并网光伏发电系统
并网光伏发电系统
1. 负荷峰谷对电网的影响。由于光伏并网发电系 统不具备调峰和调频能力,这将对电网的早峰负 荷和晚峰负荷造成冲击。因为光伏并网发电系统 增加的发电能力并不能减少电力系统发电机组的 拥有量或冗余,所以电网必须为光伏发电系统准 备相应的旋转备用机组来解决早峰和晚峰的调峰 问题。光伏并网发电系统向电网供电是以机组利 用小时数下降为代价的。这当然是发电商所不愿 意看到的。 2. 昼夜变化,东西部时差以及季节的变化对电网 的影响。由于阳光和负荷出现的周期性,光伏并 网发电量的增加并不能减少对电网装机容量的需 求。
5.3.1 有逆流型并网系统
国家电网
太阳电 池方阵功率调节器 (逆变器、并 网 Nhomakorabea护装置)
有逆流型并网光伏系统示意图
交流用 电负载
有逆流型并网系统如上图所示,太阳电 池方阵输出的电能供给负载后,因为这类系 统中没有储能元件,所以当有剩余电能时剩 余电能将流向电网,以免在发电量剩余时造 成浪费,充分发挥太阳电池的发电能力,使 电能得到充分利用。当太阳能电池方阵发出 的电力达不到用户负载要求时,系统又可以 从国家电网中得到负载所需要的电能,所以 系统的效能比达到最高。
3. 气象条件的变化。当一个城市的光伏屋顶并网发电达到 一定规模时,如果地理气象出现大幅变化,电网将为光伏并 网发电系统提供足够的区域性旋转备用机组和无功补偿容量, 来控制和调整系统的频率和电压。在这种情况下,电网将以 牺牲经济运行方式为代价来保证电网的安全稳定运行。 4. 远距离光伏电能输送。当光伏并网发电远距离输送电力在 经济和技术上成为可能时,由于光伏并网发电没有旋转惯量, 调速器及励磁系统,它将给交流电网带来新的稳定问题。如 果光伏并网发电形成规模采用高压交直流送电,将会给与光 伏发电直流输电系统相邻的交流系统带来稳定和经济问题, (专门用于光伏并网发电的输电线路,由于使用效率低,将 对荒漠太阳能的利用形成制约。用于借道或者兼顾输送光伏 并网发电系统电能的输电线路,由于负荷率低下,显得很不 经济。)不论采用高压交流或直流送出,光伏并网发电站都 必须配备自动无功调压装置。至于对电网稳定的影响,目前 还未见到光伏发电在电网稳定计算中的数学模型(包括电源 模型和负荷模型)。光伏并网发电将对电网安全稳定运行有 多大的影响目前尚不清楚。
光伏并网发电系统
Inverter
1 or 3 phase connection
多串式逆变器
1.3 光伏并网系统接入方式
Ac module Ac module
Ac module
Grid
DC bus
Central inverter
3 phase connection
集中式逆变器——目前主流应用
Grid
1 phase connection
①光伏电池方阵;②控制器;③电缆;④逆变 器;⑤配电系统;⑥用电器;⑦输电电缆;⑧ 电网
1、光伏并网发电系统
发电----直流配电----并网逆变---交流配电--变压---电网
光伏阵列:
由太阳电池 汇流
串并联封装 箱:
为电池组件, 再由组件串
汇集 连线、 采集
并联构成光 信号、
伏发电方阵, 防雷、
上述几种拓扑都可以有效解决 漏电流问题,在行业内得到广 泛的应用。
1.2 三相光伏并网逆变器主电路拓扑现状
S1
S3
S5
a
C
b
c
AC
S4
S6
S2
三相逆变桥是光伏并网逆变系 统的功率主电路的核心,它的 作用是将光伏阵列输出的非线 性直流电源转换成可以并入电 网的交流电源。
三相并网逆变器主功率逆变桥 主要有两电平逆变桥、三电平 逆变桥、H桥并联等几种典型拓 扑
在太阳光的 防反、
照射下,产 隔离 生电压,形 等
成回路电流,
输出直流电
力。
配电:
计量、 开关、 漏电保 护、防 雷、保 险、滤 波、
并网逆变器: 将直流转换 为与电网同 频率、同幅、 同相的交流 电的电力设 备。具有控 制、保护、 安全功能。
第二章 单相光伏并网发电系统结构与工作原理
第2章单相光伏并网发电系统结构与工作原理2.1单相光伏并网发电系统基本原理薔电池组图2-1典型光伏发电系统框图单相光伏并网发电系统由四部分组成,即太阳能电池方阵、蓄电池组、逆变器和控制器,其典型的系统框图如图2-1所示。
并网光伏发电系统的主要特点是,与公用电网发生紧密的电联系。
光伏发电系统多余的电力向电网供电,不足的电力由电网补。
其工作的基本原理是,太阳能电池方阵受到太阳辐照,通过太阳能电池的光生伏打效应,将太阳光能直接转换为直流电能,太阳能电池方阵的输出端经防反充二极管接至控制器。
控制器的一对输出端接至蓄电池组,对其进行充、放电保护控制;控制器的另一对输出端通过开关接至逆变器,将直流电逆变为交流电,可以向交流负载供电,也可以通过锁相环节向电网输出与电网电压同频、同相的交流电。
这样就构成了一个完整的发电、输电和供电系统。
对于光伏并网系统而言,将太阳能经光伏电池阵列转化成电能馈送给交流电网,其间能量的传递与转换可以有很多种方式,并网逆变器的结构也因而有所不同,可以是直接从太阳能电池到电网的单级DC-AC变换结构,也可以是DC-DC和DC-AC的两级变换结构。
对于小功率光伏并网发电系统,由于光伏电池阵列的输出电压比较低,因而更多的采用了先通过一级DC-DC变换器升压,然后再通过一级DC-AC逆变器的两级变换并网结构。
太阳能并网逆变器的控制目标是控制并网逆变器的输出电流为稳定的高质量的正弦波电流,同时还要求并网逆变器输出的电流与电网电压同频、同相,因此需要采用合适的控制策略以达到上述的控制目标。
2.2光伏发电系统逆变器的拓扑结构由于太阳能电池,燃料电池每个单元的输出电压较低,所以在串联数量很少的情况下,并网逆变器的输入电压较低,这样并网逆变器就需要具有直流电压的提升和逆变的功能。
通常并网逆变器依照级数可以划分为单级式逆变器和多级式逆变器。
单级指直流电压的提升和产生正弦波的输出电流或者输出电压在同一级电路中完成。
光伏并网发电系统
系统设计原则与步骤
• 原则:确保系统安全、可靠、高效、经济、环保,满足用 户需求。
系统设计原则与步骤
步骤
1
2
1. 确定安装地点和规模,评估当地光照资源。
3
2. 设计光伏方阵,选择合适的组件和支架。
系统设计原则与步骤
5. 进行系统调试和验收。
4. 设计输配电系统,包括 变压器和电缆。
3. 设计并网逆变器和控制 系统。
储能式逆变器
具备储能功能,可在电力需求 低谷期储存电能,并在高峰期
释放,平衡电网负荷。
逆变器的工作原理与技术参数
工作原理
将光伏组件产生的直流电转换为交流 电,并输送到电网中。
技术参数
包括额定功率、输入电压范围、输出 电压范围、效率、功率因数等。
效率
衡量逆变器转换效率的重要指标,通 常要求达到95%以上。
为公园、学校、医院等公共设施提供电力 ,减少对传统能源的依赖。
农业领域
偏远地区供电
应用于农业大棚、灌溉系统等,提供绿色 能源,促进农业可持续发展。
解决偏远地区供电难题,提高当地居民生 活质量。
光伏并网发电系统的实际案例分析
住宅区光伏并网发电系统
医院光伏并网发电系统
该系统为住宅区提供稳定、可靠的绿 色电力,降低碳排放,提高居民生活 质量。
将太阳能转换为直流电能。
逆变器
将直流电能转换为交流电能。
并网控制器
确保交流电能与电网同步,实现并网发电。
储能设备(可选)
用于平衡电网负荷,提高供电稳定性。
02 光伏电池与组件
光伏电池的类型与特性
晶体硅电池
基于单晶硅或多晶硅材料,是目 前市场占有率最高的光伏电池类 型。其特性是效率高、稳定性好, 但成本相对较高。
并网光伏发电系统概述
并网光伏发电系统概述能源是社会发展进步的重要物质基础,对人类的生存发展有决定意义。
由于技术条件限制,风能发电存在不稳定、成本高、难维护等特点。
光伏发电作为一种可再生能源,拥有独特的优势,其应用前景广阔,开展光伏发电应用推广具有巨大的经济价值和现实意义。
一、并网光伏发电系统概述并网光伏系统是一种分布式发电方式,工作时先将太阳能电池组件产生的直流电转换成满足电网要求的交流电,然后并入公共电网。
并网光伏系统的核心部件是并网逆变器,包含了电网信号检测、输出电流控制、最大功率点跟踪、抗孤岛等,是集检测、控制、并网和保护为一体的装置。
并网光伏发电的方式不同于常规发电,并网光伏发电的能量密度低、稳定性和调节能力差,发电量容易受天气及地域的影响,因此并网发电后会对电网产生一定的影响。
对于不同容量、不同并网方式和系统配置的光伏发电系统,应根据实际情况按要求接入不同的输电网或配电网。
由于国内还没有比较全面可操作的管理标准和技术规范,因此对于并网光伏系统的评估尚不完善,从而影响了并网光伏技术的发展。
造成这种情况的主要原因是目前国内对并网光伏发电系统的特性还不熟悉,包括光伏系统本身以及光伏对电网的影响等,因此进一步研究并网光伏发电系统的特点,对推动光伏并网技术的发展、加快能源结构调整、提高清洁能源利用率都有十分重要的意义。
二、并网光伏电站的发电特性分析1、光伏发电具有间歇性、随机性的特点,这些规律难以预测,因此光伏发电还无法参与电力平衡的计划,光伏发电只能依据《可再生能源法》,并网后由电网公司收购,不能单独运行。
2、光伏发电需要太阳辐射能作支持,因此只能在白天发电,夜晚不能发电,并且雨雪天的发电率较低。
光伏发电的能力随太阳辐射的增强而增强,中午时发电能力达到最大。
3、光伏发电站工作时,需要调整电网中其他电源的出力,提供一定的负荷保证光伏发电供电。
当光伏发电收天气等因素影响时,又需要其他电源提供补偿,从而保证光伏发电的稳定性和可靠性。
并网光伏发电系统方案
-增强公众对清洁能源的认识和接受度,促进绿色能源的广泛应用。
七、结论
本方案为用户提供了全面的并网光伏发电系统解决方案,既符合国家法规政策,又体现了高效、安全、环保的设计理念。通过本方案的实施,用户将在实现经济效益的同时,为保护环境和推动社会可持续发展作出贡献。
五、项目实施
1.前期准备
-完成项目备案、环评等相关手续。
-确定项目施工图纸和技术要求。
2.施工安装
-按照施工图纸和技术要求进行组件安装、逆变器安装、配电设备安装等。
-确保施工过程中遵守安全规范,减少对用户的影响。
3.调试与验收
-完成系统安装后,进行严格的调试,确保系统各项指标满足设计要求。
-组织专业验收,包括电气性能、安全性能等,确保系统合规运行。
并网光伏发电系统方案
第1篇
并网光伏发电系统方案
一、项目背景
随着我国能源结构的优化调整和绿色低碳发展战略的实施,太阳能光伏发电作为清洁能源的重要组成部分,其推广应用日益得到重视。本方案旨在为用户提供一套合法合规的并网光伏发电系统方案,实现能源的高效利用和环境保护。
二、项目目标
1.满足用户日常用电需求,降低用电成本。
三、系统设计
1.光伏组件
选用高效率、低衰减、耐候性强的高质量光伏组件,确保系统长期稳定运行。具体参数如下:
-单块组件额定功率:X寸:XXmm×XXmm
-组件重量:XXkg
2.逆变器
选择品牌信誉良好、性能稳定的逆变器,确保光伏电能高效并网。逆变器关键参数:
-最大功率:XX千瓦(kW)
3.验收调试:项目完成后,组织相关部门进行验收调试,确保系统稳定运行。
4.培训与售后服务:为用户提供培训,确保用户熟练掌握系统操作;提供长期、优质的售后服务。
光伏并网发电系统技术方案
光伏并网发电系统技术方案光伏并网发电系统是一种将太阳能转化为电能并与电网连接的系统。
它由太阳能光伏电池板、逆变器、电网连接设备和监控系统等组成。
光伏并网发电系统的技术方案包括光伏电池板选型、逆变器选型、电网连接设备选择和监控系统设计等。
在光伏电池板选型方面,应考虑光伏电池板的转换效率、耐候性、安装便捷性等因素。
目前市场上主要有多晶硅、单晶硅和薄膜太阳能电池板。
多晶硅太阳能电池板具有较高的转换效率、较好的耐候性和较长的使用寿命,适用于大规模的光伏发电项目。
单晶硅太阳能电池板具有更高的转换效率和较好的耐候性,适用于小规模的光伏发电项目。
薄膜太阳能电池板具有较低的转换效率和较好的适应性,适用于特殊形状和材料的光伏发电项目。
在逆变器选型方面,应考虑逆变器的功率范围、效率、稳定性等因素。
逆变器是将直流电转换为交流电的设备,它的功率范围应根据实际需求选择。
逆变器的效率越高,系统的发电效率就越高。
逆变器的稳定性越好,系统的可靠性就越高。
目前市场上主要有串联逆变器和并联逆变器两种类型。
串联逆变器适用于小规模的光伏发电项目,它可以根据实际需求选择合适的功率。
并联逆变器适用于大规模的光伏发电项目,它可以实现多个光伏电池板的并联输出。
在电网连接设备选择方面,应根据电网的要求选择合适的设备。
电网连接设备主要包括电网连接盒、电网断路器、电网保护装置等。
电网连接盒用于连接光伏电池板和逆变器,它应具有良好的接触性能和耐高温性能。
电网断路器用于保护光伏并网发电系统免受电网的过流和短路等故障影响。
电网保护装置用于保护电网免受光伏并网发电系统的电压、频率等异常影响。
在监控系统设计方面,应考虑系统的监测和控制需求。
监控系统可以实时监测系统的发电量、发电效率、运行状态等信息。
监控系统可以远程控制系统的开关机状态、发电功率等参数。
监控系统可以实现远程故障诊断和维修。
监控系统可以实现数据的采集、传输和存储,并提供相应的数据报告和分析。
监控系统可以实现与相关系统的对接和集成,提供全面的能源管理服务。
光伏并网发电系统
光伏并网发电系统1. 概述光伏并网发电系统是一种利用太阳能光伏电池组将光能转化为电能,并通过并网逆变器将电能注入电网的发电系统。
它是清洁能源发电的重要组成部分,具有环保、可持续等优点,被广泛应用于家庭、工业和商业等领域。
2. 原理光伏并网发电系统的工作原理主要分为光电转换、电能调节和并网注入三个步骤。
首先,太阳能光线通过光伏电池组,光能转化为直流电能。
然后,通过光伏逆变器将直流电转化为交流电,并对电能进行调节,确保输出电压和频率符合电网要求。
最后,交流电能通过电网连接,供应给周围的电力用户使用。
3. 组件和设备光伏并网发电系统主要由光伏电池组、光伏逆变器、配电箱和计量装置等组件和设备构成。
3.1 光伏电池组光伏电池组是光伏并网发电系统的核心组件,由多个太阳能电池板组成。
它们将太阳能光线转化为直流电能,并提供给逆变器进行转换。
3.2 光伏逆变器光伏逆变器是光伏并网发电系统中的关键设备,负责将直流电能转化为交流电能,并实时监测并调节输出电压和频率,以满足电网的要求。
逆变器通常具有高效率、稳定性和安全性等特点。
3.3 配电箱配电箱用于分配光伏发电系统和电网之间的电能流向,确保发电系统与电网正常连接,并提供过电压和过电流保护功能。
3.4 计量装置计量装置用于测量光伏发电系统的发电量和电能消耗量,对系统运行情况进行监测和统计。
4. 运行流程光伏并网发电系统的运行流程分为系统启动、发电和停机三个阶段。
4.1 系统启动系统启动需要先将光伏电池组的直流电源与逆变器连接,并配置合适的工作参数。
逆变器根据配置参数开始运行并监测光伏电池组的电流、电压等信息。
4.2 发电在光伏电池组接收到阳光后,光能被转化为直流电能,通过逆变器转化为交流电能,并注入电网供电。
逆变器实时监测电网电压和频率,并调节输出电能以跟随电网的变化。
4.3 停机当光伏并网发电系统停止工作时,逆变器将停止输出电能并断开与电网的连接。
此时,光伏电池组暂停接收太阳能光线,系统进入待机状态。
光伏发电系统的并网与离网运行
光伏发电系统的并网与离网运行光伏发电是一种利用太阳能将光能转化为电能的可再生能源发电方式。
光伏发电系统不仅可以通过并网运行,将电能并入电网供给公共电力系统使用,也可以通过离网运行,独立供电。
一、光伏发电系统的并网运行光伏发电系统的并网运行是指将光伏发电装置所产生的电能与公共电力系统连接,将电能输出到公共电力系统中。
1. 并网逆变器光伏发电系统中的关键设备是并网逆变器,它负责将光伏发电装置的直流电转换为交流电,并将输出的电能与电网同步。
并网逆变器具有高效、可靠的特点,能够实现光伏发电系统的安全并网运行。
2. 电网接入与调度光伏发电系统需要与电网进行连接,接入方式包括单相接入和三相接入。
并网运行时,光伏发电系统会根据电网的需求自动调整电能的输出,实现对电网供电的支持。
3. 发电性能监测与管理光伏发电系统需具备远程监测与管理功能,及时获取光伏发电装置的工作状态和发电性能数据,以确保系统正常运行并提高发电效率。
二、光伏发电系统的离网运行光伏发电系统的离网运行是指将光伏发电装置所产生的电能用于自身独立供电,不与电网连接。
1. 储能装置光伏发电系统的离网运行需要配备适当的储能装置,如蓄电池组。
储能装置用于存储白天光伏发电装置产生的电能,以供夜间或阴雨天等无法正常发电时使用。
2. 控制与管理系统光伏发电系统的离网运行需要通过控制与管理系统对光伏发电装置、储能装置和负载进行智能管理。
控制与管理系统可实现对系统运行状态、储能和供电的监测与调节。
3. 安全保护与维护光伏发电系统的离网运行需要注意安全保护与维护工作。
定期检查光伏发电装置和储能装置的运行状态,合理设置保护装置,确保系统稳定运行和安全供电。
三、光伏发电系统的并网与离网切换光伏发电系统在并网和离网运行之间可以灵活切换,以适应不同的应用需求。
1. 自动切换装置光伏发电系统的并网与离网切换可通过自动切换装置实现。
自动切换装置能够监测电网供电情况和光伏发电装置的工作状态,实现自动切换功能,确保系统安全可靠运行。
并网光伏发电系统总结
并网光伏发电系统总结一、并网光伏系统1、1并网光伏系统概念光伏并网发电系统就是太阳能光伏发电系统与常规电网相连,共同承担供电任务。
当有阳光时,逆变器将光伏系统所发的直流电逆变成正弦交流电,产生的交流电可以直接供给交流负载,然后将剩余的电能输入电网,或者直接将产生的全部电能并入电网。
在没有太阳时,负载用电全部由电网供给。
因为直接将电能输入电网,光伏独立系统中的蓄电池完全被光伏并网系统中的电网所取代。
免除配置蓄电池,省掉了蓄电池蓄能和释放的过程,可以充分利用光伏阵列所发的电力,从而减小了能量的损耗,降低了系统成本。
但是系统中需要专用的并网逆变器,已保证输出的电力满足电网对电压、频率等性能指标的要求。
逆变器同时还控制光伏阵列的最大功率点跟踪(MPPT)、控制并网电流的波形和功率,使向电网传送的功率和光伏阵列所发出的最大功率电能相平衡。
这种系统通常能够并行使用市电和太阳能光伏系统作为本地交流负载的电源,降低了整个系统的负载断电率。
而且并网光伏系统还可以对公用电网起到调峰的作用。
太阳能光伏发电进入大规模商业化应用是必由之路,就是将太阳能光伏系统接入常规电网,实现联网发电。
与独立运行的太阳能光伏发电站相比,并入电网可以给光伏发电带来诸多好处,可以归纳以下几点:1、省掉了蓄电池作为储能;2、随着逆变器制造技术的不断进步,以后逆变器的稳定性、可靠性等将更加完善;3、光伏阵列可以始终运行在最大功率点处,由电网来接纳太阳能所发的全部电能,提高了太阳能发电效率;4、电网获得了收益,分散布置的光伏系统能够为当地的用户提供电能,缓解了电网的传输和分配负担;5、光伏组件与建筑完美结合,既可以发电又能作为建筑材料和装饰材料。
1、2并网发电系统的主要组成1、光伏阵列;2、直流防雷汇流箱、交直流防雷配电柜;3、并网逆变器,直交流转化;4、漏电保护、计量等仪器、仪表;5、交流负载。
二、并网逆变器2、1并网逆变器的功能并网逆变器是光伏并网系统的核心部件和技术关键。
四大光伏发电系统概述
四大光伏发电系统概述根据不同场合的需要,太阳能光伏发电系统一般分为并网发电系统、离网发电系统、并离网储能系统和并网储能系统四种。
1、并网发电系统光伏并网系统由组件,支架,并网逆变器,并网柜组成,太阳能电池板发出的直流电,经逆变器转换成交流电送入电网。
目前主要有大型地面电站、中型工商业电站,小型家用电站三种形式。
由于并网光伏发电系统不需要使用蓄电池,节省了成本。
国家发布的并网新政策已经明确表示,家庭光伏电站可以免费入网,多余的电还可以卖给电力公司。
从投资的长远角度,按家庭光伏电站25年的使用寿命计算,6-10年左右可以回收成本,剩下的十几年就是赚到的。
但是,并网也有其缺点,就是当公共电网断电时,光伏发电也不能运行。
但是如果把其中的并网逆变器换成储能逆变器,电站就可以正常运转。
2、离网发电系统离网型光伏发电系统,不依赖电网而独立运行,广泛应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。
系统一般由太阳电池组件组成的光伏方阵、太阳能控制器,逆变器、蓄电池组、负载等构成。
光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电;在无光照时,由蓄电池通过逆变器给交流负载供电。
这种系统由于必须配备蓄电池,且占据了发电系统30-50%的成本。
而且铅酸蓄电池的使用寿命一般都在3-5年,过后又得更换,这更是增加了使用成本。
而经济性来说,很难得到大范围的推广使用,因此不适合用电方便的地方使用。
对于无电网地区或经常停电地区家庭来说,离网系统具有很强的实用性。
特别是单纯为了解决停电时的照明问题,可以采用直流节能灯,非常实用。
因此,离网发电系统是专门针对无电网地区或经常停电地区场所使用的。
图1 离网型光伏发电系统示意图3、并离网储能系统并离网型光伏发电系统广泛应用于经常停电,或者光伏自发自用不能余量上网、自用电价比上网电价价格贵很多、波峰电价比波平电价贵很多等应用场所。
系统由太阳电池组件组成的光伏方阵、太阳能并离网一体机、蓄电池组、负载等构成。
光伏发电系统的分类
光伏发电系统的分类
答:光伏发电系统可以根据其应用形式、规模和负载类型进行分类。
一般分为独立系统、并网系统和混合系统。
以下是这三种系统的详细分类:
1.独立系统。
这种系统不依赖于公共电网,能够将太阳能直接转换为电能并储
存起来,适用于偏远地区或没有电网连接的地方。
独立系统可以是小型系统,如个人使用的太阳能充电器,也可以是大型系统,如工业、商业或公共设施的供电系统。
2.并网系统。
这种系统通过逆变器将太阳能产生的直流电转换为交流电,然后
并入公共电网。
并网系统可以是简单的直流系统,也可以是将电能同时并入电网和储存起来的混合系统。
并网系统的主要优势是可以在电网供电不稳定或不足时,利用太阳能发电,保证电力供应的连续性和稳定性。
3.混合系统。
混合系统结合了独立系统和并网系统的特点,既可以将多余的太
阳能电力储存起来,也可以在电网供电不足时使用储存的电力。
混合系统适用于那些需要同时考虑自发自用和向电网售电的场合。
并网光伏发电站系统设计
并网光伏发电站系统设计随着全球能源需求的迅速增长和对清洁能源的重视,光伏发电作为一种可持续的能源源头,正逐渐受到国际社会的关注和推崇。
并网光伏发电站系统的设计是实现光伏发电高效运行和电力系统安全可靠供电的关键。
本文将对并网光伏发电站系统设计进行详细阐述。
一、并网光伏电站系统设计的背景二、并网光伏发电站系统设计的基本原理1.光伏发电系统光伏发电系统由光伏阵列、逆变器、配电系统和监控系统组成。
光伏阵列负责将太阳光转化为直流电能,逆变器将直流电能转换为交流电能,配电系统将电能传输到电力系统中,监控系统实时监测系统运行情况。
2.并网接入并网光伏电站通过逆变器将光伏发电的交流电能与电力系统的交流电网相连接,实现电力的互联互通。
同时,通过电力系统的监测与控制,保证光伏电站的运行安全和电流质量。
三、并网光伏发电站系统设计的关键技术1.光伏阵列设计光伏阵列设计是并网光伏电站系统设计的重要环节。
光伏阵列的布置和组串方式直接影响光能的吸收利用效率。
同时,必须考虑光伏阵列的朝向、倾角和面积等因素,以最大化太阳辐射的吸收。
2.逆变器设计逆变器是将光伏发电系统的直流电能转换为交流电能的核心设备。
逆变器的设计需要考虑其转换效率、稳定性和电流质量。
此外,逆变器还应具备防雷、过热等保护功能,以确保系统的安全运行。
3.配电系统设计配电系统设计包括电缆布置和配电装置选型等方面。
电缆布置需要考虑线路的损耗以及电缆的尺寸和敷设方式等因素。
配电装置选型则需根据负荷情况和配电网络的结构来确定,以实现电能在各个环节的平衡分配。
4.监控系统设计监控系统设计是确保光伏电站运行安全和电流质量的关键。
监控系统应包括对光伏阵列、逆变器、配电系统以及电力系统的实时监测和数据分析功能。
同时,还应具备故障自动报警和故障处理等功能,以便及时采取措施,保证系统的稳定运行。
四、并网光伏发电站系统设计的步骤1.确定电站容量和布置方案根据实际需求和地理环境等因素,确定光伏电站的容量和布置方案,以满足电力需求和最大化光能的吸收利用效果。
光伏并网发电系统
光伏并网发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。
光伏并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电;也有分散式小型并网发电系统,特别是光伏建筑一体化发电系统,是并网发电的主流。
1.光伏并网发电系统组成1、光伏组件光伏组件是整个发电系统里的核心部分,由光伏组件片或由激光切割机机或钢线切割机切割开的不同规格的光伏组件组合在一起构成。
由于单片光伏电池片的电流和电压都很小,所以要先串联获得高电压,再并联获得高电流,通过一个二极管(防止电流回输)输出,然后封装在一个不锈钢、铝或其他非金属边框上,安装好上面的玻璃及背面的背板、充入氮气、密封。
把光伏组件串联、并联组合起来,就成了光伏组件方阵,也叫光伏阵列。
工作原理:太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由p区流向n区,电子由n区流向p区,接通电路后就形成电流。
其作用是将太阳能转化为电能,并送往蓄电池中存储起来,或推动负载工作。
组件类型:单晶硅:光电转换率≈18%,最高可达到24%,是所有光伏组件中转换率最高的,一般采用钢化玻璃及防水树脂封装,坚固耐用,使用寿命一般可达25年。
2、控制器(离网系统使用)光伏控制器是能自动防止蓄电池过充电和过放电的自动控制设备。
采用高速CPU微处理器和高精度A/D模数转换器,是一个微机数据采集和监测控制系统,既可快速实时采集光伏系统当前的工作状态,随时获得PV站的工作信息,又可详细积累PV站的历史数据,为评估PV系统设计的合理性及检验系统部件质量的可靠性提供了准确而充分的依据,还具有串行通信数据传输功能,可将多个光伏系统子站进行集中管理和远距离控制3、逆变器逆变器是一种将光伏发电产生的直流电转换为交流电的装置,光伏逆变器是光伏阵列系统中重要的系统平衡之一,可以配合一般交流供电的设备使用。
简述四大光伏发电系统
简述四大光伏发电系统根据市面上现有的光伏发电项目,结合不同的应用场景,太阳能光伏发电系统可以大致分为四种类型:并网发电系统、离网发电系统、并离网储能系统和多种能源混合微网系统。
一、并网发电系统由光伏组件、并网逆变器、负载、双向电表、并网柜和电网组成。
并网发电系统示意图原理是将光伏组件产生的直流电通过逆变器转化为交流电,再供给到负载和接入电网。
这样,满足家庭负载的同时,多余的电还可以卖入电网。
其特点如下:1.与电网连接,电量部分或全部上传电网。
2.电网停电,光伏发电也停止。
因为逆变器都有防孤岛,也就是电网公司要求:电网停电,光伏电也必须立刻断电,主要是安全考虑。
3.晚上居民还是依靠市电。
4.没有储能装置。
二、离网发电系统和并网发电系统相对的,就是离网发电系统,由光伏组件、离网逆变器、蓄电池、负载等构成。
比较先进方案中已经将逆变器+蓄电池集成为一体设备,如离网储能一体机。
离网发电系统可以不依赖电网而独立运行,一般应用于偏僻地区、无电区、海岛、通讯基站和路灯等。
分体式离网发电系统示意图一体式离网发电系统示意图在有光照时将太阳能转化为电能,通过离网逆变器给负载供电,或给蓄电池充电。
或在没有光伏的情况下,也可以通过电网对蓄电池进行充电;在无光照时或电网停电时,可将蓄电池的电通过逆变器给交流负载供电。
其特点如下:1.不依靠电网的独立系统。
也就是,不管有没有市电,只要有太阳光照满足,离网系统就可以独立工作,就可以独立提供电能。
2.必须有储能设备,也就是必须需要蓄电池,不然晚上或阴雨天无法工作。
3.可以不接光伏。
三、并离网储能系统由光伏组件、并离网混合逆变器、蓄电池、负载等构成。
现在也有比较先进方案是将并离网混合逆变器+电池系统集成一体,例如优能的UHome系列并离网储能一体机。
并离网储能系统广泛应用于经常停电或光伏自发自用不能余电上网、自用电价比上网电价贵、波峰电价比波谷电价贵等场景。
并离网储能系统示意图白天有光的情况下,通过离并混合逆变器优先供给负载用电,多余的电存储到蓄电池中;晚上的时候,蓄电池通过离并网混合逆变器为负载进行供电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并网光伏发电系统
并网太阳能光伏发电系统是由光伏电池方阵并网逆变器组成,不经过蓄电池储能,通过并网逆变器直接将电能输入公共电网。
并网太阳能光伏发电系统相比离网太阳能光伏发电系统省掉了蓄电池储能和释放的过程,减少了其中的能量消耗,节约了占地空间,还降低了配置成本。
值得申明的是,并网太阳能光伏发电系统很大一部分用于政府电网和发达国家节能的案件中。
并网太阳能发电是太阳能光伏发电的发展方向,是21世纪极具潜力的能源利用技术。
并网光伏发电系统有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。
但这种电站投资大、建设周期长、占地面积大,因而没有太大发展。
而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。
概述
太阳能发电是传统发电的有益补充,鉴于其对环保与经济发展的重要性,各发达国家无不全力推动太阳能发电工作,如今中小规模的太阳能发电已形成了产业。
太阳能发电有光伏发电和太阳能热发电 2 种方式,其中光伏发电具有维护简单、功率可大可小等突出优点,作为中、小型并网电源得到较广泛应用。
并网光伏发电系统比离网型光伏发电系统投资减少25 %。
将光伏发电系统以微网的形式接入到大电
网并网运行,与大电网互为支撑,是提高光伏发电规模的重要技术出路,并网光伏发电系统的运行也是今后技术发展的主要方向,通过并网能够扩张太阳能使用的范围和灵活性。
特点及必要条件
在微网中运行,通过中低压配电网接入互联特/超高压大电网,是并网光伏发电系统的重要特点。
并网光伏发电系统的基本必要条件是,逆变器输出之正弦波电流的频率和相位与电网电压的频率和相位相同。
并网光伏发电系统分类
1、有逆流并网光伏发电系统
有逆流并网光伏发电系统:当太阳能光伏系统发出的电能充裕时,可将剩余电能馈入公共电网,向电网供电(卖电);当太阳能光伏系统提供的电力不足时,由电能向负载供电(买电)。
由于向电网供电时与电网供电的方向相反,所以称为有逆流光伏发电系统。
2、无逆流并网光伏发电系统
无逆流并网光伏发电系统:太阳能光伏发电系统即使发电充裕也不向公共电网供电,但当太阳能光伏系统供电不足时,则由公共电网向负载供电。
3、切换型并网光伏发电系统
所谓切换型并网光伏发电系统,实际上是具有自动运行双向切换的功能。
一是当光伏发电系统因多云、阴雨天及自身故障等导致发电量不足时,切换器能自动切换到电网供电一侧,由电网向负载供电;二是
当电网因为某种原因突然停电时,光伏系统可以自动切换使电网与光伏系统分离,成为独立光伏发电系统工作状态。
有些切换型光伏发电系统,还可以在需要时断开为一般负载的供电,接通对应急负载的供电。
一般切换型并网发电系统都带有储能装置。
4、有储能装置的并网光伏发电系统
有储能装置的并网光伏发电系统:就是在上述几类光伏发电系统中根据需要配置储能装置。
带有储能装置的光伏系统主动性较强,当电网出现停电、限电及故障时,可独立运行,正常向负载供电。
因此带有储能装置的并网光伏发电系统可以作为紧急通信电源、医疗设备、加油站、避难场所指示及照明等重要或应急负载的供电系统。
系统组成及功能
太阳能板
太阳能电池板是太阳能发电系统中的核心部分,太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。
太阳能电池板是太阳能发电系统中最重要的部件之一,其转换率和使用寿命是决定太阳电池是否具有使用价值的重要因素。
组件设计:按国际电工委员会IEC:1215:1993标准要求进行设计,采用36片或72片多晶硅太阳能电池进行串联以形成12V和24V各种类型的组件。
该组件可用于各种户用光伏系统、独立光伏电站和并网光伏电站等。
原材料特点:电池片:采用高效率(16.5%以上)的单晶硅太阳能片封装,保证太阳能电池板发电功率充足。
玻璃:采用低铁钢化绒面
玻璃(又称为白玻璃),厚度3.2mm,在太阳电池光谱响应的波长范围内(320-1100nm)透光率达91%以上,对于大于1200 nm的红外光有较高的反射率。
此玻璃同时能耐太阳紫外光线的辐射,透光率不下降。
EVA:采用加有抗紫外剂、抗氧化剂和固化剂的厚度为0.78mm的优质EVA膜层作为太阳电池的密封剂和与玻璃、TPT之间的连接剂。
具有较高的透光率和抗老化能力。
TPT:太阳电池的背面覆盖物—氟塑料膜为白色,对阳光起反射作用,因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。
当然,此氟塑料膜首先具有太阳电池封装材料所要求的耐老化、耐腐蚀、不透气等基本要求。
边框:所采用的铝合金边框具有高强度,抗机械冲击能力强。
也是太阳能发电系统中价值最高的部分。
其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。
逆变器
太阳能的直接输出一般都是12VDC、24VDC、48VDC。
为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。
交流配电柜
其在电站系统的主要作用是对备用逆变器的切换功能,保证系统的正常供电,同时还有对线路电能的计量。
形式
并网光伏发电系统有 2 种形式:集中式并网和分散式并网。
集中式并网:特点是所发电能被直接输送到大电网,由大电网统一调配向用户供电,与大电网之间的电力交换是单向的。
适于大型光伏电站并网,通常离负荷点比较远,荒漠光伏电站采用这种方式并网。
分散式并网:又称为分布式光伏发电并网,特点是所发出的电能直接分配到用电负载上,多余或者不足的电力通过联结大电网来调节,与大电网之间的电力交换可能是双向的。
适于小规模光伏发电系统,通常城区光伏发电系统采用这种方式,特别是于建筑结合的光伏系统。