高中数学会考复习提纲
高中数学会考知识要点总结
高中数学会考知识要点总结
高中数学会考主要包括以下知识要点总结:
1. 几何学:直线和平面的性质和关系、三角形、四边形的性质和关系、圆的性质和关系、空间几何体的性质和关系等。
2. 代数学:多项式的运算和因式分解、一元二次方程、不等式和绝对值、函数的概念
和性质、函数的图像、函数的运算、复合函数、反函数等。
3. 数列与数学归纳法:数列的概念和性质、等差数列和等比数列、数列的推导、数学
归纳法的应用。
4. 解析几何:点、直线、平面的坐标表示、直线和平面的性质和关系、向量的概念和
运算、向量的坐标表示、向量的数量积和向量积。
5. 概率与统计:随机事件的概率、事件的独立性、全概率公式和贝叶斯定理、统计图
表的表示和分析、样本调查和数据分析等。
6. 三角函数:弧度制和角度制、正弦、余弦、正切函数的概念和性质、三角函数的图像、三角函数的运算、解三角方程等。
7. 微积分初步:函数的极限和连续性、导数和导数的应用、函数的积分和积分的应用、微分方程的基本概念、解微分方程的基本方法等。
以上是高中数学会考的主要知识要点总结,需要学生对这些知识点进行系统的学习和
掌握,才能在数学会考中取得好成绩。
普通高中学业水平测试(数学复习提纲)
普通高中学业水平测试(数学复习提纲)普通高中学业水平测试(数学复习提纲)为了帮助同学们更好地复习普通高中学业水平测试的数学内容,我们特制定了一份详细的复习提纲,涵盖高中数学的主要知识点。
以下是本次复习的主要内容:一、代数部分1.1 实数- 实数的分类及性质- 实数的运算规则1.2 函数- 函数的定义及性质- 常见函数的图像与性质(如一次函数、二次函数、指数函数、对数函数等)1.3 方程与不等式- 线性方程组的解法- 一元二次方程的解法- 不等式的性质与解法1.4 幂函数与二次函数- 幂函数的定义与性质- 二次函数的定义与性质1.5 指数函数与对数函数- 指数函数的定义与性质- 对数函数的定义与性质1.6 三角函数- 三角函数的定义与性质(正弦、余弦、正切等)二、几何部分2.1 平面几何- 点、线、面的基本性质- 直线方程与曲线方程- 几何图形的面积与体积计算2.2 立体几何- 空间几何体的性质与结构- 空间向量及其运算- 立体几何中的面积与体积计算2.3 解析几何- 坐标系与坐标变换- 直线、圆的方程及其应用- 解析几何中的图形分析与计算三、概率与统计3.1 随机事件- 随机事件的定义与性质- 事件的运算(并、交、补等)3.2 概率分布- 离散型随机变量的概率分布- 连续型随机变量的概率分布3.3 统计量与推断- 描述性统计量(如均值、方差、标准差等)- 概率推断(如假设检验、置信区间等)四、数学应用4.1 数学建模- 数学建模的基本方法与技巧- 数学模型在实际问题中的应用4.2 数学竞赛- 数学竞赛题型及解题策略- 数学竞赛中的常用技巧与方法五、数学思想与方法5.1 函数与方程思想- 利用函数与方程解决实际问题- 函数与方程在高中数学中的应用5.2 数形结合思想- 数形结合在高中数学中的应用- 利用数形结合解决实际问题5.3 分类与整合思想- 分类与整合在高中数学中的应用- 利用分类与整合解决实际问题5.4 归纳与猜想- 数学归纳法的基本原理与应用- 利用归纳与猜想解决实际问题附录- 常见数学符号与公式- 解题策略与技巧- 模拟试题与解答希望这份复习提纲能帮助同学们系统地复习高中数学知识,为普通高中学业水平测试做好充分准备。
高三会考数学知识点归纳
高三会考数学知识点归纳高三会考数学是中学阶段的最后一次考试,也是对学生数学水平的综合考核。
为了帮助同学们更好地备考,本文将对高三会考数学的主要知识点进行归纳与总结,以期帮助同学们有针对性地进行复习。
一、函数与方程1. 函数的概念与性质- 函数的定义与表示方法- 函数的定义域与值域- 奇偶函数与周期函数的性质2. 一元二次函数- 一元二次函数的标准型与一般型- 一元二次函数的图像与性质- 一元二次函数的解析式与根的性质- 一元二次函数与二次方程的关系3. 幂函数与指数函数- 幂函数与指数函数的定义与性质- 幂函数与指数函数的图像、增减性与奇偶性- 幂函数与指数函数的运算与求值4. 对数函数- 对数函数的定义与性质- 对数函数与指数函数的互逆性- 对数函数的图像、增减性与性质二、几何与图形1. 直线与曲线- 直线与曲线的方程与性质- 直线的斜率与截距2. 三角函数与三角方程- 常用角的主要公式与性质- 正弦函数、余弦函数与正切函数的定义与性质- 三角函数的图像、周期与幅值- 三角函数的复合与反函数- 三角方程的解法与性质3. 圆与圆的方程- 圆的基本性质与方程- 圆的标准方程与一般方程4. 三角形与四边形- 三角形的内角和与外角性质- 三角形的相似性质与判定- 平行四边形、矩形、菱形与正方形的性质与判定三、统计与概率1. 统计描述与统计表达- 数据的收集、整理与展示方法- 数据的中心与离散趋势的度量- 统计图形的绘制与应用2. 概率与统计- 概率的基本概念与性质- 事件与样本空间的关系- 概率计算公式与方法- 事件间的关系与概率分布型的概率计算四、三角函数应用1. 三角函数与向量- 向量的概念与性质- 向量的加法与减法- 向量的数量积与应用- 三角函数与向量的关系与应用2. 三角函数在几何图形中的应用- 三角函数在直角三角形中的应用- 三角函数在斜三角形中的应用- 三角函数在平面几何中的应用以上便是高三会考数学的主要知识点归纳。
高中数学会考重点整理--非常详细总结
高中数学会考重点整理--非常详细总结1. 代数部分- 多项式多项式- 一元多项式的定义和性质- 多项式的加减乘除运算- 一元多项式的整除性质和余式定理- 多项式的因式定理和因式分解- 方程与不等式方程与不等式- 一元二次方程的解法及其性质- 二次函数与二次方程的关系- 一次不等式、二次不等式的解法及其性质- 绝对值方程与绝对值不等式的解法及其性质- 函数函数- 线性函数、反比例函数和一次函数的性质和图像- 二次函数、指数函数和幂函数的性质和图像- 对数函数和指数函数的互反性质- 数列数列- 等差数列和等比数列的性质及其应用- 通项公式、求和公式和首项公式的推导和使用2. 几何部分- 平面几何平面几何- 长度、角度、面积、体积的计算方法及其应用- 相似三角形的性质和判定条件- 三角形内角和、外角和、中线、高线的性质和计算方法- 圆内接四边形和圆内接三角形的性质和判定条件- 立体几何立体几何- 空间几何图形的投影、旋转和平移等变换- 空间几何体的面积和体积计算方法及其应用- 空间几何体的表面积和体积计算方法及其应用- 球的性质、公式和计算方法3. 统计与概率部分- 统计统计- 数据的收集、整理和描述方法- 数据的频数、频率、平均数和离散程度计算- 图表和统计图的制作和解读- 抽样调查和统计推断的基本方法- 概率概率- 基本概率定理和计算方法- 事件的相互排斥和独立性判定条件- 概率问题的计算步骤和策略- 条件概率和事件的互斥性计算方法以上是高中数学会考的重点整理,希望能够帮助你复习和准备考试。
祝你取得好成绩!。
2024年高二会考数学知识点归纳5篇
高二会考数学知识点归纳5篇高二会考数学知识点归纳1第一章:三角函数。
考试必考题。
诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。
第二章:平面向量。
个人觉得这一章难度较大,这也是我掌握最差的一章。
向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。
向量共线和垂直的数学表达,这是计算当中经常要用的公式。
向量的共线定理、基本定理、数量积公式。
难点在于分点坐标公式,首先要准确记忆。
向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。
有同样情况的同学建议多看有关题的图形。
第三章:三角恒等变换。
这一章公式特别多。
和差倍半角公式都是会用到的公式,所以必须要记牢。
由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。
而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记。
除此之外,就是多练习。
要从多练习中找到变换的规律,比如一般都要化等等。
这一章也是考试必考,所以一定要重点掌握。
高二会考数学知识点归纳2等差数列对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
普通高中学业水平测试(数学复习提纲)
普通高中学业水平测试(数学复习提纲)
一、数系与代数
1. 实数集
- 自然数、整数、有理数、无理数的概念和性质
- 实数集的运算法则和性质
2. 代数式与方程
- 代数式的概念、基本性质和常见运算
- 一元一次方程及其解法
- 一元二次方程及其解法
3. 函数与方程
- 函数的概念、性质和图象
- 一元一次函数及其图象与应用
- 一元二次函数及其图象与应用
二、几何与三角学
1. 几何论证
- 直线、射线、线段、角的概念和性质
- 几何定理的证明方法和技巧
2. 图形的性质和变换
- 二维图形的基本性质和分类
- 平移、旋转、翻折、对称等变换的概念和性质
3. 三角比与三角函数
- 正弦、余弦、正切等三角比的定义和性质
- 三角函数的概念、性质和应用
三、数据与统计
1. 数据的收集和整理
- 数据的调查方法和整理过程
- 数据的频数分布表、频数分布图和统计图表的绘制
2. 描述统计与概率统计
- 数据的中心倾向和离散程度的度量和分析
- 事件、随机事件和概率的概念和计算方法
3. 统计推断与数据分析
- 样本调查和统计推断的原理和方法
- 假设检验和置信区间的应用
以上是普通高中学业水平测试中数学部分的复习提纲。
在备考过程中,同学们应理解和掌握数系与代数、几何与三角学、数据与统计的基本概念、性质和应用,同时掌握相关的计算方法和解题技巧,以便顺利应对数学考试。
高中数学会考复习提纲
(2)、实数与向量的积:①、定义:实数 与向量 的积是一个向量,记作: ;
②:它的长度: ;
③:它的方向:当 , 与向量 的方向相同;当 , 与向量 的方向相反;当 时, = ;
3、平面向量基本定理:如果 是同一平面内的两个不共线的向量,那么对平面内的任一向量 ,有且只有一对实数 ,使 ;
③、奇函数,偶函数的定义域关于原点对称;
(3)、正弦、余弦、正切函数的性质( )
函数
定义域ቤተ መጻሕፍቲ ባይዱ
值域
周期性
奇偶性
递增区间
递减区间
[-1,1]
奇函数
[-1,1]
偶函数
(-∞,+∞)
奇函数
图象的五个关键点:(0,0),( ,1),( ,0),( ,-1),( ,0);
图象的五个关键点:(0,1),( ,0),( ,-1),( ,0),( ,1);
③、坐标运算:设 ,则 ;
向量 的模| |: ;模| |
④、设 是向量 的夹角,则 ,
5、重要结论:(1)、两个向量平行的充要条件:
设 ,则
(2)、两个非零向量垂直的充要条件:
设 ,则
(3)、两点 的距离:
(4)、P分线段P1P2的:设P(x,y),P1(x1,y1),P2(x2,y2),且 ,(即 )
2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。
(2)、度数与弧度数的换算: 弧度,1弧度
(3)、弧长公式: ( 是角的弧度数)
扇形面积:
3、三角函数(1)、定义:(如图)(2)、各象限的符号:
(3)、 特殊角的三角函数值
的角度
高中数学会考重点知识点详细总结
高中数学会考重点知识点详细总结引言高中数学会考是对学生数学知识掌握程度的重要评估,涵盖了代数、几何、概率统计等多个领域。
本文档旨在总结高中数学会考的重点知识点,帮助学生系统复习,提高考试成绩。
第一部分:代数1.1 函数函数的定义与性质一次函数、二次函数、指数函数、对数函数、三角函数的图像与性质函数的单调性、奇偶性、周期性1.2 代数方程一元一次方程、一元二次方程的解法高次方程的解法无理方程、指数方程、对数方程的解法1.3 不等式不等式的基本性质一元一次不等式、一元二次不等式的解法线性规划的基本概念和简单应用1.4 数列等差数列、等比数列的定义和通项公式数列的求和公式数列极限的概念1.5 复数复数的概念和四则运算复数的几何意义复数与三角函数的关系第二部分:几何2.1 平面几何三角形、四边形的性质圆的性质解析几何:点的坐标、直线的方程、圆的方程2.2 立体几何棱柱、棱锥、球的性质空间几何体的表面积和体积计算2.3 解析几何的应用直线与直线、直线与圆、圆与圆的位置关系空间向量及其在立体几何中的应用第三部分:概率统计3.1 概率论基础随机事件的概率互斥事件、独立事件的概率条件概率3.2 统计学基础数据的收集、整理和图表表示描述性统计:均值、中位数、众数、方差、标准差概率分布:离散型随机变量、连续型随机变量3.3 统计推断抽样分布置信区间假设检验第四部分:微积分初步4.1 极限与连续性极限的概念函数的连续性4.2 导数与微分导数的定义和几何意义基本初等函数的导数公式复合函数、反函数的求导法则4.3 积分不定积分和定积分的概念牛顿-莱布尼茨公式定积分的几何意义和物理意义结语高中数学会考覆盖了数学的多个重要领域,本文档的总结旨在帮助学生系统地复习和掌握这些知识点。
通过对这些重点内容的深入理解和练习,学生可以提高解题能力,增强数学思维,为会考和未来的数学学习打下坚实的基础。
高中会考数学知识点总结完整
高中会考数学知识点总结完整
版
一、代数:
1、复数:虚数单位i,负数的平方根,实部、虚部,复数模及其计算,共轭复数,复数乘法法则及其计算;
2、一元二次方程:二次函数的定义,一元二次方程的解法,两个实
数根(根的种类、解的类型),有理数解,实数解,无理数解;
3、一元n次方程:一元n次方程的定义、解法,有理数解,实数解、无理数解;
4、二元一次方程组:定义、解法,化简,消元,解的类型,无解,
有唯一解,有多解;
5、分式:分式定义及其特点,分式的加减法,乘除法,乘方,混合
运算法则及计算,提取公因数;
6、根式:定义、特点,同底数的幂的加法、减法,乘法、乘方及计算,开根号,根式与分式的比较及混合运算;
7、二元二次方程组:定义,利用配方求解,利用消元求解,利用把
变量替换成另一个求解;
二、几何:
1、直线与圆:直线与圆的定义,直线的斜率及其计算,圆的标准方
程及其计算,圆的圆心角的大小及其计算;
2、直角三角形:定义、特点,两个直角三角形的重要性质,利用重要性质求三角形的面积,角的大小及其计算,弦长的计算;
3、三角形:定义,重要性质(勾股定理、余弦定理),三角。
高中数学会考复习提纲
06年高中数学会考复习提纲(3)第六章:不等式 1、不等式的性质:(1)、对称性:a b b a <⇔>;(2)、传递性:c a c b b a >⇒>>,; (3)、c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>, (4)、,b a >若bc ac c >⇒>0,若bc ac c <⇒<0;bd ac d c b a >⇒>>>>0,0(5)、)1,(,,0>∈>>⇒>>n N n b a b a b a n n n n (没有减法、除法) 1、 均值不等式:(1)、(222b a ab +≤)(2)、ab b a 2≥+或2)2(b a ab +≤ 一正、二定、三相等 不满足相等条件时,注意应用函数xx x f 1)(+=图象性质(如图)应用:证明(注意1的技巧),求最值,实际应用 (3)、对于n 个正数:)2(,,,321>n a a a a n , 那么:na a a n+++ 21叫做n 个正数的算术平均数,n n a a a 21叫做n 个正数的几何平均数;3、不等式的证明,常用方法:(1)比较法:①、作差:b a b a b a b a <⇔<->⇔>-0,0,(作差、变形、确定符号)②、作商:)0()0(1),0()0(1><⇔><>>⇔>>b b a b ba b b a b ba(2)综合法:由因到果,格式:;,;, ∴∴ (3)分析法:执果索因,格式:原式,, , , ⇔⇔⇔ (4)反证法:从结论的反面出发,导出矛盾。
4、不等式的解法:(不等式解集的边界值是相应方程的解)一元二次不等式(2x 的系数为正数):0>∆时“>”取两边,“<”取中间绝对值不等式:含一个绝对值符号的:“>”取两边,“<”取中间含两个绝对值符号的: 零点分段讨论法(注意取“交”,还是取“并”)高次不等式的解法:根轴法 (重根:奇穿偶不穿) 分式不等式的解法:移项、通分、根轴法 5、绝对值不等式: ||||||||||b a b a b a +≤+≤- ||||||||||b a b a b a +≤-≤-例:8|5223||52||23||52||32|=++-≥++-=++-=x x x x x x x f )((最小值) 5|32||3||2||3||2|=-++≤--+=--+=x x x x x x x f )((最大值)a a-a 2 a2-xy第七章:直线和圆的方程1、倾斜角和斜率:(1)、倾斜角:①、范围:)0[,180α∈②、定义:在平面直角坐标系中,对于一条与x针方向旋转到和直线重合时的最小正角记为α,则α当直线与和x轴平行或重合时,倾斜角为 0;当直线与和x轴垂直时,倾斜角为9 0(2)、斜 率:αtan =k ,),(+∞-∞∈k当k 是特殊角的三角函数值时,直接写出角 当k 不是特殊角的三角函数值时,可用反三角表示斜率: (3)、直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=直线的方向向量),(或k y y x x x x P P y y x x P P 1),(1),,(21121221211221=---=--= 所以直线的方向向量),1(21k P P =或),1(21k P P λ= 2、直线方程:直线方程的五种形式(1)、点斜式:)(11x x k y y -=-; (2)、斜截式:b kx y +=;(3)、两点式:121121x x x x y y y y --=--(4)、截距式:1=+b y a x (截距是直线与坐标轴的交点坐标,可正可负可为零)(5)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC- 3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直:21211l l k k ⊥⇔-=⋅2121210l l B B A A ⊥⇒=+;(2)、相交:21k k ≠ 2121B B A A ≠,交点就是方程组 ⎩⎨⎧=++=++.0;0222111C y B x A C y B x A 的解。
数学高中会考知识点总结
数学高中会考知识点总结数学高中会考的主要知识点总结如下:
1. 代数与函数:
- 一元一次方程与不等式
- 二元一次方程组与不等式组
- 多项式与因式分解
- 分式与分式方程
- 幂次函数与指数函数
- 对数函数与指数方程
- 二次函数及其图像性质
2. 几何与立体几何:
- 直线与角的性质
- 三角形与其性质
- 平面与立体图形的性质
- 相似与全等三角形
- 三角函数与应用
- 平面向量与坐标平面几何
3. 概率与统计:
- 事件与概率
- 排列组合与二项式定理
- 随机变量及其数学期望
- 样本调查与统计分析
4. 解析几何与导数:
- 直线与圆面的方程
- 参数方程与直线的位置关系- 函数的极限与连续性
- 导数与函数的变化率
- 函数的求导法则与应用
5. 数列与级数:
- 等差数列与等比数列
- 数列的概念与运算
- 数列极限与数列极限的性质- 无穷级数与收敛性。
高三数学合格考必考知识点
高三数学合格考必考知识点一、函数与方程1. 一次函数1.1 定义与性质1.2 函数图象的性质1.3 线性关系的表示与解决问题的应用2. 二次函数2.1 定义与性质2.2 函数图象的性质2.3 二次函数的图象与一元二次方程的根的关系3. 指数函数与对数函数3.1 指数函数的定义与性质3.2 函数图象与指数方程的关系3.3 对数函数的定义与性质3.4 函数图象与对数方程的关系4. 三角函数4.1 正弦函数、余弦函数、正切函数的定义与性质 4.2 函数图象与三角方程的关系4.3 三角函数的和差化积、积化和差的公式二、几何与向量1. 平面几何1.1 基本概念与性质1.2 相交与平行线的性质1.3 三角形的性质与应用1.4 四边形的性质与应用2. 图形的性质与计算2.1 圆的性质与计算2.2 圆锥的性质与计算2.3 圆柱的性质与计算2.4 圆球的性质与计算3. 向量的运算与表示3.1 向量的定义与性质3.2 向量的加法、减法与数乘 3.3 向量的数量积与向量积4. 空间几何4.1 空间直线的性质与计算4.2 空间平面的性质与计算4.3 空间立体图形的性质与计算三、概率与统计1. 随机事件与概率1.1 随机事件的定义与性质1.2 概率的定义与计算1.3 加法定理与乘法定理2. 排列组合与二项式定理2.1 排列与组合的概念与计算 2.2 二项式定理的应用3. 统计与抽样3.1 统计图表的制作与分析 3.2 抽样调查的方法与应用 3.3 参数估计与假设检验四、数列与级数1. 等差数列与等比数列1.1 数列的定义与性质1.2 等差数列的通项与公式 1.3 等比数列的通项与公式2. 数列的求和与极限2.1 等差数列的求和与极限2.2 等比数列的求和与极限2.3 级数的收敛性与求和五、解析几何1. 坐标系与二元一次方程1.1 坐标系与平面直角坐标系方程1.2 二元一次方程的性质与表示2. 几何图形的性质研究2.1 直线与曲线的方程与性质2.2 圆的方程与性质2.3 抛物线、椭圆、双曲线的方程与性质3. 极坐标与参数方程3.1 极坐标与曲线的性质3.2 参数方程与曲线的性质以上是高三数学合格考必考的知识点,通过掌握和理解这些内容,学生们能够在考试中取得更好的成绩。
(完整word版)高中数学会考复习知识点汇总,推荐文档
高中数学会考复习知识点汇总第一章集合与简易逻辑1子集:如果集合A 的任意一个元素都是集合 B 的元素若 合B 的子集记作AB 或B A真子集:若 A B ,且B A 则称A 是B 的真子集。
记作 A B 或B A空集:把不含任何元素的集合叫做空集 符号 或规定:空集是任何一个集合的子集,是任何非空集合的真子集 2、含n 个元素的集合的所有子集有 2n 个;真子集有 2 1个;非空子集有 2 2兀素与集合的关系 属于 不属于集合与集合的关系包含于 包含集合与集合的运算并 交补集Cu第二章函数 1、求yf (x)的反函数:解出x1f (y) , x, y 互换,写出yf 1(x)的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0: log a 1 0,③、底的对数等于 1:log a a 1,A 则B 则称集合A 为集④、积的对数:log a (MN)log a M log a幕的对数:log a M nnlog a M ; log am bmlog a b,换底公式:log .N log a b logam幕的运算:a nna m第三章数列1、数列的前 n 项和:S n a-t a 2 a 3a n ; 数列前 n 项和与通项的关系:2、等差数列:(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个 常数; (2)、通项公式:a n a 1 (n 1)d (其中首项是a 1,公差是d ;) (3)、前n 项和: 1 - S n na 1 d (整理后是关于 n 的没有常数项的2 2二次函数) (4)、等差中项:a bA 是a 与 b 的等差中项:A 或2A a b ,三个数成等差常设:a-d ,a ,a+d中项有两个) 第四章三角函数1、弧度制:(1)、180弧度,1弧度180()57 18';角 弧: 面~弧角:180弧长公式: 1 |21 r n R180扇形面积公式:2S3602、三角函数(1)、定义:ysin—c osr x rtan_y xa na -3 (n 1)SnSn 1 (n 2)3、等比数列:(1)、(2 )、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数, 通项公式: (q 0)。
高中数学知识点提纲(推荐6篇)
高中数学知识点提纲〔推荐6篇〕篇1:人教版高中数学知识点提纲一.集合与函数1.进展集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进展求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的互相关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否认形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原那么.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,那么一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你纯熟地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比拟函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种根本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
假设原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的考前须知是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为根底,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a篇2:高中数学知识点 1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
普通高中学业水平测试(数学复习提纲)
普通高中学业水平测试(数学复习提纲)一、知识点概述- 数的性质和运算- 代数基本概念与基本公式- 几何初步知识与直线、曲线的基本性质- 数据处理与统计- 概率初步二、具体内容1. 数的性质和运算- 自然数、整数、有理数、实数的定义和性质- 整式的定义、加减乘除运算和基本性质- 分式的定义、加减乘除运算和基本性质- 方程、不等式的解集和解集的判断方法2. 代数基本概念与基本公式- 代数式的定义和基本性质- 幂的定义、运算和基本性质- 根式的定义和基本性质- 二次根式和分式根式的化简- 代数等式与方程的基本概念和解的性质- 一元一次方程的解集及解集的判断方法- 一元二次方程的解及解的性质3. 几何初步知识与直线、曲线的基本性质- 角的概念和性质- 同位角、对顶角及其性质- 相交线与平行线的性质- 三角形的定义及分类- 三角形的内角和外角和性质- 圆的基本概念和性质4. 数据处理与统计- 数据的收集、整理、描述和分析的基本方法- 统计图表的读取和分析- 平均数、中位数和众数的含义和计算方法- 随机事件和概率的概念- 事件间的关系和计算方法5. 概率初步- 随机事件的概念和计算- 独立事件和互斥事件的概念和计算- 与事件的并、交、差的概念和计算方法三、复方法建议- 阅读教材,将知识点和公式复总结- 多做相关题和练题,加强巩固- 制定研究计划,合理安排复时间- 找到研究方法,如归纳总结、拓展思维、思维导图等- 与同学互助研究,相互答疑解惑以上是普通高中学业水平测试数学复习的提纲,希望能帮助你进行有针对性的复习和准备。
祝你考试顺利!。
岳麓版高中数学会考复习提纲
岳麓版高中数学会考复习提纲
一、知识点梳理
1.1 数与代数
- 实数的表示与性质
- 整式的化简与运算
- 方程与不等式
- 函数与图像
1.2 几何与空间
- 几何图形的性质
- 几何变换
- 空间图形的性质
- 空间坐标系
二、重点考点解析
2.1 高频知识点
在复中应重点掌握的知识点包括:
- 实数的性质与运算
- 一次函数与一元一次方程
- 二次函数与一元二次方程
- 几何图形的性质及相关计算
- 空间图形的投影与视图
2.2 基本解题思路
在复中应注意掌握基本的解题思路,包括:
- 阅读题目,理解问题要求
- 分析问题,确定解题方法
- 进行计算或推理,得出答案
- 检查答案是否符合题意
三、复方法与建议
3.1 制定研究计划
- 确定每个知识点的研究时间
- 分配每天的研究任务
- 制定复和练安排
3.2 多做真题练
- 查找历年真题
- 针对性地进行解题练
- 分析解题思路与方法
3.3 合理利用资源
- 寻找适合的参考书籍或教学视频- 向老师或同学请教解题方法
- 多与同学组队讨论,互相督促提高四、注意事项
- 复过程中要保持良好的心态
- 不同题型的解题方法要分别掌握
- 复前要充分了解考试要求和格式
- 对于不确定的知识点要及时请教相关人员
以上提纲为岳麓版高中数学会考的复习提纲,希望能帮助你有效准备数学考试,祝你考试顺利!。
高中数学会考复习必背知识点
高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.2、包含关系 A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C AB R ⇔=第二章 函数 对数:①、负数和零没有对数;②、1的对数等于0:01log =a ;③、底的对数等于1:1log =a a ;④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=幂的对数:M n M a n a log log =,b mn b a na m log log =。
第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数) (4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d 3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义: yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα ααcos tan =1cot tan =αα 5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=- )(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=- 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2tan 1tan 22tan -=212cos 2122cos 1cos 2+=+=ααα 9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)、正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角: abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+=第五章、平面向量 1、坐标运算:(1)、设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:a a a ⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,0)(=-+a a (4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2,y 2) ,且21PP P P λ= ,则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧==y x第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC- 3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ; 垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)4、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程022=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;第九章 排列 组合 二项式定理1、排列:(1)、排列数公式: mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).0!=1(2)、全排列:n 个不同元素全部取出的一个排列;!n A nn =)!1(123)2)(1(-⋅=⋅⋅⋅⋅--=n n n n n ; 2、组合:(1)、组合数公式: mn C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(2)、组合数的两个性质:m n C =m n n C - ;m n C +1-m n C =mn C 1+;3、二项式定理 :(1)二项展开式的通项公式(第r +1项):rr n r n r b a C T -+=1)210(n r ,,,= (2)各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r +…+C n n =2n(表示含n 个元素的集合的所有子集的个数)。
高中数学学业水平考试复习提纲
高中数学学业水平考试复习提纲
一、说明
高中数学学业水平考试是中学教育的重要内容之一。
考试的目的是测试学生在数学方面的基本技能和概念的理解。
以下是数学学业水平考试的复提纲。
二、考试范围
高中数学学业水平考试的内容主要包括:
1. 函数与方程式
- 一次函数,二次函数,指数函数,对数函数,三角函数
- 一元二次方程,二元一次方程,二元二次方程组
2. 解析几何
- 直线,圆,抛物线,双曲线
3. 三角函数与三角恒等式
- 正弦定理,余弦定理,正余弦函数,三角函数图像与性质,三角等式、三角差化积公式
4. 数列与数学归纳法
- 首项,公比,通项公式,常数项数列,数列求和公式
5. 导数与微积分初步
- 函数的导数,变化率与导数概念,导数的运算,函数图形的
一阶导数特征,导数的应用,微积分基本概念
6. 概率统计初步
- 随机事件及其概率,频率与概率,离散型随机变量及其分布律,连续型随机变量及其概率密度函数,期望和方差
三、复方法
1. 审查课本或参考书内容,总结重点内容,例如公式和定理等。
2. 做大量练题,尤其是历年高考试题,因为这些试题反映出考
试的难度和类型。
3. 建立复笔记或单词卡片,用于加深记忆。
4. 参加模拟考试并及时了解和纠正错误。
四、注意事项
1. 确保知道考试的日期、时间和地点。
2. 在考试当天提前到达考场。
3. 仔细审题,不要漏掉题目中的任何一个关键字。
4. 仔细检查答案,并且检查是否有任何遗漏。
祝你成功通过高中数学学业水平考试!。
范文高中数学会考复习提纲
06年高中数学会考复习提纲4 (第二册下B )第九章直线平面简单的几何体 1、平面的性质:公理1:如果有一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 公理2:如果两个平面有一个公共点, 那么它们还有其他公共点,这些公共点的集合是一条直线。
(两平面相交,只有一条交线)P • J ・- =J ・- - |且P 三|公理3:不在同一直线上的三点确定一个平面。
(强调“不共线”)(三个推论:1、直线和直线外一点,2、两条相交直线,3、两条平行直线,确定一个平面)空间图形的平面表示方法:斜二测画法(水平长不变,竖直长减半) 2、两条直线的位置关系:平行,相交,异面:不同在任何一个平面内的两条直线叫异面直线 (1)、异面直线判断方法:①定义,②判定:连结平面内一点与平面外一点的直线,和这个平面不经过此点的直线是异面直线•(两在两 不在)(2) 、两条直线垂直:两条异面直线所成的角是直角,这两条直线互相垂直. 垂直相交(共面)、异面垂直,都叫两条直线互相垂直.(3) 、空间平行直线:公理 4 :平行于同一直线的两条直线互相平行。
3、 直线与平面的位置关系:"直线在平面内直线在平面外 f 直线与平面相交,记作.直线与平面平行,记作4、 直线与平面平行: 定义:直线和平面没有公共点。
(1)、判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,(线线平行=线面平行)| •二二,m :_…,且l//m= |/八(2)、性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么 这条直线和交线平行.(线面平行 =•线线平行)l //:• ,1 一 1:-,上「!■■' : m =5、两个平面平行:定义:两个平面没有公共点。
(1)、判定定理:如果一个平面内有两条 相交直线分别平行于另一个平面,那么这两个平面平行。
(线面平行=•面面平行)推论:如果一个平面内有两条 相交直线分别平行与另一个平面内的两条直线,那么这两个平面平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06年高中数学会考复习提纲4(第二册下B )第九章 直线 平面 简单的几何体 1、2、 平面的性质:公理1:如果有一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线。
(两平面相交,只有一条交线)l P =⋂⇒⋂∈βαβα且l P ∈公理3:不在同一直线上的三点确定一个平面。
(强调“不共线”)(三个推论:1、直线和直线外一点,2、两条相交直线,3、两条平行直线,确定一个平面)空间图形的平面表示方法:斜二测画法(水平长不变,竖直长减半) 3、4、 两条直线的位置关系:平行,相交,异面:不同在任何一个平面内的两条直线叫异面直线(1)、异面直线判断方法:①定义,②判定:连结平面内一点与平面外一点的直线,和这个平面不经过此点的直线是异面直线.(两在两不在)(2)垂直相交(共面)、异面垂直,都叫两条直线互相垂直.(3)、空间平行直线:公理4:平行于同一直线的两条直线互相平行。
3、直线与平面的位置关系: 直线在平面内 直线在平面外 直线与平面相交,记作a ∩α=A直线与平面作αa//αOC z OB y OA x OP ++=++z y x },,,|{R z y x c z b y a x p p ∈++=><=⋅e a a e a ,cos ||a ⊥b ⋅⇔b a 321321⎪⎩⎨=⋅0n b =i =j =k 12=i 12=j 12=k 0=⋅j i 0=⋅k i 0=⋅k j ),,(321a a a a =),,(321b b b b =),,(332211b a b a b a b a +++=+),,((332211b a b a b a b a ---=-),,(),,(321321a a a a a a a λλλλλ=⋅=R ∈λa 332211,,b a b a b a b λλλ===⇔λ===332211b a b a b a 00332211=++⇔=⋅⇔⊥b a b a b a b a b a 332211b a b a b a b a ++=⋅a b ababab332211b a b a b a ++232221a a a ++232221b b b ++a b a b232221232221332211bb b aa ab a b a b a ++++++),,(111z y x A ),,(222z y x B ),,(121212z z y y x x AB ---=221221212)()()(z z y y x x d B A -+-+-=、)(21OB OA OM +=)2,2,2(212121z z y y x x +++21cos cos cos θθθ⋅=20πθ≤<20πθ≤≤πθ≤≤020πθ≤<20πθ≤≤πθ≤≤0a b O 'a a 'b b 'a 'b a b ]2,0(πα∈21cos cos cos θθθ⋅=用三垂线定理及其逆定理作二面角的平面角,再解直角三角形;求法一:向量法:二面角的两个半平面的法向量所成的角(或其补角)n 1和n 2分别为平面?和?的法向量,记二面角βα--l 的大小为?, 则>=<21,n n θ或><-=21,n n πθ(依据两平面法向量的方向而定)总有|,cos ||cos |21><=n n θ||||2121n n ,若该二面角为锐二面角 则||||arccos 2121n n =θ若二面角βα--l 为钝二面角则|||||arccos 2121n n n n -=πθ11、距离(满足最小值原理)(1)、点到平面的距离:一点到它在平面内的正射影的距离;求法一:解直角三角形;求法二:等积法,利用体积相等;求法三:向量法:如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n,过点P 作平面?的垂线PO ,记PA 和平面?所成的角为?,则点P 到平面的距离||||||||sin ||||n PA n PA n PA n PA PA PO d ====θ(2)、直线到平行平面的距离:直线上任一点到与它平行的平面的距离;求法:转化为点到平面的距离求。
(3)、两个平行平面的距离:两个平行平面的共垂线段的长度;求法:转化为点到平面的距离来求。
(4)、异面直线的距离:两条异面直线的公垂线夹在异面直线间的部分;(公垂线是唯一的,必须垂直相交)求法一:解直角三角形;求法二:异面直线上任意两点的距离公式:θcos 22222mn n m d l ±++=求法三:向量法:先求两条异面直线的一个公共法向量,再求两条异面直线上两点的连线在公共法向量上的射影长。
设E 、F 分别是两异面直线上的点, n 是公共法向量,则异面直线之间的距离12、棱柱(1)、定义:有两个面互相平行,其余相邻两个面的交线互相平行的多面体叫棱柱。
斜棱柱(侧棱不垂直底面)——直棱柱(侧棱垂直底面)——正棱柱(底面是正多边形的直棱柱)d =(2)直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。
②、棱柱的两个底面与平行于底面的截面是对应边互相平行的全等的多边形。
(3)、平行六面体——直平行六面体——长方体——正方体,平行六面体⊆四棱柱①、平行六面体的对角线交于一点,并且在交点处互相平分;②、长方体的对角线长的平方等于一个顶点上三条棱长的平方和;2222c b a l ++=③、正方体的对角线长a l 3=,正方体的面对角线可构成一个正四面体(如图)。
13、棱锥(1)、定义:一个面是多边形,其余各面是有一个公共顶点的三角形的多面体叫棱锥;底面是正多边形,并且顶点在底面的射影是底面的中心的棱锥叫正棱锥。
(2)、性质:①、棱锥被平行于底面的平面所截,则323121222121,h hV V h h S S ==;中截面。
②、正棱锥各侧棱相等,斜高相等,各侧面是全等的等腰三角形;③、正棱锥的高、斜高和斜高在底面的射影组成直角三角形,高、侧棱和侧棱在底面的射影组成直角三角形。
14、正多面体:每个面都有相同边数的正多边形,每个顶点都有相同的棱数。
a15、球:(1)、定义:与顶点的距离等于或小于定长的点的集合叫球体;与顶点的距离等于定长的点的集合叫球面;(2)、性质:①、截圆:一个平面截一个球面,截面是一个圆面;圆心是球心在圆面上的射影,22d R r -=;过球心的截圆叫大圆,过球面上任意两点的大圆有一个或无数个;不过球心的截圆叫小圆。
平行于赤道的小圆叫纬线或纬圆。
②、纬度:纬线上一点的球半径与赤道面所成的线面角的度数;图中:BOA AOC ∠∠,都是纬度;常用AOC AO O ∠=∠'经度: 以南北轴SN 为棱的二面角的度数;图中:TOC TOD ∠∠,都是经度;常用经度差AOB COD ∠=∠(3)、两点的球面距离:经过这两点的大圆在这两点间的劣弧的长度,是球面上两点的最短连线的长度。
求法:球心角的弧度数乘以球半径,即R l ⋅=α。
(4)、球的体积公式:334 R V π=,球的表面积公式:24 R S π= ,柱体h s V ⋅=,锥体h s V ⋅=31第十章 排列 组合 二项式定理1、计数原理:分类计数原理(加法原理)12n N m m m =+++.(每步都能完成)分步计数原理(乘法原理)12n N m m m =⨯⨯⨯. (多步才能完成)2、 排列:(1)定义:从n 个不同元素中取出m (n ≤m )个元素,按照一定的顺序排成一列,与顺序有关。
(2)、排列数公式: m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).(3)、全排列:n 个不同元素全部取出的一个排列;!n A nn =;11--=n n nn nA A ;11n n nn n n nA A A ++=-(4)、价乘:正整数1到n 的连乘积; )!1(123)2)(1(!-⋅=⋅⋅⋅⋅--=n n n n n n ;0!=1 3、组合:(1)定义:从n 个不同元素中取出m (n ≤m )个元素,并成一组,与顺序无关;T OO ‘D(组合完成了排列的第一步:mm m n mnA C A ⋅=)。
(2)、组合数公式: m nC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(3)组合数的两个性质:mn C =mn nC - ;m n C +1-m nC =mn C 1+;例如1121++++=++++r n r n r r r r r r C C C C C .4、二项式定理 :(1)、定理:nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;例:n nn r r n n n n x C x C x C x C x ++++++=+ 2211)1(;熟练公式的顺用和逆用。
(2)、二项展开式的通项公式(第r +1项):r r n r n r b a C T -+=1)210(n r ,,, =,处理常数项等有关的问题。
(3)、二项式系数:①、定义:二项展开式中的系数),,2,1,0(n r C rn =叫二项式系数; ②、性质:对称性:C nm=C n n -m ;,直线2nr =是函数=)(r f ),,2,1,0(n r C rn =的对称轴;增减性与最大值:(当n 为偶数时,中间一项最大:2nn C ;当n 为奇数时,中间两项最大:2121+-=n nn n C C )各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r +…+C n n =2n (表示含n 个元素的集合的所有子集的个数)。
奇数项二项式系数的和=偶数项二项式系数的和:C n 0+C n 2+C n 4+ C n 6+…=C n 1+C n 3+C n 5+ C n 7+…=2n?-1(4)、多项式各项系数(赋值法):nn n x a x a x a x a a b ax x f +++++=+= 332210)()(,则)0(0f a =, 各项系数和:)1(3210f a a a a a n =+++++ ,另外)1()1(3210-=-++-+-f a a a a a n n偶数项系数和:2)1()1(420-+=+++f f a a a ,奇数项系数和:2)1()1(531--=+++f f a a a第十一章:概率:1、概率(范围):必然事件: P(A)=1,不可能事件: P(A)=0,随机事件: 0<P(A)<1。