全等三角形判定条件一
三角形全等的判定1_模板
三角形全等的判定1_模板课题:全等三角形的判定(一)教学目标:1、知识目标:(1)熟记边角边公理的内容;(2)能应用边角边公理证明两个三角形全等.2、能力目标:(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;(2) 通过观察几何图形,培养学生的识图能力.3、情感目标:(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用公理证明两个三角形全等.教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.教学用具:直尺、微机教学方法:自学辅导式教学过程:1、公理的发现(1)画图:(投影显示)教师点拨,学生边学边画图.(2)实验让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)这里一定要让学生动手操作.(3)公理启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)作用:是证明两个三角形全等的依据之一.应用格式:强调:1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.3、平面几何中常要证明角相等和线段相等,其证明常用方法:证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.2、公理的应用(1)讲解例1.学生分析完成,教师注重完成后的总结.分析:(设问程序)“SAS”的三个条件是什么?已知条件给出了几个?由图形可以得到几个条件?解:(略)(2)讲解例2投影例2:例2如图2,AE=CF,AD∥BC,AD=CB,求证:学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书.教师强调证明格式:用大括号写出公理的三个条件,最后写出结论.(3)讲解例3(投影)证明:(略)学生分析思路,写出证明过程.(投影展示学生的作业,教师点评)(4)讲解例4(投影)证明:(略)学生口述过程.投影展示证明过程.教师强调证明线段相等的几种常见方法.(5)讲解例5(投影)证明:(略)学生思考、分析、讨论,教师巡视,适当参与讨论.师生共同讨论后,让学生口述证明思路.教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明. 3、课堂小结:(1)判定三角形全等的方法:SAS(2)公理应用的书写格式(3)证明线段、角相等常见的方法有哪些?让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.6、布置作业a书面作业P56#6、7b上交作业P57B组1思考题:板书设计:探究活动如图,A、B两地隔山相望,要测它们之间的距离,可先在平地上取一个可直接到达A 和B的点C,连结AC并延长到D,使CD=CA;连结BC并延长到E,使CE=CB,最后再连结DE,这时量得DE长就是A、B的距离,说明为什么.提示: 利用三角形全等的判定(一)来说明.石佛镇素质教育研讨会教研课教案设计教者:龙秀明教学课题:合比性质和等比性质教学目标:1、掌握合比性质的等比性质,并会用它们进行简单的比例变形2、会将合比性质、等比性质用于比例线段。
(完整版)全等三角形证明方法(最新整理)
全等三角形的证明方法一、三角形全等的判定:(1)三组对应边分别相等的两个三角形全等(SSS);(2)有两边及其夹角对应相等的两个三角形全等(SAS) ;(3)有两角及其夹边对应相等的两个三角形全等(ASA) ;(4)有两角及一角的对边对应相等的两个三角形全等(AAS) ;(5)直角三角形全等的判定:斜边及一直角边对应相等的两个直角三角形全等(HL).二、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的高对应相等;(4)全等三角形的对应角的角平分线相等;(5)全等三角形的对应边上的中线相等;三、找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
①积极发现隐含条件:公共角对顶角公共边②观察发现等角等边:等边对等角同角的余角相等同角的补角相等等角对等边等角的余角相等等角的补角相等③推理发现等边等角:图1:平行转化图2 :等角转化图3:中点转化图4 :等量和转化图5:等量差转化图6:角平分线性质转化图7:三线合一转化图8:等积转化图9:中垂线转化图10:全等转化图11:等段转化四、构造辅助线的常用方法:1、关于角平分线的辅助线:当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构造全等:如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
三角形全等的判定1[精选文档]
D
C
AD =AD ,
∴ △ABD ≌ △ACD ( SSS ).
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (1)以点O 为圆心,任意长为半径画弧,分别交OA,
OB 于点C、D; B
D
O
C
A
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (2)画一条射线O′A′,以点O′为圆心,OC 长为半
• 学习重点: 构建三角形全等条件的探索思路,“边边边”判定 方法.
创设情境,导入新知
已知△ABC ≌△ A′B′ C′,找出其中相等的边与
角:
A
A′
B
AB =A′B′ ∠A =∠A′
C B′
BC =B′C′ ∠B =∠B′
C′
AC =A′C′ ∠C =∠C′
思考 满足这六个条件可以保证△ABC≌△A′B′C′ 吗?
先任意画出一个△ABC,再画出一个△A′B′C′, 使A′B′= AB,B′C′= BC,A′C′= AC.把画好的 △A′B′C′剪下,放到△ABC 上,它们全等吗?
画法: (1)画线段B′C′=BC ;
(2)分别以B′、C′为圆心,BA、BC 为半径画弧,两
弧交于点A′;
(3)连接线段A′B′,A′C′.
径画弧,交O′A′于点C′; B
D
O
C
A O′
C′
A′
应用所学,例题解析Байду номын сангаас
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法:
(3)以点C′为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D′;
三角形全等的判定
三角形全等的判定三角形全等的判定类型之一:已知:如图,点B、E、C、F在同一直线上,AB=DE、AC=DF、BE=CF。
求证:△ABC≌△DEF。
类型之二:已知:如图,∠1=∠2,∠ABC=∠DCB。
求证:AB=DC。
ABC证明:类型之三:已知:在△ABC中,AD为BC边上的中线,CE⊥AD,BF⊥AD。
求证:CE=BF类型之四:综合已知:如图,AB=DE,BC=EF,CD=FA,∠A= ∠D。
求证:∠B= ∠E。
证明:1. 已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。
证明:2. 已知:如图,△ABC中,D是BC的中点,∠1=∠2,求证:AB=AC。
AECDB1.如图两根长度相同的绳子,一端系在旗杆上,另一端分别固定在地面的木桩上,两个木桩离旗杆底部的距离相等吗?说明你的理由.审好题目相当于做对这道题的一半!所以,实际应用的题目一定要仔细审清题目,找出各个量之间的关系.本题关键是要将实际生活的语言说明转化为数学上的各个量的关系.“由长度相同的绳子”可知AB=AC,而要求的是木桩B、C与O之间的距离关系,即求证BO=CO.有了明确的已知、求证,剩下的就是纯粹的全等证明了.相等.证明:∵由题意AO⊥BC ∴∠AOB=∠AOC=90°∴Rt△AOB≌Rt△AOC(HL)∴BO=CO2.已知:如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC。
本题考察“HL”公理的应用。
要证BE⊥AC,可∠1=90°,只需证∠2=∠C。
从而转化为证明它们所在的△BDF“HL”公理不难得证。
DCE证∠C+∠1=90°,而∠2+与△ADC全等,而这由证明:∵AD⊥BC∴∠BDA=∠ADC=90°∴∠1+∠2=90°在R t△BDF和Rt△ADC中BF ACFD CD∴Rt△BDF≌Rt△ADC(HL)∴∠2=∠C∴∠1+∠C=90°∴∠BEC=90°∴BE⊥AC1. 已知:如图AC=BD,∠CAB=∠DBA。
三角形全等的判定方法(5种)例题+练习(全面)
教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
三角形全等的判定1——边边边
D
A B C
2.如课本图11.2-3,△ABC是一个钢架,AB=AC,AD是 连接点A与BC中点D的支架。求证:AD垂直于 BC。 .
判断两个三角形全等的推理过程,叫做证明三角形 全等。
思考:你能用“边边边”解释三角形具 有稳定性吗?
例2:如图,AB=AC,AE=AD,BD=CE, 求证:△AEB ≌ △ ADC。
三、教学目标设计
三、教学目标设计
1.知识与技能:
(1)掌握三角形全等的判定方法,能够用文字语言、图 形语言和符号语言分别表述三角形全等的四种判定方法 (2)通过自主探究,提高合情推理能力和表达能力。
2.过程与方法:
通过用几何画板探索三角形全等条件的过程, 提高学生分析问题、解决问题的能力。
3.情感、态度、价值观:
A
B 方法构想
E
D
C
两个三角形中已经的两组边对应 相等,只需要再证第三条边对应相 等就行了.
小结归纳
1
全等三角形证明的基本步骤:
①分析已有条件,准备所缺条件:
证全等时要用的间接条件要先证好; ②三角形全等书写三步骤: • 写出在哪两个三角形中 • 摆出三个条件用大括号括起来
• 写出全等结论
2、如图,AB=CD,AC=BD, 随堂练习 △ABC和△DCB是否全等?试 说明理由。 1、已知:如图,AB=AD,BC=CD, 解:△ABC与△DCB全等, 求证:△ABC≌ △ADC 理由如下:
证明:在△ABC与△ADC中 A AB=AD
BC=DC AC=AC ∴ △ABC≌ △ADC C B D
在△ABC与△DCB中 AB=CD
BC=CB
AC=BD ∴ △ABC≌ △DCB
A
全等三角形判定定理一:SSS.2.等三角形的判定定(sss)
想一想:从这个结果反映了什么规律?
三边分别相等的两个三角形全等
( 可以简写为“边边边”或“SSS”)。
三角形全等判定的方法1:
三边分别相等的两个三角形全等 ( 可以简写为“边边边”或 “SSS”)。
三边分别相等的两个三角形全等( 可以简写为“边 边边”或“SSS”)。 几何语言表述:
验证
(1)给一个条件时 ②一个角相等(∠B= ∠ B') A
A'
400
B
C
400
B'
C'
结论:只有一个角对应相等的两个三角 形不一定全等.
验证
(2)给两个条件时
①一个边、一条角相等(BC=B'C' , ∠B= ∠B')
A
A'
B
300
300
9cm
C
B'
9cm
C'
结论:一条边、一个角对应相等的两
个三角形不一定全等.
练习(第37页第2题) 工人师傅常用角尺平分一个任 意角, 做法如下:如图,∠AOB是一个任意角,在 边OA,OB上分别取OM=ON,移动角尺,使角尺两 边相同的刻度分别与M、N重合,过角尺顶点C的射 线OC便是∠AOB的平分线。为什么?
(课本第37页第1题)如图,C是AB的中点,AD=CE, CD=BE。求证: △ ACD≌ △ CBE。
证明: ∵C是AB的中点,
∴AC=CB. 在△ACD和△CBE中, AC=CB, AD=CE,
CD=BE. ∴ △ABD ≌△ ACD(SSS).
应用提高
已知:AC=AD,BC=BD, 求证:AB是∠DAC的平分线. 证明:在△ABC和△ABD中 AC=AD( 已知 )
三角形全等的判定——AAS教学设计
三角形全等的判定——AAS教学设计教学设计:三角形全等的判定,AAS一、教学目标:1.知识与技能目标:a.了解三角形全等的判定条件之一,AAS(两角对应相等,且一边对应相等);b.掌握使用AAS进行三角形全等判定的方法;c.能够运用AAS判定条件,解决实际问题;2.过程与方法目标:a.引导学生观察、发现并总结AAS判定全等的规律;b.能够解答关于AAS的相关问题、完成相关练习;c.引导学生通过对比、组合进行归纳总结。
二、教学重点与难点:教学重点:AAS判定全等的理论与方法。
教学难点:如何运用AAS判定条件进行证明。
三、教学过程:1.导入(5分钟):a.引入本节课的主题:三角形全等的判定,AAS;b.展示两个全等的三角形,让学生观察并找出它们的相同之处;c.引导学生思考:这两个三角形有哪些角是相等的?有哪些边是相等的?2.观察与总结(15分钟):a.展示多个已知全等的三角形,引导学生观察这些三角形之间的共同特征;b.引导学生自主探索,通过对比找到AAS判定全等的规律;c.学生个体或小组讨论,总结AAS判定三角形全等的条件;d.学生报告、老师点评,确保学生对AAS的判定条件有正确的理解。
3.示例与分析(15分钟):a.给学生展示两个需要判定全等的三角形,同时给出两个已知的条件;b.引导学生运用AAS条件判断这两个三角形是否全等;c.学生个体或小组讨论,解答问题并给出说明;d.老师点评、纠正错误,确保学生能正确使用AAS进行判定。
4.练习与巩固(15分钟):a.学生进行练习,使用AAS判定条件判断给出的三组三角形是否全等;b.学生个体或小组讨论,解答问题并给出说明;c.老师点评、纠正错误,帮助学生更好地理解与应用。
5.拓展与应用(15分钟):a.学生进行拓展性练习,解答更复杂的问题,例如:给定一个已知条件,判断是否可以通过AAS条件得出全等;b.学生展示解题方法与结果,进行讨论与总结;c.老师点评、总结掌握,帮助学生理解并灵活应用。
三角形全等条件(1)
B
C
三个角对应相等的两个三角形全等吗?
三个角对应相等的两个三角形不一定全等
两边和其中一边的对角对应相等的两 个三角形全等吗?
\
==
两边和其中一边的对角对应相等的两
个三角形不一定全等
小结:判定两个三角形全等必须具备三个条件:
SAS—两边和它们的夹角对应相等的两个三角形全等
ASA—两角和它们的夹边对应相等的两个三角形全等
AB AC
BAE DAE ABE≌ ADE
AE AE
根据“全等三角形的对应边相 等”可以得到 BE=DE
如图,在△ABC中,AB=AC,E、F分别为AB、 AC上的点,且AE=AF,BF与CE相交于点O。
A
1、图中有哪些全等的三角形?
E
FOLeabharlann 2、图中有哪些相等的线段? 3、图中有哪些相等的角?
A
EC
BE
C
EA
D
B F D(C)
F(A)D B
F
如图,AB=AD, CB=CD,E是AC上 一点,BE与DE相等 吗?
A
E
C
B
D
解:BE=DE 在△ABC和△ADC中
AB AD
CB
CD
△ABC
≌△ADC
AC AC
根据“全等三角形的对应角相
等”可以得到 ∠BAC=∠DAC
在△ABE和△ADE中
AAS—两角和其中一角的对边对应相等的两个三角形 全等 SSS—三边对应相等的两个三角形全等
AAA—三角对应相等的两个三角形不一定全等 SSA—两边和其中一边的对角对应相等的 两个三角形不一定全等
这节课你学到了什么?
专题1.2 全等三角形的判定【八大题型】(举一反三)(苏科版)(解析版)
专题1.2 全等三角形的判定【八大题型】【苏科版】【题型1 全等三角形的判定条件】 (1)【题型2 证明两个三角形全等】 (3)【题型3 全等三角形的判定与性质(证两次全等)】 (6)【题型4 全等三角形的判定与性质(证垂直)】 (9)【题型5 全等三角形的判定与性质(多结论)】 (13)【题型6 全等三角形的判定与性质(探究角度之间的关系)】 (19)【题型7 全等三角形的判定与性质(探究线段之间的关系)】 (26)【题型8 全等三角形的应用】 (34)【题型1 全等三角形的判定条件】【例1】(2022春•顺德区期末)如图,∠A=∠D=90°,给出下列条件:①AB=DC,②OB=OC,③∠ABC=∠DCB,④∠ABO=∠DCO,从中添加一个条件后,能证明△ABC≌△DCB的是( )A.①②③B.②③④C.①②④D.①③④【分析】由题意可得∠A=∠D=90°,BC=BC,即有一组对应角相等,一组对应边相等,结合全等三角形的判定条件进行分析即可.【解答】解:∵∠A=∠D=90°,BC=BC,∴①当AB=DC时,由HL可得△ABC≌△DCB,故①符合题意;②当OB=OC时,可得∠BCO=∠CBO,利用AAS可得△ABC≌△DCB,故②符合题意;③当∠ABC=∠DCB时,利用AAS可得△ABC≌△DCB,故③符合题意;④当∠ABO=∠DCO时,不能得△ABC≌△DCB,故④不符合题意;故符合题意的有①②③.故选:A.【变式1-1】(2021秋•庐阳区期末)如图,点B、E在线段CD上,若∠A=∠DEF,则添加下列条件,不一定能使△ABC≌△EFD的是( )A.∠C=∠D,AC=DE B.BC=DF,AC=DEC.∠ABC=∠DFE,AC=DE D.AC=DE,AB=EF【分析】利用三角形全等的判定方法进行分析即可.【解答】解:A、添加∠C=∠D,AC=DE可利用ASA判定△ABC≌△EFD,故此选项不合题意;B、添加BC=FD,AC=ED不能判定△ABC≌△EFD,故此选项符合题意;C、添加∠ABC=∠DFE,AC=DE可利用AAS判定△ABC≌△EFD,故此选项不合题意;D、添加AC=DE,AB=EF可利用SAS判定△ABC≌△EFD,故此选项不合题意;故选:B.【变式1-2】(2021秋•源汇区校级期末)如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有( )A.1个B.2个C.3个D.4个【分析】先由∠1=∠2得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.【解答】解:∵∠1=∠2,∴∠CAB=∠DAE,∵AC=AD,∴当AB=AE时,可根据“SAS”判断△ABC≌△AED;当BC=ED时,不能判断△ABC≌△AED;当∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当∠B=∠E时,可根据“AAS”判断△ABC≌△AED.故选:C.【变式1-3】(2022秋•佳木斯期末)在△ABC和△DEF中,其中∠C=∠F,则下列条件:①AC=DF,∠A =∠D;②AC=DF,BC=EF;③∠A=∠D,∠B=∠E;④AB=DE,∠B=∠E;⑤AC=DF,AB=DE.其中能够判定这两个三角形全等的是( )A.①②④B.①②⑤C.②③④D.③④⑤【分析】根据全等三角形的判定方法:SAS,ASA,AAS,SSS,如果是两个直角三角形,除了前面四种方法以外,还可以用HL来判定.【解答】解:①AC=DF,∠A=∠D,再加上已知∠C=∠F,符合ASA,故符合题意;②AC=DF,BC=EF,再加上已知∠C=∠F,符合SAS,故符合题意;③∠A=∠D,∠B=∠E,再加上已知∠C=∠F,不能判定两个三角形全等,故不符合题意;④AB=DE,∠B=∠E,再加上已知∠C=∠F,符合AAS,故符合题意;⑤AC=DF,AB=DE,再加上已知∠C=∠F,不能判定两个三角形全等,故不符合题意;故选:A.【题型2 证明两个三角形全等】【例2】(2022春•鼓楼区校级期末)如图,点A,E,F,B在同一直线上,CE⊥AB,DF⊥AB,垂足分别为E,F,AE=BF,∠A=∠B.求证:△ADF≌△BCE.【分析】根据ASA证明△ADF≌△BCE即可.【解答】证明:∵AE=BF,∴AF=BE,∵CE⊥AB,DF⊥AB,∴∠AFD=∠BEC=90°,在△ADF和△BCE中,∠A=∠BAF=BE,∠AFD=∠BEC∴△ADF≌△BCE(ASA).【变式2-1】(2021秋•肥西县期末)已知,如图,AB=AE,AB∥DE,∠ECB=65°,∠D=115°,求证:△ABC≌△EAD.【分析】由∠ECB=65°得∠ACB=115°,再由AB∥DE,证得∠CAB=∠E,再结合已知条件AB=AE,可利用AAS证得△ABC≌△EAD.【解答】证明:∵∠ECB=65°,∴∠ACB=180°﹣∠ECB=115°.又∵∠D=115°,∴∠ACB=∠D.∵AB∥DE,∴∠CAB=∠E.在△ABC和△EAD中,∠ACB=∠D∠CAB=∠E,AB=AE∴△ABC≌△EAD(AAS).【变式2-2】(2021秋•信州区校级期中)如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE ⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:△BDE≌△CDF.【分析】由“AAS”可证△BDE≌△CDF.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,∵点D是BC的中点,∴BD=CD,在△BDE和△CDF中,∠BED=∠CFD∠BDE=∠CDF,BD=CD∴△BDE≌△CDF(AAS).【变式2-3】(2022•河源模拟)如图,在四边形ABCD中,AD∥BC,点M为对角线AC上一点,连接BM,若AC=BC,∠AMB=∠BCD,求证:△ADC≌△CMB.【分析】根据平行线的性质求出∠DAC=∠MCB,求出∠CBM=∠ACD,根据全等三角形的判定定理求出即可.【解答】证明:∵AD∥BC,∴∠DAC=∠MCB,∵∠AMB=∠BCD,∠CBM+∠ACB=∠AMB,∠ACB+∠ACD=∠BCD,∴∠CBM=∠ACD,在△ADC和△CMB中,∠ACD=∠CBMAC=BC,∠DAC=∠MCB∴△ADC≌△CMB(ASA).【题型3 全等三角形的判定与性质(证两次全等)】【例3】(2022春•徐汇区校级期末)如图,已知AE∥DF,OE=OF,∠B=∠C,求证:AB=CD.【分析】首先根据全等三角形的判定定理ASA推知△AOE≌△DOF,则OB=OC;然后再根据全等三角形的判定定理ASA证得△AOB≌△DOC,则AB=CD.【解答】证明:如图,∵AE∥DF,∴∠AEO=∠DFO.在△AOE与△DOF中,∠AEO=∠DFOOE=OF.∠AOE=∠DOF∴△AOE≌△DOF(ASA).∴OD=OA.在△AOB与△DOC中,∠AOB=∠DOCOD=OA.∠B=∠C∴△AOB≌△DOC(ASA).∴AB=CD.【变式3-1】(2021春•横山区期中)如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,连接BD,求证:Rt△ADE≌Rt△CDF.【分析】由直角三角形全等的“HL“判定定理证得Rt△ABD≌Rt△CBD,根据全等三角形的性质得到AD=CD,再由直角三角形全等的“HL“判定定理即可证得Rt△ADE≌Rt△CDF.【解答】证明:∵∠BAD=∠BCD=90°,在Rt△ABD和Rt△CBD中,BD=BDAB=BC,∴Rt△ABD≌Rt△CBD(HL),∴AD=CD,∵AE⊥EF于E,CF⊥EF于F,∴∠E=∠F=90°,在Rt△ADE和Rt△CDF中,AD=CDAE=CF,∴Rt△ADE≌Rt△CDF(HL).【变式3-2】(2021秋•石阡县期末)如图,AB=AC,E、D分别是AB、AC的中点,AF⊥BD,垂足为点F,AG⊥CE,垂足为点G,试判断AF与AG的数量关系,并说明理由.【分析】结论:AF=AG.先证明△ABD≌△ACE(SAS),推出∠ABD=∠ACE,再证明△ABF≌△ACG (AAS)即可解决问题.【解答】解:结论:AF=AG.理由:∵AB=AC,E、D分别是AB、AC的中点,∴AD=12AC=12AB=AE,在△ABD和△ACE中,AB=AC∠BAD=∠CAEAD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AF⊥BD,AG⊥CE,∴∠AFB=∠AGC=90°.在△ABF和△ACG中,∠ABF=∠ACG∠AFB=∠ACG,AB=AC∴△ABF≌△ACG(AAS),∴AF=AG.【变式3-3】(2021秋•沂源县期末)如图,AD=AC,AB=AE,∠DAB=∠CAE.(1)△ADE与△ACB全等吗?说明理由;(2)判断线段DF与CF的数量关系,并说明理由.【分析】(1)由∠DAB=∠CAE得出∠DAE=∠CAB,再根据SAS判断△ADE与△ACB全等即可;(2)由△ADB与△ACE全等得出DB=EC,∠FDB=∠FCE,判断△DBF与△ECF全等,最后利用全等三角形的性质可得.【解答】解:(1)全等,理由如下:∵∠DAB=∠CAE,∴∠DAE=∠CAB,在△ADE与△ACB中AD=AC∠DAE=∠CABAB=AE∴△ADE≌△ACB(SAS)(2)DF=CF,理由如下:在△ADB与△ACE中AD=AC∠DAB=∠CAE,AB=AE∴△ADB≌△ACE(SAS),∴∠DBA=∠CEA,∵△ADE≌△ACB,∴∠ABC=∠AED,∴∠DBF=∠CEF,在△DBF与△CEF中∠DFB=∠CFE∠DBF=∠CEF,DB=EC∴△DBF≌△CEF(AAS),∴DF=CF.【题型4 全等三角形的判定与性质(证垂直)】【例4】(2022秋•孟津县期末)如图,BM,CN分别是钝角△ABC的高,点Q是射线CN上的点,点P在线段BM上,且BP=AC,CQ=AB,请问AP与AQ有什么样的关系?请说明理由.【分析】根据同角的余角相等得出∠ABP=∠ACQ,即可利用SAS证明△ACQ≌△PBA,再根据全等三角形的性质即可得解.【解答】解:AP=AQ且AP⊥AQ.理由如下:∵BM⊥AC,CN⊥AB,∴∠ABP+∠BAM=90°,∠ACQ+∠CAN=90°.∴∠ABP=∠ACQ.在△ACQ和△PBA中,AC=PB,∠ACQ=∠PBA,QC=AB,∴△ACQ≌△PBA(SAS).∴AP=AQ,∠Q=∠PAB.∵∠Q+∠NAQ=90°.∴∠PAB+∠NAQ=90°.∴∠QAP=90°.∴AP⊥AQ.即AP=AQ,AP⊥AQ.【变式4-1】(2022春•金牛区校级期中)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE 上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.(1)求证:∠ABE=∠ACG;(2)试判:AG与AD的关系?并说明理由.【分析】(1)易证∠HFB=∠HEC=90°,又∠BHF=∠CHE,由三角形内角和定理即可得出结论;(2)先证△ABD≌△GCA(SAS),得出AD=GA,∠ADB=∠GAC,再由∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,则∠AED=∠GAD=90°,即可得出结果.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,∴∠ABE=90°﹣∠BHF,∠ACG=90°﹣∠CHE,∵∠BHF=∠CHE,∴∠ABE=∠ACG;(2)解:AG与AD的关系为:AG=AD,AG⊥AD,理由如下:∵BE⊥AC,∴∠AED=90°,由(1)得:∠ABD=∠ACG,在△ABD和△GCA中,AB=CG∠ABD=∠ACG,BD=AC∴△ABD≌△GCA(SAS),∴AD=GA,∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【变式4-2】(2021春•亭湖区校级期末)如图,△ABC中,CD⊥AB,垂足为D.BE⊥AC,垂足为G,AB=CF,BE=AC.(1)求证:AE=AF;(2)AE与AF有何位置关系.请说明理由.【分析】(1)利用SAS证明△AEB≌△FAC可证明结论;(2)由全等三角形的性质可得∠E=∠CAF,由余角的定义可求得∠EAF的度数即可得解.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AGB=90°,∴∠CAD+∠ACD=∠CAD+∠EBA=90°,∴∠ACD=∠EBA,在△AEB和△FAC中,AB=CF∠EBA=∠ACF,BE=AC∴△AEB≌△FAC(SAS),∴AE=AF;(2)解:AE⊥AF,理由如下:由(1)知△AEB≌△FAC,∴∠E=∠CAF,∵BE⊥AC,垂足为G,∴∠AGE=90°,∵∠E+∠EAG=90°,∴∠CAF+∠EAG=90°,即∠EAF=90°,∴AE⊥AF.【变式4-3】(2021春•泰兴市期末)如图,在锐角△ABC中,AD⊥BC于点D,点E在AD上,DE=DC,BD=AD,点F为BC的中点,连接EF并延长至点M,使FM=EF,连接CM.(1)求证:BE=AC;(2)试判断线段AC与线段MC的关系,并证明你的结论.【分析】(1)根据SAS证明△BDE≌△ADC,再根据全等三角形的性质即可得解;(2)根据SAS证明△BFE≌△CFM,得到∠CBE=∠BCM,BE=MC,由(1)得∠CBE=∠CAD,BE=AC,即得AC=MC,再利用直角三角形的两锐角互余得出AC⊥MC.【解答】(1)证明;∵AD⊥BC,∴∠BDE=∠ADC=90°,在△BDE与△ADC中,DE=DC∠BDE=∠ADC,BD=AD∴△BDE≌△ADC(SAS),∴BE=AC;(2)解:AC⊥MC且AC=MC,理由如下:∵F为BC中点,∴BF=CF,在△BFE与△CFM中,BF=CF∠BFE=∠CFM,EF=FM∴△BFE≌△CFM(SAS),∴∠CBE=∠BCM,BE=MC,由(1)得:∠CBE=∠CAD,BE=AC,∴∠CAD=∠BCM,AC=MC,∵∠CAD+∠ACD=90°,∴∠BCM+∠ACD=90°,即∠ACM=90°,∴AC⊥MC,∴AC⊥MC且AC=MC.【题型5 全等三角形的判定与性质(多结论)】【例5】(2022春•九龙坡区校级期末)如图,Rt△ABC中,∠BAC=90°,AD⊥BC于点D,过点A作AF ∥BC且AF=AD,点E是AC上一点且AE=AB,连接EF,DE.连接FD交BE于点G.下列结论中正确的有( )个.①∠FAE=∠DAB;②BD=EF;③FD平分∠AFE;④S四边形ABDE=S四边形ADEF;⑤BG=GE.A.2B.3C.4D.5【分析】由“SAS”可证△ABD≌△AEF,利用全等三角形的性质依次判断可求解.【解答】解:∵AD⊥BC,AF∥BC,∴AF⊥AD,∴∠FAD=90°=∠BAC,∴∠FAE=∠BAD,故①正确;在△ABD和△AEF中,AB=AE∠BAD=∠EAF,AD=AF∴△ABD≌△AEF(SAS),∴BD=EF,∠ADB=∠AFE=90°,故②正确;∵AF=AD,∠DAF=90°,∴∠AFD=45°=∠EFD,∴FD平分∠AFE,故③正确;∵△ABD≌△AEF,∴S△ABD =S△AEF,∴S四边形ABDE =S四边形ADEF,故④正确;如图,过点E作EN⊥EF,交DF于N,∴∠FEN=90°,∴∠EFN=∠ENF=45°,∴EF=EN=BD,∠END=∠BDF=135°,在△BGD和△EGN中,∠BDG=∠ENG∠BGD=∠EGNBD=NE,∴△BDG≌△ENG(AAS),∴BG=GE,故⑤正确,故选:D.【变式5-1】(2021秋•垦利区期末)如图,在△ABC中,BD、CE分别是∠ABC和∠ACB的平分线,AM ⊥CE于P,交BC于M,AN⊥BD于Q,交BC于N,∠BAC=110°,AB=6,AC=5,MN=2,结论:①AP=MP;②BC=9;③∠MAN=30°;④AM=AN.其中正确的有( )A.4个B.3个C.2个D.1个【分析】证明△ACP≌△MCP,根据全等三角形的性质得到AP=MP,判断①;根据全等三角形的性质得到CM=AC=5,BN=AB=6,结合图形计算,判断②;根据三角形内角和定理判断③;根据等腰三角形的性质判断④.【解答】解:∵CE是∠ACB的平分线,∴∠ACP=∠NCP,在△ACP和△MCP中,∠ACP=∠MCPCP=CP,∠CPA=∠CPM=90°∴△ACP≌△MCP(ASA),∴AP=MP,①结论正确;∵△ACP≌△MCP,∴CM=AC=5,同理可得:BN=AB=6,∴BC=BN+CM﹣MN=5+6﹣2=9,②结论正确;∵∠BAC=110°,∴∠MAC+∠BAN﹣∠MAN=110°,由①知:∠CMA=∠CAM,∠BNA=∠BAN,在△AMN中,∠CMA+∠BNA=180°﹣∠MAN=∠BAN+∠MAC,∴180°﹣∠MAN﹣∠MAN=110°,∴∠MAN=35°,③结论错误;④当∠AMN=∠ANM时,AM=AN,∵AB=6≠AC=5∴∠ABC≠∠ACB,∴∠AMN≠∠ANM,则AM与AN不相等,④结论错误;故选:C.【变式5-2】(2021春•锦州期末)如图,在△AOB和△COD中,OA=OB,OC=OD(OA<OC),∠AOB=∠COD=α,直线AC,BD交于点M,连接OM.下列结论:①AC=BD,②∠OAM=∠OBM,③∠AMB =α,④OM平分∠BOC,其中正确结论的个数是( )A.4B.3C.2D.1【分析】由SAS证明△AOC≌△BOD得出∠OAM=∠OBM,AC=BD,①②正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,③正确;作OG⊥AM于G,OH⊥DM于H,则∠OGA=∠OHB=90°,即可判定△OAG≌△OBH,得出OG=OH,由角平分线的判定方法得∠AMO=∠DMO,假设OM平分∠BOC,则可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故④错误;即可得出结论.【解答】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,OA=OB∠AOC=∠BOD,OC=OD∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,即∠OAM=∠OBM,故①②正确;由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,故③正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,在△OAG和△OBH中,∠OGA=∠OHB∠OAC=∠OBD,OA=OB∴△OAG≌△OBH(AAS),∴OG=OH,∵△AOC≌△BOD,∴OG=OH,∴MO 平分∠AMD ,∴∠AMO =∠DMO ,假设OM 平分∠BOC ,则∠BOM =∠COM ,∵∠AOB =∠COD ,∴∠AOB +∠BOM =∠COD +∠COM ,即∠AOM =∠DOM ,在△AMO 与△DMO 中,∠AOM =∠DOM OM =OM ∠AMO =∠DMO,∴△AMO ≌△DMO (ASA ),∴OA =OD ,∵OC =OD ,∴OA =OC ,而OA <OC ,故④错误;正确的个数有3个;故选:B .【变式5-3】(2021春•江北区校级期末)如图,已知AB =AC ,点D 、E 分别在AC 、AB 上且AE =AD ,连接EC ,BD ,EC 交BD 于点M ,连接AM ,过点A 分别作AF ⊥CE ,AG ⊥BD ,垂足分别为F 、G ,下列结论:①△EBM ≌△DCM ;②∠EMB =∠FAG ;③MA 平分∠EMD ;④若点E 是AB 的中点,则BM +AC >EM +BD ;⑤如果S △BEM =S △ADM ,则E 是AB 的中点;其中正确结论的个数为( )A .2个B .3个C .4个D .5个【分析】①先证明△ABD ≌△ACE 得出∠B =∠C ,即可证明△EBM ≌△DCM ,即可判断①;②根据垂直的定义和四边形的内角和可得结论,即可判断②;③证明△AEM ≌△ADM ,得∠AME =∠AMD ,即可判断③;④如图,延长CE至N,使EN=EM,连接AN,BN,证明△AEN≌△BEM(SAS),得AN=BM,根据三角形三边关系可判断④;⑤根据面积相等可知:S△ADM=S△CDM,由同高可知底边AD=CD,从而判断⑤.【解答】解:①在△ABD和△ACE中,AB=AC∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS),∴∠B=∠C,∵AB=AC,AE=AD,∴AB﹣AE=AC﹣AD,即BE=CD,在△EBM和△DCM中,∠EMB=∠DMC∠B=∠C,EB=CD∴△EBM≌△DCM(AAS),故①正确;②∵AF⊥CE,AG⊥BD,∴∠AFM=∠AGM=90°,∴∠FAG+∠FMG=180°,∵∠FMG+∠EMB=180°,∴∠EMB=∠FAG,故②正确;③由①知:△EBM≌△DCM,∴EM=DM,在△AEM和△ADM中,AE=ADAM=AM,EM=DM∴△AEM≌△ADM(SSS),∴∠AME=∠AMD,∴MA 平分∠EMD ;故③正确;④如图,延长CE 至N ,使EN =EM ,连接AN ,BN ,∵E 是AB 的中点,∴AE =BE ,在△AEN 和△BEM 中,AE =BE ∠AEN =∠BEM EN =EM,∴△AEN ≌△BEM (SAS ),∴AN =BM ,由①知:△ABD ≌△ACE ,∴BD =CE ,△ACN 中,AC +AN >CN ,∴BM +AC >BD +EM ,故④正确;⑤∵S △BEM =S △ADM ,S △EBM =S △DCM ,∴S △ADM =S △CDM ,∴AD =CD =12AC ,∵AD =AE ,AB =AC ,∴AE =12AB ,∴E 是AB 的中点;故⑤正确;本题正确的有5个;故选:D .【题型6 全等三角形的判定与性质(探究角度之间的关系)】【例6】(2022春•杏花岭区校级期中)已知AB =AC ,AD =AE ,∠BAC =∠DAE .(1)如图1,当点D 在BC 上时,求证:BD =CE ;(2)如图2,当点D 、E 、C 在同一直线上,且∠BAC =α,∠BAE =β时,求∠DBC 的度数(用含α和β的式子表示).【分析】(1)证出△ABD≌△ACE即可;(2)由(1)的结论以及四边形的内角和定理可得答案.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,AB=AC∠BAD=∠CAEAD=AE,∴△ABD≌△ACE(SAS),∴BD=CE;(2)解:∵AB=AC,AD=AE,∠BAC=∠DAE=α,∴∠ABC=∠ACB=180°α2=90°―12α=∠ADE=∠AED,由(1)得△ABD≌△ACE,∴∠ADB=∠AEC=180°﹣∠AED=90°+12α,∴∠DBC=360°﹣∠BCA﹣∠CAD﹣∠ADB=360°﹣(90°―12α)﹣(2α﹣β)﹣(90°+12α)=180°﹣2α+β.【变式6-1】(2022•南京模拟)在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 90 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).【分析】(1)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,即可解题;(2)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠B+∠ACB=180°﹣α即可解题;(3)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°即可解题;【解答】解:(1)∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=90°,∴∠DCE=∠ACE+∠ACB=90°;故答案为90.(2)∵∠BAD+∠DAC=α,∠DAC+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=180°﹣α,∴∠DCE=∠ACE+∠ACB=180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠BAD+∠BAE=α,∠BAE+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴∠AEC=∠ADB,∵∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°,∠CED=∠AEC+∠AED,∴α=β.【变式6-2】(2022秋•江夏区期末)已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.(1)如图1,若∠DAB=60°,则∠AFG= ;(2)如图2,若∠DAB=90°,则∠AFG= ;(3)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明.【分析】(1)连接AG .易证△ADC ≌△ABE ,可得DC =BE ,∠ADC =∠ABE ,AD =AB ,根据G 、F 分别是DC 与BE 的中点,可得DG =BF ,即可证明△ADG ≌△ABF ,可得AG =AF ,∠DAG =∠BAF ,即可求得∠DAB =∠GAF ,即可解题.(2)根据(1)中结论即可求得∠AFG 的值,即可解题;(3)根据(1)中结论即可求得∠AFG 的值,即可解题.【解答】解:(1)连接AG .∵∠DAB =∠CAE ,∴∠DAB +∠BAC =∠CAE +∠BAC ,∴∠DAC =∠BAE .在△ADC 和△ABE 中,AD =AB ∠DAC =∠BAE AC =AE,∴△ADC ≌△ABE (SAS ),∴DC =BE ,∠ADC =∠ABE .AD =AB .∵G 、F 分别是DC 与BE 的中点,∴DG =12DC ,BF =12BE ,∴DG =BF .在△ADG 和△ABF 中,AD =AB ∠ADC =∠ABE DG =BF,∴△ADG ≌△ABF (SAS ),∴AG =AF ,∠DAG =∠BAF ,∴∠AGF =∠AFG ,∠DAG ﹣∠BAG =∠BAF ﹣∠BAG ,∴∠DAB =∠GAF .∵∠DAB =60°,∴∠GAF =60°.∵∠GAF +∠AFG +∠AGF =180°,∴∠AFG =60°;(2)∵∠DAB =90°,∠DAB =∠GAF ,(已证)∴∠GAF =90°,∵AG =AF ,∴∠AFG=12(180°﹣90°)=45°;(3)∵∠DAB=α,∠DAB=∠GAF,(已证)∴∠GAF=α,∵AG=AF,∴∠AFG=12(180°﹣α);故答案为60°,45°,12(180°﹣α).【变式6-3】(2021秋•肥西县期末)在△ABC中,AB=AC,D是直线BC上一点,连接AD,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=26°,则∠DCE= .(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.【分析】(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②分三种情况:(Ⅰ)当D在线段BC上时,证明△ABD≌△ACE(SAS),则∠ADB=∠AEC,∠ABC=∠ACE,推出∠DAE+∠DCE=180°,即α+β=180°;(Ⅱ)当点D在线段BC反向延长线上时,α=β,同理可证明△ABD≌△ACE(SAS),则∠ABD=∠ACE,推出∠BAC=∠DCE,即α=β;(Ⅲ)当点D在线段BC的延长线上时,由①得α=β.【解答】解:(1)如图1所示:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD 和△CAE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠B =12(180°﹣26°)=77°,BD =CE ,∴BC +DC =CE ,∵∠ACD =∠B +∠BAC =∠ACE +∠DCE ,∴∠BAC =∠DCE ,∵∠BAC =26°,∴∠DCE =26°,故答案为:26°;(2)①当点D 在线段BC 的延长线上移动时,α与β之间的数量关系是α=β,理由如下:∵∠DAE =∠BAC ,∴∠DAE +∠CAD =∠BAC +∠CAD ,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠B =∠ACE ,∵∠ACD =∠B +∠BAC =∠ACE +∠DCE ,∴∠BAC =∠DCE ,∵∠BAC =α,∠DCE =β,∴α=β;②分三种情况:(Ⅰ)当D 在线段BC 上时,α+β=180°,如图2所示,理由如下:同理可证明:△ABD ≌△ACE (SAS ),∴∠ADB =∠AEC ,∠ABC =∠ACE ,∵∠ADC +∠ADB =180°,∴∠ADC +∠AEC =180°,∴∠DAE +∠DCE =180°,∵∠BAC =∠DAE =α,∠DCE =β,∴α+β=180°;(Ⅱ)当点D 在线段BC 反向延长线上时,α=β,如图3所示,理由如下:同理可证明:△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,∵∠ACE =∠ACD +∠DCE ,∠ABD =∠ACD +∠BAC ,∴∠ACD +∠DCE =∠ACD +∠BAC ,∴∠BAC =∠DCE ,∵∠BAC =α,∠DCE =β,∴α=β;(Ⅲ)当点D 在线段BC 的延长线上时,如图1所示,α=β;综上所述,当点D 在BC 上移动时,α=β或α+β=180°.【题型7 全等三角形的判定与性质(探究线段之间的关系)】【例7】(2022春•沙坪坝区校级期中)如图,在△ABC 中,∠ABC 、∠ACB 的平分线交于点D ,延长BD 交AC 于E ,G 、F 分别在BD 、BC 上,连接DF 、GF ,其中∠A =2∠BDF ,GD =DE .(1)当∠A =80°时,求∠EDC 的度数;(2)求证:CF =FG +CE .【分析】(1)在BC 上取点M ,使CM =CE ,证明△CDE ≌△CDM (SAS ),可得DE =DM ,∠DEC =∠DMC ,∠EDC =∠MDC ,证明∠BDM =180°―12∠ABC ﹣∠DMB =180°―12∠ABC ﹣∠AEB =∠A =80°,进而可以解决问题.(2)结合(1)然后证明△DGF≌△DMF(SAS),可得GF=MF,进而可以解决问题.【解答】(1)解:如图,在BC上取点M,使CM=CE,∵CD平分∠ACB,∴∠ACD=∠BCD,在△CDE和△CDM中,CE=CM∠ECD=∠MCDCD=CD,∴△CDE≌△CDM(SAS),∴DE=DM,∠DEC=∠DMC,∠EDC=∠MDC,∵GD=DE,∴GD=MD,∵∠DEC+∠AEB=180°,∠DMC+∠DMF=180°,∴∠AEB=∠DMF,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC,∴∠BDM=180°―12∠ABC﹣∠DMB=180°―12∠ABC﹣∠AEB=∠A=80°,∴∠EDM=100°,∴∠EDC=50°;(2)证明:∵∠A=2∠BDF,∴∠BDM=2∠BDF,∴∠FDM=∠BDF,在△DGF和△DMF中,DG=DM∠GDF=∠MDFDF=DF,∴△DGF≌△DMF(SAS),∴GF=MF,∴CF=CM+FM=CE+GF.∴CF=FG+CE.【变式7-1】(2022•黄州区校级模拟)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【分析】(1)根据题意和题目中的条件可以找出△ABC≌△ADE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.【解答】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,AB=AD∠BAC=∠DAE,AC=AE∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,BF=GF∠AFB=∠AFG,AF=AF∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,∠GCA=∠DCA∠CGA=∠CDA,AG=AD∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【变式7-2】(2021秋•两江新区期末)在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.【分析】(1)证明Rt△ACB≌Rt△DEB即可解决问题;(2)作BM平分∠ABD交AK于点M,证明△BMK≌△BGK,△ABM≌△DBG,即可解决问题.【解答】证明:(1)在Rt△ACB和Rt△DEB中,AC=DEBC=BE,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,∠MBD=∠GBDBK=BK,∠AKB=∠BKG∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,AB=BD∠ABM=∠DBG,BM=BG∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.【变式7-3】(2022春•济南期中)把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)【分析】(1)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;(2)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;(3)在CB截取BE=AM,连接DE,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN ≌△EDN,推出MN=NE即可.【解答】(1)AM+BN=MN,证明:延长CB到E,使BE=AM,∵∠A=∠CBD=90°,∴∠A=∠EBD=90°,在△DAM和△DBE中AM=BE∠A=∠DBE,AD=BD∴△DAM≌△DBE,∴∠BDE=∠MDA,DM=DE,∵∠MDN=∠ADC=60°,∴∠ADM=∠NDC,∴∠BDE=∠NDC,∴∠MDN=∠NDE,在△MDN和△EDN中DM=DE∠MDN=∠NDE,DN=DN∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(2)AM+BN=MN,证明:延长CB到E,使BE=AM,连接DE,∵∠A=∠CBD=90°,∴∠A=∠DBE=90°,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠MDN=∠BDC,∴∠MDA=∠CDN,∠CDM=∠NDB,在△DAM和△DBE中AM=BE∠A=∠DBE,AD=BD∴△DAM≌△DBE,∴∠BDE=∠MDA=∠CDN,DM=DE,∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,∴∠NDM=∠ADC=∠CDB,∴∠ADM=∠CDN=∠BDE,∵∠CDM=∠NDB∴∠MDN=∠NDE,在△MDN和△EDN中DM=DE∠MDN=∠NDE,DN=DN∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(3)BN﹣AM=MN,证明:在CB截取BE=AM,连接DE,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠ADN=∠ADN,∴∠MDA=∠CDN,∵∠B=∠CAD=90°,∴∠B=∠DAM=90°,在△DAM和△DBE中AM=BE∠DAM=∠DBE,AD=BD∴△DAM≌△DBE,∴∠BDE=∠ADM=∠CDN,DM=DE,∵∠ADC=∠BDC=∠MDN,∴∠MDN=∠EDN,在△MDN和△EDN中DM=DE∠MDN=∠NDE,DN=DN∴△MDN≌△EDN,∴MN=NE,∵NE=BN﹣BE=BN﹣AM,∴BN﹣AM=MN.【题型8 全等三角形的应用】【例8】(2022春•二七区期末)为了测量一池塘的两端A,B之间的距离,同学们想出了如下的两种方案:方案①如图1,先在平地上取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至点D,BC至点E,使DC=AC,EC=BC,最后量出DE的距离就是AB的长;方案②如图2,过点B作AB的垂线BF,在BF上取C,D两点,使BC=CD,接着过D作BD的垂线DE,在垂线上选一点E,使A、C、E三点在一条直线上,则测出DE的长即是AB的距离.问:(1)方案①是否可行?请说明理由;(2)方案②是否可行?请说明理由;(3)小明说在方案②中,并不一定需要BF⊥AB,DE⊥BF,只需要 AB∥DE 就可以了,请把小明所说的条件补上.【分析】(1)根据SAS证明△DCE≌△ACB,根据全等三角形的性质即可得证;(2)根据ASA证明△ABC≌△EDC,进一步即可得证;(3)只需要AB∥DE,此时∠ABC=∠EDC,证明△ABC≌△EDC(ASA)即可得证.【解答】解:(1)方案①可行,理由如下:在△DCE和△ACB中,DC=AC∠DCE=∠ACB,EC=BC∴△DCE≌△ACB(SAS),∴DE=AB,∴方案①可行;(2)方案②可行,理由如下:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,∠ABC=∠EDCBC=CD,∠ACB=∠ECD∴△ABC≌△EDC(ASA),∴DE=AB,故方案②可行;(3)只需要AB∥DE,此时∠ABC=∠EDC,证明步骤同(2),故答案为:AB∥DE.【变式8-1】(2021春•普宁市期末)学校为开展数学实践活动,成立了以小明为首的户外测量小组,测量小组带有测量工具:绳子、拉尺、小红旗、测角器(可测量两个点分别到测量者连线之间的夹角大小).小明小组的任务是测量某池塘不能直接到达的两个端点A、B之间的距离.(1)小明小组提出了测量方案:在池塘南面的空地上(如图),取一个可直接到达A、B的点C,用绳子连接AC和BC,并利用绳子分别延长AC至D、BC至E,使用拉尺丈量CD=CA、CE=CB,确定D、E 两个点后,最后用拉尺直接量出线段DE的长,则端点A、B之间的距离就是DE的长.你认为小明小组测量方案正确吗?请说明理由.(2)你还有不同于小明小组的其他测量方法吗?请写出其中一个完整的测量方案(在备用图1中画出简图,但不必说明理由).(3)假设池塘南面(即点D、E附近区域)没有足够空地(或空地有障碍物或不可直达等不可测量情况),而点B的右侧区域有足够空地并可用于测量,请你设计一个可行的测量方案(在备用图2中画出图形),并说明理由.【分析】(1)根据SAS证明△ABC≌△DEC即可;(2)先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离;(3)过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA.这时只要测出BC的长即为A,B的距离.理由根据ASA证明△ABD≌△CBD即可.【解答】解:(1)小明小组测量方案正确,理由如下:连接AB,如图所示:在△ABC和△DEC中,CD=CA∠ACB=∠DCE,CE=CB∴△ABC≌△DEC(SAS),∴DE=AB.(2)有其他方案,测量方案如下:先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离,如图所示:(3)测量方案:过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA.这时只要测出BC的长即为A,B的距离,如图所示:理由如下:∵BD⊥AB,∴∠ABD=∠CBD=90°,在△ABD和△CBD中,∠ABD=∠CBDBD=BD,∠BDC=∠BDA∴△ABD≌△CBD(ASA),∴BC=AB.【变式8-2】(2022春•金乡县期中)如图,小明和小华住在同一个小区不同单元楼,他们想要测量小明家所在单元楼AB的高度,首先他们在两栋单元楼之间选定一点E,然后小华在自己家阳台C处测得E处的俯角为∠1,小明站在E处测得眼睛F到AB楼端点A的仰角为∠2,发现∠1与∠2互余,已知EF=1米,BE=CD=20米,BD=58米,试求单元楼AB的高.【分析】过F作FG⊥AB于G,则四边形BEFG是矩形,求得FG=BE=20米,BG=EF=1米,根据全等三角形的性质即可得到结论.【解答】解:过F作FG⊥AB于G,则四边形BEFG是矩形,∴FG=BE=20米,BG=EF=1米,∵∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3,在△AFG与△ECD中,∠AGF=∠EDC=90°FG=CD,∠2=∠3∴△AFG≌△ECD(ASA),∴AG=DE=BD﹣BE=38(米),∴AB=AG+BG=38+1=39(米),答:单元楼AB的高为39米.【变式8-3】(2022春•郑州期末)阅读并完成相应的任务.如图,小明站在堤岸凉亭A点处,正对他的B点(AB与堤岸垂直)停有一艘游艇,他想知道凉亭与这艘游艇之间的距离,于是制定了如下方案.课题测凉亭与游艇之间的距离测量工具皮尺等测量方案示意图(不完整)测量步骤①小明沿堤岸走到电线杆C旁(直线AC与堤岸平行);②再往前走相同的距离,到达D点;③他到达D点后向左转90度直行,当自己,电线杆与游艇在一条直线上时停下来,此时小明位于点E处.测量数据AC=20米,CD=20米,DE=8米(1)任务一:根据题意将测量方案示意图补充完整.(2)任务二:①凉亭与游艇之间的距离是 米.②请你说明小明方案正确的理由.【分析】(1)任务一:根据题意可知,小华的方案中蕴含着一对全等三角形,即△ABC≌△DEC,将图形补充完整即可;(2)任务二:①由补充完整的图形可知,△ABC≌△DEC,且AB与DE是对应边,可知AB=DE=8米,得出答案为8;②由题意可知AC=CD=20米,∠A=∠D=90°,∠ACB与∠DCE是对顶角,由“ASA”可判定△ABC≌△DEC,则AB=DE=8米,说明小明的方案是正确的.【解答】解:(1)任务一:将测量方案示意图补充完整如图所示.(2)任务二:①由△ABC≌△DEC得AB=DE=8(米),故答案为:8.②理由:如图,由题意可知,AC=20米,CD=20米,DE=8米,∠A=90°,∠D=90°,∴AC=DC,∠A=∠D,在△ABC和△DEC中,∠A=∠DAC=DC,∠ACB=∠DCE∴△ABC≌△DEC(ASA),∴AB=DE=8米,∴小明的方案是正确的.。
全等三角形判定一(SSSSAS)(基础)知识讲解
全等三角形判定一(SSS ,SAS )(基础)责编:杜少波【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE ,∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量.举一反三:【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD ,∴∠ACD=∠ECD ,∠BCE=∠ECD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等) ∴ OP平分∠AOB.。
1.3.1探索三角形全等的条件
“SSS”. 简写为:“边边边”或“SSS”
ቤተ መጻሕፍቲ ባይዱ
A
E
用数学语 B
C
F
G
言表述: 在 ABC 和 EFG中
AB=EF BC=FG
AC=EG
ABC ≌ EFG(SSS)
例:已知:如图,在△ABC中, AB=AC,AD是中线 求证:△ABD≌△ ACD .
分析:要证明△ABD≌△ACD,首先看这两个三角形
的三条边是否对应相等.
A
B
C
D
动手做一做 准备几根硬纸条
(1)取出三根硬纸条钉成一个三角形,你能 拉动其中两边,使这个三角形的形状发生变化 吗? (2)取出四根硬纸条钉成一个四边形,拉动 其中两边,这个四边形的形状改变了吗?钉成 一个五边形,又会怎么样? (3)上面的现象说明了什么?
三角形的框架,它的大小和形状是固定不 变的,三角形的这个性质叫做三角形的稳 定性。
探索三角形全等的条件
你如
能果 说给
①三角;
出出 有三
②三边;
哪个 几条
③两边一角;
种件 可画
④两角一边.
能三
的角
情形
况,
?
探索三角形全等的条件
三个条件 --三个角 1.已知三角形的三个角分别30°,60°,90°
3000
60o 60o 60o
结论:三个内角对应相等的两个三角形
不一定全等.
三角形全等判定定理一: 三边分别相等的两个三角形全等 , 简写为“边边边”或
(3)边边边公理:三边对应相等的两个三 角形全等,简写为“边边边”或“SSS”.
(4)三角形具有稳定性.
你还有什么想法吗?
课后作业
三角形全等的判定
考点名称:三角形全等的判定•三角形全等判定定理:1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以:SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
•三角形全等的判定公理及推论:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
要验证全等三角形,不需验证所有边及所有角也对应地相同。
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:①S.S.S. (边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
②S.A.S. (边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
③A.S.A. (角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
④A.A.S. (角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
⑤R.H.S. / H.L. (直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。
但并非运用任何三个相等的部分便能判定三角形是否全等。
以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:⑥A.A.A. (角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
判定三角形全等的条件
判定三角形全等的条件一、边边边(SSS)内容:三条边分别相等的两个三角形全等。
理解:若给出三条线段的长度(满足三角形三边关系),即可确定出的三角形形状,大小。
若给出三条线段长度AB=c,BC=a,AC=b,确定过程如下:①先确定一边AB;②分别以AB为圆心,分别做半径为b,a长的圆,交于C点;③最后连接AC,BC。
这样三角形的大小,形状就都被确定出来了。
二、边角边(SAS)内容:两边和它们的夹角分别相等的两个三角形全等。
理解:若确定两条公共端点线段的长度,及它们的夹角,即可确定出的三角形形状,大小。
若给出AB=c BC=a ∠B=α,确定过程如下:①画∠EAD=α;②在射线AE上截取AC=c,在射线AD上截取AB=c;③连接BC。
这样,三角形的.大小形状同样被确定了。
三、角边角(ASA)内容:两角和他们的夹边分别相等的两个三角形全等。
理解:若给出三角形的两个角的大小和它们的夹边的长度了,即可确定出的三角形形状,大小。
若有AB=c,∠CAB=α,∠CBA=β,确定过程如下:①先确定一边AB=c;②在AB同旁画∠DAB=α,∠EBA=β,AD,BE交于点C。
这样,三角形的大小形状同样被确定了。
四、角角边(AAS)内容:两边分别相等且其中一组等角的对边相等的两个三角形全等。
理解:若给出三角形的两个角的大小和其中一个角对边的长度了,即可确定出的三角形形状,大小。
若有AB=c,∠CAB=α,∠ACB=β,确定过程如下:由三角形的内角和为180度可得出剩下一角∠CBA的度数,这样,利用角边角的思路即可确定三角形形状大小。
相关定理:三角形内角和为180度五、斜边,直角边(HL)内容:斜边和一条直角边分别相等的两个直角三角形全等。
(HL)理解:若确定一个三角形为直角三角形,同时得到其一个直角边和斜边的长度,即可确定出三角形的形状大小。
若确定三角形为直角三角形,还得到其一直角边和斜边,则可勾股定理得出剩下一边,再通过SSS或SAS 即可确定三角形形状大小。
浙教版八上第一章1.4全等三角形的判定
1.4 全等三角形的判定知识点梳理1、全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.2、线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.题型梳理题型一找条件证全等1.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD3.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF4.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD5.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB6.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙7.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.9.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC10.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC11.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF12.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个B.3个C.4个D.5个13.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)14.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)15.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC (不添加其他字母及辅助线),你添加的条件是.16.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB =DC,其中不能确定△ABC≌△DCB的是(只填序号).17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).题型二直接证明全等1.如图,已知AB=DE,∠B=∠E,添加下列哪个条件可以利用SAS判断△ABC≌△DEC.正确的是:.①∠A=∠D;②BC=EC;③AC=DC;④∠BCE=∠ACD.2.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是.(填序号)3.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC ≌△DEF.4.如图,∠C=∠E,AC=AE,点D在BC边上,∠1=∠2,AC和DE相交于点O.求证:△ABC≌△ADE.5.已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.7.已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF≌△CBE.8.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.9.如图,已知AB∥CF,D是AB上一点,DF交AC于点E,若AB=BD+CF,求证:△ADE ≌△CFE.题型三动点与全等(分类讨论,找到对应定点)1.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.2.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为.3.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E 从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.4.如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=时,以点A,P,Q为顶点的三角形与△ABC全等.5.已知:如图,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 秒时,△ABP 和△DCE 全等.6.(多选)如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为 cm /s .A .13;B .1;C .1.5;D .2.7.如图,△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,直线l 经过点C 且与边AB 相交.动点P 从点A 出发沿A →C →B 路径向终点B 运动;动点Q 从点B 出发沿B →C →A 路径向终点A 运动.点P 和点Q 的速度分别为2cm /s 和3cm /s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PE ⊥l 于点E ,QF ⊥l 于点F ,设运动时间为t 秒,则当t = 秒时,△PEC 与△QFC 全等.8.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm /秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC = cm .(用t 的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D 运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.9.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB 上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).题型四全等判定的实际应用1.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去2.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块5.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS6.如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.④7.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ8.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA9.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS10.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.12.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第块去.(填序号)13.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.14.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.15.如图所示,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带.16.淇淇同学沿一段笔直的人行道行走,在由A处步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.17.公路上,A,B两站相距25千米,C、D为两所学校,DA⊥AB于点A,CB⊥AB于点B,如图,已知DA=15千米,现在要在公路AB上建一报亭H,使得C、D两所学校到H的距离相等,且∠DHC=90°,问:H应建在距离A站多远处?学校C到公路的距离是多少千米?题型五垂直平分线的性质与应用1.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm2.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°3.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°4.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°5.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm6.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.157.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°8.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.9.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.10.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为.答案与解析题型一找条件证全等1.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D .3.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF【分析】根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【解答】解:∵∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用ASA 可得△ABC ≌△DEF ;∴添加BC =EF ,利用SAS 可得△ABC ≌△DEF ;∴添加∠ACB =∠F ,利用AAS 可得△ABC ≌△DEF ;故选:D .4.如图,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A .AC =BDB .∠CAB =∠DBAC .∠C =∠D D .BC =AD【分析】根据全等三角形的判定:SAS ,AAS ,ASA ,可得答案.【解答】解:由题意,得∠ABC =∠BAD ,AB =BA ,A 、∠ABC =∠BAD ,AB =BA ,AC =BD ,(SSA )三角形不全等,故A 错误;B 、在△ABC 与△BAD 中,{∠ABC =∠BADAB =BA ∠CAB =∠DBA,△ABC ≌△BAD (ASA ),故B 正确;C 、在△ABC 与△BAD 中,{∠C =∠D∠ABC =∠BAD AB =BA,△ABC ≌△BAD (AAS ),故C 正确;D 、在△ABC 与△BAD 中,{BC =AD∠ABC =∠BAD AB =BA,△ABC ≌△BAD (SAS ),故D 正确;故选:A .5.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【分析】本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.6.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.7.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】根据题目所给条件∠ABC=∠DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.【分析】根据全等三角形的判定定理进行判断.【解答】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.9.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:C.10.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项符合题意;选项B、添加AC=DF可用AAS进行判定,故本选项不符合题意;选项C、添加AB=DE可用AAS进行判定,故本选项不符合题意;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项不符合题意.故选:A.11.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF【分析】分别对各选项中给出条件证明△ABC≌△DEF,进行一一验证即可解题.【解答】解:(1)在△ABC 和△DEF 中,{AB =DE ∠B =∠E BC =EF,∴△ABC ≌△DEF (SAS );故A 正确;(2)在△ABC 和△DEF 中,{AB =DE BC =EF AC =DF,∴△ABC ≌△DEF (SSS );故B 正确;(3)在△ABC 和△DEF 中,{∠A =∠D AB =DE ∠B =∠E,∴△ABC ≌△DEF (ASA );故C 正确;(4)无法证明△ABC ≌△DEF ,故D 错误;故选:D .12.如图,EB 交AC 于点M ,交FC 于点D ,AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:其中正确的结论有( )①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN ;⑤△AFN ≌△AEM .A .2个B .3个C .4个D .5个【分析】①正确.可以证明△ABE ≌△ACF 可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA 证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA证明三角形全等即可.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE﹣∠BAC=∠CAF﹣∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.13.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF.(只填一个即可)【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC =∠EDF,根据条件利用ASA即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,{∠B =∠E BA =ED,∴△ABC ≌△DEF (SAS );若添加∠BAC =∠EDF ,∵BC ∥EF ,∴∠B =∠E ,∵BD =AE ,∴BD ﹣AD =AE ﹣AD ,即BA =ED ,在△ABC 和△DEF 中,{∠B =∠E BA =ED ∠BAC =∠EDF,∴△ABC ≌△DEF (ASA ),故答案为:BC =EF 或∠BAC =∠EDF14.如图,已知AB =BC ,要使△ABD ≌△CBD ,还需添加一个条件,你添加的条件是 ∠ABD =∠CBD 或AD =CD . .(只需写一个,不添加辅助线)【分析】由已知AB =BC ,及公共边BD =BD ,可知要使△ABD ≌△CBD ,已经具备了两个S 了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS ,②SSS .所以可添∠ABD =∠CBD 或AD =CD .【解答】解:答案不唯一.①∠ABD =∠CBD .在△ABD 和△CBD 中,∵{AB =BC∠ABD =∠CBD BD =BD,∴△ABD ≌△CBD (SAS );②AD =CD .在△ABD 和△CBD 中,∵{BD=BDAD=CD,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.15.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC (不添加其他字母及辅助线),你添加的条件是AC=BC(答案不唯一).【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC(答案不唯一),∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,在△ADC和△BEC中{∠ADC=∠BEC ∠C=∠CAC=BC,∴△ADC≌△BEC(AAS),故答案为:AC=BC(答案不唯一).16.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB =DC,其中不能确定△ABC≌△DCB的是②(只填序号).【分析】一般三角形全等的判定方法有SSS,SAS,AAS,ASA,据此可逐个对比求解.【解答】解:∵已知∠ABC=∠DCB,且BC=CB∴若添加①∠A=∠D,则可由AAS判定△ABC≌△DCB;若添加②AC=DB,则属于边边角的顺序,不能判定△ABC≌△DCB;若添加③AB=DC,则属于边角边的顺序,可以判定△ABC≌△DCB.故答案为:②.17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.题型二直接证明全等1.如图,已知AB=DE,∠B=∠E,添加下列哪个条件可以利用SAS判断△ABC≌△DEC.正确的是:②.①∠A=∠D;②BC=EC;③AC=DC;④∠BCE=∠ACD.【分析】已知两个三角形的一组对应角相等和一组对应边相等,根据全等三角形的判定定理添加条件即可.【解答】解:∵AB=DE,∠B=∠E,∴添加①∠A=∠D,利用ASA得出△ABC≌△DEC;∴添加②BC=EC,利用SAS得出△ABC≌△DEC;∴添加④∠BCE=∠ACD,得出∠ACB=∠DCE,利用AAS得出△ABC≌△DEC;故答案为:②.2.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是①③④.(填序号)【分析】根据全等三角形的判定方法一一判断即可.【解答】解:因为∠ABC =∠DCB ,BC =CB ,①AB =CD ,根据SAS 可以判定△ABC ≌△DCB .②AC =DB ,无法判断△ABC ≌△DCB .③∠A =∠D ,根据AAS 可以判定△ABC ≌△DCB .④∠ACB =∠DBC ,根据ASA 可以判定△ABC ≌△DCB .故答案为:①③④.3.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .【分析】先根据AF =DC ,可推得AF ﹣CF =DC ﹣CF ,即AC =DF ;再根据已知AB =DE ,BC =EF ,根据全等三角形全等的判定定理SSS ,即可证明△ABC ≌△DEF .【解答】证明:∵AF =DC ,∴AF ﹣CF =DC ﹣CF ,即AC =DF ,在△ABC 和△DEF 中,{AC =DF AB =DE BC =EF,∴△ABC ≌△DEF (SSS ).4.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .【分析】先利用三角形外角性质证明∠ADE =∠B ,然后根据“AAS ”判断△ABC ≌△ADE .【解答】证明:∵∠ADC =∠1+∠B ,即∠ADE +∠2=∠1+∠B ,而∠1=∠2,∴∠ADE =∠B ,在△ABC 和△ADE 中,{∠C =∠E ∠B =∠ADE AC =AE∴△ABC ≌△ADE (AAS ).5.已知,如图,AB =AE ,AB ∥DE ,∠ECB =70°,∠D =110°,求证:△ABC ≌△EAD .【分析】由∠ECB =70°得∠ACB =110°,再由AB ∥DE ,证得∠CAB =∠E ,再结合已知条件AB =AE ,可利用AAS 证得△ABC ≌△EAD .【解答】证明:由∠ECB =70°得∠ACB =110°又∵∠D =110°∴∠ACB =∠D∵AB ∥DE∴∠CAB =∠E在△ABC 和△EAD 中,{∠CAB=∠EAB=AE,∴△ABC≌△EAD(AAS).6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.【分析】利用AAS证明:△ADE≌CFE.【解答】证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵{∠A=∠FCE ∠ADE=∠F DE=EF,∴△ADE≌△CFE(AAS).7.已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF≌△CBE.【分析】先利用平行线的性质得到∠A=∠C,再证明AF=CE,然后根据“ASA”可判断△ADF≌△CBE.【解答】证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中{AF =CE ∠1=∠2,∴△ADF ≌△CBE (ASA ).8.如图,AB =DE ,AC =DF ,BE =CF ,求证:△ABC ≌△DEF .【分析】由BE =CF 知BC =EF ,结合AB =DE 、AC =DF ,利用“SSS ”即可得证.【解答】解:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF ,在△ABC 和△DEF 中,∵{AB =DE(已知)AC =DF(已知)BC =EF (已证), ∴△ABC ≌△DEF (SSS ).9.如图,已知AB ∥CF ,D 是AB 上一点,DF 交AC 于点E ,若AB =BD +CF ,求证:△ADE ≌△CFE .【分析】根据全等三角形的判定解答即可.【解答】证明:∵AB =BD +CF ,又∵AB =BD +AD ,∴CF =AD∵AB ∥CF ,∴∠A =∠ACF ,∠ADF =∠F在△ADE 与△CFE 中{∠A =∠ACF CF =AD ∠ADF =∠F,∴△ADE≌△CFE(ASA)题型三动点与全等(分类讨论,找到对应定点)1.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.【分析】只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.【解答】解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为:7.2.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为2或3.【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△CQP,计算出BP的长,进而可得运动时间,然后再求v.【解答】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=6cm,∵BD=PC,∴BP=8﹣6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△CQP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s),故答案为:2或3.3.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E 从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过0,4,12,16秒时,△DEB与△BCA全等.【分析】设点E经过t秒时,△DEB与△BCA全等;由斜边ED=CB,分类讨论BE=AC 或BE=AB或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB与△BCA全等;此时AE=3t,分情况讨论:(1)当点E在点B的左侧时,△DEB≌△BCA,则BE=AC,∴24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①△DEB≌△BCA,BE=AC时,3t=24+12,∴t=12;②△EDB≌△BCA,BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,点E经过0秒,4秒,12秒,16秒时,△DEB与△BCA全等.故答案为:0,4,12,16.4.如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=10或20时,以点A,P,Q为顶点的三角形与△ABC全等.【分析】分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC ≌Rt△PQA(HL);即可得出结果.【解答】解:∵AX⊥AC,∴∠P AQ=90°,∴∠C=∠P AQ=90°,分两种情况:①当AP=BC=10时,在Rt△ABC和Rt△QP A中,{AB=PQBC=AP,∴Rt△ABC≌Rt△QP A(HL);②当AP=CA=20时,在△ABC和△PQA中,{AB=PQAP=AC,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时,△ABC与△APQ全等;故答案为:10或20.5.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为1或7秒时,△ABP和△DCE全等.【分析】由条件可知BP=2t,当点P在线段BC上时可知BP=CE,当点P在线段DA 上时,则有AD=CE,分别可得到关于t的方程,可求得t的值.【解答】解:设点P的运动时间为t秒,则BP=2t,当点P在线段BC上时,∵四边形ABCD为长方形,∴AB=CD,∠B=∠DCE=90°,此时有△ABP≌△DCE,∴BP=CE,即2t=2,解得t=1;当点P在线段AD上时,∵AB=4,AD=6,∴BC=6,CD=4,∴AP=BC+CD+DA=6+4+6=16,∴AP=16﹣2t,此时有△ABP≌△CDE,∴AP=CE,即16﹣2t=2,解得t=7;综上可知当t为1秒或7秒时,△ABP和△CDE全等.故答案为:1或7.6.(多选)如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s。
“三角形全等的条件”学习要点及注意事项
“三角形全等的条件”学习要点及注意事项 2014.5.9一、三角形全等的条件:1、三边对应相等的两个三角形全等,简写为“边边边”,或SSS ;2、两角及其夹边对应相等的两个三角形全等,简写为“角边角”,或ASA ;3、两角及其中一角的对边对应相等的两个三角形全等,简写为“角角边”,或AAS ;4、两边及其夹角对应相等的两个三角形全等,简写为“边角边”,或SAS ;注意:(1)条件中的边、角一定是三角形中的边、角!(2)条件中只有对应相等的边、对应相等的角;(3)“边边角”不能保证两个三角形全等!!二、过程的书写要求:先交待所要证的两个三角形,其次用单边大括号把三个条件写在一起,得出两个三角形全等,并在后面注明理由;例:如图 ,AB=AC , ∠CDA =∠BEA, △ACD 与△ABE 全等吗?为什么?解: 在△ACD 和△ABE 中,∠CDA =∠BEA (已知)∵ ∠ A = ∠A (公共角) AB= AC (已知)∴ △ACD ≌△ABE (AAS )注意事项:(1)按判定条件的顺序书写,例如上例中,利用的是“AAS ”,书写时先写两个角的条件,再写边的条件;(2)如果所需的条件不是题中直接给出,则先证明,再按上面要求书写;例:如图,O 是AB 的中点,∠A =∠B , △AOC 与△BOD 全等吗?为什么?解: △AOC ≌△BOD 理由:∵ O 是AB 的中点,∴ AO=BO在 △AOC 与△BOD 中,∠A =∠ B (已知) ∵ AO=BO (已证) ∠AOC= ∠BOD (对顶角相等)∴ △AOC ≌△BOD (ASA )说明:(1)条件中一定是相等的边、角,所以要把“中点”的条件转化为相等的边;(2)对顶角相等是能直接得到的结论,不需要先证明;(3)除对顶角相等可以直接写在条件中外,公共边、公共角也能直接作为条件写;A OD C B AE C DB。
全等三角形的判定[1]
1. 说明两个三角形全等所需的条件应按对应边的顺序书写 2. 结论中所出现的边必须在所证明的两个三角形中.
四、例题赏析
例2 如图,当 AB=CD,BC=DA时,图中的△ABC 与△CDA是否全等?则∠A= ∠C并说明理由?
答:△ABC与△CDA是全等三角形。
证明: 在△ABC与△CDA中
A
A'
B
C
B'
C'
思考:
要使两个三角形全等,是否一定要满足六个条件呢?
满足下列条件的两个三角形是否一定全等:
(1)一个条件 一边 一角
一边一角 (2)两个条件 两角
两边
三角
(3)三个条件 三边 两边一角
两角一边
8cm
8cm
满足下列条件的两个三角形是否一定全等:
一边 (1)一个条件
×
一角
一边一角 (2)两个条件 两角
A
AB=CD (已知)
∵ AD=CB (已知)
B
AC=CA (公共边)
D C
∴△ABC≌△CDA (SSS)
∴ ∠A= ∠C (全等三角形的对应角相等)
举一反三
变式 如图,当 AB=CD,BC=DA时,你能说明AB
与CD、AD与BC的位置关系吗?为什么?
答:能判定AB∥CD. 证明: 在△ABC与△CDA中
BCA=CBD D( 已C知(已)知)
B
A
D
O
D
CC
ACA=CAC D( B公(共已边知))
C
∴ △ABBCC≌ △CBA(D公C共 (边 SS)S)
∴△ABC≌△DCB (SSS)
∴∠A=∠D(全等三角形的对应角相等)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做一做 (1)已知一个三角形的三个内角分别为40° , 60°和80° ,你能画出这个三角形吗?把你画的 三角形与同伴画的进行比较,它们一定全等吗?
800
800
400
600
400
600
结论:三个内角对应相等的两个三角形不一定全等.
(2)已知一个三角形的三条边分别为4 cm,5cm 和7cm,你能画出这个三角形吗?把你画的三角形 与同伴画的进行比较,它们一定全等吗?
3cm
3cm
(2)三角形的两个内角分别为30°和50° ;
30◦
50◦
30◦
50◦
(3)三角形的两条边分别为4cm,6cm.
4cm 6cm
4cm 6cm
结论:只给出一个条件或两个条件时,都不能保 证所画出的三角形一定全等.
议一议 如果给出三个条件画三角形,你能说出有哪几 种可能的情况?
有四种可能:三条边、三个角、两边一角和两角 一边.
两角及一边
两角及其中一角的对边
两边及一角
小结 通过本节课的内容,你有哪些收获? 1.三角形全等的判定方法; 2.会运用判定方法解决实际问题.角形被墨迹污染了,她想 画一个与原来完全一样的三角形,她该怎么办?请 你帮助小颖想一个办法,并说明你的理由? 注意:与原来完全一样的三角形,即是与原来三角 形全等的三角形.
导入
要画一个三角形与小明画的三角形全等.需 要几个与边或角的大小有关的条件呢?一个条件? 两个条件?三个条件? 让我们一起来探索三角形全等的条件
4
5
7
三边分别相等的两个三角形全等,简写为“边边 边”或“SSS”.
由上面的结论可知,只要三角形三边的长度确 定了,这个三角形的形状和大小就完全确定了. 用三根木条钉成的一个三角形框架,它的大 小和形状是固定不变的,三角形的这个性质叫做三 角形的稳定性.用四根木条钉成的框架, 它的形状是可以改变的,它不具有稳定性.
做一做 1.只给一个条件(一条边或一个角)画三角形时,
大家画出的三角形一定全等吗?
3cm
3cm
3cm
45◦
45◦
45◦
2.给出两个条件画三角形时,有几种可能的情况? 每种情况下作出的三角形一定全等吗?分别按照 下面的条件做一做. (1)三角形的一个内角为30° ,一条边为3cm;
30◦
30◦
3cm
在生活中,我们经常会看到应用三角形稳定性 的例子.
由前面的讨论我们知道,如果给出一个三角形 三条边的长度,那么由此得到的三角形都是全等 的.如果已知一个三角形的两角及一边,那么有几 种可能的情况呢?每种情况下得到的三角形都全等 吗?
如果给出三个条件画三角形,有
三边(SSS)
四
种 可 能
三个角
两角夹一边