传感器与检测技术(重点知识点总结)
传感检测技术知识点总结(仅供参考)
《传感与检测技术》考试总结20121030第一章:概论(P1)1.1 静态特性(P6):在稳态信号作用下,传感器输出量与输入量的关系,主要指标(线性度,精度,灵敏度,重复性)。
1.1.1线性度(P6):研究传感器线性特性时,有三种特殊情况(图):①理想特性曲线②仅有偶次非线性项时,特性曲线没有对称性,可取的线性范围较小,传感器设计应该避免出现这种曲线③仅有奇次项时,以原点为对称点,可获得较大的线性范围,差动传感器就具有这样的特性拟合直线(P8):“线性化”是指用割线或切线近似地代替实际曲线的一段,是能反映校准曲线的变化趋势且使误差的绝对值最小的直线,大多采用端点连线法得到拟合直线线性度公式(P8)lδ指非线性误差,即线性度;F Sy∙指满量程输出量,max∇指最大非线性绝对误差,1.1.2灵敏度(P8):指传感器在稳态下输出增量对输入量之比值,对于线性传感器系统, 灵敏度就是拟合直线的斜率,是个常数,公式对于非线性传感器系统,灵敏度不是常数,公式:1.1.3重复性(P9):是指传感器在输入量按同一方向做全量程连续多次测试时所得输入输入曲线不重合程度,是反映精密度的一个指标,产生原因与迟滞性基本相同,重合性越好,误差越小 )3100%F S y σ⨯z δ——重复性误差;σ——标准误差1.1.4 精 度(精确度)(P10S %”所得m δ的值就是仪表的精密等级,如0.05级,1.2 动态特性(P10):反映传感器对于(随时间变化的输入量)的响应特性,为了记录波形参数,传感器要有较好的动态响应特性。
1.2.1数学模型(P10):通常以线性时不变系统来描述传感器的动态特性,就是用常系数微分方程建立传感器输出量y 与输入量x 之间的数学关系,公式:线性时不变系统有两个十分重要性质:叠加性和频率保持性,频率保持性指线性系统稳态响应时输出信号的频率与输入信号的频率保持相同1.2.2时域特性(P11)1.2.2.1一阶传感器单位阶跃响应(P11):1.2.2.2时域特性指标(P13):①时间常数τ——一阶传感器输出量上升到稳态值的0.632倍所需要的时间,τ越小,稳态响应时间越短②上升时间tr ——传感器输出量由稳态值的③延迟时间ts ——传感器输出量达到稳态值的50%所需时间④超调量σ——传感器输出的最大值与稳态值的偏差,公式:()()()y tp yyσ-∞∞=;y(tp)——输出的最大值; y(∞)——输出的稳态值1.2.3频域特性1.2.3.1一阶传感器的正弦响应(P14)1.2.3.2频域特性指标(P15):①通频带:传感器输出量保持在一定值(幅频特性曲线上相对于幅值衰减3dB)内所对应的频率范围;②工作频率:传感器输出幅值误差在±5%(或±10%)所对应的频率范围③相对误差:在工作频带范围内输出量的相位偏差,应小于5°(或10°)1.3测量误差分析基础1.3.1.1系统误差(P18)是指服从于某一确定规律(定值或规律性变化值)的测量误差,产生原因有以下4方面,是可预知的:①测试环境没有达到标准②测试仪表不够完善③测试电路的搭建或系统的安装不正确④测试人员的不良操作或视觉偏差1.3.1.2系统误差消除方法(P19①引入修正值:当系统误差为恒值时,修正值是一个定值;当系统误差为变差时,修正值是一个数表或者曲线或者修正计算式。
传感器与检测技术(重点知识点总结)
传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术知识点
0.1传感器:处于检测与控制系统之首,是感知、获取与检测信息的窗口0.2传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常敏感元件和转换元件以及相应的信号调节转换电路组成。
1.1输入量为常量或变化极慢时传感器输入-输出特性。
指标:线性度(大)、迟滞(小)、重复性(好)、分辨力(强)、稳定性(高)、温度稳定性(高)、各种抗干扰稳定性(高)。
传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。
测量系统的静态特性指标通常用输入量与输出量的对应关系 来表征。
人们根据传感器的静态特性来选择合适的传感器1.2最小二乘法准则的几何意义在于拟和直线精密度高即误差小。
相关公式:1.3非接触式测量:1热电式传感器:测量温度2光纤传感器:测量光信号3电容式传感器:测量位移接触式测量:1电位器式压力传感器:测量压力2 应变片式电阻传感器:测量电阻值 3应变式扭矩传感器:测量扭矩二应变式2.1电阻应变片式传感器按制造材料可分为①金属 材料和②半导体 材料。
它们在受到外力作用时电阻发生变化,其中①的电阻变化主要是由 电阻压阻效应_ 形成的,而②的电阻变化主要是由 电阻率变化 造成的。
半导体 材料传感器的灵敏度较大。
2.2简述电阻应变片式传感器的工作原理。
(压阻效应)(4分)答:电阻应变片的工作原理是基于电阻压阻效应,即在导体产生机械变形时,它的电阻值相应发生变化。
2.3 金属电阻应变片由四部分组成:敏感栅、基底、盖层、黏结剂、引线。
②其主要特性参数:灵敏系数、横向效应、机械滞后、零漂及蠕变、温度效应、应变极限、疲劳寿命、绝缘电阻、最大工作电流、动态响应特性。
2.4温差①在外界温度变化的条件下,由于敏感栅温度系数及栅丝与试件膨胀系数()之差异性而产生虚假应变输出有时会产生与真实应变同数量级的误差,所以必须补偿温度误差的措施。
②方法:1自补偿法:包括单丝自补偿法和组合式自补偿法 2线路补偿法 (平衡条件:电桥相邻两臂电阻的比值相等。
传感器与检测技术(知识点总结)汇编
传感器与检测技术知识总结第一章概述1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2 :传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型: 不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有: 压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“ 1 ”和“ 0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3 )数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术重点知识点总结
传感器与检测技术重点知识点总结
1. 传感器的基本概念及分类
传感器是一种能够将被检测物理量转换为可被检测设备处理的电信号输出的器件。
根据被检测物理量的不同,传感器可分为光学传感器、声学传感器、温度传感器、压力传感器、流量传感器等。
2. 传感器的检测原理
传感器的检测原理通常分为以下几种:电学检测、磁学检测、光学检测、化学检测、声学检测、机械检测等。
3. 传感器的基本参数
传感器的基本参数包括:灵敏度、线性度、分辨率、重复性、稳定性、响应时间等。
4. 传感器的生产工艺
传感器的生产工艺主要包括晶体生长、半导体制备、陶瓷材料制备、薄膜技术、微加工技术等。
5. 传感器的应用领域
传感器广泛应用于工业控制、仪器仪表、环境监测、医疗设备、航空航天等领域。
6. 传感器与物联网技术的结合
传感器与物联网技术的结合,将传感器与互联网技术相结合,实现远程监测、智能控制与预警等功能,具有广泛的应用前景。
7. 检测技术的应用
除了传感器技术,还有其他的检测技术,如光谱分析、物质检测、图像识别等,在环境监测、工业检测与医疗诊断等领域有着重要的应用。
传感器与检测技术复习总结
l.检测系统由哪几部分组成? 说明各部分的作用。
答:一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。
当然其中还包括电源和传输通道等不可缺少的部分。
传感器与检测技术是研究自动检测系统中的信息提取,信息转换和信息处理的理论和技术为主要内容的一门应用技术学科。
2 .什么是传感器?它由哪几个部分组成?分别起到什么作用?解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。
敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。
3 .简述正、逆压电效应。
解:某些电介质在沿一定的方向受到外力的作用变形时,由于内部极化现象同时在两个表面上产生符号相反的电荷,当外力去掉后,恢复到不带电的状态;而当作用力方向改变时,电荷的极性随着改变。
晶体受力所产生的电荷量与外力的大小成正比。
这种现象称为正压电效应。
反之,如对晶体施加一定变电场,晶体本身将产生机械变形,外电场撤离,变形也随之消失,称为逆压电效应。
4.简述电压放大器和电荷放大器的优缺点。
解:电压放大器的应用具有一定的应用限制,压电式传感器在与电压放大器配合使用时,连接电缆不能太长。
优点:微型电压放大电路可以和传感器做成一体,这样这一问题就可以得到克服,使它具有广泛的应用前景。
缺点:电缆长,电缆电容 C c 就大,电缆电容增大必然使传感器的电压灵敏度降低。
电荷放大器的优点:输出电压U o 与电缆电容 C c 无关,且与Q 成正比,这是电荷放大器的最大特点。
但电荷放大器的缺点:价格比电压放大器高,电路较复杂,调整也较困难。
要注意的是,在实际应用中,电压放大器和电荷放大器都应加过载放大保护电路,否则在传感器过载时,会产生过高的输出电压。
《传感器与检测技术》知识点总结
《传感器与检测技术》(传感器部分)知识点总结第一章 概述1.传感器的定义与组成(1)定义:能感受被测量并按照一定规律转换成可用输出信号的器件或装置。
(2)共性:利用物理定律或物质的物理、化学、生物等特性,将非电量转换成电量。
(3)功能:检测和转换。
(4)组成:5.开展基础理论研究寻找新原理6.传感器的集成化第二章 传感器的基本特性1.线性度(传感器的静态特性之一)(1)定义:传感器的输入、输出间成线性关系的程度。
(2)非线性特性的线性化处理:Y FSy Y FSy Y FSyo(a )切线或割线X mxo(b )过零旋转X mxo(c )端点平移X mx(3)非线性误差:γL = ± Δ L ma xY FS式中,γL ——非线性误差(线性度);ΔL m a x ——输出平均值与拟合直线间的最大偏差绝对 值;Y F S ——满量程输出。
2.灵敏度(传感器的静态特性之二)传感器在稳态信号作用下输出量变化对输入量变化的比值。
0 S n = y x xS n = dy dx (a) 线性测量系统(b) 非线性测量系统 0S n y = f x ) dy dx = C x 0 S n y = f ( )dy x 0 S n y = f (x ) dy dx(c) 灵敏度为常数(d) 灵敏度随输入增加而增加 (e) 灵敏度随输入增加而减小3.分辨率/分辨力(传感器的静态特性之三)分辨率是指传感器能够感知或检测到的最小输入信号增量。
分辨率可以用增量的绝对值 或增量与满量程的百分比来表示。
4.迟滞/回程误差(传感器的静态特性之四)(1)定义:在相同测量条件下,对应于同一大小的输入信号,传感器正、反行程的输出信 号大小不相等的现象。
开发新材料 采用新工艺 探索新功能具有同样功能的传感器集成化,即将同一类型的单个传感元件用集成工艺在同一平面上 排列起来,形成一维的线性传感器,从而使一个点的测量变成对一个面和空间的测量。
传感器与检测技术知识点汇总
N 2 Al 0 N 2la L L1 L2 0 e 2 Aa ( la ) l l 螺线管型的自感值:
0 e N 2 dL dL2 Kl Aa 2 dl dl l a a 灵敏度:
2.零点残余电压:产生原因:1.复阻抗不容易达到真正的平衡;2.磁化曲线的非线性产生高 次波;3.各种损耗;4.分布电容的影响;5.两个传感器的完全不对称;工频干扰。 引起问题:1.零点附近灵敏度下降;2.限制分辨率提高;3.线性度差;4.堵塞有用信号 解决方法:设计与工艺上力求磁路与线圈对称;拆线圈法来调整;电路补偿。 3.测气体压力传感器:改变空气间隙长度的电感传感器压差传感器(差接电感传感器) 4.变压器式传感器的灵敏度:输出电压与衔铁位移之比。 灵敏度:1.与二次线圈匝数 N2 成正比;2.与激励电压幅值成正比;3.在低频时,与频率成正 比。 低频时
)*100%
当电刷处于行程中心位置时,负载误差最大。并且随
着负载系数的增大时,即减小负载电阻时,负载误差也随之增大。减小负载误差的方法:采 用高输入阻抗放大器; 或者限制电位器工作的区间来减少负载误差; 或将电位器空载特性设 计成某种上凸特性,即设计非线性电位器。 5.非线性电位器的空载特性曲线与线性电位器的负载特性曲线是以特性直线为镜像的。 6.电位器式电阻传感器:压力传感器、位移传感器、测小位移传感器、加速度传感器 7.应变片式电阻传感器:缺点:在大的应变状态下具有较大的非线性;输出信号弱;不适 用于高温环境中(1000 度以上) ;应变片实际测出的只是某一面积上的平均应变。 8.金属电阻应变片敏感栅:灵敏度系数 K0 比较大,电阻温度系数小,电阻率大,机械强度 高。 9.应变片的主要特性:横向效应、机械滞后、零漂及蠕变、应变特性、疲劳寿命、动态响应 特性 10.横向效应:为减少横向效应产生的误差,一般是减少 r,增大 L,采用直角线栅式或箔式 应变片,因为箔式应变片的截面积比栅丝大,电阻值小,电阻变化量小。 11.机械滞后:产生的原因:粘合剂性能差;过载;过热 12.零漂和蠕变:两者同时存在,蠕变值里面包含同一时间的零漂值;产生原因:在粘贴应 变片时,本身被压缩或拉伸的力 13.应变极限、疲劳寿命;1.应变片的敏感栅或引线断路;应变片输出指示应变的极值 l 变化 10%;应变片输出信号波形上出现穗状尖峰。 14.单丝自补偿法:
传感器与检测技术(知识点总结)
传感器与检测技术知识总结第一章概述1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术知识点概括
1、传感器是能感受被测量并按照一定规律转换成可用输出信号的器件或装置。
2、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。
3、要实现不失真测量,检测系统的幅频特性应为常数4、传感器静态特性是指传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性。
5,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨率、灵敏度、漂移、稳定性、温度稳定性、各种抗干扰稳定性等。
(请写出反映传感器的五种性能指标,及写出三种解释传感器指标?精度、分辨率、灵敏度、线性度、迟滞。
反映传感器准确度的指标是精度,反映传感器灵敏度的指标是灵敏度,反映传感器稳定性的指标是迟滞)6,传感器对随时间变化的输入量的响应特性叫传感器动态性。
7,动态特性中对一阶传感器主要技术指标有时间常数。
动态特性中对二阶传感器主要技术指标有固有频率、阻尼比。
8,从时域(延迟时间,上升时间,响应时间,超调量)和频域(幅频特性,相频特性)两个方面分别采用瞬态响应法和频率响应法来分析动态特性。
9,幅频特性是指传递函数的幅值随被测频率的变化规律,相频特性是指传递函数的相角随被测频率的变化规律。
传感器中超调量是指超过稳态值的最大值□A (过冲)与稳态值之比的百分数。
电阻式传感器10,金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
11,半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。
12,金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化。
13,金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
传感器与检测技能知识点总结
1、求周期信号x(t)=0.5cos10t+0.2cos(100t-45)通过传递函数为H(s)=1/(0.005s+1)的装置后得到的稳态响应。
2、进行某动态压力测量时,所采用的压电式力传感器的灵敏度为90.9nC/MPa,将它与增益为0.005V/nC的电荷放大器相连,而电荷放大器的输出接到一台笔式记录仪上,记录仪的灵敏度为20mm/V。
试计算这个测量系统的总灵敏度。
当压力变化为3.5MPa时,记录笔在记录纸上的偏移量是多少?解:若不考虑负载效应,则各装置串联后总的灵敏度等于各装置灵敏度相乘,即3、用一个时间常数为0.35s的一阶装置去测量周期分别为1s、2s、和5s的正弦信号,问幅值误差是多少?4、想用一个一阶系统做100Hz正弦信号的测量,如要求限制振幅误差在5%以内,那么时间常数应取为多少?若用该系统测量50Hz正弦信号,问此时的振幅误差和相位差是多少?5、设某力传感器可作为二阶振荡系统处理。
已知传感器的固有频率为800Hz,阻尼比ξ=0.14,问使用该传感器做频率为400Hz的正弦测试时,其幅值比A(ω)和相角差φ(ω)各为多少?6、一台精度等级为0.5级、量程范围600~1200 C的温度传感器,它最大允许绝对误差是多少?检验时某点的温度绝对误差是4 C,问此表是否合格?7、若一阶传感器的时间常数为0.01s,传感器响应幅值误差在10%范围内,此时最高值为0.5,试求此时输入信号和工作频率范围?8、某力传感器为一典型的二阶振荡系统,已知该传感器的自振频率=1000Hz,阻尼比ξ=0.7,试求用它测量频率为600Hz的正弦交变力时,其输出与输入幅值比A(ω)和相位差φ(ω)各为多少?9、一个理想测试系统,其幅频特性和相频特性应具有什么特点,并用频响特性曲线表示。
解:理想测试系统中其幅频特性应为常数,相频特性应为直线(线性)。
10、有一个1/3倍频程滤波器,其中心频率fn=1000Hz,求该滤波器的带宽B,以及上、下截止频率fc1,fc2。
传感器与检测技术知识点
第一章传感与检测技术理论基础1.什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合?答:测量误差是测得值与被测量的真值之差。
可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。
在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。
在计算相对误差时也必须知道绝对误差的大小才能计算。
采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。
引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。
2.用测量范围为-50~+150kPa 的压力传感器测量140kPa 压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差2140142=-=∆kPa 实际相对误差%43.1%100140140142=⨯-=δ标称相对误差%41.1%100142140142=⨯-=δ引用误差%1%10050150140142=⨯---=)(γ3.什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。
随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。
通过增加测量次数估计随机误差可能出现的大小,从而减少随机误差对测量结果的影响。
第二章传感器概述2-1什么叫传感器?它由哪几部分组成?它们的作用及相互关系如何?答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
通常由敏感元件和转换元件组成。
敏感元件是指传感器中能直接感受或响应被测量的部份;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部份。
传感器与检测技术部分重点
1. 传感器是一种检测装置,能感受到被测量的非电量信息,如温度、压力、流量、位移等,并将检测到的信息,按一定规律转换成电信号或其他所需形式的信息输出,用以满足信息的传输、处理、存储、显示、记录或控制等要求。
2. 传感器一般由敏感元件,转换元件和转换电路组成。
3. 传感器的定义:(1)传感器是一种能够检测被测量的器件或装置;(2)被测量可以是物理量、化学量或生物量等;(3)输出信号要便于传输、转换、处理、显示等,一般是电参量;(4)输出信号要正确地反映被测量的数值、变化规律等,即两者之间要有确定的对应关系,且应具有一定的精确度。
4. 传感器特性主要是指输出与输入之间的关系。
当输入量为常量,或变化极慢时,这一关系称为静态特性。
当输入量随时间较快地变化时,这一关系称为动态特性。
5. 实际曲线与其两个端点连线(拟合曲线)之间的偏差称为传感器的非线性误差。
取其最大偏差与理论满量程之比作为评价线性度(或非线性误差)的指标。
6. 传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。
产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等7. 重复性是指传感器的输入量按同一方向变化,作全量程连续多次测量时所得到的曲线不一致的程度。
8. 传感器输出的变化量Δy 与引起该变化量的输入量变化Δx 之比即为其静态灵敏度。
9. 漂移指在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化 。
10. 传感器的标定工作分为静态标定和动态标定两种。
传感器的静态标定主要是检验、 测试传感器或整个系统的静态特性指标。
11. 预处理电路把传感器输出的非电压量转换成具有一定幅值的电压量; 数据采集系统把模拟电压量转换成数字量;计算机接口电路把A/D 转换后的数字信号送入计算机,并把计算机发出的控制信号送至输入接口的各功能部件。
12. 调制是利用信号来控制高频振荡的过程,进行放大和传输,已期得到最好的放大和传输效果,通常有调幅、调相和调频调制三种方法。
传感器与检测技术复习资料(重点版)
第一章by YYZ 都是老师上课给的应该全都有了。
1.传感器是一种以一定精确度把被测量(主要是非电量)转换为与之有确定关系、便与应用的某种物理量(主要是电量)的测量装置。
2.传感器的组成:信号从敏感元件到转换元件转换电路。
3.敏感元件:它是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
4.转换元件:敏感元件的输出就是它的输入,它把输入转换成为电路参数。
5.转换电路:将电路参数接入转换电路,便可转换为电量输出。
6.误差的分类:系统误差(测量设备的缺陷),随机误差(满足正态分布),粗大误差。
7.系统误差:在同一条件下,多次测量同一量值时绝对值和符号保持不变,按一定规律变化的误差称为系统误差。
材料、零部件及工艺的缺陷,标准测量值,仪器刻度的标准,温度,压力会引起系统误差。
8.随机误差:绝对值和符号以不可预定的变化方式的误差。
仪表中的转动部件的间隙和摩擦,连接件的弹性形变可引起随机误差,随机误具有随机变量的一切特点。
9.粗大误差:超出规定条件下的预期的误差。
粗大误差明显歪曲测量结果,应该舍去不用。
10.精度:反映测量结果与真值接近度的值。
11.精度可分为准确度、精密度、精确度。
12.准确度:反映测量结果中系统误差的影响程度。
13.精密度:反映测量结果中随机误差的影响程度。
14.精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可以用测量的不确定度(或极限误差)表示。
15.精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高,则精密度和准确度都高。
16.传感器的静态特性是指输入被测量不随时间变化,或随时间变化很缓慢时,传感器的输出与输入的关系。
17.衡量传感器静态特性的重要指标是线性度、灵敏度、迟滞、重复性、精度等。
18.线性度的计算例题:19.20.△Lmax为最大非线性绝对误差,Yfs为满量程输出。
21.传感器的线性度是指传感器的输出与输入之间的线性程度。
22.灵敏度是指传感器在稳态下的输出变化量△Y与引起次变化的输入变化量△x之比,它表征传感器对输入量变化的反映能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
其代码“1”为高电平,“0”为低电平。
三、传感器的特性及主要性能指标1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。
2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。
表征传感器静态特性的指标有线性度,敏感度,重复性等。
3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。
传感器的动态特性取决于传感器的本身及输入信号的形式。
传感器按其传递,转换信息的形式可分为①接触式环节;②模拟环节;③数字环节。
评定其动态特性:正弦周期信号、阶跃信号。
4、传感器的主要性能要求是:1)高精度、低成本。
2)高灵敏度。
3)工作可靠。
4)稳定性好,应长期工作稳定,抗腐蚀性好;5)抗干扰能力强;6)动态性能良好。
7)结构简单、小巧,使用维护方便等;四、传感检测技术的地位和作用1、地位:传感检测技术是一种随着现代科学技术的发展而迅猛发展的技术,是机电一体化系统不可缺少的关键技术之一。
2、作用:能够进行信息获取、信息转换、信息传递及信息处理等功能。
应用:计算机集成制造系统(CIMS)、柔性制造系统(FMS)、加工中心(MC)、计算机辅助制造系统(CAM)。
五、基本特性的评价1、测量范围:是指传感器在允许误差限内,其被测量值的范围;量程:则是指传感器在测量范围内上限值和下限值之差。
2、过载能力:一般情况下,在不引起传感器的规定性能指标永久改变条件下,传感器允许超过其测量范围的能力。
过载能力通常用允许超过测量上限或下限的被测量值与量程的百分比表示。
3、灵敏度:是指传感器输出量Y与引起此变化的输入量的变化X之比。
4、灵敏度表示传感器或传感检测系统对被测物理量变化的反应能力。
灵敏度越高越好,因为灵敏度越高,传感器所能感知的变化量越小,即被测量稍有微小变化,传感器就有较大输出。
K值越大,对外界反应越强。
5、反映非线性误差的程度是线性度。
线性度是以一定的拟合直线作基准与校准曲线作比较,用其不一致的最大偏差△Lmax与理论量程输出值Y(=ymax—ymin)的百分比进行计算。
6、稳定性在相同条件,相当长时间内,其输入/输出特性不发生变化的能力,影响传感器稳定性的因素是时间和环境。
7、温度影响其零漂,零漂是指还没输入时,输出值随时间变化而变化。
长期使用会产生蠕变现象。
8、重复性:是衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标;(分散范围小,重复性越好)9、精确度:简称精度,它表示传感器的输出结果与被测量的实际值之间的符合程度,是测量值的精密程度与准确程度的综合反映。
10、分辨力是指传感器能检出被测量的最小变化量。
11、动态特性:反映了传感器对于随时间变化的动态量的响应特性,传感器的响应特性必须在所测频率范围内努力保持不失真测量条件。
一般地,利用光电效应、压电效应等物性型传感器,响应时间快,工作频率范围宽。
12、环境参数:指传感器允许使用的工作温度范围以及环境压力、环境振动和冲击等引起的环境压力误差,环境振动误差和冲击误差。
六、传感器的标定与校准1、标定(计量学称之为定度)是指在明确传感器输入/输出变换关系的前提下,利用某种标准器具产生已知的标准非电量(或其它标准量)输入,确定其输出电量与其输入量之间的过程。
2、校准是指传感器在使用前或使用过程中或搁置一段时间再使用时,必须对其性能参数进行复测或作必要的调整与修正,以确保传感器的测量精度。
3、标定系统的组成:①被测非电量的标准发生器;②待标定传感器;③它所配接的信号调节显示、记录器等。
4、静态标定是给传感器输入已知不变的标准非电量,测出其输出,给出标定方程和标定常数,计算其灵敏度,线性度,滞差,重复性等传感器的静态指标。
5、传感器的静态标定设备有力标定设备,压力标定设备,温度标定设备等。
6、对设备要求:①具有足够的精度;②量程范围应与被标定传感器的量程相适应;③性能稳定可靠,使用方便,能适应多种环境。
7、传感器的动态标定的目的是检验测试传感器的动态性能指标。
8、动态标定指标是通过确定其线性工作范围,频率响应函数,幅频特性和相频特性曲线,阶跃响应曲线,来确定传感器的频率响应范围,幅值误差和相位误差,时间常数,阻尼比,固有频率等。
9、常用的标准动态激励设备有激振器、激波管、周期与非周期函数压力发生器;(其中激振器可用于位移、速度、加速度、力、压力传感器的动态标定)10、传感器与检测技术的发展方向:⑴开发新型传感器。
⑵传感检测技术的智能化。
⑶复合传感器⑷研究生物感官,开发仿生传感器。
11、开发新型传感器:①利用新材料制作传感器;②利用新加工技术制作传感器;③采用新原理制作传感器。
12、传感检测技术的智能化:传感检测系统目前迅速地由模拟式、数字式向智能化方向发展。
功能:①自动调零和自动校准;②自动量程转换;③自动选择功能;④自动数据处理和误差修正;⑤自动定时测量;⑥自动故障诊断。
第二章位移检测传感器1、移可分为线位移和角位移两种,测量位移常用的方法有:机械法,光测法,电测法。
2、位移传感器的分类:参量型位移传感器,发电型位移传感器,大位移传感器。
一、参量型位移传感器1、参量位移传感器的工作原理:将被测物理量转化为电参数,即电阻,电容或电感等。
2、电阻式位移传感器的电阻值取决于材料的几何尺寸和物理特征,即R=p L/S(1)电位计由骨架、电阻元件、电刷等组成;(2)电位计优点:结构简单,输出信号大,性能稳定,并容易实现任意函数关系,缺点:是要求输入量大,电刷与电阻元件之间有干摩擦,容易磨损,产生噪声干扰。
3、⑴线性电位计的空载特性:Rx=RX/L=KrX(Kr——电位计的电阻灵敏度)。
电位计输出空载电压为Uo=UiX/L=KuX(Ku——电位计的电压灵敏度)⑵非线性电位计空载特性:其电阻灵敏度Kr=DR/Dx,电压灵敏度Ku=Duo/Dx4、电阻应变式位移传感器:是将被测位移引起的应变元件产生的应变,经后续电路变换成电信号,从而测出被测位移。
5、电容式位移传感器:是利用电容量的变化来测量线位移或角位移的装置。
(1)变极距型的电容位移传感器:有较高的灵敏度,但电容变化与极距变化之间为非线性关系,其它两种类型的位移传感器具有比较好的线性,但敏度比较低。
(2)变极板面积型电容位移传感器:用于线位移测量,也可用于角位移测量。
(3)变介质型电容式位移传感器:用于位移或尺寸测量的改变介质型电容位移传感器,一般都具有较好的线性特性,但也有输入/输出呈非线性关系。
(4)容栅式电容位移传感器是在面积型电容位移传感器的基础上发展来的,可分为长容栅和圆容栅。
(特点:因多极电容及平均效应,分辨力高,精度高,量程大对刻划精度和安装精度要求可有所降低,一种很有发展前途的传感器。
6、电容式位移传感器的绝缘和屏蔽(1)若绝缘材料性能不佳,绝缘电阻随环境温度和湿度而变化,还会使电容位移传感器的输出产生缓慢的零位漂移;(2)绝缘材料应具有高的绝缘电阻、低的膨胀系数、几何尺寸的长期稳定性和低的吸潮性;(3)通常对电容位移传感器及其引线采取屏蔽措施,即将传感器放在金属壳内,接地应可靠;(4)可以消除不稳定的寄生电容,还可以消除外界静电场和交变磁场的干扰。
7、电感式位移传感器:将被测物理量位移转化为自感L,互感M的变化,并通过测量电感量的变化确定位移量。
主要类型有自感式、互感式'、涡流式和压磁式。
输出功率大,灵敏度高,稳定性好等优点。
(1)自感式电感位移传感器原理:缠绕在铁心的线圈中通以交变电流,产生磁通,形成磁通回路。
为了提高自感位移传感器的精度和灵敏度,增大特性的线性度,实际用的传感器大部分都作为差动式改善其性能考虑的因素有:1)损耗问题,2)气隙边缘效应的影响,3)温度误差,4)差动式电感位移传感器的零点剩余电压问题。
(2)互感式位移传感器(测量范围最大):将被测位移量的变化转换成互感系数的变化,基本结构原理与常用变压器类似,故称为变压器式位移传感器。
(3)涡流式位移传感器:利用电涡流效应将被测量变换为传感器线圈阻抗Z变化的一种装置。
只要分为高频反射和低频透射两类。
二、发电型位移传感器1、发电型位移传感器(压电位移传感器)是将被测物理量转换为电源性参量。
2、压电式位移传感器的基本工作原理是将位移量转换为力的变化,然后利用压电效应将力的变化转换为点信号。
三、大位移传感器1、磁栅式位移传感器是根据用途可分为长磁栅和圆磁栅位移传感器,分别用于测量线位移和角位移。
磁头分动态和静态。
2、当磁头不动时,输出绕组输出一等幅的正弦或余弦电压信号,其频率仍为励磁电压的频率,其幅值与磁头所处的位置关系。