:当命题p 为真时,Δ=4a 2-16<0,所以-2<a <2, 当命题q 为真时,3-2a >1,所以a <1.因为p 或q 为真,p 且q 为假,所以p ,q 为一真一假.当p 真q 假时,⎩⎪⎨⎪⎧-2<a <2a ≥1,所以1≤a <2, 当p 假q 真时,⎩⎪⎨⎪⎧a ≤-2或a ≥2a <1,所以a ≤-2. 综上所述,实数a 的取值范围是(-∞,-2]∪[1,2).。

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)

第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若命题 p:∃x 0∈Z ,e x 0<1,则 ¬p 为 ( ) A . ∀x ∈Z ,e x <1 B . ∀x ∈Z ,e x ≥1 C . ∀x ∉Z ,e x <1D . ∀x ∉Z ,e x ≥12. 已知 a,b ∈R ,则“1<b <a ”是“a −1>∣b −1∣”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件3. 命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题是 ( ) A .若 a ,b 都是偶数,则 a +b 不是偶数 B .若 a ,b 都是偶数,则 a +b 不是偶数 C .若 a ,b 不全是偶数,则 a +b 不是偶数 D .若 a +b 不是偶数,则 a ,b 不全是偶数4. 已知 x ∈R ,则“x 2>x ”是“x >1”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既非充分也非必要条件5. 下列表示正确的个数是 ( )(1)0∉∅;(2)∅⊆{1,2};(3){(x,y )∣∣∣{2x +y =10,3x −y =5}={3,4};(4)若 A ⊆B 则 A ∩B =A A . 3 B . 4 C . 2 D . 16. 命题“∀x ∈R ,(13)x>0”的否定是 ( ) A . ∃x 0∈R ,(13)x 0<0B . ∀x ∈R ,(13)x≤0 C . ∀x ∈R ,(13)x<0D . ∃x 0∈R ,(13)x 0≤07. 已知集合 A ={x∣x ≤1},B ={x∣−1<x <2},则 (∁RA )∩B 等于 ( ) A . {x∣1<x <2}B . {x∣x >1}C . {x∣1≤x <2}D . {x∣x ≥1}8. 已知集合 M 中的元素 x 满足 x =a +√2b ,其中 a,b ∈Z ,则下列实数中不属于集合 M 中元素的个数是 ( )① 0;② −1;③ 3√2−1;④ 3−2√2;⑤ √8;⑥ 1−√2A . 0B . 1C . 2D . 39. 设 x ,y 均为实数,则“x =0”是“xy =0”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件10. 已知集合 U =R ,A ={x ∣x 2<5,x ∈Z },B ={x ∣∣x <2且x ≠0},则图中阴影部分表示的集合为( )A . {2}B . {1,2}C . {0,2}D . {0,1,2}11. 已知集合 A ={x∣ x =3n +2,n ∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为 ( ) A . 5 B . 4 C . 3 D . 212. 命题“∀x ∈R ,2x 2−1≤0”的否定是 ( ) A . ∀x ∈R ,2x 2−1≥0 B . ∃x ∈R ,2x 2−1≤0 C . ∃x ∈R ,2x 2−1>0D . ∀x ∈R ,2x 2−1>0二、填空题(共4题)13. 若对于两个由实数构成的集合 X ,Y ,集合的运算 X ⊕Y 定义为:X ⊕Y ={x +y∣ x ∈X,y ∈Y };集合的运算 X ⊗Y 定义为:X ⊗Y ={x ⋅y∣ x ∈X,y ∈Y },已知实数集合 X ={a +b √2∣ a,b ∈Q},X ={a +b √3∣ a,b ∈Q}.试写出一个实数 m ,使得 m ∈X ⊗Y 但 m ∉X ⊕Y ,则 m = .14. 在平面直角坐标系 xOy 中,若直线 y =2a 与函数 y =∣x −a ∣−1 的图象只有一个交点,则 a的值为 .15. 若 f (x ) 是偶函数,其定义域为 (−∞,+∞),且在[0,+∞) 上单调递减,设 f (−32)=m ,f (a 2+2a +52)=n ,则 m ,n 的大小关系是 .16. 已知集合 M ={x∣ x >2},集合 N ={x∣ x ≤1},则 M ∪N = .三、解答题(共6题)17.判断下列命题中p是q的什么条件.(1) p:x>1,q:x2>1;(2) p:△ABC有两个角相等,q:△ABC是正三角形;(3) 若a,b∈R,p:a2+b2=0,q:a=b=0.18.设集合A={x∈N∣ x<4},B={3,4,5,6}.(1) 用列举法写出集合A.(2) 求A∩B和A∪B.19.已知集合A={x∣ x2−ax+a2−19=0},B={x∣ x2−5x+6=0},是否存在a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)∅⫋(A∩B).若存在,求出a的值;若不存在,请说明理由.20.用列举法表示下列给定的集合.(1) 大于1且小于6的整数组成的集合A.(2) 方程x2−9=0的实数根组成的集合B.(3) 小于8的质数组成的集合C.(4) 一次函数y=x+3与y=−2x+6的图象的交点组成的集合D.21.真子集对于两个集合A,B,如果,并且B中至少有一个元素不属于A,那么集合A称为集合B 的真子集,记为或,读作“ ”或“ ”.问题:真子集与子集有什么区别?22.已知集合A={x∣ −4<x<6},B={x∣ x2−4ax+3a2=0}.(1) 若A∩B=∅,求实数a的取值范围;(2) 若A∪B=A,求实数a的取值范围.答案一、选择题(共12题) 1. 【答案】B【解析】若命题为 p:∃x 0∈Z ,e x 0<1, 则 ¬p:∀x 0∈Z ,e x ≥1. 故选:B .【知识点】全(特)称命题的否定2. 【答案】B【解析】因为 a −1>∣b −1∣⇔1−a <b −1<a −1⇔{2<a +b,b <a,所以当 1<b <a 时,a −1>∣b −1∣ 成立;当 a −1>∣b −1∣ 成立时,如取 b =12,a =2,此时 1<b <a 不成立, 所以 1<b <a 是 a −1>∣b −1∣ 的充分不必要条件. 【知识点】充分条件与必要条件3. 【答案】C【解析】否命题就是对原命题的条件和结论同时进行否定,则命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题为:若 a ,b 不都是偶数,则 a +b 不是偶数. 【知识点】全(特)称命题的否定4. 【答案】A【知识点】充分条件与必要条件5. 【答案】A【知识点】交、并、补集运算6. 【答案】D【解析】全称命题“∀x ∈R ,(13)x>0”的否定是把量词“∀”改为“∃”,并对结论进行否定,把“>”改为“≤”,即“∃x 0∈R ,(13)x 0≤0”.【知识点】全(特)称命题的否定7. 【答案】A【知识点】交、并、补集运算8. 【答案】A【解析】当 a =b =0 时,x =0;当 a =−1,b =0 时,x =−1; 当 a =−1,b =3 时,x =−1+3√2;3−2√2=√2)(3−2√2)(3+2√2)=6+4√2,即 a =6,b =4;当 a =0,b =2 时,x =2√2=√8;1−√2=√2(1−√2)(1+√2)=−1−√2,即 a =−1,b =−1.综上所述:0,−1,3√2−1,3−2√2,√8,1−√2 都是集合 M 中的元素. 【知识点】元素和集合的关系9. 【答案】A【知识点】充分条件与必要条件10. 【答案】C【解析】因为集合 U =R ,A ={x ∣x 2<5,x ∈Z }={−2,−1,0,1,2},B ={x ∣∣x <2且x ≠0},∁U B ={x ∣∣x ≥2且x =0}, 所以图中阴影部分表示的集合为 A ∩(∁U B )={0,2}. 【知识点】集合基本运算的Venn 图示11. 【答案】D【知识点】交、并、补集运算12. 【答案】C【知识点】全(特)称命题的否定二、填空题(共4题)13. 【答案】可填“(1+√2)(1+√3)”等【知识点】交、并、补集运算14. 【答案】 −12【知识点】函数的零点分布15. 【答案】 m ≥n【知识点】抽象函数、函数的奇偶性、函数的单调性16. 【答案】 (−∞,1]∪(2,+∞)【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) 因为“x>1”能推出“x2>1”,即p⇒q,但“x2>1”推不出“x>1”,如x=−2,即q⇏p,所以p是q的充分不必要条件.(2) 因为“△ABC有两个角相等”推不出“△ABC是正三角形”,即p⇏q,但“△ABC是正三角形”能推出“△ABC有两个角相等”,即q⇒p,所以p是q的必要不充分条件.(3) 若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.【知识点】充分条件与必要条件18. 【答案】(1) 因为集合A={x∈N∣ x<4},所以A={0,1,2,3}.(2) 因为B={3,4,5,6},所以A∩B={3},A∪B={0,1,2,3,4,5,6}.【知识点】交、并、补集运算、集合的表示方法19. 【答案】假设存在a使得A,B满足条件,由题意得B={2,3}.因为A∪B=B,所以A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又因为∅⫋(A∩B),所以A≠∅,即A={2}或{3}.当A={2}时,代入得a2−2a−15=0,即a=−3或a=5.经检验a=−3时,A={2,−5},与A={2}矛盾,舍去;a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,代入得a2−3a−10=0,即a=5或a=−2.经检验a=−2时,A={3,−5},与A={3}矛盾,舍去;a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B满足条件.【知识点】包含关系、子集与真子集、交、并、补集运算20. 【答案】(1) A={2,3,4,5}.(2) B={−3,3}.(3) C={2,3,5,7}.(4) D={(1,4)}.【知识点】集合的概念21. 【答案】A⊆B;A⫋B;B⫌A;A真包含于B;B真包含A在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个元素x满足x∈B,但x∉A,也就是说集合B至少要比集合A多一个元素.【知识点】包含关系、子集与真子集22. 【答案】(1) a≤−4或a≥6.<a<2.(2) −43【知识点】交、并、补集运算。

2015届高考数学(人教A版,理科)【第一章】集合与常用逻辑用语导学案2

2015届高考数学(人教A版,理科)【第一章】集合与常用逻辑用语导学案2

学案2命题及其关系、充分条件与必要条件导学目标:1.能写出一个命题的逆命题、否命题、逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的含义.自主梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q(p⇒q);逆命题:若q则p(q⇒p);否命题:若綈p则綈q(綈p⇒綈q);逆否命题:若綈q则綈p(綈q⇒綈p).(2)四种命题间的关系(3)四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p⇒q,则p叫做q的充分条件;若q⇒p,则p叫做q的必要条件;如果p⇔q,则p 叫做q的充要条件.自我检测1.(2010·湖南)下列命题中的假命题是()A.∃x∈R,lg x=0 B.∃x∈R,tan x=1C.∀x∈R,x3>0 D.∀x∈R,2x>0答案 C解析对于C选项,当x=0时,03=0,因此∀x∈R,x3>0是假命题.2.(2010·陕西)“a>0”是“|a|>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析a>0⇒|a|>0,|a|>0 a>0,∴“a>0”是“|a|>0”的充分不必要条件.3.(2009·浙江)“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析对于“x>0”⇒“x≠0”,反之不一定成立,因此“x>0”是“x≠0”的充分而不必要条件.4.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题答案 C解析由四种命题逆否关系知,s是p的逆命题t的否命题.5.(2011·宜昌模拟)与命题“若a∈M,则b∉M”等价的命题是()A.若a∉M,则b∉MB.若b∉M,则a∈MC.若a∉M,则b∈MD.若b∈M,则a∉M答案 D解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.探究点一四种命题及其相互关系例1写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)弦的垂直平分线经过圆心,并平分弦所对的弧.解题导引给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题.(3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.变式迁移1有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.答案①③解析①的逆命题是“若x,y互为相反数,则x+y=0”,真;②的否命题是“不全等的三角形的面积不相等”,假;③若q≤1,则Δ=4-4q≥0,所以x2+2x+q=0有实根,其逆否命题与原命题是等价命题,真;④的逆命题是“三个内角相等的三角形是不等边三角形”,假.探究点二 充要条件的判断例2 给出下列命题,试分别指出p 是q 的什么条件.(1)p :x -2=0;q :(x -2)(x -3)=0.(2)p :两个三角形相似;q :两个三角形全等.(3)p :m <-2;q :方程x 2-x -m =0无实根.(4)p :一个四边形是矩形;q :四边形的对角线相等.解 (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0x -2=0.∴p 是q 的充分不必要条件.(2)∵两个三角形相似两个三角形全等;但两个三角形全等⇒两个三角形相似.∴p 是q 的必要不充分条件.(3)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根m <-2.∴p 是q 的充分不必要条件.(4)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形,∴q p .∴p 是q 的充分不必要条件.变式迁移2 (2011·邯郸月考)下列各小题中,p 是q 的充要条件的是( )①p :m <-2或m >6;q :y =x 2+mx +m +3有两个不同的零点;②p :f (-x )f (x )=1;q :y =f (x )是偶函数; ③p :cos α=cos β;q :tan α=tan β;④p :A ∩B =A ;q :∁U B ⊆∁U A .A .①②B .②③C .③④D .①④答案 D解析 ①q :y =x 2+mx +m +3有两个不同的零点⇔q :Δ=m 2-4(m +3)>0⇔q :m <-2或m >6⇔p ;②当f (x )=0时,由q p ;③若α,β=k π+π2,k ∈Z 时,显然cos α=cos β,但tan α≠tan β;④p :A ∩B =A ⇔p :A ⊆B ⇔q :∁U A ⊇∁U B .故①④符合题意.探究点三 充要条件的证明例3 设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.解题导引 有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证明命题的充分性,由“结论”⇒“条件”是证明命题的必要性.证明要分两个环节:一是充分性;二是必要性.证明 (1)必要性:设方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根x 0,则x 20+2ax 0+b 2=0,x 20+2cx 0-b 2=0,两式相减可得x 0=b 2c -a,将此式代入x 20+2ax 0+b 2=0, 可得b 2+c 2=a 2,故∠A =90°,(2)充分性:∵∠A =90°,∴b 2+c 2=a 2,b 2=a 2-c 2.①将①代入方程x 2+2ax +b 2=0,可得x 2+2ax +a 2-c 2=0,即(x +a -c )(x +a +c )=0.将①代入方程x 2+2cx -b 2=0,可得x 2+2cx +c 2-a 2=0,即(x +c -a )(x +c +a )=0.故两方程有公共根x =-(a +c ).所以方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.变式迁移3 已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.证明 (1)必要性:∵a +b =1,∴a +b -1=0.∴a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2)=0.(2)充分性:∵a 3+b 3+ab -a 2-b 2=0,即(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,∴a ≠0且b ≠0.∵a 2-ab +b 2=(a -b 2)2+34b 2>0. ∴a +b -1=0,即a +b =1.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.转化与化归思想的应用 例 (12分)已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,且m ∈Z .求两方程的根都是整数的充要条件.【答题模板】解 ∵mx 2-4x +4=0是一元二次方程,∴m ≠0. [2分] 另一方程为x 2-4mx +4m 2-4m -5=0,两方程都要有实根,∴⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈[-54,1]. [6分] ∵两根为整数,故和与积也为整数, ∴⎩⎪⎨⎪⎧ 4m ∈Z4m ∈Z 4m 2-4m -5∈Z ,∴m 为4的约数, [8分]∴m =-1或1,当m =-1时,第一个方程x 2+4x -4=0的根为非整数,而当m =1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m =1. [12分]【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想Δ≥0.求出m 的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数.【易错点剖析】易忽略一元二次方程这个条件隐含着m ≠0,不易把方程的根都是整数转化为两根之和与两根之积都是整数.1.研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果……,那么……”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性.2.在解决充分条件、必要条件等问题时,要给出p 与q 是否可以相互推出的两次判断,同时还要弄清是p 对q 而言,还是q 对p 而言.还要分清否命题与命题的否定的区别.3.本节体现了转化与化归的数学思想.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·天津模拟)给出以下四个命题:①若ab ≤0,则a ≤0或b ≤0;②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .④答案 C解析 对命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对命题②,其原命题和逆否命题为假,但逆命题和否命题为真;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④,其原命题、逆命题、否命题、逆否命题全部为假.2.(2010·浙江)设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 ∵0<x <π2,∴0<sin x <1. ∴x sin x <1⇒x sin 2x <1,而x sin 2x <1x sin x <1.故 选B.3.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos 2α=12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由α=π6+2k π(k ∈Z )可得到cos 2α=12. 由cos 2α=12得2α=2k π±π3(k ∈Z ). ∴α=k π±π6(k ∈Z ). 所以cos 2α=12不一定得到α=π6+2k π(k ∈Z ). 4.(2011·威海模拟)关于命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题,下列结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真答案 D解析 本题考查四种命题之间的关系及真假判断.对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上.因此否命题也是假命题.5.(2011·枣庄模拟)集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 A ={x |-4≤x ≤4},若A ⊆B ,则a >4,a >4a >5,但a >5⇒a >4.故选B.二、填空题(每小题4分,共12分)6.“x 1>0且x 2>0”是“x 1+x 2>0且x 1x 2>0”的________条件.答案 充要7.(2011·惠州模拟)已知p :(x -1)(y -2)=0,q :(x -1)2+(y -2)2=0,则p 是q 的 ____________条件.答案 必要不充分解析 由(x -1)(y -2)=0得x =1或y =2,由(x -1)2+(y -2)2 =0得x =1且y =2,所以由q 能推出p ,由p 推不出q, 所以填必要不充分条件.8.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又因为p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是3≤m <8.三、解答题(共38分)9.(12分)(2011·许昌月考)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若q <1,则方程x 2+2x +q =0有实根;(2)若ab =0,则a =0或b =0;(3)若x 2+y 2=0,则x 、y 全为零.解 (1)逆命题:若方程x 2+2x +q =0有实根,则q <1,为假命题.否命题:若q ≥1,则方程x 2+2x +q =0无实根,为假命题.逆否命题:若方程x 2+2x +q =0无实根,则q ≥1,为真命题.(4分)(2)逆命题:若a =0或b =0,则ab =0,为真命题.否命题:若ab ≠0,则a ≠0且b ≠0,为真命题.逆否命题:若a ≠0且b ≠0,则ab ≠0,为真命题.(8分)(3)逆命题:若x 、y 全为零,则x 2+y 2=0,为真命题.否命题:若x 2+y 2≠0,则x 、y 不全为零,为真命题.逆否命题:若x 、y 不全为零,则x 2+y 2≠0,为真命题.(12分)10.(12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},(2分)B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.(4分)∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p 綈q .则{x |綈q }Ø{x |綈p },(6分)而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0},∴{x |-4≤x <-2}Ø{x |x ≤3a 或x ≥a ,a <0},(10分)则⎩⎪⎨⎪⎧ 3a ≥-2,a <0或⎩⎪⎨⎪⎧a ≤-4,a <0.(11分)综上,可得-23≤a <0或x ≤-4.(12分) 11.(14分)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.(2分)当n ≥2时,a n =S n -S n -1=p n -1(p -1).当n =1时也成立.(4分)于是a n +1a n =p n (p -1)p n -1(p -1)=p (n ∈N *), 即数列{a n }为等比数列.(6分)必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1).∵p ≠0,p ≠1,∴a n +1a n =p n (p -1)p n -1(p -1)=p .(10分) ∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,即p (p -1)p +q=p , 即p -1=p +q .∴q =-1.(13分)综上所述,q =-1是数列{a n }为等比数列的充要条件.(14分)。

2015届高考数学(人教,理科)大一轮配套练透:第1章 集合与常用逻辑用语 第3节

2015届高考数学(人教,理科)大一轮配套练透:第1章 集合与常用逻辑用语 第3节

[课堂练通考点]1.(2014·成都质检)命题“∀x ∈R ,都有ln(x 2+1)>0”的否定为( ) A .∀x ∈R ,都有ln(x 2+1)≤0B .∃x 0∈R ,使得ln(x 20+1)>0C .∀x ∈R ,都有ln(x 2+1)<0D .∃x 0∈R ,使得ln(x 20+1)≤0解析:选D 任意的否定是存在,大于的否定是小于等于. 2.有下列四个命题,其中真命题是( ) A .∀n ∈R ,n 2≥nB .∃n ∈R ,∀m ∈R ,m ·n =mC .∀n ∈R ,∃m ∈R ,m 2<nD .∀n ∈R ,n 2<n解析:选B 对于选项A ,令n =12即可验证其不正确;对于选项C 、选项D ,可令n =-1加以验证,均不正确,故选B.3.(2014·日照调研)“p 或q ”为真命题是“p 且q ”为真命题的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 若命题“p 或q ”为真命题,则p ,q 中至少有一个为真命题,若命题“p 且q ”为真命题,则p ,q 都为真命题,因此“p 或q ”为真命题是“p 且q ”为真命题的必要不充分条件.4.(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:选A 由题意可知,“至少有一位学员没有降落在指定范围”意味着“甲没有或乙没有降落在指定范围”,使用“非”和“或”联结词即可表示该复合命题为(綈p )∨(綈q ).5.已知p :2+3=5,q :5<4,则下列判断正确的是( ) A .“p 或q ”为真,p 为假B.“p且q”为假,q为真C.“p且q”为假,p为假D.“p且綈q”为真,“p或q”为真解析:选D∵p为真,∴綈p为假.又∵q为假,∴綈q为真,∴“p且綈q”为真,“p或q”为真.6.(2013·湖南六校联考)已知命题p:∃x0∈(-∞,0),2x0<3x0,命题q:∀x∈(0,1),log2x<0,则下列命题为真命题的是()A.p∧q B.p∨(綈q)C.(綈p)∧q D.p∧(綈q)解析:选C由指数函数的图像与性质可知,命题p是假命题,由对数函数的图像与性质可知,命题q是真命题,则命题“p∧q”为假命题,命题“p∨(綈q)”为假命题,命题“(綈p)∧q”为真命题,命题“p∧(綈q)”为假命题.[课下提升考能]第Ⅰ组:全员必做题1.将a2+b2+2ab=(a+b)2改写成全称命题是()A.∃a,b∈R,a2+b2+2ab=(a+b)2B.∃a<0,b>0,a2+b2+2ab=(a+b)2C.∀a>0,b>0,a2+b2+2ab=(a+b)2D.∀a,b∈R,a2+b2+2ab=(a+b)2解析:选D全称命题含有量词“∀”,故排除A、B,又等式a2+b2+2ab=(a+b)2对于全体实数都成立,故选D.2.(2013·湖北八校联考)已知命题p:所有指数函数都是单调函数,则綈p为()A.所有的指数函数都不是单调函数B.所有的单调函数都不是指数函数C.存在一个指数函数,它不是单调函数D.存在一个单调函数,它不是指数函数解析:选C命题p:所有指数函数都是单调函数,则綈p为:存在一个指数函数,它不是单调函数.3.如果命题“p∧q”是假命题,“綈q”也是假命题,则()A.命题“綈p∨q”是假命题B.命题“p∨q”是假命题C.命题“綈p∧q”是真命题D.命题“p∧綈q”是真命题解析:选C由“綈q”为假命题得q为真命题,又“p∧q”是假命题,所以p为假命题,綈p为真命题.所以命题“綈p∨q”是真命题,A错;命题“p∨q”是真命题,B错;命题“p∧綈q”是假命题,D错;命题“綈p∧q”是真命题,故选C.4.(2014·湖北八校联考)已知命题p :m ,n 为直线,α为平面,若m ∥n ,n ⊂α,则m ∥α;命题q :若a >b ,则ac >bc ,则下列命题为真命题的是( )A .p 或qB .綈p 或qC .綈p 且qD .p 且q解析:选B 命题q :若a >b ,则ac >bc 为假命题,命题p :m ,n 为直线,α为平面,若m ∥n ,n ⊂α,则m ∥α也为假命题,因此只有綈p 或q 为真命题.5.(2014·深圳调研)下列命题为真命题的是( ) A .若p ∨q 为真命题,则p ∧q 为真命题B .“x =5”是“x 2-4x -5=0”的充分不必要条件C .命题“若x <-1,则x 2-2x -3>0”的否命题为“若x <-1,则x 2-2x -3≤0”D .已知命题p :∃x 0∈R ,使得x 20+x 0-1<0,则綈p :∀x ∈R ,使得x 2+x -1>0解析:选B 对于A ,“p 真q 假”时p ∨q 为真命题,但p ∧q 为假命题,故A 错;对于C ,否命题应为“若x ≥-1,则x 2-2x -3≤0”,故C 错;对于D ,綈p 应为“∀x ∈R ,使得x 2+x -1≥0”,故D 错.6.(2013·东北四市调研)已知命题p 1:存在x 0∈R ,使得x 20+x 0+1<0成立;p 2:对任意x∈[1,2],x 2-1≥0.以下命题为真命题的是( )A .(綈p 1)∧(綈p 2)B .p 1∨(綈p 2)C .(綈p 1)∧p 2D .p 1∧p 2解析:选C ∵方程x 20+x 0+1=0的判别式Δ=12-4=-3<0,∴x 20+x 0+1<0无解,故命题p 1为假命题,綈p 1为真命题; 由x 2-1≥0,得x ≥1或x ≤-1.∴对任意x ∈[1,2],x 2-1≥0,故命题p 2为真命题,綈p 2为假命题. ∵綈p 1为真命题,p 2为真命题, ∴(綈p 1)∧p 2为真命题,选C.7.下列命题中是真命题的为( )A .命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2=0,则x ≠1”B .命题p :∃x 0∈R ,sin x 0>1,则綈p :∀x ∈R ,sin x ≤1C .若p 且q 为假命题,则p ,q 均为假命题D .“φ=π2+2k π(k ∈Z )”是“函数y =sin(2x +φ)为偶函数”的充要条件解析:选B 对于A ,命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2≠0,则x ≠1”,A 错误;由全称命题的否定是特称命题知,B 正确;当p ,q 两个命题中有一个命题是假命题时,p 且q 为假命题,故C 错误;函数y =sin(2x +φ)为偶函数的充要条件为φ=π2+k π(k ∈Z ),故D 错误. 8.已知命题p :“∀x ∈[1,2]都有x 2≥a ”.命题q :“∃x 0∈R ,使得x 20+2ax 0+2-a =0成立”,若命题“p ∧q ”是真命题,则实数a 的取值范围为( )A .(-∞,-2]B .(-2,1)C .(-∞,-2]∪{1}D .[1,+∞)解析:选C 若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax 0+2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p ∧q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1.9.已知命题p :“∀x ∈N *,x >1x ”,命题p 的否定为命题q ,则q 是“________”;q 的真假为________(填“真”或“假”).解析:q :∃x 0∈N *,x 0≤1x 0,当x 0=1时,x 0=1x 0成立,故q 为真.答案:∃x 0∈N *,x 0≤1x 0真10.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.解析:当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0.综上,-8≤a ≤0.答案:[-8,0]11.已知命题p :∃a 0∈R ,曲线x 2+y 2a 0=1为双曲线;命题q :x 2-7x +12<0的解集是{x |3<x <4}.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题.其中正确的是________.解析:因为命题p 和命题q 都是真命题,所以命题“p ∧q ”是真命题,命题“p ∧綈q ”是假命题,命题“綈p ∨q ”是真命题,命题“綈p ∨綈q ”是假命题.答案:①②③④ 12.下列结论:①若命题p :∃x 0∈R ,tan x 0=2;命题q :∀x ∈R ,x 2-x +12>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”.其中正确结论的序号为________.(把你认为正确结论的序号都填上)解析:在①中,命题p 是真命题,命题q 也是真命题,故“p ∧(綈q )”是假命题是正确的.在②中l 1⊥l 2⇔a +3b =0,所以②不正确.在③中“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”正确.答案:①③ 第Ⅱ组:重点选做题1.命题p :∀x ∈(1,+∞),函数f (x )=|log 2x |的值域为[0,+∞);命题q :∃m ≥0,使得y =sin mx 的周期小于π2,试判断p ∨q ,p ∧q ,綈p 的真假性.解:对于命题p ,当f (x )=|log 2x |=0时,log 2x =0,即x =1,1∉(1,+∞),故命题p 为假命题.对于命题q ,y =sin mx 的周期T =2π|m |<π2,即|m |>4,故m <-4或m >4,故存在,m ≥0,使得命题q 成立,所以p 且q 为假命题.故p ∨q 为真命题,p ∧q 为假命题,綈p 为真命题.2.已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c恒成立.如果p 或q 为真命题,p 且q 为假命题,求c 的取值范围. 解:由命题p 为真知,0<c <1, 由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若p 或q 为真命题,p 且q 为假命题, 则p 、q 中必有一真一假, 当p 真q 假时, c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1.综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c ⎪⎪0<c ≤12或c ≥1.。

【走向高考】2015届高考数学一轮总复习 集合与常用逻辑用语阶段性测试题一 新人教A版

【走向高考】2015届高考数学一轮总复习 集合与常用逻辑用语阶段性测试题一 新人教A版

阶段性测试题一(集合与常用逻辑用语) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·某某某某中学、金昌市二中期中)设集合A={x|x>1},B={x|x(x-2)<0},则A∩B等于()A.{x|x>2}B.{x|0<x<2}C.{x|1<x<2} D.{x|0<x<1}[答案]C[解析]∵B={x|x(x-2)<0}={x|0<x<2},∴A∩B={x|1<x<2}.(理)(2014·某某省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知全集U=R,集合M={x|x2-x=0},N={x|x=2n+1,n∈Z},则M∩N为()A.{0} B.{1}C.{0,1} D.∅[答案]B[解析]∵M={x|x2-x=0}={0,1},N={x|x=2n+1,n∈Z}中的元素是奇数,∴M∩N={1},选B.2.(2014·威海期中)已知集合A={-1,1},B={m|m=x+y,x∈A,y∈A},则集合B等于()A.{-2,2} B.{-2,0,2}C.{-2,0} D.{0}[答案]B[解析]∵x∈A,y∈A,A={-1,1},m=x+y,∴m的取值为-2,0,2,即B={-2,0,2},故选B.3.(2014·某某曲沃中学期中)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=() A.(-∞,0] B.(-∞,1]C.[1,2] D.[1,+∞)[答案]B[解析]∵A={x|-2≤x≤1},B={x|x<0},∴A∪B={x|x≤1},故选B.4.(文)(2014·某某省某某市期中)若U ={1,2,3,4,5,6},M ={1,2,4},N ={2,3,6},则∁U (M ∪N )=( )A .{1,2,3}B .{5}C .{1,3,4}D .{2} [答案]B[解析]∵U ={1,2,3,4,5,6},M ∪N ={1,2,3,4,6}, ∴∁U (M ∩N )={5}.(理)(2014·文登市期中)已知集合A ={x |log 4x <1},B ={x |x ≥2},则A ∩(∁R B )=( ) A .(-∞,2) B .(0,2) C .(-∞,2] D .[2,4) [答案]B[解析]∵A ={x |log 4x <1}={x |0<x <4},B ={x |x ≥2},∴∁R B ={x |x <2},所以A ∩∁R B =(0,2),故选B.5.(文)(2014·某某市八县联考)命题“有些实数的绝对值是正数”的否定是( ) A .∀x ∈R ,|x |>0 B .∃x 0∈R ,|x 0|>0 C .∀x ∈R ,|x |≤0 D .∃x 0∈R ,|x 0|≤0 [答案]C[解析]由词语“有些”知原命题为特称命题,故其否定为全称命题,因为命题的否定只否定结论,所以选C.(理)(2014·某某某某中学期中)命题“存在x ∈Z ,使x 2+2x +m ≤0成立”的否定是( ) A .存在x ∈Z ,使x 2+2x +m >0 B .不存在x ∈Z ,使x 2+2x +m >0 C .对于任意x ∈Z ,都有x 2+2x +m ≤0 D .对于任意x ∈Z ,都有x 2+2x +m >0 [答案]D[解析]特称命题的否定是全称命题.6.(文)(2014·某某冀州中学期中)下列命题中的真命题是( ) A .∃x ∈R ,使得sin x +cos x =32B .∀x ∈(0,+∞),e x >x +1C .∃x ∈(-∞,0),2x <3xD .∀x ∈(0,π),sin x >cos x[答案]B[解析]∵sin x +cos x =2sin(x +π4)∈[-2,2],32>2,∴不存在x ∈R ,使sin x +cos x=32成立,故A 错;令f (x )=e x -x -1(x ≥0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又f (0)=0,∴x >0时,f (x )>0恒成立,即e x >x +1对∀x ∈(0,+∞)都成立,故B 正确;在同一坐标系内作出y =2x 与y =3x 的图象知,C 错误;当x =π4时,sin x=22=cos x ,∴D 错误,故选B. (理)(2014·某某省某某市期中)下面命题中,假命题是( ) A .∀x ∈R,3x >0B .∃α,β∈R ,使sin(α+β)=sin α+sin βC .∃m ∈R ,使f (x )=mxm 2+2m 是幂函数,且在(0,+∞)上单调递增D .命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1>3x ” [答案]D[解析]由指数函数性质知,对任意x ∈R ,都有3x >0,故A 真;当α=π3,β=2π时,sin(α+β)=sin α+sin β成立;故B 真;要使f (x )=mxm 2+2m 为幂函数,应有m =1,∴f (x )=x 3,显然此函数在(0,+∞)上单调递增,故C 真;D 为假命题,“>”的否定应为“≤”.7.(文)(2014·某某省金昌市二中期中)a 、b 为非零向量,“a ⊥b ”是“函数f (x )=(x a +b )·(x b -a )为一次函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 [答案]B[解析]∵f (x )=(x a +b )·(x b -a )=x 2a ·b +x (|b |2-|a |2)-a ·b ,当f (x )为一次函数时,a ·b =0且|b |2-|a |2≠0,∴a ⊥b ,当a ⊥b 时,f (x )未必是一次函数,因为此时可能有|a |=|b |,故选B.(理)(2014·某某某某十中期中)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则“m =1”是“(a -m b )⊥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案]C[解析]∵|a |=1,|b |=2,〈a ,b 〉=60°,∴a ·b =1×2×cos60°=1,(a -m b )⊥a ⇔(a -m b )·a=0⇔|a|2-m a·b=0⇔m=1,故选C.8.(2014·某某都昌一中月考)已知全集U={1,2,3,4,5,6},集合A={2,3,4},集合B={2,4,5},则右图中的阴影部分表示()A.{2,4}B.{1,3}C.{5}D.{2,3,4,5}[答案]C[解析]阴影部分在集合B中,不在集合A中,故阴影部分为B∩(∁U A)={2,4,5}∩{1,5,6}={5},故选C.9.(2014·华安、连城、永安、漳平一中,龙海二中,泉港一中六校联考)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥β,α⊥γ,则β∥γC.若m∥α,m∥β,则α∥βD.若m⊥α,m⊥β,则α∥β[答案]D[解析]m∥α,n∥α时,m与n可平行,也可相交或异面,故A错误;由正方体相邻三个面可知,α⊥β,α⊥γ时,β与γ可能相交,故B错;当α∩β=l,m⊄α,m⊄β,m∥l时,m∥α,m∥β,故C错,故选D.10.(2014某某某某中学期中)已知函数f(x)=x+b cos x,其中b为常数.那么“b=0”是“f(x)为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]C[解析]当b=0时,f(x)=x为奇函数,故满足充分性;当f(x)为奇函数时,f(-x)=-f(x),∴-x +b cos x =-x -b cos x ,从而2b cos x =0,∵此式对任意x ∈R 都成立,∴b =0,故满足必要性,选C.11.(2014·某某省某某市检测)下列命题中是假命题...的是( ) A .∃m ∈R ,使f (x )=(m -1)·x m2-4m +3是幂函数,且在(0,+∞)上单调递减B .∀a >0,函数f (x )=ln 2x +ln x -a 有零点C .∃α,β∈R ,使cos(α+β)=cos α+sin βD .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 [答案]D[解析]∵f (x )为幂函数,∴m -1=1,∴m =2,f (x )=x -1,∴f (x )在(0,+∞)上递减,故A 真;∵y =ln 2x +ln x 的值域为[-14,+∞),∴对∀a >0,方程ln 2x +ln x -a =0有解,即f (x )有零点,故B 真;当α=π6,β=2π时,cos(α+β)=cos α+sin β成立,故C 真;当φ=π2时,f (x )=sin(2x +φ)=cos2x 为偶函数,故D 为假命题.12.(2014·黄冈中学检测)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“理想集合”,则下列集合是“理想集合”的是( )A .M ={(x ,y )|y =1x }B .M ={(x ,y )|y =cos x }C .M ={(x ,y )|y =x 2-2x +2}D .M ={(x ,y )|y =log 2(x -1)} [答案]B[解析]设A (x 1,y 1),B (x 2,y 2),则由x 1x 2+y 1y 2=0知OA ⊥OB ,由理想集合的定义知,对函数y =f (x )图象上任一点A ,在图象上存在点B ,使OA ⊥OB ,对于函数y =1x ,图象上点A (1,1),图象上不存在点B ,使OA ⊥OB ;对于函数y =x 2-2x +2图象上的点A (1,1),在其图象上也不存在点B ,使OA ⊥OB ;对于函数y =log 2(x -1)图象上的点A (2,0),在其图象上不存在点B ,使OA ⊥OB ;而对于函数y =cos x ,无论在其图象上何处取点A ,总能在其位于区间[-π2,π2]的图象上找到点B ,使OA ⊥OB ,故选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.)13.(文)(2014·高州四中质量检测)已知函数f (x )=x 2+mx +1,若命题“∃x 0>0,f (x 0)<0”为真,则m 的取值X 围是________.[答案](-∞,-2)[解析]由条件知⎩⎪⎨⎪⎧-m 2>0,m 2-4>0,∴m <-2.(理)(2014·某某市八县联考)已知命题p :m ∈R ,且m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题且p ∨q 为真命题,则m 的取值X 围是________.[答案]m ≤-2或-1<m <2[解析]p :m ≤-1,q :-2<m <2,∵p ∧q 为假命题且p ∨q 为真命题,∴p 与q 一真一假,当p 假q 真时,-1<m <2,当p 真q 假时,m ≤-2,∴m 的取值X 围是m ≤-2或-1<m <2.14.(文)(2014·某某程集中学期中)以下四个命题:①在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =a cos B ,则B =π4;②设a ,b 是两个非零向量且|a ·b |=|a ||b |,则存在实数λ,使得b =λa ;③方程sin x -x =0在实数X 围内的解有且仅有一个;④a ,b ∈R 且a 3-3b >b 3-3a ,则a >b ;其中正确的是________.[答案]①②③④[解析]∵b sin A =a cos B ,∴sin B sin A =sin A cos B ,∵sin A ≠0,∴sin B =cos B ,∵B ∈(0,π),∴B =π4,故①正确;∵|a ·b |=||a |·|b |·cos 〈a ,b 〉|=|a |·|b |,∴|cos 〈a ,b 〉|=1,∴a 与b 同向或反向,∴存在实数λ,使b =λa ,故②正确;由于函数y =sin x 的图象与直线y =x 有且仅有一个交点,故③正确;∵(a 3-3b )-(b 3-3a )=(a 3-b 3)+3(a -b )=(a -b )(a 2+ab +b 2+3)>0,∵a 2+ab +b 2+3>0,∴a -b >0,∴a >b ,故④正确.(理)(2014·屯溪一中期中)下列几个结论: ①“x <-1”是“x <-2”的充分不必要条件; ②⎠⎛01(e x +sin x )d x =e -cos1;③已知a >0,b >0,a +b =2,则y =1a +4b 的最小值为92;④若点(a,9)在函数y =3x 的图象上,则tan a π3的值为-3;⑤函数f (x )=2sin(2x -π3)-1的对称中心为(k π2+π6,0)(k ∈Z )其中正确的是________.(写出所有正确命题的序号) [答案]②③④[解析]x <-1⇒/ x <-2,x <-2⇒x <-1,故①错误;⎠⎛01(e x +sin x )d x =(e x -cos x )|10=e -cos1,故②正确;∵a >0,b >0,a +b =2,∴y =1a +4b =12(a +b )(1a +4b )=12(5+b a +4a b )≥12(5+2b a ·4ab)=92,等号在⎩⎪⎨⎪⎧b a =4a b,a +b =2,即a =23,b =43时成立,故③正确;∵(a,9)在函数y =3x 的图象上,∴3a =9,∴a =2,∴tan 2π3=-tan π3=-3,故④正确;f (x )=2sin(2x -π3)-1的对称中心不落在x 轴上,故⑤错.正确答案为②③④.15.(2013·某某文,16)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2), 那么称这两个集合“保序同构”.现给出以下3对集合: ①A =N ,B =N *;②A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}; ③A ={x |0<x <1},B =R .其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号)[答案]①②③[解析]由(1)知T 是定义域为S 的函数y =f (x )的值域;由(2)知f (x )为增函数,因此对于集合A 、B ,只要能够找到一个增函数y =f (x ),其定义域为A ,值域为B 即可.对于①,A =N ,B =N *,可取f (x )=x +1,(x ∈A );对于②,A ={x |-1≤x ≤3},B ={x |-8≤x ≤10},可取f (x )=92x -72(x ∈A );对于③,A ={x |0<x <1},B =R ,可取f (x )=tan(x -12)π(x ∈A ).16.(文)(2014·某某八中联考)给出下列四个命题: ①∃α,β∈R ,α>β,使得tan α<tan β;②若f (x )是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(π4,π2),则f (sin θ)>f (cos θ);③在△ABC 中,“A >π6”是“sin A >12”的充要条件;④若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=3,其中所有正确命题的序号是________.[答案]①④[解析]①当α=3π4,β=π3时,tan α<0<tan β,∴①为真命题;∵f (x )是[-1,1]上的偶函数,在[-1,0]上单调递增,∴在[0,1]上单调递减,又θ∈(π4,π2),∴1>sin θ>cos θ>22,从而f (sin θ)<f (cos θ),∴②为假命题;③当A =5π6时,A >π6成立,但sin A =12,∴③为假命题;④由条件知f ′(1)=12,f (1)=12×1+2=52,∴f (1)+f ′(1)=3,∴④为真命题.(理)(2014·某某九中一模)给出下列命题: ①已知a ,b 都是正数,且a +1b +1>ab,则a <b ;②已知f ′(x )是f (x )的导函数,若∀x ∈R ,f ′(x )≥0,则f (1)<f (2)一定成立; ③命题“∃x ∈R ,使得x 2-2x +1<0”的否定是真命题; ④“x ≤1且y ≤1”是“x +y ≤2”的充要条件.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案]①②③[解析]①∵a ,b 是正数,∴a +1>0,b +1>0,∵a +1b +1>ab ,∴b (a +1)>a (b +1),∴b >a ,即a <b ,∴①正确;②∵对任意x ∈R ,f ′(x )≥0,∴f (x )在R 上为增函数, ∴f (1)<f (2),∴②正确;③“∃x ∈R ,使得x 2-2x +1<0”的否定为“∀x ∈R ,x 2-2x +1≥0”,∵x ∈R 时,x 2-2x +1=(x -1)2≥0成立,∴③正确;④当x ≤1且y ≤1时,x +y ≤2成立;当x =3,y =-2时,满足x +y ≤2,∴由“x +y ≤2”推不出“x ≤1且y ≤1”,∴④错误.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·某某市八县联考)A ={x |x 2-2x -8<0},B ={x |x 2+2x -3>0},C ={x |x 2-3ax +2a 2<0},(1)求A ∩B ;(2)试某某数a 的取值X 围,使C ⊆(A ∩B ).[解析](1)依题意得:A ={x |-2<x <4},B ={x |x >1或x <-3}, ∴A ∩B ={x |1<x <4}.(2)①当a =0时,C =∅,符合C ⊆(A ∩B ); ②当a >0时,C ={x |a <x <2a },要使C ⊆(A ∩B ),则⎩⎪⎨⎪⎧a ≥12a ≤4,解得1≤a ≤2;③当a <0时,C ={x |2a <x <a },∵a <0,C ⊆(A ∩B )不可能成立,∴a <0不符合题设. ∴综上所述得:1≤a ≤2或a =0.(理)(2014·某某某某中学期中)记函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B . (1)求A ∩B ;(2)若C ={x |x 2+4x +4-p 2<0,p >0},且C ⊆(A ∩B ),某某数p 的取值X 围.[解析](1)由条件知,x 2-x -2>0,∴A ={x |x <-1,或x >2},由g (x )有意义得3-|x |≥0,所以B ={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1,或2<x ≤3};(2)∵C ={x |x 2+4x +4-p 2<0}(p >0),∴C ={x |-2-p <x <-2+p }, ∵C ⊆(A ∩B ),∴-2-p ≥-3,且-2+p ≤-1, ∴0<p ≤1,∴实数p 的取值X 围是{p |0<p ≤1}.18.(本小题满分12分)(2014·某某省某某市期中)已知命题p :关于x 的不等式|x -1|>m -1的解集为R ,命题q :函数f (x )=(5-2m )x 是R 上的增函数,若p 或q 为真命题,p 且q 为假命题,某某数m 的取值X 围.[解析]不等式|x -1|>m -1的解集为R ,须m -1<0,即p 是真命题时,m <1; 函数f (x )=(5-2m )x 是R 上的增函数,须5-2m >1,即q 是真命题时,m <2. ∵p 或q 为真命题,p 且q 为假命题, ∴p 、q 中一个为真命题,另一个为假命题. (1)当p 真,q 假时,m <1且m ≥2,此时无解; (2)当p 假,q 真时,m ≥1且m <2,此时1≤m <2, 因此1≤m <2.19.(本小题满分12分)(文)(2014·灵宝实验高中月考)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0且綈p 是綈q 的必要不充分条件,某某数a 的取值X 围.[解析]由x 2-4ax +3a 2<0及a <0得,3a <x <a , ∴p :3a <x <a ;由x 2+2x -8>0得,x <-4或x >2, ∴q :x <-4或x >2.∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件,∴a ≤-4.(理)(2014·某某省闽侯二中、永泰二中、连江侨中、长乐二中联考)设命题p :实数x 满足(x -a )(x -3a )<0,其中a >0,命题q :实数x 满足x -3x -2≤0.(1)若a =1,且p ∧q 为真,某某数x 的取值X 围;(2)若綈p 是綈q 的充分不必要条件,某某数a 的取值X 围. [解析](1)∵a =1,∴不等式化为(x -1)(x -3)<0,∴1<x <3; 由x -3x -2≤0得,2<x ≤3,∵p ∧q 为真,∴2<x <3. (2)∵綈p 是綈q 的充分不必要条件, ∴q 是p 的充分不必要条件,又q :2<x ≤3,p :a <x <3a ,∴⎩⎪⎨⎪⎧a ≤2,3a >3,∴1<a ≤2.20.(本小题满分12分)(2014·马某某二中期中)设命题p :f (x )=2x -m 在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(綈p )∧q 为真,试某某数m 的取值X 围.[解析]对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1,对命题q :|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3,∴m 2+5m -3≥3⇒m ≥1或m ≤-6.若(綈p )∧q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧ m >1,m ≥1或m ≤-6,∴m >1. 21.(本小题满分12分)(2014·某某冀州中学期中)设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集. (1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值X 围.[解析](1)由于-x 2-2x +8>0,解得A =(-4,2),又y =x +1x +1=(x +1)+1x +1-1, 当x +1>0时,y ≥2(x +1)·1x +1-1=1;当x +1<0时,y ≤-2(x +1)·1x +1-1=-3.∴B =(-∞,-3]∪[1,+∞),∴A ∩B =(-4,-3]∪[1,2).(2)∵∁R A =(-∞,-4]∪[2,+∞),由(ax -1a)(x +4)≤0,知a ≠0, 当a >0时,由(ax -1a )(x +4)≤0,得C =[-4,1a2],不满足C ⊆∁R A ; 当a <0时,由(ax -1a )(x +4)≤0,得C =(-∞,-4]∪[1a2,+∞), 欲使C ⊆∁R A ,则1a 2≥2, 解得:-22≤a <0或0<a ≤22, 又a <0,所以-22≤a <0, 综上所述,所求a 的取值X 围是[-22,0).22.(本小题满分14分)(2014·某某市七校第一次联考)“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因.暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其他因素的条件下,某段下水道的排水量V (单位:立方米/小时)是杂物垃圾密度x (单位:千克/立方米)的函数.当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数.(1)当0≤x ≤2时,求函数V (x )的表达式;(2)当垃圾杂物密度x 为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)f (x )=x ·V (x )可以达到最大,求出这个最大值.[解析]当0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数,设为V (x )=mx +n ,将(0.2,90),(2,0)代入得V (x )=-50x +100,V (x )=⎩⎪⎨⎪⎧ 90(0≤x ≤0.2),-50x +100(0.2<x ≤2). (2)f (x )=x ·V (x )=⎩⎪⎨⎪⎧90x (0≤x ≤0.2),-50x (x -2)(0.2<x ≤2). 当0≤x ≤0.2时,f (x )=90x ,最大值为1.8千克/小时;当0.2≤x ≤2时,f (x )=50x (2-x )≤50,当x =1时,f (x )取到最大值50,所以,当杂物垃圾密度x =1千克/立方米,f (x )取得最大值50千克/小时.。

2015届高考数学文科一轮总复习集合与常用逻辑用语.docx

2015届高考数学文科一轮总复习集合与常用逻辑用语.docx

2015 届高考数学(文科)一轮总复习集合与常用逻辑用语第一篇集合与常用逻辑用语第 1 讲集合及其运算基础巩固题组( 建议用时: 40 分钟 )一、填空题1 .(2013 ?安徽卷改编 ) 已知 A= {x|x + 1> 0} ,B= { - 2,-1,0,1} .则 ( ?RA)∩ B= ________.解析因为 A= {x|x >- 1} ,则 ?RA= {x|x ≤- 1} ,所以( ?RA)∩B= { - 2,- 1} .答案{ -2,- 1}2.已知集合= {1,2,3} ,N= {2,3,4} ,则下列各式不正确的是 ________.①? N;② N? ;③∩ N={2,3} ;④∪ N= {1,4} .解析由已知得∩ N={2,3},故选①②④ .答案①②④3.已知集合={0,1,2,3,4},N= {1,3,5},P=∩N,则P 的子集个数有________.解析P=∩ N= {1,3},故P 的子集共有 4 个.答案44.已知集合 A= {x|x2 -x- 2< 0} ,B= {x| - 1<x< 1} ,则 A 与 B 的关系是 ________.解析集合 A= {x| - 1< x<2} ,B= {x| -1< x< 1} ,则BA.答案BA5.设集合 A= {x|x2 + 2x- 8< 0} , B= {x|x < 1} ,则图中阴影部分表示的集合为 ________.解析阴影部分是A∩ ?RB.集合 A= {x| - 4< x<2} ,?RB={x|x ≥1} ,所以 A∩?RB= {x|1 ≤ x<2} .答案 {x|1 ≤ x< 2}6 .(2013 ?湖南卷 ) 已知集合 U= {2,3,6,8},A={2,3},B= {2,6,8},则( ?UA)∩ B=________.解析由集合的运算,可得 ( ?UA)∩ B={6,8}∩{2,6,8}={6,8} .答案 {6,8}7 .集合A= {0,2 , a} , B= {1 , a2} ,若A∪ B={0,1,2,4,16},则 a 的值为________.解析根据并集的概念,可知{a, a2}= {4,16},故只能是a= 4.答案48.集合 A= {x ∈ R||x - 2| ≤ 5} 中的最小整数为________.解析由 |x- 2|≤ 5,得-5≤ x- 2≤ 5,即-3≤ x≤ 7,所以集合 A 中的最小整数为- 3.答案- 3二、解答题9.已知集合 A= {a2 , a+ 1,- 3} , B={a - 3,a- 2,a2+ 1} ,若 A∩ B={ -3} ,求 A∪ B.解由 A∩B={ -3} 知,- 3∈B.又 a2+ 1≥ 1,故只有 a- 3, a- 2 可能等于- 3.①当 a-3=- 3 时,a= 0,此时 A= {0,1 ,- 3} ,B= { -3,- 2,1} , A∩B= {1 ,- 3} .故 a= 0 舍去.②当 a-2=- 3 时, a=- 1,此时 A={1,0 ,- 3} , B= { - 4,- 3,2} ,满足 A∩B= { - 3} ,从而 A∪ B= { - 4,- 3,0,1,2}.10.设 A= {x|x2 + 4x= 0} , B= {x|x2+ 2(a +1)x + a2-1=0} ,(1)若 B? A,求 a 的值;(2)若 A? B,求 a 的值.解(1)A = {0 ,- 4} ,①当 B=?时,=4(a+1)2-4(a2-1)=8(a+1)<0,解得 a<- 1;②当 B 为单元素集时,a=- 1,此时 B= {0} 符合题意;③当 B=A 时,由根与系数的关系得:-2 a+ 14, a2-1= 0,解得 a=1.综上可知: a≤- 1 或 a= 1.(2)若 A? B,必有 A= B,由 (1) 知 a= 1.能力提升题组( 建议用时: 25 分钟 )一、填空题1 .若集合 A= { - 1,1} ,B= {0,2} ,则集合 {z|z = x+ y,x∈ A, y∈ B} 中的元素的个数为 ________.解析当 x=- 1,y= 0 时, z=- 1;当 x=- 1, y= 2时, z=1;当 x= 1,y= 0 时, z= 1;当 x= 1,y= 2 时, z= 3. 故z 的值为- 1,1,3 ,故所求集合为 { - 1,1,3} ,共含有 3 个元素.答案32.已知集合A= {x∈ R||x+ 2|解析A= {x|- 5答案-113.设g(x) = (axa, b, c+ 1)(cx2为实数,+ bx+1)f(x)=(x.记集合+ a) ?(x2S= {x|f(x)+ bx+ c) ,=0, x∈R}, T= {x|g(x)=0,x∈ R}.若|S|,|T|分别为集合S, T 的元素个数,则下列结论:①|S| = 1 且|T| = 0;② |S| = 1且 |T| =1,③ |S| =2 且 |T| = 2;④ |S| = 2 且 |T| =3,其中不可能成立的是________.解析取 a= 0,b= 0,c= 0,则 S= {x|f(x)=x3=0},|S| = 1,T= {x|g(x)=1≠0},|T|=0.因此①可能成立.取a= 1, b= 0, c=1,则 S= {x|f(x)= (x + 1)(x2 + 1) = 0} ,|S| = 1, T= {x|g(x) = (x + 1)(x2+ 1) =0} , |T| =1,因此②可能成立.取 a=- 1, b= 0, c=- 1,则 S= {x|f(x)=(x - 1)(x2 - 1) = 0} , |S| = 2, T= {x|g(x) = ( - x+1)?( -x2+ 1) =0} ,|T| = 2. 因此③可能成立.对于④,若 |T|= 3,则= b2- 4c> 0,从而导致 f(x)= (x + a)(x2 + bx+c)也有3 解,因此 |S| = 2 且 |T| =3 不可能成立.故④不可能成立.答案④二、解答题4.已知集合A= {y|y= 2x- 1,0< x≤ 1}, B= {x|(x-a)[x- (a + 3)]< 0} .分别根据下列条件,求实数 a 的取值范围.(1)A∩ B=A;(2)A∩ B≠ ?.解因为集合 A 是函数 y= 2x- 1(0 < x≤ 1) 的值域,所以 A= ( - 1,1] , B= (a , a+ 3) .(1)A∩ B=A? A? B? a≤-1,a+3>1,即- 2< a≤- 1,故当 A∩ B=A 时,a 的取值范围是 ( - 2,-1] .(2)当 A∩B= ?时,结合数轴知, a≥ 1 或 a+ 3≤- 1,即a≥ 1 或 a≤- 4.故当 A∩B≠ ?时, a 的取值范围是 ( - 4,1).。

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(37)

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(37)

第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若集合 M ={x∣ x <2},N ={x∣ 0≤x ≤1},则 M ∩N = ( ) A . [0,1] B . [0,2] C . [1,2) D . (−∞,2]2. 已知集合 A ={−1,0,1},B ={x∣ −1≤x <1},则 A ∩B = ( ) A . {−1,0,1} B . {0} C . {0,1} D . {−1,0}3. 已知 A ={x∣ x <1},B ={x∣ 2x +1<2},则 A ∩B = ( ) A . {x ∣∣x <12}B . {x ∣∣12<x <1}C . {x∣ x <1}D . R4. 命题“∃x ∈R ,使得 x 2+2x +3=0”的否定是 ( ) A . ∃x ∈R ,使得 x 2+2x +3≠0 B . ∀x ∈R ,都有 x 2+2x +3=0 C . ∀x ∈R ,都有 x 2+2x +3≠0D . ∀x ∉R ,都有 x 2+2x +3≠05. 命题 p:∃x 0∈R ,x 02+x 0+1≤0,则命题 p 的否定是 ( )A . ∃x 0∈R ,x 02+x 0+1>0B . ∀x ∈R ,x 2+x +1≥0C . ∀x ∈R ,x 2+x +1>0D . ∀x ∈R ,x 2+x +1≤06. 已知集合 A ={x∣ lgx >0},B ={x∣ x 2≤4},则 A ∩B = ( ) A . (1,2) B . (1,2] C . (0,2] D . (1,+∞)7. 已知 U ={1,2,3,4},A ={1,3,4},B ={2,3,4},那么 ∁U (A ∩B )= ( ) A . {1,2} B . {3,4} C . ∅ D . {1,2,3,4}8. 已知集合 M ={x∣ x 2−2<0},N ={−2,−1,0,1,2},则 M ∩N = ( ) A . ∅ B . {1} C . {0,1} D . {−1,0,1}9. 命题“所有能被 2 整除的整数都是偶数”的否定是 ( ) A .所有不能被 2 整除的整数都是偶数 B .所有能被 2 整除的整数都不是偶数 C .存在一个不能被 2 整除的整数是偶数 D .存在一个能被 2 整除的整数不是偶数10. 命题“∃x ∈(1,+∞),x 2+1≤3x ”的否定是 ( ) A . ∀x ∈(−∞,1],x 2+1>3x B . ∀x ∈(1,+∞),x 2+1≤3xC . ∃x ∈(−∞,1],x 2+1≤3xD . ∀x ∈(1,+∞),x 2+1>3x11.由大于−3且小于11的偶数组成的集合是( )A.{x∣ −3<x<11,x∈Q}B.{x∣ −3<x<11}C.{x∣ −3<x<11,x=2k,x∈Q}D.{x∣ −3<x<11,x=2k,k∈Z}12.已知集合Ω中的三个元素l,m,n分别是△ABC的三边长,则△ABC一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题(共4题)13.π是(选填“有理数”“无理数”).14.设M={x∣1<x<3},N={x∣2≤x<4},定义M与N的差集M−N={x∣∣x∈M且x∉N},则M−N=.15.已知集合A={−1,1,2},B={0,1},则A∪B=.16.设集合A={x∣ −1≤x≤2},B={x∣ 0≤x≤4},则A∩B=.三、解答题(共6题)17.下列命题中,α是β的充分条件吗?(1) α:a>b,β:ac>bc;(2) α:同位角相等,β:两直线平行.18.如何理解并集的含义?19.已知集合A={x∣ a−1<x<2a+1},B={x∣ 0<x<1}.,求A∩B;(1) 若a=12(2) 若A∩B=∅,求实数a的取值范围.20.如何理解交集的含义?21.集合论是德国数学家康托尔于19世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.22.若集合A={x∣ −5≤x<1},B={x∣ x≤2},求A∪B.答案一、选择题(共12题)1. 【答案】A【解析】因为M={x∣ x<2},N={x∣ 0≤x≤1},所以M∩N={x∣ 0≤x≤1}.【知识点】交、并、补集运算2. 【答案】D【解析】由题意可得A∩B={−1,0}、【知识点】交、并、补集运算3. 【答案】A},【解析】因为A={x∣ x<1},B={x∣∣x<12}.所以A∩B={x∣∣x<12【知识点】交、并、补集运算4. 【答案】C【解析】根据存在量词命题的否定是全称量词命题可知,命题“∃x∈R,使得x2+2x+3=0”的否定是“∀x∈R,都有x2+2x+3≠0”.故选C.【知识点】全(特)称命题的否定5. 【答案】C【解析】否定要把∃改为∀,≤改为>,故选C.【知识点】全(特)称命题的否定6. 【答案】B【解析】A=(1,+∞),B=[−2,2],故A∩B=(1,2],故选B.【知识点】交、并、补集运算7. 【答案】A【解析】易知A∩B={3,4},故∁U(A∩B)={1,2},故选A.【知识点】交、并、补集运算8. 【答案】B【解析】由x2−2x<0,得x∈(0,2),所以M∩N={1}.【知识点】交、并、补集运算9. 【答案】D【知识点】全(特)称命题的否定10. 【答案】D【知识点】全(特)称命题的否定11. 【答案】D【知识点】集合的表示方法12. 【答案】D【解析】因为集合中的元素是互异的,所以l,m,n互不相等,即△ABC不可能是等腰三角形,故选D.【知识点】集合中元素的三个特性二、填空题(共4题)13. 【答案】无理数【知识点】集合的概念14. 【答案】{x∣1<x<2}【解析】将集合M,N在数轴上标出,如图所示.因为M−N={x∣∣x∈M且x∉N},所以M−N={x∣1<x<2}.【知识点】交、并、补集运算15. 【答案】{−1,1,0,2}【解析】结合题中所给的集合和并集的定义可得:A∪B={−1,1,0,2}.【知识点】交、并、补集运算16. 【答案】{x∣ 0≤x≤2}【解析】A在数轴上表示出集合A与B,如图.则由交集的定义,A∩B={x∣ 0≤x≤2}.【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) α不是β的充分条件.(2) α是β的充分条件.【知识点】充分条件与必要条件18. 【答案】① A∪B仍是一个集合,由所有属于A或属于B的元素组成.②“或”的数字内涵的形象图示如下:③若集合A和B中有公共元素,根据集合元素的互异性,则在A∪B中仅出现一次.【知识点】交、并、补集运算19. 【答案】(1) 当a=12时,A={x∣ −12<x<2},B={x∣ 0<x<1},所以A∩B={x∣ 0<x<1}.(2) 若A∩B=∅,则当A=∅时,有a−1≥2a+1,解得a≤−2,符合题意;当A≠∅时,有{a−1<2a+1,2a+1≤0或a−1≥1,解得−2<a≤−12或a≥2.综上,实数a的取值范围为a≤−12或a≥2.【知识点】交、并、补集运算20. 【答案】①概念中“且”即“同时”的意思,两个集合交集中的元素必须同时是两个集合的元素,即由既属于A,又属于B的元素组成的集合为A∩B;②当集合A和集合B无公共元素时,不能说集合A,B没有交集,而是A∩B=∅.【知识点】交、并、补集运算21. 【答案】略【知识点】集合的概念22. 【答案】借助于数轴分别画出集合A,B,如图,故A∪B={x∣ x≤2}.【知识点】交、并、补集运算。

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。

高中数学 第一章 常用逻辑用语章末综合测评(含解析)新人教A版高二选修2-1数学试题

高中数学 第一章 常用逻辑用语章末综合测评(含解析)新人教A版高二选修2-1数学试题

章末综合测评(一) 常用逻辑用语(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句中是命题的为()①x2-3=0;②与一条直线相交的两直线平行吗?③3+1=5;④∀x∈R,5x-3>6.A.①③B.②③C.②④D.③④D[①不能判断真假,②是疑问句,都不是命题;③④是命题.]2.命题“若△ABC不是等腰三角形,则它的任何两个内角不相等”的逆否命题是() A.若△ABC是等腰三角形,则它的任何两个内角相等B.若△ABC中任何两个内角不相等,则它不是等腰三角形C.若△ABC中有两个内角相等,则它是等腰三角形D.若△ABC中任何两个内角相等,则它是等腰三角形C[将原命题的条件否定作为结论,为“△ABC是等腰三角形”,结论否定作为条件,为“有两个内角相等”,再调整语句,即可得到原命题的逆否命题,为“若△ABC中有两个内角相等,则它是等腰三角形”,故选C.]3.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数B[根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.]4.命题p:x+y≠3,命题q:x≠1或y≠2,则命题p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[命题“若p,则q”的逆否命题为:“若x=1且y=2,则x+y=3”,是真命题,故原命题为真,反之不成立.]5.“关于x的不等式f(x)>0有解”等价于()A.∃x0∈R,使得f(x0)>0成立B .∃x 0∈R ,使得f (x 0)≤0成立C .∀x ∈R ,使得f (x )>0成立D .∀x ∈R ,f (x )≤0成立A [“关于x 的不等式f (x )>0有解”等价于“存在实数x 0,使得f (x 0)>0成立”.故选A .]6.若命题(p ∨(q ))为真命题,则p ,q 的真假情况为( )A .p 真,q 真B .p 真,q 假C .p 假,q 真D .p 假,q 假C [由(p ∨(q ))为真命题知,p ∨(q )为假命题,从而p 与q 都是假命题,故p 假q 真.]7.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,使得(x +1)e x ≤1B [因为全称命题∀x ∈M ,p (x )的否定为∃x 0∈M ,p (x ),故p :∃x 0>0,使得(x 0+1)e x 0≤1.]8.已知命题p :若(x -1)(x -2)≠0,则x ≠1且x ≠2;命题q :存在实数x 0,使2x 0<0.下列选项中为真命题的是( )A .pB .p ∨qC .q ∧pD .qC [很明显命题p 为真命题,所以p 为假命题;由于函数y =2x ,x ∈R 的值域是(0,+∞),所以q 是假命题,所以q 是真命题.所以p ∨q 为假命题,q ∧p 为真命题,故选C .]9.条件p :x ≤1,且p 是q 的充分不必要条件,则q 可以是( )A .x >1B .x >0C .x ≤2D .-1<x <0B [∵p :x ≤1,∴p :x >1,又∵p 是q 的充分不必要条件,∴p ⇒q ,q 推不出p ,即p 是q 的真子集.]10.下列各组命题中,满足“p ∨q ”为真,且“p ”为真的是( )A .p :0=∅;q :0∈∅B .p :在△ABC 中,若cos 2A =cos 2B ,则A =B ;q :函数y =sin x 在第一象限是增函数C .p :a +b ≥2ab (a ,b ∈R );q :不等式|x |>x 的解集为(-∞,0)D .p :圆(x -1)2+(y -2)2=1的面积被直线x =1平分;q :过点M (0,1)且与圆(x -1)2+(y -2)2=1相切的直线有两条C [A 中,p 、q 均为假命题,故“p ∨q ”为假,排除A ;B 中,由在△ABC 中,cos 2A =cos 2B ,得1-2sin 2A =1-2sin 2B ,即(sin A +sin B )(sin A -sin B )=0,所以A -B =0,故p 为真,从而“p ”为假,排除B ;C 中,p 为假,从而“p ”为真,q 为真,从而“p ∨q ”为真;D 中,p 为真,故“p ”为假,排除D .故选C .] 11.已知p :∃x ∈R ,mx 2+1≤0,q :∀x ∈R ,x 2+mx +1>0,若“p ∨q ”为假命题,则实数m 的取值X 围为( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]A [由题意知p ,q 均为假命题,则p ,q 为真命题.p :∀x ∈R ,mx 2+1>0,故m ≥0,q :∃x ∈R ,x 2+mx +1≤0,则Δ=m 2-4≥0,即m ≤-2或m ≥2,由⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2得m ≥2.故选A .] 12.设a ,b ∈R ,则“2a +2b =2a +b ”是“a +b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [利用基本不等式,知2a +b =2a +2b ≥22a ·2b ,化简得2a +b ≥22,所以a +b ≥2,故充分性成立;当a =0,b =2时,a +b =2,2a +2b =20+22=5,2a +b =22=4,即2a +2b ≠2a +b ,故必要性不成立.故选A .]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题“不等式x 2+x -6>0的解为x <-3或x >2”的逆否命题是________.若-3≤x ≤2,则x 2+x -6≤0[“不等式x 2+x -6>0的解为x <-3或x >2”即为:“若x 2+x -6>0,则x <-3或x >2”,根据逆否命题的定义可得:若-3≤x ≤2,则x 2+x -6≤0.]14.写出命题“若x 2=4,则x =2或x =-2”的否命题为________.若x 2≠4,则x ≠2且x ≠-2 [命题“若x 2=4,则x =2或x =-2”的否命题为“若x 2≠4,则x ≠2且x ≠-2”.]15.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值X 围是________. (-∞,-1][命题“∃t ∈R ,t 2-2t -a <0”是假命题.则∀t ∈R ,t 2-2t -a ≥0是真命题,∴Δ=4+4a ≤0,解得a ≤-1.∴实数a 的取值X 围是(-∞,-1].]16.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若p 是q 的充分条件,则实数a 的取值X 围是________.[-1,6][p :-4<x -a <4⇔a -4<x <a +4,q :(x -2)(3-x )>0⇔2<x <3.因为p 是q 的充分条件,即p ⇒q ,所以q 是p 的充分条件,即q ⇒p ,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.] 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)将命题“一组对边平行且相等的四边形是平行四边形”改写成“若p ,则q ”的形式,并写出它的逆命题、否命题和逆否命题,同时判断它们的真假.[解]“若p ,则q ”的形式:若一个四边形的一组对边平行且相等,则这个四边形是平行四边形.(真命题)逆命题:若一个四边形是平行四边形,则这个四边形的一组对边平行且相等.(真命题) 否命题:若一个四边形的一组对边不平行或不相等,则这个四边形不是平行四边形.(真命题)逆否命题:若一个四边形不是平行四边形,则这个四边形的一组对边不平行或不相等.(真命题)18.(本小题满分12分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q :所有的矩形都是正方形;(2)r :∃x 0∈R ,x 20+2x 0+2≤0;(3)s :至少有一个实数x 0,使x 30+3=0.[解](1)q :至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题. (2)r :∀x ∈R ,x 2+2x +2>0,真命题.这是由于∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0恒成立.(3)s :∀x ∈R ,x 3+3≠0,假命题.这是由于当x =-33时,x 3+3=0. 19.(本小题满分12分)(1)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的充分条件?(2)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件?[解](1)欲使得2x +m <0是x 2-2x -3>0的充分条件,则只要⎩⎨⎧⎭⎬⎫x ⎪⎪x <-m 2⊆{x |x <-1或x >3}, 则只要-m 2≤-1,即m ≥2, 故存在实数m ≥2,使2x +m <0是x 2-2x -3>0的充分条件.(2)欲使2x +m <0是x 2-2x -3>0的必要条件,则只要⎩⎨⎧⎭⎬⎫x ⎪⎪x <-m 2⊇{x |x <-1或x >3}, 则这是不可能的,故不存在实数m 使2x +m <0是x 2-2x -3>0的必要条件.20.(本小题满分12分)已知p :x 2-8x -33>0,q :x 2-2x +1-a 2>0(a >0),若p 是q 的充分不必要条件,求正实数a 的取值X 围.[解]解不等式x 2-8x -33>0,得p :A ={x |x >11或x <-3};解不等式x 2-2x +1-a 2>0,得q :B ={x |x >1+a 或x <1-a ,a >0}.依题意p ⇒q 但q p ,说明A B .于是有⎩⎪⎨⎪⎧ a >0,1+a ≤11,1-a >-3或⎩⎪⎨⎪⎧ a >0,1+a <11,1-a ≥-3,解得0<a ≤4,所以正实数a 的取值X 围是(0,4].21.(本小题满分12分)证明:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a =1. [证明](充分性)若a =1,则函数化为f (x )=2x -12x +1(x ∈R ).因为f (-x )=2-x -12-x +1=12x-112x +1=1-2x 1+2x=-2x -12x +1=-f (x ),所以函数f (x )是奇函数. (必要性)若函数f (x )是奇函数,则f (-x )=-f (x ),所以a ·2-x +a -22-x +1=-a ·2x +a -22x +1, 所以a +(a -2)·2x 2x +1=-a ·2x +a -22x +1, 所以a +(a -2)·2x =-a ·2x -a +2,所以2(a -1)(2x +1)=0,解得a =1.综上所述,函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a =1. 22.(本小题满分12分)已知命题p :方程x 2+mx +1=0有两个不相等的实根;q :不等式4x 2+4(m -2)x +1>0的解集为R .若p ∨q 为真,q 为假,某某数m 的取值X 围.[解]由方程x 2+mx +1=0有两个不相等的实根,得Δ=m 2-4>0,解得m >2或m <-2. ∴命题p 为真时,m >2或m <-2;命题p 为假时,-2≤m ≤2.由不等式4x 2+4(m -2)x +1>0的解集为R ,得方程4x 2+4(m -2)x +1=0的根的判别式Δ′=16(m -2)2-16<0,解得1<m <3.∴命题q 为真时,1<m <3;命题q 为假时,m ≤1或m ≥3.∵p ∨q 为真,q 为假,∴p 真q 假,∴⎩⎪⎨⎪⎧m >2或m <-2,m ≤1或m ≥3,解得m <-2或m ≥3. ∴实数m 的取值X 围为(-∞,-2)∪[3,+∞).。

高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版

高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版

专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。

2015届高考数学(人教,理科)大一轮配套练透:第1章 集合与常用逻辑用语 第2节

2015届高考数学(人教,理科)大一轮配套练透:第1章 集合与常用逻辑用语 第2节

[课堂练通考点]1.(2013·安徽高考)“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B 由(2x -1)x =0可得x =12或0,因为“x =12或0”是“x =0”的必要不充分条件.2.(2013·九江一模)命题“若x 2>y 2,则x >y ”的逆否命题是( )A .“若x <y ,则x 2<y 2”B .“若x >y ,则x 2>y 2”C .“若x ≤y ,则x 2≤y 2”D .“若x ≥y ,则x 2≥y 2”解析:选C 根据原命题和逆否命题的条件和结论的关系得命题“若x 2>y 2,则x >y ”的逆否命题是“若x ≤y ,则x 2≤y 2”.3.(2014·福建质检)已知向量a =(m 2,4),b =(1,1),则“m =-2”是“a ∥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 依题意,当m =-2时,a =(4,4),b =(1,1),所以a =4b ,a ∥b ,即由m =-2可以推出a ∥b ;当a ∥b 时,m 2=4,得m =±2,所以不能推得m =-2,即“m =-2”是“a ∥b ”的充分而不必要条件.4.(2013·聊城期末)设集合A ,B 是全集U 的两个子集,则A B 是(∁U A )∪B =U 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 如图所示,A B ⇒(∁U A )∪B =U ;但(∁U A )∪B =U ⇒/A B ,如A =B ,因此A B 是(∁U A )∪B =U 的充分不必要条件.5.命题“若a >b ,则a -1>b -1”的否命题是________.答案:若a ≤b ,则a -1≤b -16.(创新题)已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若P :“x ∈A ”是Q :“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:A ={x |x <4},由题意得A B 结合数轴易得a >4.答案:(4,+∞)[课下提升考能]第Ⅰ组:全员必做题1.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B M ={x |0<x ≤3},N ={x |0<x ≤2},所以N M ,故a ∈M 是a ∈N 的必要不充分条件.2.(2013·潍坊模拟)命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 3.(2013·乌鲁木齐质检)“a >0”是“a 2+a ≥0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A a >0⇒a 2+a ≥0;反之a 2+a ≥0⇒a ≥0或a ≤-1,不能推出a >0,选A.4.(2013·潍坊模拟)命题“任意x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≥4B .a ≤4C .a ≥5D .a ≤5解析:选C 命题“任意x ∈[1,2],x 2-a ≤0”为真命题的充要条件是a ≥4.故其充分不必要条件是集合[4,+∞)的真子集,正确选项为C.5.下列命题中为真命题的是( )A .命题“若x >y ,则x >|y |”的逆命题B .命题“x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题解析:选A 对于A ,其逆命题是:若x >|y |,则x >y ,是真命题,这是因为x >|y |≥y ,必有x >y ;对于B ,否命题是:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题是:若x ≠1,则x 2+x -2≠0,由于x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题与它的逆否命题都是假命题.6.(2013·江西七校联考)已知条件p :x ≤1,条件q :1x<1,则綈p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .即非充分也非必要条件解析:选A 由x >1得1x <1;反过来,由1x<1不能得知x >1,即綈p 是q 的充分不必要条件,选A.7.(2014·日照模拟)已知直线l 1:x +ay +1=0,直线l 2:ax +y +2=0,则命题“若a =1或a =-1,则直线l 1与l 2平行”的否命题为( )A .若a ≠1且a ≠-1,则直线l 1与l 2不平行B .若a ≠1或a ≠-1,则直线l 1与l 2不平行C .若a =1或a =-1,则直线l 1与l 2不平行D .若a ≠1或a ≠-1,则直线l 1与l 2平行解析:选A 命题“若A ,则B ”的否命题为“若綈A ,则綈B ”,显然“a =1或a =-1”的否定为“a ≠1且a ≠-1”,“直线l 1与l 2平行”的否定为“直线l 1与l 2不平行”.8.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )等于( )A .1B . 2C .3D .4解析:选B 原命题p 显然是真命题,故其逆否命题也是真命题.而其逆命题是:若a 1b 2-a 2b 1=0,则两条直线l 1与l 2平行,这是假命题,因为当a 1b 2-a 2b 1=0时,还有可能l 1与l 2重合,逆命题是假命题,从而否命题也为假命题,故f (p )=2.9.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是________.解析:否命题既否定题设又否定结论.答案:若f (x )不是奇函数,则f (-x )不是奇函数10.(2013·南京模拟)有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.解析:①原命题的否命题为“若a ≤b 则a 2≤b 2”错误.②原命题的逆命题为:“x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确.答案:②③11.下列命题:①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f (x )=log 2x ,则f (|x |)是偶函数.其中正确命题的序号是________.解析:对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150° ⇒/ 30°=150°, 所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1, 所以③正确;④显然正确.答案:①③④12.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________.解析:α:x ≥a ,可看作集合A ={x |x ≥a },∵β:|x -1|<1,∴0<x <2,∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0.答案:(-∞,0]第Ⅱ组:重点选做题1.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 2.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m |m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0x 1x 2≥0,⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0⇒m ≥32. 又集合⎩⎨⎧⎭⎬⎫m ⎪⎪m ≥32关于全集U 的补集是{m |m ≤-1}, 所以实数m 的取值范围是{m |m ≤-1}.。

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(32)

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(32)

第一章《集合与常用逻辑用语》章末练习题卷(共26题)一、选择题(共10题)1. 已知集合 A =(−2,5],B =[m +1,2m −1],若 B ⊆A ,则实数 m 的取值范围是 ( ) A . (−3,3] B . [−3,3] C . (−∞,3] D . (−∞,3)2. “a ≤0”是“函数 f (x )=∣(ax −1)∣x 在区间 (0+∞) 内单调递增”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3. 若集合 A ={x∣ a <x <2a −1},B ={x∣ 1<x <3},且 A ⫋B ,则 a 的取值范围是 ( ) A . a ≤1 B . a <2 C . 1<a <2 D . a ≤24. “a >0”是“∣a ∣>0”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5. 若方程组 {3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2 的解集是 {(x,y )∣ (3,4)},则方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2 的解集是( ) A . {(x,y )∣ (4,8)} B . {(x,y )∣ (9,12)} C . {(x,y )∣ (15,20)}D . {(x,y )∣ (95,85)}6. 设集合 S ,T ,S ⊆N ∗,T ⊆N ∗,S ,T 中至少有两个元素,且 S ,T 满足: ①对于任意 x,y ∈S ,若 x ≠y ,都有 xy ∈T ; ②对于任意 x,y ∈T ,若 x <y ,则 y x∈S .下列命题正确的是 ( ) A .若 S 有 4 个元素,则 S ∪T 有 7 个元素 B .若 S 有 4 个元素,则 S ∪T 有 6 个元素 C .若 S 有 3 个元素,则 S ∪T 有 4 个元素 D .若 S 有 3 个元素,则 S ∪T 有 5 个元素7. 若集合 {1,a,ba }={0,a 2,a +b },则 a 2019+b 2020 的值为 ( ) A . 0 B . 1 C . −1 D . ±18. 若命题“存在 x 0∈R ,使 e ∣x 0−2∣∣−m ≤0”是假命题,则实数 m 的取值范围是 ( )A.(−∞,1)B.(−∞,2)C.(−1,1)D.(−∞,e)9.设整数n≥4,集合X={1,2,3,⋯,n},令集合S={(x,y,z)∣ ∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立},若(x,y,z)和(z,w,x)都在S中,则下列选项正确的是( ) A.(y,z,w)∈S,(x,y,w)∉SB.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)∉S,(x,y,w)∈SD.(y,z,w)∉S,(x,y,w)∉S10.命题“任意x∈[0,+∞),有x3+x≥0”的否定是( )A.任意x∈(−∞,0),有x3+x<0B.任意x∈(−∞,0),有x3+x≥0C.存在x∈[0,+∞),使x3+x<0D.存在x∈[0,+∞),使x3+x≥0二、填空题(共8题)11.设命题p:k>5,b<5,命题q:一次函数y=(k−4)x+b−5的图象交y轴于负半轴,交x轴于正半轴,则p是q的条件;q是p的条件.(用“充分”“必要”填空),1}含有三个元素,集合B={a2,a+b,0},若A=B,则a+ 12.已知a,b∈R,集合A={a,bab=.13.写出∣x+y∣<2的一个必要非充分条件.14.设a,b是实数,则“a+b>0”是“ab>0”的条件.15.已知A={x∣ ax2+2x+1=0,a∈R,x∈R},若A中只有一个元素,则a=,若A中至少有一个元素,则a的取值范围是.16.“∀x∈R,x2+2x+1>0”的否定是.17.已知条件p:2k−1≤x≤1−k,q:−3≤x<3,且p是q的必要条件,则实数k的取值范围为.18.如果不等式∣x−m∣≤1成立的充分不必要条件是1<x≤2,则实数m的取值范围是.三、解答题(共8题)19.对于正整数集合A={a1,a2,⋯,a n}(n∈N∗,n≥3),如果去掉其中任意一个元素a i(i=1,2,⋯,n)之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A为“和谐集”.(1) 判断集合{1,2,3,4,5}是否是“和谐集(不必写过程);(2) 请写出一个只含有7个元素的“和谐集”,并证明此集合为“和谐集;(3) 当n=5时,集合A={a1,a2,a3,a4,a5},求证:集合A不是“和谐集”.20.如图,在半径为√3,圆心角为60∘的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在⊙B上,设矩形PNMQ的面积为y.(1) 按下列要求写出函数的关系式:①设PN=x,将y表示成x的函数关系式;②设∠POB=θ,将y表示成θ的函数关系式;(2) 请你选用( 1)中的一个函数关系式,求出y的最大值.21.已知集合A={a1,a2,a3,⋯,a n},其中a i∈R(1≤i≤n,n>2),l(A)表示a i+a j(1≤i<j≤n)的所有不同值的个数.(1) 已知集合P={2,4,6,8},Q={2,4,8,16},分别求l(P),l(Q);(2) 若集合A={2,4,8,⋯,2n},求证:l(A)=n(n−1)2.22.用量词“∀”表达下列命题:(1) 实数都能写成小数形式;(2) 凸n边形(n≥3,且n∈N)的外角和等于360∘;(3) 任意一个实数乘−1都等于它的相反数.23.已知π2<α<π,sinα=45.(1) 求sinα+cosα的值;2sinα−cosα)的值.(2) 求cos2α+sin(α+π224.若集合A={x∣ x2+px−12=0},B{x∣ x2+qx+r=0},A≠B,A∪B={−3,4},A∩B={−3},求p,q,r的值.25.已知集合A={x∣ x<a},B={x∣ x<−1或x>0},若A∩(∁R)B=∅,求实数a的取值范围.26.给出下面三个集合:① {x∣ y=x2+1};② {y∣ y=x2+1};③ {(x,y)∣ y=x2+1}.(1) 它们各自的含义是什么?(2) 它们是不是相同的集合?答案一、选择题(共10题) 1. 【答案】C【解析】当集合 B =∅ 时,m +1≥2m −1,解得 m ≤2,此时满足 B ⊆A ;当 B ≠∅,即 m >2 时,应有 {m +1>−2,2m −1≤5, 可得 2<m ≤3.综上可得,实数 m 的取值范围是 (−∞,3]. 【知识点】包含关系、子集与真子集2. 【答案】C【解析】f (x )=∣(ax −1)x ∣=∣ax 2−x ∣,若 a =0,则 f (x )=∣x ∣,此时 f (x ) 在区间 (0,+∞) 上单调递增.若 a <0,则二次函数 y =ax 2−x 的图象的对称轴 x =12a在 y 轴左侧,且 x =0 时 y =0,此时 y =ax 2−x 在区间 (0,+∞) 上单调递减且 y <0 恒成立, 故 f (x )=∣ax 2−x ∣ 在区间 (0,+∞) 上单调递增, 故当 a ≤0 时,f (x ) 在区间 (0,+∞) 上单调递增.若 a >0,则二次函数 y =ax 2−x 的图象的对称轴 x =12a 在 y 轴右侧, 且在区间 (0,12a) 上 y <0,此时 f (x )=∣ax 2−x ∣ 在区间 (0,12a ) 上单调递增,在区间 (12a ,1a ) 上单调递减, 故函数 f (x ) 不可能在区间 (0,+∞) 上单调递增. 【知识点】二次函数的性质与图像、充分条件与必要条件3. 【答案】D【知识点】包含关系、子集与真子集4. 【答案】A【解析】因为 ∣a ∣>0⇔a >0 或 a <0,所以 a >0⇒∣a ∣>0. 但 ∣a ∣>0≠a >0,所以 a >0 是 ∣a ∣>0 的充分不必要条件, 故选A .【知识点】充分条件与必要条件5. 【答案】D【解析】因为方程组 {3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解集是 {(x,y )∣ (3,4)},所以 {9a 1+8b 1=5c 1,9a 2+8b 2=5c 2,两边都除以 5 得 {95a 1+85b 1=c 1,95a 2+85b 2=c 2,对照方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2,可得方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2 的解集为 {(x,y )∣ (95,85)}.【知识点】集合的表示方法6. 【答案】A【解析】首先利用排除法:若取 S ={1,2,4},则 T ={2,4,8},此时 S ∪T ={1,2,4,8},包含 4 个元素,排除选项D ; 若取 S ={2,4,8},则 T ={8,16,32},此时 S ∪T ={2,4,8,16,32},包含 5 个元素,排除选项C ; 若取 S ={2,4,8,16},则 T ={8,16,32,64,128},此时 S ∪T ={2,4,8,16,32,64,128},包含 7 个元素,排除选项B ; 下面来说明选项A 的正确性:设集合 S ={p 1,p 2,p 3,p 4},且 p 1<p 2<p 3<p 4,p 1,p 2,p 3,p 4∈N ∗, 则 p 1p 2<p 2p 4,且 p 1p 2,p 2p 4∈T ,则p 4p 1∈S ,同理 p4p 2∈S ,p4p 3∈S ,p3p 2∈S ,p3p 1∈S ,p2p 1∈S ,若 p 1=1,则 p 2≥2,则 p 3p 2<p 3,故 p3p 2=p 2 即 p 3=p 22,又 p 4>p 4p 2>p 4p 3>1,故p 4p 3=p 4p 22=p 2,所以 p 4=p 23,故 S ={1,p 2,p 22,p 23},此时 p 25∈T ,p 2∈T ,故 p 24∈S ,矛盾,舍. 若 p 1≥2,则 p 2p 1<p 3p 1<p 3,故 p 3p 1=p 2,p2p 1=p 1 即 p 3=p 13,p 2=p 12,又 p 4>p 4p 1>p 4p 2>p 4p 3>1,故 p 4p 3=p4p 13=p 1,所以 p 4=p 14,故 S ={p 1,p 12,p 13,p 14},此时 {p 13,p 14,p 15,p 16,p 17}⊆T .若 q ∈T ,则qp 13∈S ,故qp 13=p 1i ,i =1,2,3,4,故 q =p 1i+3,i =1,2,3,4,即 q ∈{p 13,p 14,p 15,p 16,p 17},故 {p 13,p 14,p 15,p 16,p 17}=T ,此时 S ∪T ={p 1,p 12,p 13,p 14,p 14,p 15,p 16,p 17},即 S ∪T 中有 7 个元素.故A 正确.【知识点】包含关系、子集与真子集、交、并、补集运算7. 【答案】C}={0,a2,a+b},易知a≠0,【解析】因为{1,a,ba所以b=0,所以a2=1,即a=±1.当a=1时,{0,a2,a+b}不满足集合中元素的互异性,所以a=−1,所以a2019+b2020=(−1)2019+02020=−1.【知识点】集合相等8. 【答案】A【知识点】全(特)称命题的概念与真假判断9. 【答案】B【知识点】元素和集合的关系10. 【答案】C【解析】“任意x∈[0,+∞)”的否定为“存在x∈[0,+∞)”,“x3+x≥0”的否定为“x3+x<0”,因此原命题的否定为“存在x∈[0,+∞),使x3+x<0”,故选C.【知识点】全(特)称命题的否定二、填空题(共8题)11. 【答案】充分;必要【知识点】充分条件与必要条件12. 【答案】−1【解析】因为A=B,0∈B,所以0∈A.又a≠0,=0,则b=0,所以ba所以B={a,a2,0}.因为1∈B,所以a2=1,a=−1或1,由元素的互异性知,a=−1,所以a+b=−1.【知识点】集合相等13. 【答案】∣x+y∣<3等(答案不唯一)【解析】设所求条件为 α,则 α⇒∣x +y ∣<2, 而 ∣x +y ∣<2⇒α,依据推出关系与集合包含关系写出对应的语句. ∣x +y ∣<3⇒∣x +y ∣<2,∣x +y ∣<2⇒∣x +y ∣<3, 所以 ∣x +y ∣<3 是 ∣x +y ∣<2 的一个必要非充分条件. 【知识点】充分条件与必要条件14. 【答案】既不充分又不必要【知识点】充分条件与必要条件15. 【答案】 0 或 1 ; (−∞,1]【解析】当 a =0 时,x =−12,所以 A ={−12},符合题意; 当 a ≠0 时,Δ=4−4a =0⇒a =1,所以 A ={−1},符合题意. 综上,a =0或1.若 A 中只有一个元素,则 a =0或1;若 A 中有两个元素,则 {a ≠0,Δ=4−4a >0, 解得 a <1 且 a ≠0.故 a 的取值范围是 (−∞,1]. 【知识点】元素和集合的关系16. 【答案】 ∃x 0∈R ,使得 x 02+2x 0+1≤0【解析】“∀x ∈R ,x 2+2x +1>0”的否定是:“∃x 0∈R ,使得 x 02+2x 0+1≤0”.【知识点】全(特)称命题的否定17. 【答案】 (−∞,−2]【解析】因为条件 p :2k −1≤x ≤1−k ,q :−3≤x <3,且 p 是 q 的必要条件, 所以 {2k −1≤3,3≤1−k, 解得 k ≤−2,则实数 k 的取值范围是 (−∞,−2].【知识点】充分条件与必要条件18. 【答案】 {m∣ 1≤m ≤2}【解析】由 ∣x −m ∣≤1,得 m −1≤x ≤m +1,由不等式 ∣x −m ∣≤1 成立的充分不必要条件是 1<x ≤2 可得 {1≥m −1,2≤m +1, 解得 1≤m ≤2.故实数 m 的取值范围是 {m∣ 1≤m ≤2}. 【知识点】充分条件与必要条件三、解答题(共8题) 19. 【答案】(1) 集合{1,2,3,4,5}不是“和谐集”.(2) 集合{1,3,5,7,9,11,13}.证明如下:因为3+5+7+9=11+13.1+9+13=5+7+11,9+13=1+3+7+11,1+9+11=3+5+13,1+3+5+11=7+13,3+7+9=1+5+13,1+3+5+9=7+11,所以集合{1,3,5,7,9,11,13}是“和谐集”.(3) 不妨设a1<a2<a3<a4<a5,将集合{a1,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a1+a5=a3+a4, ⋯⋯①或a5=a1+a3+a4, ⋯⋯②将集合{a2,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a2+a5=a3+a4, ⋯⋯③或a5=a2+a3+a4, ⋯⋯④由①③,得a1=a2,矛盾,由①④,得a1=−a2,矛盾,由②③,得a1=−a2,矛盾,由②④,得a1=a2,矛盾,故当n=5时,集合A一定不是“和谐集”.【知识点】数列创新题20. 【答案】(1) ①因为QM=PN=x,所以MN=ON−OM=√3−x2√3,所以y=MN⋅PN=x⋅√3−x2−√33x2(0<x<32).②当∠POB=θ时,QM=PN=√3sinθ,则OM=sinθ,又ON=√3cosθ,所以MN=ON−OM=√3cosθ−sinθ,所以y=MN⋅PN=3sinθcosθ−√3sin2θ(0<θ<π3).(2) 由②得,y=√3sin(2θ+π6)−√32,当θ=π6时,y取得最大值为√32【知识点】三角函数模型的应用21. 【答案】(1) 由 2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得 l (P )=5, 由 2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得 l (Q )=6. (2) 因为 a i +a j (1≤i <j ≤n ) 共有 (n −1)+(n −2)+(n −3)+⋯+4+3+2+1=n (n−1)2个值, 所以 l (A )≤n (n−1)2.又集合 A ={2,4,8,⋯,2n },不妨设 a m =2m ,m =1,2,⋯,n .a i +a j ,a k +a l (1≤i <j ≤n ,1≤k <l ≤n ),当 j ≠l 时,不妨设 j <l ,则 a i +a j <2a j =2j+1≤a l <a k +a l ,即 a i +a j ≠a k +a l , 当 j =l ,i ≠k 时,a i +a j ≠a k +a l ,因此当且仅当 i =k ,j =l 时,a i +a j =a k +a l . 即所有 a i +a j (1≤i <j ≤n ) 的值两两不同, 因此 l (A )=n (n−1)2.【知识点】交、并、补集运算22. 【答案】(1) ∀x ∈R ,x 能写成小数形式.(2) ∀x ∈{x∣ x 是凸n 边形,n ≥3,且n ∈N},x 的外角和等于 360∘. (3) ∀x ∈R ,有 x ⋅(−1)=−x .【知识点】全(特)称命题的概念与真假判断23. 【答案】(1)111.(2) −2225.【知识点】二倍角公式、同角三角函数的基本关系24. 【答案】 p =−1,q =6,r =9.【解析】因为 A ∪B ={−3} , 所以 (−3)2−3p −12=0,p =−1,所以 A ={x∣ x 2−x −12=0}={x∣ x =−3或x =4}, 又因为 A ≠B ,A ∪B ={−3,4}, 所以 B ={−3} ,所以 {(−3)2+q (−3)+r =0,q 2−4r =0,所以 q =6,r =9.综上,p =−1,q =6,r =9.【知识点】交、并、补集运算25. 【答案】因为B={x∣ x<−1或x>0},所以∁RB={x∣ −1≤x≤0},所以要使A∩(∁RB)=∅,结合数轴分析(如图),可得a≤−1.【知识点】包含关系、子集与真子集26. 【答案】(1) 集合① {x∣ y=x2+1}的代表元素是x,满足条件y=x2+1中的x∈R,故{x∣ y=x2+1}=R.集合② {y∣ y=x2+1}的代表元素是y,满足条件y=x2+1中y的取值范围是y≥1,故{y∣ y=x2+1}={y∣ y≥1}.集合③ {(x,y)∣ y=x2+1}的代表元素是(x,y),可以认为是满足y=x2+1的有序数对(x,y)的集合;也可以认为是平面直角坐标系内的点(x,y)构成的集合,且这些点的坐标满足y=x2+ 1.(2) 由(1)可知集合①是实数集,集合②是大于或等于1的实数集,集合③是二次函数图象上的点构成的点集,故它们是互不相同的集合.【知识点】集合相等、集合的表示方法11。

2015年高考数学总复习(人教A版,理科)配套教案:第一章 集合与常用逻辑用语 1.2

2015年高考数学总复习(人教A版,理科)配套教案:第一章 集合与常用逻辑用语 1.2

§1.2命题及其关系、充分条件与必要条件1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.(×)(2)“sin 45°=1”是真命题.(×)(3)命题“三角形的内角和是180°”的否命题是三角形的内角和不是180°. (×)(4)若一个命题是真命题,则其逆否命题是真命题.(√)(5)“a=2”是“(a-1)(a-2)=0”的必要不充分条件.(×)(6)若α∈(0,2π),则“sin α=-1”的充要条件是“α=32π”.(√)2.设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是() A.若a≠-b,则|a|≠|b|B.若a=-b,则|a|≠|b|C .若|a |≠|b |,则a ≠-bD .若|a |=|b |,则a =-b 答案 D解析 命题“若a =-b ,则|a |=|b |”的逆命题为“若|a |=|b |,则a =-b ”,故选D.3.命题“若α=π4,则tan α=1”的逆否命题是 ( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”,故选C.4.(2013·福建)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件答案 A解析 a =3时A ={1,3},显然A ⊆B . 但A ⊆B 时,a =2或3.所以A 正确.5.(2012·天津)设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R)为偶函数”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由条件推结论和结论推条件后再判断. 若φ=0,则f (x )=cos x 是偶函数, 但是若f (x )=cos(x +φ) (x ∈R)是偶函数,则φ=π也成立.故“φ=0”是“f (x )=cos(x +φ)(x ∈R)为偶函数”的充分而不必要条件.题型一 四种命题及真假判断 例1 (1)下面是关于复数z =2-1+i的四个命题: p 1:|z |=2, p 2:z 2=2i ,p 3:z 的共轭复数为1+i ,p 4:z 的虚部为-1. 其中的真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 4(2)已知命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A .否命题“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”是真命题B .逆命题“若m ≤1,则函数f (x )=e x -mx 在(0,+∞)上是增函数”是假命题C .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”是真命题D .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题 思维启迪 (1)可化简复数z ,再利用复数的知识判断命题真假;(2)利用四种命题的定义判断四种命题形式是否正确,可利用四种命题的关系判断命题是否为真. 答案 (1)C (2)D解析 (1)z =2-1+i =2(-1-i )(-1+i )(-1-i )=-1-i ,所以|z |=2,p 1为假命题;z 2=(-1-i)2=(1+i)2=2i ,p 2为真命题,z =-1+i ,p 3为假命题;p 4为真命题.故选C.(2)命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题.思维升华 (1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)判断一个命题为假命题可举反例.(1)命题“若α=π3,则cos α=12”的逆命题是 ( )A .若α=π3,则cos α≠12B .若α≠π3,则cos α≠12C .若cos α=12,则α=π3D .若cos α≠12,则α≠π3(2)命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( ) A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数 C .若x +y 不是偶数,则x 与y 不都是偶数 D .若x +y 不是偶数,则x 与y 都不是偶数 答案 (1)C (2)C解析 (1)命题“若α=π3,则cos α=12”的逆命题是“若cos α=12,则α=π3”.(2)由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.题型二 充要条件的判定例2 已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点B .p :f (-x )f (x )=1;q :y =f (x )是偶函数C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A思维启迪 首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断. 答案 D解析 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;对于B ,由f (-x )f (x )=1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f (-x )f (x )=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ; 反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A . 所以p ⇔q .综上所述,p 是q 的充分必要条件的是D. 思维升华 充要条件的三种判断方法 (1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的何种条件,即可转化为判断“x =1且y =1”是“xy =1”的何种条件.(1)(2012·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( ) A .x =-12 B .x =-1C .x =5D .x =0(2)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 (1)D (2)C解析 (1)∵a =(x -1,2),b =(2,1), ∴a ·b =2(x -1)+2×1=2x .又a ⊥b ⇔a ·b =0,∴2x =0,∴x =0.(2)因为A ={x |x -2>0}={x |x >2}=(2,+∞), B ={x |x <0}=(-∞,0),所以A ∪B =(-∞,0)∪(2,+∞), C ={x |x (x -2)>0}={x |x <0或x >2} =(-∞,0)∪(2,+∞).即A ∪B =C .故“x ∈A ∪B ”是“x ∈C ”的充要条件.题型三 充分条件与必要条件的应用例3 (1)函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1 D .a ≤0或a >1 (2)设p :|4x -3|≤1,q :x 2-(2a +1)x +a (a +1)≤0,若非p 是非q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎭⎫0,12 C .(-∞,0]∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 思维启迪 (1)根据图象交点先求得f (x )有一个零点的充要条件,再利用“以小推大”(集合间关系)判定;(2)考虑条件所对应集合间的包含关系. 答案 (1)A (2)A解析 (1)因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1. 观察选项,根据集合间关系{a |a <0}{a |a ≤0或a >1}, ∴答案选A.(2)p :|4x -3|≤1⇒-1≤4x -3≤1,∴12≤x ≤1; q :x 2-(2a +1)x +a (a +1)≤0⇒(x -a )[x -(a +1)]≤0,∴a ≤x ≤a +1.由题意知p 是q 的充分不必要条件,故有⎩⎪⎨⎪⎧ a ≤12,a +1>1,或⎩⎪⎨⎪⎧a <12a +1≥1,则0≤a ≤12.思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(1)若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________.(2)已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程x 2m -1+y 22-m =1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为________.答案 (1)-1 (2)⎣⎡⎦⎤13,38 解析 (1)由x 2>1,得x <-1,或x >1. 又“x 2>1”是“x <a ”的必要不充分条件, 知由“x <a ”可以推出“x 2>1”,反之不成立, 所以a ≤-1,即a 的最大值为-1.(2)由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即命题p :3a <m <4a ,a >0.由x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆, 可得2-m >m -1>0,解得1<m <32,即命题q :1<m <32.因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ 3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38, 所以实数a 的取值范围是⎣⎡⎦⎤13,38.等价转化思想在充要条件中的应用典例:(12分)已知集合A ={y |y =x 2-32x +1,x ∈[34,2]},B ={x |x +m 2≥1}.p :x ∈A ,q :x ∈B ,并且p 是q 的充分条件,求实数m 的取值范围. 思维启迪 (1)先对集合进行化简;(2)将条件间的关系转化为集合间的包含关系;(3)利用集合间的关系列出关于m 的不等式,求出实数m 的范围. 规范解答解 化简集合A ,由y =x 2-32x +1.配方,得y =⎝⎛⎭⎫x -342+716. ∵x ∈⎣⎡⎦⎤34,2,∴y min =716,y max =2.∴y ∈⎣⎡⎦⎤716,2. ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. [4分]化简集合B ,由x +m 2≥1, 得x ≥1-m 2,B ={x |x ≥1-m 2}.[6分]∵命题p 是命题q 的充分条件,∴A ⊆B .[8分]∴1-m 2≤716,解得m ≥34,或m ≤-34.[11分] ∴实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞.[12分]温馨提醒 本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题及其逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要关系的几种判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:即利用A⇒B与綈B⇒綈A;B⇒A与綈A⇒綈B;A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)},若A⊆B,则p是q的充分条件或q是p的必要条件;若A=B,则p是q的充要条件.失误与防范1.当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p 则q”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.A组专项基础训练一、选择题1.命题“若一个数是负数,则它的平方是正数”的逆命题是() A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.2.下列命题中为真命题的是() A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题 答案 A解析 对于A ,其逆命题:若x >|y |,则x >y ,是真命题,这是因为x >|y |=⎩⎨⎧y (y ≥0)-y (y <0),必有x >y ;对于B ,否命题:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x ≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题的逆否命题是假命题,故选A.3.已知集合M ={x |0<x <1},集合N ={x |-2<x <1},那么“a ∈N ”是“a ∈M ”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件答案 B解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N ”是“a ∈M ”的必要而不充分条件.故选B.4.与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是( )A .若a ,b ,c 成等比数列,则b 2≠acB .若a ,b ,c 不成等比数列,则b 2≠acC .若b 2=ac ,则a ,b ,c 成等比数列D .若b 2≠ac ,则a ,b ,c 不成等比数列 答案 D解析 因为原命题与其逆否命题是等价的,所以与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是“若b 2≠ac ,则a ,b ,c 不成等比数列”. 5.已知向量a =(m 2,-9),b =(1,-1),则“m =-3”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 当m =-3时,a =(9,-9),b =(1,-1),则a =9b , 所以a ∥b ,即“m =-3”⇒“a ∥b ”; 当a ∥b 时,m 2=9,得m =±3, “a ∥b ”.所以不能推得m =-3,即“m =-3”故“m =-3”是“a ∥b ”的充分不必要条件.6.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 B解析 复数a +bi=a -b i 为纯虚数,则a =0,b ≠0,而ab =0表示a =0或b =0,故“ab =0”是“复数a +bi 为纯虚数”的必要不充分条件.故选B.7.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A .3B .2C .1D .0答案 C解析 原命题是真命题,故它的逆否命题是真命题; 它的逆命题为“若函数y =f (x )的图象不过第四象限, 则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个. 8.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是( )A .m =-2B .m =2C .m =-1D .m =1答案 A解析 已知函数f (x )=x 2-2x +1的图象关于直线x =1对称,则m =-2;反之也成立. 所以函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是m =-2. 二、填空题9.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 答案 [-3,0]解析 ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎨⎧a <0Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0.10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________. 答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题. 11.“x =2”是“向量a =(x +2,1)与向量b =(2,2-x )共线”的________条件. 答案 充分不必要解析 若a =(x +2,1)与b =(2,2-x )共线, 则有(x +2)(2-x )=2,解得x =±2,所以“x =2”是“向量a =(x +2,1)与向量b =(2,2-x )共线”的充分不必要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧ -1≤m -1m +1<3或⎩⎪⎨⎪⎧ -1<m -1m +1≤3,∴0≤m ≤2. B 组 专项能力提升1.若集合A ={x |2<x <3},B ={x |(x +2)(x -a )<0},则“a =1”是“A ∩B =∅”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 当a =1时,B ={x |-2<x <1},满足A ∩B =∅;反之,若A ∩B =∅,只需a ≤2即可,故“a =1”是“A ∩B =∅”的充分不必要条件.2. “λ<1”是“数列a n =n 2-2λn (n ∈N *)是递增数列”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若数列a n =n 2-2λn (n ∈N *)为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是可得3>2λ,即λ<32. 注意到由λ<1可得λ<32; 但反过来,由λ<32不能得到λ<1, 故“λ<1”是“数列a n =n 2-2λn (n ∈N *)是递增数列”的充分不必要条件.3.命题“函数y =f (x )的导函数为f ′(x )=e x +k 2e x -1k(其中e 为自然对数的底数,k 为实数),且f (x )在R 上不是单调函数”是真命题,则实数k 的取值范围是( ) A.⎝⎛⎭⎫-∞,-22 B.⎝⎛⎭⎫-22,0 C.⎝⎛⎭⎫0,22 D.⎝⎛⎭⎫22,+∞ 答案 C解析 当k =-1时,f ′(x )=e x +1ex +1≥2+1=3, 则f (x )在R 上单调递增,不满足题意,应排除A ;当k =-12时,f ′(x )=e x +14e x +2≥1+2=3,所以f (x )在R 上单调递增,不满足题意,应排除B ; 当k =1时,f ′(x )=e x +1e x -1≥2e x ·1ex -1=2-1=1, 则f (x )在R 上单调递增,不满足题意,应排除D.选C.二、填空题4.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件. 答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,∵m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件. 5.已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.6.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.正确的是________.答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确. 由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确.由a 2+b 2≠0可以推出a ,b 不全为零;反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以③不正确,④正确.。

【创新设计】高考数学(文)人教A版(全国)一轮复习练习第一章集合与常用逻辑语言第1讲..doc

【创新设计】高考数学(文)人教A版(全国)一轮复习练习第一章集合与常用逻辑语言第1讲..doc

基础巩固题组(建议用时:30分钟)一、选择题1.(2015-安徽卷)设全集t/={l, 2, 3, 4, 5, 6}, A={1, 2}, B={2, 3, 4}, 则A Q ([:涉)等于()A.{1, 2, 5, 6}C.{2}D.{1, 2, 3, 4} 解析由题意得,]uB = {1, 5, 6}, A = {}, 2}, 故的伽)={1}.答案B2.(2015-沈阳监测)已知集合A={(x,y )|x,yGR, j^+y 2= 1}, B = {(x, y )\x f yGR, 且y =兀},则AC\B 的元素个数为()A.O B 」 C.2 D.3解析集合A 表示的是圆心在原点的单位圆,集合B 表示的是直线据此画出图象,可得图象有两个交点,即AQB 的元素个数为 2.答案C 兀+1 13.(2015-长春监测)己知集合P={4x20}, Q=\x则PQQ 等于()A.(—8, 2) B.( —8, -1] C.|0, +oo ):.PHQ=[x\x>2}.答案D4.(2015-江西师大附中模拟)设集合A={x\-l<x^2, x^N},集合B={2, 3}, 则AUB 等于()A.{2}B.{1, 2, 3}C.{-1, 0, 1, 2, 3}D.{0, 1, 2, 3}解析A=[x\~\<x^2, %EN} = {0, 1, 2},故AU3={0, 1, 2, 3}.答案D5.已解析?.?p={4r20},x+1 20 ={x|xW_l 或x>2}, B.{1} D.(2, +oo)知集合M={0, 1, 2, 3, 4}, N=H ,3, 5}, P=MON,则P 的子集共有( )A.2个B.4个C.6个解析9 3},故P 的子集共有4个.答案B 6.(2014-宜春检测)设集合P={x\x>\}, C={xk 2-x>0},则下列结论正确的是()A.PCQB.QQP C,P=QD.PUQ=R 解析由集合Q={X X 2~X >0}9知Q={x\x<0或兀>1},所以PUQ,故选A. 答案A7.(2015-银川一中一模)己知集合A={x\x<a}f B={x\l^x<2},且AU ([R B )=R,则实数Q 的取值范围是()A.(— 8, 1]C.[2, +oo)D.(2, 4-00) 解析?:B={X \\^X <2}9:.[R B={X X <或兀22}.又4U([R B)——F ——-- --- - --- X =R,如图只要 E.1 2°答案C 8.(2015-西安模拟)已知集合A ={X |X 2-3X +2=0, %eR}, B={^|0<x<5, x^N}, 贝|J 满足条件AQCQB 的集合C 的个数为()A.l B.2 C.3 D.4解析A={1, 2}, B={1, 2, 3, 4}, Acccfi,则集合 C 可以为:{1, 2}, {1,2, 3}, {1, 2, 4}, {1, 2, 3, 4}.故选 D.答案D二、填空题9.(2015-湖南卷)已知集合{/={!, 2, 3, 4}, A={1, 3}, B={1, 3, 4},贝ij AU(C^B) 解析由已知可得[“B={2},故AU(JB)={1, 2, 3}.答案{1, 2, 3}10.设全集U=R,集合A={X X >Q}9B={X X >1},则集合([jU B)QA= ____________________ 解析???[皿={力兀W1},???(〔皿)Q A = {x|0V 兀W1}.D.8个B.(—oo, 1)答案{x|0VxWl}11 ?己知集合A={xeR||x+2|<3},集合 B = {%eR|(x-m)(x-2)<0},且(―1, /i),贝'J m—_________ , n—________ .解析—5<x<l},因为A Pl B= {x| — l<¥<n}, B— {x|(x—m)(x—2)<0},所以m=— 1, n= 1.答案T 112.设集合A={ —1, 1, 3}, B={a+29 a2+4}, AQB={3},则实数a的值为B, Ces,则下列结论中一定成立的是()A. d(A, C)+d(B, C) = d(A, B)B?d(A, C)+d(B, C)>d(A, B)C?d(A_C, B-C)=d(A, B)D. d(A_C, B—C)>d(A, B)解析设A=(ai, a2,。

山东省济宁市2015届高考数学一轮复习第一讲集合与常用逻辑用语讲练理新人教A版

山东省济宁市2015届高考数学一轮复习第一讲集合与常用逻辑用语讲练理新人教A版

第一讲集合与常用逻辑用语一、集合1、集合的基本概念(1).集合中元素的三个特性:确定性、互异性、无序性.(2).元素与集合的关系:属于或不属于,表示符号分别为∈和∉.集合的三种表示方法:列举法、描述法、描述法的一般形式的结构特征在描述法的一般形式{x∈I|p(x)}中,“x”是集合中元素的代表形式,I是x的范围,“p(x)”是集合中元素x的共同特征,竖线不可省略.2、集合间的基本关系(1).子集:若对∀x∈A,都有x∈B,则A⊆B或B⊇A.(2).真子集:若A⊆B,但∃x∈B,且x∉A,则A B或B A.(3).相等:若A⊆B,且B⊆A,则A=B.(4).空集的性质:∅是任何集合的子集,是任何非空集合的真子集.子集与真子集的快速求解法一个含有n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.x1.集合间的两个等价转换关系(1)A∩B=A⇔A⊆B;(2)A∪B=A⇔B⊆A.2.集合间运算的两个常用结论:(1)∁U(A∩B)=(∁U A)∪(∁U B);(2)∁U(A∪B)=(∁U A)∩(∁U B).二、四种命题及其关系1.四种命题间的相互关系:2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.三、充分条件与必要条件1.如果p⇒q,则p是q的充分条件,q是p的必要条件.2.如果p⇔q,那么p与q互为充要条件.3.如果pD/⇒q,且qD/⇒p,则p是q的既不充分又不必要条件.充分条件与必要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”;(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件.注意区分“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的不同,前者是“p⇒q”而后者是“q⇒p”.四、逻辑关系1、命题p∧q,p∨q2、全称量词与存在量词(1).全称量词与全称命题①短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.②含有全称量词的命题,叫做全称命题.③全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x).(2).存在量词与特称命题①短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.②含有存在量词的命题,叫做特称命题.③特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,p(x0).3、含有一个量词的命题的否定基础自测1.已知集合A ={x |x >1},B ={x |-1<x <2},则A ∩B =( )A .{x |-1<x <2}B .{x |x >-1}C .{x |-1<x <1}D .{x |1<x <2}【解析】 ∵A ={x |x >1},B ={x |-1<x <2},∴如图所示,A ∩B ={x |1<x <2}.【答案】 D2.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .若a +b +c ≠3,则a 2+b 2+c 2<3B .若a +b +c =3,则a 2+b 2+c 2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =3【解析】 命题“若p ,则q ”的否命题是“若非p ,则非q ”,将条件与结论进行否定.∴否命题是:若a +b +c ≠3,则a 2+b 2+c 2<3.【答案】 A3.(2013·安徽高考)“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 当x =0时,显然(2x -1)x =0;当(2x -1)x =0时,x =0或x =12,所以“(2x -1)x =0”是“x =0”的必要不充分条件.【答案】 B4.(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(非p )∨(非q )B .p ∨(非q )C .(非p )∧(非q )D .p ∨q【解析】 依题意得非p :甲没有降落在指定范围,非q :“乙没有降落在指定范围”,因此“至少有一位学员没有降落在指定范围”可表示为(非p )∨(非q ).【答案】 A5.(2013·重庆高考)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0【解析】 因为“∀x ∈M ,p (x )”的否定是“∃x ∈M ,非p (x )”,故“对任意x ∈R ,都有x 2≥0”的否定是“存在x 0∈R ,使得x 20<0”.【答案】 D考向一 集合的概念与运算例 (1)(2013·山东高考)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(2)(2014·山东高考)设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =(A) (0,2] (B) (1,2) (C) [1,2) (D) (1,4)【解析】 (1)因为A ={1,2,3,4,5},所以集合A 中的元素都为正数,若x -y ∈A ,则必有x -y >0,即x >y .当y =1时,x 可取2,3,4,5,共有4个数;当y =2时,x 可取3,4,5,共有3个数;当y =3时,x 可取4,5,共有2个数;当y =4时,x 只能取5,共有1个数;当y =5时,x 不能取任何值.综上,满足条件的实数对(x ,y )的个数为4+3+2+1=10,即集合B 中的元素共有10个,故选D.【解析】(2).20,022<<∴<-x x x[]4,1)20(==B A ,,,数轴上表示出来得到=B A [1,2) .跟踪练习: (1)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 014+b 2 014=________. (2)(2013·浙江高考)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)【解析】(1)由已知得b a=0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 014+b 2 014=(-1)2 014=1.(2)因为S ={x |x >-2},所以∁R S ={x |x ≤-2}.而T ={x |-4≤x ≤1},所以(∁R S )∪T ={x |x ≤-2}∪{x |-4≤x ≤1}={x |x ≤1}.考点二:充分条件与必要条件例 (1)(2013·北京高考)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2013·山东高考)给定两个命题p ,q .若非p 是q 的必要而不充分条件,则p 是非q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【思路点拨】 (1)根据曲线y =sin(2x +φ)过原点时sin φ=0以及举反例法求解.(2)借助原命题与逆否命题的等价判断. 【尝试解答】 (1)当φ=π时,y =sin(2x +φ)=sin(2x +π)=-sin 2x ,此时曲线y =sin(2x +φ)必过原点,但曲线y =sin(2x +φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件.(2)若非p 是q 的必要不充分条件,则q ⇒非p 但非pD /⇒q ,其逆否命题为p ⇒非q 但非qD /⇒p ,∴p 是非q 的充分不必要条件.【答案】 (1)A (2)A ,规律方法2 充分、必要条件的三种判断方法1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.考点三 命题的真假与命题否定例 (1)(2014·山东高考文理)已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是( )(A)若a +b+c≠3,则222a b c ++<3(B)若a+b+c=3,则222a b c ++<3(C)若a +b+c≠3,则222a b c ++≥3(D)若222a b c ++≥3,则a+b+c=3(2)(2012·山东高考)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真(1)【答案】A【解析】命题“若p ,则q ”的否命题是“若p ⌝,则q ⌝”,故选A.(2)【解析】函数x y 2sin =的周期为ππ=22,所以命题p 为假;函数x y cos =的对称轴为Z k k x ∈=,π,所以命题q 为假,所以q p ∧为假,选C.【答案】C规律方法1 1.(1)在判断四种命题之间的关系时,首先要分清命题的条件与结论,再考查每个命题的条件与结论之间的关系.(2)当一个命题有大前提而需写出其他三种命题时,必须保留大前提不变.2.判定命题为真,必须推理证明;若说明为假,只需举出一个反例.互为逆否命题是等价命题,根据需要,可相互转化.跟踪练习:(1).(2013·重庆高考)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0【解析】 因为“∀x ∈M ,p (x )”的否定是“∃x ∈M ,非p (x )”,故“对任意x ∈R ,都有x 2≥0”的否定是“存在x 0∈R ,使得x 20<0”.【答案】 D(2) (2013·四川高考)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .非p :∀x ∈A,2x ∉B B .非p :∀x ∉A,2x ∉BC .非p :∃x ∉A,2x ∈BD .非p :∃x ∈A,2x ∉B【解析】 由命题的否定的定义及全称命题的否定为特称命题可得.命题p是全称命题:∀x∈A,2x∈B,则非p是特称命题:∃x∈A,2x∉B.故选D.该处在求解时易出现错选A或B的情形,出错的原因有两点:1 把命题的否定与否命题相混淆致误.,2 没有改写量词或未对结论进行否定.【防范措施】 1.命题的否定是只否定这个命题的结论;而对于“若p,则q”形式的否命题为“若非p,则非q”.2.对于全(特)称命题的否定,书写时应从两方面着手:一是对量词或对量词符号进行改写;二是对命题的结论进行否定.两者缺一不可.。

章末综合检测(一) 集合与常用逻辑用语

章末综合检测(一)  集合与常用逻辑用语

章末综合检测(一)集合与常用逻辑用语A卷——学业水平考试达标练(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3},B={1,3,5},则A∪B=()A.{1,2,3}B.{1,2}C.{1,3,5} D.{1,2,3,5}解析:选D由题意得,A∪B={1,2,3}∪{1,3,5}={1,2,3,5},故选D.2.已知集合A={x|x=2k-1,k∈Z},B={-1,0,1,3,6},则A∩B中的元素个数为() A.1 B.2C.3 D.4解析:选C由题意,因为集合A={x|x=2k-1,k∈Z}={奇数},B={-1,0,1,3,6},所以A∩B={-1,1,3},所以A∩B中的元素个数为3.3.设x∈R,则“x>2”是“|x|>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由|x|>2得x>2或x<-2,即“x>2”是“|x|>2”的充分不必要条件.故选A.4.已知集合A={0,1,2,4},集合B={x∈R|0<x≤4},集合C=A∩B,则集合C可表示为()A.{0,1,2,4} B.{1,2,3,4}C.{1,2,4} D.{x∈R|0<x≤4}解析:选C因为集合A中的元素为0,1,2,4,而集合B中的整数元素为1,2,3,4,所以C=A∩B={1,2,4},所以C正确.5.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是() A.1 B.2C.3 D.4解析:选B集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M ={a1,a2,a4}.6.命题“对任意x∈R,都有x3≥0”的否定为()A.对任意x∈R,都有x3<0B.不存在x∈R,使得x3<0C.存在x∈R,使得x3≥0D .存在x ∈R ,使得x 3<0解析:选D “对任意x ∈R ”的否定为“存在x ∈R ”,对“x 3≥0”的否定为“x 3<0”.故选D.7.已知三个集合U ,A ,B 之间的关系如图所示,则(∁U B )∩A =( )A .{3}B .{0,1,2,4,7,8}C .{1,2}D .{1,2,3}解析:选C 由Venn 图可知U ={0,1,2,3,4,5,6,7,8},A ={1,2,3},B ={3,5,6},所以(∁U B )∩A ={1,2}.8.已知非空集合M ,P ,则M P 的充要条件是( )A .∀x ∈M ,x ∉PB .∀x ∈P ,x ∈MC .∃x 1∈M ,x 1∈P 且x 2∈M ,x 2∉PD .∃x ∈M ,x ∉P 解析:选D 由M P ,可得集合M 中存在元素不在集合P 中,结合各选项可得,MP 的充要条件是∃x ∈M ,x ∉P .故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)9.用列举法表示集合:M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪10m +1∈Z ,m ∈Z=________________. 解析:由10m +1∈Z ,且m ∈Z ,知m +1是10的约数,故|m +1|=1,2,5,10,从而m 的值为-11,-6,-3,-2,0,1,4,9.答案:{-11,-6,-3,-2,0,1,4,9}10.已知A ={x |x ≤1或x >3},B ={x |x >2},则(∁R A )∪B =________. 解析:∵∁R A ={x |1<x ≤3},∴(∁R A )∪B ={x |x >1}. 答案:{x |x >1}11.下列不等式:①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中,可以是x 2<1的一个充分条件的所有序号为________.解析:由于x 2<1即-1<x <1,①显然不能使-1<x <1一定成立,②③④满足题意. 答案:②③④12.若x ∈A ,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________.解析:具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.答案:3三、解答题(本大题共4小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤)13.(8分)设全集U ={1,2,3,4,5,6,7,8,9,10},A ={1,2,3,4,5},B ={4,5,6,7,8},C ={3,5,7,9}. 求:(1)A ∩B ,A ∪B ; (2)A ∩(∁U B ),A ∪(B ∩C )解:(1)A ∩B ={4,5},A ∪B ={1,2,3,4,5,6,7,8}. (2)∵B ={4,5,6,7,8},∴∁U B ={1,2,3,9,10}. ∴A ∩(∁U B )={1,2,3},A ∪(B ∩C )={1,2,3,4,5,7}. 14.(10分)已知集合A ={x |-1<x <3},B ={x |x -m >0}. (1)若A ∩B =∅,求实数m 的取值范围; (2)若A ∩B =A ,求实数m 的取值范围. 解:(1)∵A ={x |-1<x <3},B ={x |x >m }, 又A ∩B =∅,∴m ≥3.故实数m 的取值范围为[3,+∞). (2)∵A ={x |-1<x <3},B ={x |x >m }, 由A ∩B =A ,得A ⊆B ,∴m ≤-1. 故实数m 的取值范围为(-∞,-1].15.(10分)写出下列命题的否定,并判断真假. (1)正方形都是菱形; (2)∃x ∈R ,使4x -3>x ; (3)∀x ∈R ,有x +1=2x ;(4)集合A 是集合A ∩B 或集合A ∪B 的子集. 解:(1)命题的否定:正方形不都是菱形,是假命题.(2)命题的否定:∀x ∈R ,有4x -3≤x .因为当x =2时,4×2-3=5>2,所以“∀x ∈R ,有4x -3≤x ”是假命题.(3)命题的否定:∃x ∈R ,使x +1≠2x .因为当x =2时,x +1=2+1=3≠2×2,所以“∃x ∈R ,使x +1≠2x ”是真命题.(4)命题的否定:集合A 既不是集合A ∩B 的子集也不是集合A ∪B 的子集,是假命题.16.(12分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.解:∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件, ∴B A .当B =∅时,得a =0;当B ≠∅时,则当B ={1}时,得a =1; 当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,12,1.B 卷——高考应试能力标准练 (时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.若集合X ={x |x >-1},下列关系式中成立的为( ) A .0⊆X B .{0}∈X C .∅∈XD .{0}⊆X解析:选D 选项A ,元素0与集合之间为∈或∉的关系,错误;选项B ,集合{0}与集合X 之间为⊆或⊇的关系,错误;选项C ,∅与集合X 之间为⊆或⊇的关系,错误;选项D ,集合{0}是集合X 的子集,故{0}⊆X 正确.故选D.2.若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于( ) A .{x |-1≤x ≤1} B .{x |x ≥0} C .{x |0≤x ≤1}D .∅解析:选C ∵A ={x |-1≤x ≤1},B ={y |y ≥0}, ∴A ∩B ={x |0≤x ≤1}.3.设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A |x -2|<1⇔1<x <3.于{x |1<x <2}是{x |1<x <3}的真子集,所以“1<x <2”是“|x -2|<1”的充分不必要条件.4.已知集合A ,B 是非空集合且A ⊆B ,则下列说法错误的是( ) A .∃x ∈A ,x ∈B B .∀x 0∈A ,x 0∈B C .A ∩B =AD .A ∩(∁U B )≠∅解析:选D ∵集合A ,B 是非空集合且A ⊆B , ∴∃x ∈A ,x ∈B ;∀x ∈A ,x ∈B ;A ∩B =A ; A ∩(∁U B )=∅.因此A 、B 、C 正确,D 错误.故选D.5.已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 的值为( ) A .-2 B .2 C .4D .2或4解析:选A 若a =2,则|a |=2,不符合集合元素的互异性,则a ≠2;若|a |=2,则a =2或-2,可知a =2舍去,而当a =-2时,a -2=-4,符合题意;若a -2=2,则a =4,|a |=4,不符合集合元素的互异性,则a -2≠2.综上,可知a =-2.故选A.6.集合A ={x ∈N |0<x <4}的真子集个数为( ) A .3 B .4 C .7D .8解析:选C ∵集合A ={x ∈N|0<x <4}={1,2,3},∴真子集的个数是23-1=7,故选C.7.“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵“⎩⎪⎨⎪⎧x >0,y >0”⇒“1xy >0”,“1xy >0”⇒“⎩⎪⎨⎪⎧x >0,y >0或⎩⎪⎨⎪⎧x <0,y <0,”∴“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的充分不必要条件.故选A.8.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:选D 解x 2-3x +2=0得x =1或x =2.所以A ={1,2}.又B ={1,2,3,4},所以满足A ⊆C ⊆B 的集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.故D 正确.9.下列命题中是全称量词命题并且是真命题的是( ) A .∀x ∈R ,3x -1>0B.若2x为偶数,则∀x∈NC.所有正方形的四条边都相等D.π是无理数解析:选C对A,是全称量词命题,但不是真命题,故A不正确;对B,是真命题,但不是全称量词命题,故B不正确;对C,是全称量词命题,也是真命题,故C正确;对D,是真命题,但不是全称量词命题,故D不正确,故选C.10.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么()A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙既不是甲的充分条件,也不是甲的必要条件解析:选A因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙⇒/丙,如图.综上,有丙⇒甲,但甲⇒/丙,即丙是甲的充分条件,但不是甲的必要条件.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)11.设集合M={m∈Z|-3<m<2},N={n∈Z|-2≤n≤3},则M∩N=________.解析:因为M={m∈Z|-3<m<2}={-2,-1,0,1},N={n∈Z|-2≤n≤3}={-2,-1,0,1,2,3},所以M∩N={-2,-1,0,1}.答案:{-2,-1,0,1}12.某校高一某班共有40人,摸底测验数学成绩23人得优,语文成绩20人得优,两门都不得优者有6人,则两门都得优者有________人.解析:设两门都得优的人数是x,则依题意得(23-x)+(20-x)+x+6=40,整理,得-x+49=40,解得x=9,即两门都得优的人数是9人.答案:913.设全集U={x||x|<4,且x∈Z},S={-2,1,3},若P⊆U,(∁U P)⊆S,则这样的集合P共有________个.解析:U={-3,-2,-1,0,1,2,3},∵∁U(∁U P)=P,∴存在一个∁U P,即有一个相应的P(如当∁U P={-2,1,3}时,P={-3,-1,0,2};当∁U P={-2,1}时,P={-3,-1,0,2,3}等).由于S的子集共有8个,∴P也有8个.答案:814.若a ,b 都是实数,试从①ab =0;②a +b =0;③a (a 2+b 2)=0;④ab >0中选出适合下列条件的,用序号填空:(1)“使a ,b 都为0”的必要条件是________. (2)“使a ,b 都不为0”的充分条件是________. (3)“使a ,b 至少有一个为0”的充要条件是________. 解析:①ab =0⇔a =0或b =0,即a ,b 至少有一个为0;②a +b =0⇔a ,b 互为相反数,则a ,b 可能均为0,也可能为一正一负; ③a (a 2+b 2)=0⇔a =0或⎩⎪⎨⎪⎧a =0,b =0; ④ab >0⇔⎩⎪⎨⎪⎧a >0,b >0或⎩⎪⎨⎪⎧a <0,b <0,则a ,b 都不为0.答案:(1)①②③ (2)④ (3)①三、解答题(本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(8分)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假. (1)∀x ∈N ,2x +1是奇数; (2)存在一个x ∈R ,使1x -1=0; (3)存在一组m ,n 的值,使m -n =1; (4)至少有一个集合A ,满足A {1,2,3}.解:(1)是全称量词命题.因为对任意自然数x,2x +1都是奇数,所以该命题是真命题. (2)是存在量词命题.因为不存在x ∈R ,使1x -1=0成立,所以该命题是假命题. (3)是存在量词命题.当m =4,n =3时,m -n =1成立,所以该命题是真命题. (4)是存在量词命题.存在A ={3},使A {1,2,3}成立,所以该命题是真命题. 16.(10分)已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求满足下列条件的a 的值.(1)9∈(A ∩B ); (2){9}=A ∩B .解:(1)∵9∈(A ∩B ),∴9∈B 且9∈A , ∴2a -1=9或a 2=9,∴a =5或a =±3. 检验知a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈(A ∩B ), ∴a =5或a =-3.当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去;当a=-3时,A={-4,-7,9},B={-8,4,9},A∩B={9},满足题意.综上可知a=-3.17.(10分)已知A={x|-1<x<2},B={x|x-1>0}.(1)求A∩B;(2)若记符号A-B={x|x∈A且x∉B},在图中把表示“集合A-B”的部分用阴影涂黑,并求出A-B.解:(1)由x-1>0得x>1,即B={x|x>1}.所以A∩B={x|1<x<2}.(2)集合A-B如图中的阴影部分所示.由于A-B={x|x∈A,且x∉B},又A={x|-1<x<2},B={x|x>1},所以A-B={x|-1<x≤1}.18.(10分)已知集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,x∈R},若B⊆A,求实数a的取值范围.解:A={x|x2+4x=0,x∈R}={0,-4},因为B⊆A,所以B=A或B A.当B=A时,B={-4,0},即-4,0是方程x2+2(a+1)x+a2-1=0的两根,代入得a=1,此时满足条件,即a=1符合题意.当B A时,分两种情况:若B=∅,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.若B≠∅,则方程x2+2(a+1)x+a2-1=0有两个相等的实数根,所以Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0},符合题意.综上所述,所求实数a的取值范围是(-∞,-1]∪{1}.19.(12分)求关于x的方程ax2+2x+1=0至少有一个负的实根的充要条件.解:(1)当a=0时显然符合题意.(2)当a≠0时显然方程没有零根.若方程有两异号的实根,则a<0;若方程有两个负的实根,则必须有⎩⎪⎨⎪⎧a >0,-2a <0,Δ=4-4a ≥0解得0<a ≤1.综上知,若方程至少有一个负的实根,则a ≤1;反之,若a ≤1,则方程至少有一个负的实根.因此,关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件是a ≤1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 章末检测一、选择题(本大题共12小题,每小题5分,共60分)1.(2013·安徽)若集合A ={x |log 12x ≥12},则∁R A 等于( ) A .(-∞,0]∪(22,+∞) B .(22,+∞) C .(-∞,0]∪[22,+∞) D .[22,+∞) 答案 A 解析 log 12x ≥12⇔log 12x ≥log 1222. ⇔0<x ≤22. ∴∁R A =(-∞,0]∪(22,+∞). 2.(2013·广东)“m <14”是“一元二次方程x 2+x +m =0有实数解”的( ) A .充分非必要条件 B .充分必要条件C .必要非充分条件D .非充分必要条件答案 A解析 一元二次方程x 2+x +m =0有实数解⇔Δ=1-4m ≥0⇔m ≤14,m <14⇒m ≤14且m ≤14D /⇒m <14,故选A. 3.(2013·南平一中期中)已知命题p :∀x ∈R ,x >sin x ,则( )A . p :∃x ∈R ,x <sin xB . p :∀x ∈R ,x ≤sin xC . p :∃x ∈R ,x ≤sin xD . p :∀x ∈R ,x <sin x答案 C解析 对全称命题的否定既要否定量词又要否定结论,故选C.4.(2013·华南师大附中期中)设集合A ={1,2,3,4},B ={0,1,2,4,5},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个答案 A解析 由题意得A ∪B ={0,1,2,3,4,5},A ∩B ={1,2,4},所以∁U (A ∩B )={0,3,5}.5.(2013·合肥一中期中)设集合M ={x |2x 2-2x <1},N ={x |y =lg(4-x 2)},则( )A .M ∪N =MB .(∁R M )∩N =RC .(∁R M )∩N =∅D .M ∩N =M答案 D解析 依题意,化简得M ={x |0<x <2},N ={x |-2<x <2},所以M ∩N =M .6.(2013·西安交大附中月考)下列命题错误的是( )A .命题“若m ≤0,则方程x 2+x +m =0有实数根”的逆否命题为:“若方程x 2+x +m =0无实数根,则m >0”B .“x =2”是“x 2-x -2=0”的充分不必要条件C .若p ∧q 为假命题,则p ,q 中必有一真一假D .对于命题p :∃x ∈R ,x 2+x +1<0,则 p :∀x ∈R ,x 2+x +1≥0答案 C解析 若p ∧q 为假命题,则p ,q 中至少有一个为假命题.故C 错.7.(2013·威海模拟)已知命题p :无穷数列{a n }的前n 项和为S n ,若{a n }是等差数列,则点列{(n ,S n )}在一条抛物线上;命题q :若实数m >1,则mx 2+(2m -2)x -1>0的解集为(-∞,+∞).对于命题p 的逆否命题s 与命题q 的逆命题r ,下列判断正确的是( )A .s 是假命题,r 是真命题B .s 是真命题,r 是假命题C .s 是假命题,r 是假命题D .s 是真命题,r 是真命题答案 C解析 对于命题p ,当{a n }为常数数列时为假命题,从而其逆否命题s 也是假命题;由于使mx 2+(2m -2)x -1>0的解集为(-∞,+∞)的m 不存在,故命题q 的逆命题r 是假命题.8.已知命题p :关于x 的不等式x 4-x 2+1x 2>m 的解集为{x |x ≠0,x ∈R };命题q :f (x )=-(5-2m )x 是减函数.若“p ∨q ”为真命题,“p ∧q ”为假命题,则实数m 的取值范围是( )A .(1,2)B .[1,2)C .(-∞,1]D .(-∞,1)答案 B解析 p 真⇔m <x 2+1x 2-1恒成立⇔m <1. q 真⇔5-2m >1⇔m <2.∵p 与q 中一真一假,∴1≤m <2.9.(2013·淮南月考)已知集合M ={a |a =(1,2)+λ(3,4),λ∈R },N ={a |a =(-2,-2)+λ(4,5),λ∈R },则M ∩N 等于( )A .{(1,1)}B .{(1,1),(-2,-2)}C .{(-2,-2)}D .∅答案 C解析 方法一 M ={a |a =(1,2)+λ(3,4),λ∈R }={a |a =(1+3λ,2+4λ),λ∈R },N ={a |a =(-2,-2)+λ(4,5),λ∈R }={a |a =(-2+4λ,-2+5λ),λ∈R }.令(1+3λ1 ,2+4λ1)=(-2+4λ2,-2+5λ2),则⎩⎪⎨⎪⎧1+3λ1=-2+4λ2,2+4λ1=-2+5λ2,解得λ1=-1,λ2=0, ∴M ∩N ={a |a =(-2,-2)}. 方法二 设OA =(1,2)+λ(3,4),λ∈R , OB = (-2,-2)+λ(4,5),λ∈R ,∴点A 的轨迹方程为y -2=43(x -1), 点B 的轨迹方程为y +2=54(x +2), 由①②联立解得x =-2,y =-2,∴M ∩N ={(-2,-2)}.10.设f (x )是R 上的减函数,且f (0)=3,f (3)=-1,设P ={x ||f (x +t )-1|<2},Q ={x |f (x )<-1},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是( )A .t ≤0B .t ≥0C .t ≤-3D .t ≥-3答案 C解析 P ={x ||f (x +t )-1|<2}={x |-1<f (x +t )<3}={x |f (3)<f (x +t )<f (0)}={x |0<x +t <3}={x |-t <x <3-t },Q ={x |x >3},又由已知得P Q ,∴-t ≥3,∴t ≤-3.11.(2013·昆明模拟)若集合A ={x |x 2-9x <0,x ∈N *},B =⎩⎨⎧⎭⎬⎫y |4y ∈N *,y ∈N *,则A ∩B 中元素的个数为( )A .0B .1C .2D .3答案 D解析 A ={x |0<x <9,x ∈N *}={1,2,…,8},B ={1,2,4},∴A ∩B =B .12.(2013·吉林实验中学高三月考)已知f (x )=(12)x ,命题p :∀x ∈[0,+∞),f (x )≤1,则( )A .p 是假命题, p :∃x 0∈[0,+∞),f (x 0)>1B .p 是假命题, p :∀x ∈[0,+∞),f (x )≥1C .p 是真命题, p :∃x 0∈[0,+∞),f (x 0)>1D .p 是真命题, p :∀x ∈[0,+∞),f (x )≥1答案 C解析 ∵f (x )=(12)x 是R 上的减函数, ∴当x ∈[0,+∞)时,f (x )≤f (0)=1.∴p 为真命题,全称命题p 的 p 为:∃x 0∈[0,+∞),f (x 0)>1.二、填空题(本大题共4小题,每小题5分,共20分)13.(2013·济南一中期中)“lg x >lg y ”是“10x >10y ”的________条件.答案 充分不必要解析 考虑对数的真数需大于零即可.14.命题“∃x <0,有x 2>0”的否定是______________.答案 ∀x <0,有x 2≤0解析 “存在”即“∃”的否定词是“任意”即“∀”,而对“>”的否定是“≤”.15.已知条件p :|x +1|>2,条件q :5x -6>x 2,则非p 是非q 的________条件. 答案 充分不必要解析 ∵p :x <-3或x >1,∴ p :-3≤x ≤1.∵q :2<x <3,∴ q :x ≤2或x ≥3,则 p ⇒ q .16.(2013·江苏苏北三市高三联考)若命题“∃x ∈R ,使得x 2+(a -1)x +1<0”是真命题,则实数a 的取值范围为______.答案 (-∞,-1)∪(3,+∞)解析 要使命题为真命题,只需Δ=(a -1)2-4>0,即|a -1|>2,∴a >3或a <-1.三、解答题(本大题共6小题,共70分)17.(10分)已知A ={a +2,2a 2+a },若3∈A ,求a 的值.解 若a +2=3,得a =1.∵a =1时,2a 2+a =3=a +2,∴a =1时不符合题意.(4分)若2a 2+a =3,解得a =1或a =-32.(6分)由上面知a =1不符合题意,a =-32 时,A ={12,3},(8分) 综上,符合题意的a 的值为-32.(10分) 18.(12分)(2013·铁岭月考)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m },是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围.解 P ={x |x 2-8x -20≤0}={x |-2≤x ≤10},S ={x |1-m ≤x ≤m +1}.假设存在实数m ,使x ∈P 是x ∈S 的充要条件,则必有P =S .(6分)所以⎩⎪⎨⎪⎧ -2=1-m ,10=m +1,此方程组无解.(10分) 所以不存在实数m 使条件成立.(12分)19.(12分)(2013·温州模拟)设命题p :(4x -3)2≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若 p 是 q 的必要不充分条件,求实数a 的取值范围.解 设A ={x |(4x -3)2≤1},B ={x |x 2-(2a +1)x +a (a +1)≤0},易知A ={x |12≤x ≤1},B ={x |a ≤x ≤a +1}. (6分)由 p 是 q 的必要不充分条件,从而p 是q 的充分不必要条件,即A B ,∴⎩⎪⎨⎪⎧a ≤12,a +1≥1.(10分) 故所求实数a 的取值范围是[0,12].(12分) 20.(12分)已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若p 且q 为假,p 或q 为真,求a 的取值范围. 解 由命题p ,得a >1,对于命题q ,因x ∈R ,ax 2-ax +1>0恒成立,又因a >0,所以Δ=a 2-4a <0,即0<a <4.由题意知p 与q 一真一假,(6分)当p 真q 假时 ,⎩⎪⎨⎪⎧ a >1,a ≤0或a ≥4. 所以a ≥4.(8分)当p 假q 真时,⎩⎪⎨⎪⎧a ≤1,0<a <4,即0<a ≤1.(10分) 综上可知,a 的取值范围为(0,1]∪[4,+∞).(12分)21.(12分)(2013·温州模拟)已知c >0,设命题p :函数y =c x 为减函数;命题q :当x ∈[12,2]时,函数f (x )=x +1x >1c恒成立,如果p ∨q 为真命题,p ∧q 为假命题, 求c 的取值范围.解 ∵函数y =c x 为减函数,∴0<c <1,即p 真时,0<c <1.(2分)函数f (x )=x +1x >1c 对∈[12,2]恒成立, f (x )min =2x ·1x =2,当x =1x ,即x =1∈[12,2]时,有1c <2,得c >12,即q 真时,c >12.(5分) ∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假.(7分)①p 真q 假时,0<c ≤12;(9分) ②p 假q 真时,c ≥1.(11分)故c 的取值范围为0<c ≤12或c ≥1.(12分) 22.(14分)(2013·沈阳模拟)已知三个集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-bx +2=0},问同时满足B A ,A ∪C =A 的实数a 、b 是否存在?若存在,求出a 、b ;若不存在,请说明理由.解 ∵A ={x |x 2-3x +2=0}={2,1},B ={x |x 2-ax +a -1=0}={x |(x -1)[x -(a -1)]=0},又∵B A ,∴a -1=1,∴a =2.(4分)∵A ∪C =A ,∴C ⊆A ,则C 中元素有以下三种情况:①若C =∅,即方程x 2-bx +2=0无实根,∴Δ=b 2-8<0,∴-22<b <22,(7分)②若C ={1}或{2},即方程x 2-bx +2=0有两个相等的实根,∴Δ=b 2-8=0,∴b =±22,此时C ={2}或{-2}不符合题意,舍去.(9分) ③若C ={1,2},则b =1+2=3,而两根之积恰好为2.(11分)综上所述,a =2,b =3或-22<b <2 2.(12分)。

相关文档
最新文档