第十章氨基酸药物
第二版生物制药技术习题答案
第二版生物制药技术习题答案The document was prepared on January 2, 2021第一章绪论1、生化药物:从生物体分离纯化所得的一类结构上十分接近人体内正常生理活性物质的,能调节人体生理功能以达到预防和治疗疾病目的的物质. P12、按照药物的化学本质,把生物药物分为氨基酸类、蛋白质类、酶类、核酸类、多糖类、脂类、维生素及辅酶类.P3-53、生物药物的原料来源分为动物、植物、微生物、海洋生物、人体五大类.P54、肝素的化学成分属于一种多糖 ,其最常见的用途是抗血凝 .P45、SOD的中文全称是超氧化物歧化酶 ,能专一性清除氧自由基 .P46、辅酶在人体内的酶促反应中起重要的递H、递e等作用,有药用价值,人体生化反应中重要的辅酶:NAD、NADP、FMN和FAD .P47、前列腺素的成分是一大类含五元环的不饱和脂肪酸 ,重要的天然前列腺素有PGE1、PGE2、PGF2α等.P58、请说明酶类药物主要有几类,并分别举例.P4第二章生物药物的质量管理与控制1、中试:是把已取得的实验室研究成果进行放大的研究过程.P282、热原:是指在药品中污染有能引起动物及人的体温升高的物质.P423、生物检定法:利用药物对生物体的作用以测定其效价或生物活性的一种方法.4、生物药物质量检验的程序包括取样、鉴别、检查、含量测定、写出检验报告.5、药物的ADME表示药物在体内的整个过程,它们分别是吸收Absorption、分布Distribution、代谢Metabolism、排泄Excretion.6、生物药物在表示含量的时候有百分含量和活性效价两种.7、英美等国在药品的质量管理上采取典型的主副典机制,其中美国的药典和副药典分别简称为 USP 和 NF .8、在生物药物的质量管理规范中,GMP、GLP、GCP分别指良好药品生产规范、良好药品实验研究规范、良好药品临床试验规范.9、为了对新兴的基因工程药物进行质量管理,中国在2000年编制并颁布了中国生物制品规程 .10、基因工程生产的重组蛋白药物,须进行蛋白纯度检查,按WHOG规定,须用 HPLC 和非还原SDS-PAGE 两种方法测定,纯度均应达到95%以上.P2011、国外没批准上市的基因工程药物属于Ⅰ类新药,国外已批准上市的是属Ⅱ类药物,前者无临床前研究资料供参考,须作临床前研究.12、基因工程药物的临床试验包括Ⅰ期和Ⅱ期,二者在对象性质和对象的数量上不同.Ⅰ期是在健康自愿者身上进行,一般人数 10-20 人.Ⅱ期在病人上分组进行,总人数一般在 300 以上.13、目前我国使用的药典是 2010年版本,它分为三部.14、进行生物药物的安全检查时,异常毒性检查通常在实验动物小鼠上进行;热原检查一般在实验动物家兔上进行;降压物质检查通常在实验动物家猫上进行. 15、对于进口药,我国执行的检验标准是国外药典,而对于仿制国外药则执行的检验标准为国外药典 .16、对于空气洁净度的100级和10000级这两个级别,其中 100 级的洁净度要求更高.17、在国内,药品的生产与管理主要依据三级标准,请解释该三级标准.国标-中国药典-委员会部标-部颁标准-卫生部1中国药典的补充;2具法律约束力;3新药须经2年试行期地标-地方药品标准-省、市对药典以外的、某地区常用的药品、制剂的规格和标准,常制订地区性的标准.18、请简述新药研发的主要过程.1新化合物实体的发现,药理筛选,化学试验 2临床前研究3研究新药申请IND,即申请临床试验 4临床试验+临床前研究继续补充5新药申请NDA 6上市及监测第三章抗生素概述1、初级代谢产物:微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨基酸、核苷酸、多糖、脂类、维生素类.2、次级代谢产物:通过次级代谢合成的产物,大多是分子结构比较复杂的化合物,如抗生素、激素、生物碱、毒素.3、抗生素的MIC:能抑制微生物的最低抗生素浓度.4、抗生素的差异毒力:药物对病原菌和宿主组织的毒力差异.5、青霉素的母核为 6-APA 6-氨基青霉烷酸.6、微生物是抗生素的主要来源,其中以放线菌产生的最多,真菌次之,细菌又次之.7、目前国际上抗生素活性单位表示方法主要有两种,一种是指定单位unit ,一种是活性质量μg.8、抗生素分为五大类:9、抗生素药品的热原检查的基本原理与方法原理:热原是指在药品中污染,能引起动物及人的体温升高的物质,认为是由细菌内毒素引起的,因此用过温度是否升高来判断该药品中所含热原是否符合规定.方法:将一定剂量的药液静脉注射注入家兔体内,以其体温升高的程度判断该药品中所含热原是否符合规定.10、请简述管碟法测定抗生素效价的基本步骤,并参考给出的二剂量管碟法的效价计算公式,解释一下式中θ、K、U2H 、S2H、U2L、S2L各参数的含义:lgθ=lgKU2H-S2H+U2L-S2L /S2H+U2H-S2L-U2L管碟法:比较标准品和待检品产生的抑菌圈的大小,来判定待检抗生素溶液的效价.在一定浓度范围内,对数剂量与抑菌圈直径呈线性关系1.称量;2.稀释;3.双碟制备;4.放置钢管;5.滴加抗生素溶液;6.抑菌圈测量.θ:供试品和标准品的效价比;K:高单位总量与低单位总量之比第四章β-内酰胺类抗生素1、青霉素G的汉语名称为苄青霉素,其结构可以看作由3个“酸”构成,即苯乙酸、半胱氨酸和缬氨酸,请进一步画出青霉素G的分子结构图______________2、各类青霉素的结构由“侧链”加“母环”构成,其中母环称为6-APA,而侧链有一定差异,例如青霉素G的侧链为苯乙酸.工业上制备出的母环可以作为重要的医药中间体,用来合成各种改造的青霉素衍生物.3、青霉素为代表的β内酰胺类抗生素的作用机制主要是通过抑制肽聚糖转肽酶及D-丙氨酸羧肽酶的活性而阻碍了肽聚糖的交联与合成,从而抑制了干扰了细菌的细胞壁合成.4、最早发现产生青霉素的微生物是属于青霉菌类中的点青霉,而目前生产上用于生产青霉素的菌种则属于产黄青霉素,且大多经过诱变育种,大大提高了青霉素产量.5、青霉素在临床上常用其盐类,最常用的为青霉素的钠盐和钾盐.6、从抗菌效力的发挥特点来讲,β内酰胺类抗生素属于在细菌的繁殖期发挥杀菌作用的抗生素,其对革兰氏阳性菌和阴性菌的作用效果有很大不同,即对革兰氏阳性菌效果更佳.7、简述获得青霉素发酵液后从中纯化青霉素的主要步骤.1发酵液的过滤和预处理;2萃取和精制;3结晶.8、简述β内酰胺类抗生素的作用机制1抑制肽聚糖合成→阻碍细菌细胞壁合成,使菌体失去屏障而膨胀裂解2触发细菌自溶酶活性第五章大环内酯类抗生素1、大环内酯类抗生素的结构是以大环内酯为母体,以苷键和1-3分子的糖相连接的一类抗生素物质.2、根据大环内酯结构的差异,大环内酯类抗生素分为三类:多氧类、多烯类和蒽沙类.3、红霉素的结构由三部分构成,分别为红霉内酯、红酶糖和去氧氨基己糖.4、红霉内酯的生物合成是由一分子的丙酰COA和6分子的甲基丙二酰COA重复缩合而成,在反应开始时的关键酶丙酸激酶的活性与红霉素的产量表现出直线关系.5、红霉素的发酵生产需要添加的前体物质为丙酸.6、红霉素发酵采用的菌种为红霉素链霉菌,发酵后主要采用萃取法来提取,在进一步纯化时,则将红霉素粗品溶于丙酮中,再加入2倍体积的水,即可制得红霉素纯品.7、氮源的代谢对红霉素合成影响很大,单独氮源实验表明,缬氨基酸对红霉素影响最大.8、简述红霉素的发酵生产与提取的步骤P77发酵生产:孢子悬液→种子罐→二级种子→发酵罐提取:萃取法第六章四环素类抗生素1、四环素发酵生产使用的菌种是产生金霉素的金色链霉菌菌种,它从微生物的种属分类上来说,属于一种放线菌,是一种原核生物2、四环素类抗生素是以氢化四并苯为母核的一类有机化合物.3、采用金色链霉菌发酵法生产四环素时在培养基中加一定的抑氯剂,其原因是什么P90阻止金霉素合成,促进四环素合成,使金霉素在总产量中低于5%,但浓度较大时对产生菌都有不同程度的毒性.4、为什么培养基中的钙盐有利于提高四环素发酵的产量 P91钙盐能与菌体合成的四环素结合成水中溶解度很低的四环素钙盐,从而降低了水中可溶性四环素的浓度,促进菌丝体进一步分泌四环素.第七章氨基糖苷类抗生素1、氨基糖苷类抗生素的代表性例子是链霉素,其分子结构由氨基环醇、氨基糖和糖三部分以苷键连接而成.2、图7-1是不同PH值的溶液中链霉素不同分子形式的存在浓度.根据该图并结合掌握的知识填空:链霉素从酸碱性上说,应被视为一种碱性,其在溶液中可以以4种形式存在,在从发酵液提取链霉素时如果采用离子交换法,应选择阳离子树脂.链霉素可以经反应生成盐,临床最常用的盐为硫酸盐.3、工业上用于生产链霉素的菌种是灰色链霉菌4、请简述链霉素的发酵生产与提取工艺包括哪些步骤.P103、106发酵生产:斜面孢子培养、摇瓶种子培养、二级或三级种子罐扩大培养、发酵培养及提取精制等提取工艺:发酵液过滤→原液吸附→饱和树脂洗脱→洗脱液脱色、中和、精制→精制液脱色、浓缩→成品浓缩液1、无菌过滤→水针剂2、无菌过滤,干燥→粉针剂5、为了减少损失,生产上采用离子交换法提取链霉素时,常采用三罐或四罐串联法进行吸附,请简述该方法的要点.P107原滤液流向主、副、次交换罐主罐:流出的Str浓度达到进口浓度的95%,就可认为已达饱和,可以解吸副罐:将升为主罐…补个新罐,继续吸附…次罐:…末罐流出液中的单位应<100U/mL第八章现代生物技术在生物制药中的应用1、抗生素抗性基因:微生物能产生抗生素,须要自身能抵抗该抗生素,其相关基因为抗性基因.2、受体:指存在于细胞核内的生物大分子,其结构的某一特定部位能准确识别并特异结合某些专一性配体.3、配体:能与受体特异性结合的物质,包括内源性神经递质、激素、外源性活性物质和各种药物.4、请简述抗生素生物合成基因的特点.1高G-C含量:密码子第3个碱基的G-C比例极高2基因成簇:10-30个基因3位于染色体或质粒2添加保护剂:防止某些生理活性物质活性基团及酶活性中心受破坏.3抑制水解酶作用:根据不同水解酶的性质采用不同方法.4其他保护措施:注意避免紫外线、强烈搅拌、过酸、过碱或高温、高频震荡等6、请简述提取生物活性物质常用的三类方法,并分别举例.P1321用酸、碱、盐水溶液提取:胰蛋白酶用稀硫酸提取.2用表面活性剂提取:十二烷基磺酸钠SDS等可以破坏核酸与蛋白质的离子键合,对核酸酶又有一定抑制作用.3有机溶剂提取:1、固-液提取:丙酮提取脑组织中的胆固醇.2、液-液提取:7、请简述膜分离技术中微滤、超滤、纳滤、反渗透这几种方法的主要区别.1微滤MF:又称微孔过滤,它属于精密过滤,基本原理是筛孔分离过程.适用于细胞、细菌和微粒子的分离,在生物分离中,广泛用于菌体的分离和浓缩,目标物质的大小范围为0.01-10 μm,一般用于预处理.2超滤UF:是介于微滤和纳滤之间的一种膜过程,膜孔径在0.001~0.1微米.是一种能够将溶液进行净化、分离、浓缩的膜分离技术.对大分子有机物如蛋白质、细菌、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化.3纳滤NF:是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80~1000的范围内,孔径为几纳米.纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行.4反渗透RO:是利用反渗透膜只能透过溶剂通常是水而截留离子物质或小分子物质的选择透过性,以膜两侧静压为推动力,而实现的对液体混合物分离的膜过程.能够去除可溶性的金属盐、有机物、细菌、胶体粒子、发热物质,反渗透技术是现代工业中首选的水处理技术.第十章氨基酸药物1、氨基酸对应的英文三个字母简写名称:丝氨酸Ser、苏氨酸Thr、苯丙氨酸Phe、酪氨酸Tyr 与色氨酸Trp2、氨基酸的中文名:Lys赖氨酸、Ala丙氨酸、Glu谷氨酸、Asp天冬氨酸3、20种天然氨基酸中属于碱性氨基酸的有赖氨酸、组氨酸和精氨酸.4、20种天然氨基酸中属于酸性氨基酸的有谷氨酸和天冬氨酸5、氨基酸根据侧链的化学结构,可分成脂肪族、芳香族、杂环族和亚氨基酸四类.6、在工业生产上,在各种氨基酸中以谷氨酸的发酵产量最大,赖氨酸的发酵产量次之.7、生产氨基酸的5种方法为蛋白水解法、化学合成法、酶转化法、直接发酵法和微生物合成法.8、赖氨酸是人体的八种必须氨基酸之一,而在食用的谷物中又常常缺乏,所以赖氨酸有重要的食品、医药用途,微生物一步发酵法生产赖氨酸常采用几种杆菌为生产菌,请列举其中常用的2种菌:黄色短杆菌或谷氨酸棒杆菌.9、蛋白水解法制备氨基酸常采用的原料蛋白有毛发、血粉和废蚕丝等,采用的水解方法则有酸水解法、碱水解法和酶水解法.10、某细菌合成赖氨酸的代谢公式如下,请计算赖氨酸对糖的理论转化率:3C6H12O6+4NH3+4O2—>2C6H14N2O2+6CO2+10H20赖氨酸对糖的理论转化率为:2146.19/3180100%=54.14%第十一章多肽与蛋白类药物1、干扰素:是由诱生剂诱导有关细胞所产生的一类高活性,多功能的诱生蛋白质.2、降钙素CT:是由甲状腺内的滤泡旁细胞分泌的一种调节血钙浓度的多肽激素.3、E-玫瑰花结实验:T淋巴细胞表面有针对绵阳红细胞SRBC的E受体,在一定实验条件下,SRBC 与T细胞表面是受体结合,形成以T细胞为中心,四周环绕SRBC,状如玫瑰花结的细胞集团.4、IL-2的中文名是白细胞介素-2,它是Th细胞在抗原或植物凝集素等丝裂原的刺激下而产生的一种糖蛋白成分.它的功能是刺激T淋巴细胞增殖分化,故在免疫方面有重要作用.5、6、胸腺肽组分5是由在80℃温度下热稳定的40-50种多肽组成的混合物,根据它们的等电点可区分成3个区,这些多肽中有活性的命名时习惯上被冠以胸腺素.7、8、ACTH的中文名是促皮质素,它是由腺垂体分泌的,化学成分为一种多肽,其功能是促进肾上腺的皮质激素的合成和分泌.9、白蛋白又称清蛋白,含量比例约占血浆总蛋白的55%,主要功能是维持血浆胶体渗透压10、人血丙种球蛋白的主要成分为免疫球蛋白Ig,Ig分为IgG、IgA、IgM、IgD和IgE五类,其中血中含量最高的,作为抗感染的主力的是IgG.11、胰岛素由51个氨基酸组成,有2条链,它们通过二硫键相连.12、简述在原核工程菌中生产重组干扰素包括哪些环节第十二章核酸类药物1、核苷酸的从头合成途径:利用磷酸核糖、氨基酸、及CO2等简单物质为原料合成核苷酸的过程.2、核酸类药物主要分为核酸、核苷酸、核苷和碱基及其衍生物四个种类3、4、核酸类药物的生产方法主要有酶解法、半合成法和直接发酵法.5、6、1987年3月美国FDA批准使用的抗艾滋药物AZT是全球首个被批准用于临床的艾滋病治疗药物,它是胸苷的衍生物.7、8、pI:C的中文名是聚肌胞苷酸,它可以诱导人体细胞产生干扰素,从而发挥光谱的抗病毒活性.第十三章1、请写出下列酶类药物的中文名:SOD超氧化物歧化酶、SAP去氢淀粉样蛋白、t-PA 组织纤溶酶原激活剂、CytC细胞色素C2、酶的提取主要方法有水溶液法、有机溶剂法和表面活性剂法.3、评价一个酶的纯化工艺的好坏,主要看两个指标:一是酶比活,二是总活力回收率.第十四章及之后章节1、低聚糖:由2-9个单糖组成的多聚糖2、粘多糖:是含氮的不均一多糖,是构成细胞间的主要成分,也广泛存在于哺乳动物各种细胞内.化学组成为和酪交替出现,有时含硫键.也称为.3、前列腺素PG:是存在于动物和人体中的一类不饱和脂肪酸组成的、具有多种生理作用的活性物质.4、超临界萃取法:指以超临界流体为溶剂,从固体或液体中萃取可溶组分的分离操作.5、采用分步提取法可从脑干中分别提取获得卵磷脂、脑磷脂和胆固醇三种重要的脂类药物,首先用丙酮提取出胆固醇;不溶物再用乙醇提取出卵磷脂;此时不溶物中则含有脑磷脂6、维生素:是维持机体正常代谢机能的一类化学结构不同的小分子有机化合物,大多需要从外界摄取.7、辅酶:是一类可以将化学基团从一个酶转移到另一个酶上的有机小分子.8、脂溶性维生素有维A、维D、维E、维K等,水溶性维生素有维B、维C两族.9、维生素与辅酶类药物的一般生产方法有三种,第一种是化学合成法,如维B1的生产;第二种是发酵法,如维C的生产;第三种是直接从生物材料中提取法,如辅酶Q10的生产.P24210、维生素的特点P2411不能供给能量,也不是组织细胞的结构成分,而是一种活性物质,对机体代谢起调节和整合作用;2需求量小;3大多是通过辅酶或辅基的形式参与体内酶促反应体系;4人体每日维生素的需要量甚微,但维生素却是机体不可缺少的营养素,在调节物质代谢过程中起重要作用,一旦缺乏,就会引起相应的疾病发生.11、蛋白同化激素:是一类从睾丸酮衍生物中分化出来的药物.12、非甾体类抗炎药:由于其化学结构和抗炎机制与糖皮质激素甾体抗炎药SAIDS不同,一类具有解热、镇痛,多数还有抗炎、抗风湿作用的药物.13、甾类激素药物根据生理活性可分为肾上腺皮质激素、性激素和蛋白同化激素三大类.它们都是含有环戊烷多氢菲核C17结构的化合物14、肾上腺皮质激素包括盐皮质激素和糖皮质激素两大类.前者主要调节水盐代谢;后者能调节糖、蛋白质、脂肪等的代谢,并有显着的抗炎、抗过敏作用.15、雄性激素的代表种类为睾丸酮,其结构由4个脂环构成,共19个碳原子.16、雌性激素包括雌激素和孕激素两类,前者由卵巢分泌,后者由黄体分泌,它们共同维持女性的性征和性周期.17、生物制品:是指应用普通的或以基因工程、细胞工程、蛋白质工程、发酵工程等生物技术获得的微生物、细胞及各种动物和人源的组织和液体等生物材料制备的,用于人类疾病预防、治疗和诊断的药品.18、弱毒:经过天然或人工改造方法,去除或封闭其毒力因子,使其致病力减弱,一般不引起感染或发病的细菌菌株或病毒菌.19、灭活:利用甲醛等灭活剂杀死培养的病毒,以制成灭活疫苗的操作过程.20、脱毒:利用一定量的甲醛等脱毒剂,将细菌的外毒素去掉毒性,不再具有致病性,但仍保持其抗原性和免疫原性.21、类毒素:由细菌产生的外毒素,经解毒精制而成.22、变量免疫定量攻击法:疫苗经系列稀释成不同的免疫剂量,分别免疫各组动物,间隔一定日期后,各免疫组均用统一计量毒素或活毒攻击.23、疫苗的发展已经经历了三代,第一代疫苗指弱毒苗和灭活苗,第二代指亚单位疫苗,第三代指核酸疫苗.目前利用酵母生产的乙肝疫苗属于第二代疫苗.24、百白破是一种联合型疫苗,可以同时预防百日咳、白喉和破伤风三种疾病.25、利用病毒制备灭活苗时,对病毒进行灭活通常采用的灭活剂为甲醛.26、请解释生物制品保护力测定中常用到的一些术语的中文名:MLD最小致死量、LD50半数致死量、MID最小感染量、ID50半数感染量27、简述病毒类疫苗的生产过程P27428、简述破伤风类毒素的制备工艺。
生物制药:第十章 氨基酸药物
第四节 赖氨酸的生产 1、概述 Lys 唯一仅L-型能有效利用,广泛存在于动物Pr中 发酵生产菌种:黄色短杆菌、谷氨酸棒杆菌 作用:治疗脑损伤、抗惊厥 药物:L-Lys盐酸盐颗粒、复方Lys颗粒、盐酸Lys注射液
2、性质
Lys 易吸收CO2 不易制取结晶 e
a Lys口服半致死量LD50为4.0 g/kg 体重
b、分类
(1)Aa在pH5.5溶液中的带电状况:酸性、中性、碱性 脂肪族 芳香族
(2)侧链的化学结构 杂环族 亚氨基酸
(3)侧链基团的极性:极性、非极性
(4)人体需求:必须、非必须
第二节 氨基酸的生产方法
生产方法
直接发酵法 微生物生物转化法
酶法 化学合成法 蛋白质水解提取法
发酵法
1、蛋白水解法
毛发 血粉 废蚕丝
DL-Lys 乙酰化 乙酰-DL-Lys 酰化酶
水解
L-Lys 乙酰-D-Lys
拆分工艺:
N-乙酰-DL-Lys
pH7.0,38 ℃ 酰化酶,24h
水解液 pH5.0,70 ℃ 脱色液
活性炭
过浓
L-Lys D-Lys 6mol/L HCl水解 乙酰-D-Lys
滤缩 有机溶剂
浓缩液
6、水解法生产赖氨酸
原料:血粉/乳酪素
血粉 酸水解
浓缩
除去HCl 滤去不溶性Aa 离子交换
L-Lys
第五节 赖氨酸的提取和精制 赖氨酸的提炼过程包括:发酵液的预处理、
提取和精制三个阶段。
氨基酸:Lys、少量其他Aa 菌体 培养基残留物:残糖、无机离子(NH4+) 色素
发酵液的预处理:
离心分离:4500~6000r/min,成本高
N-乙酰-γ-谷氨酰磷酸
氨基酸类药物课件
2.氨基酸的分类 (1)蛋白氨基酸---多结合状态 (2)非蛋白氨基酸---多游离存在 (3)衍生氨基酸
从人体营养的角度,从氨基酸对人体生理的重要性和 人体能否合成分为必需氨基酸和非必需氨基酸
方法 (1)根据氨基酸在pH=5.0溶液中的带电情况分为:酸 性,碱性和中性氨基酸. • 如谷氨酸,天冬氨酸为酸性氨基酸: • 精氨酸,赖氨酸,组氨酸为碱性氨基酸等 (2)根据氨基酸侧链的化学结构,可将氨基酸分为:脂 肪族氨基酸,芳香族氨基酸,杂环族氨基酸和亚氨 基酸四大类 (3)按氨基酸侧链基团的极性分为极性氨基酸和非极 性氨基酸
α- 氨基酸分子的手性
“反应停”事件
• 20世纪五六十年代,欧洲出现畸形儿事件,畸形 婴儿没有臂和腿,手和脚直接连在身体上,很像 海豹的肢体,故称为“海豹肢畸形儿”,引起畸 形的原因是妇女在怀孕初期服用“反应停”(酞 胺哌啶酮 )
三、理化性质
1、物理通性: 1)晶型和熔点 • 天然氨基酸纯品均为白色结晶性粉末,熔 点及分解点均在200℃以上。 2)溶解度 在有机溶剂中溶解度一般较小。 水中溶解度相差较大
5)氨基酸的两性 + HCl
+ NaOH
+ H2O
-H pK1 '
+
-H pK2 '
+ 7 +H 0 兼性离子 等电点PI
+
PH 1 净电荷 +1 正离子
+H
+
10 -1 负离子
6)氨基酸的等电点
• • 在等电点时,氨基酸既不向正极也不向负 极移动,即氨基酸处于两性离子状态。 侧链不含离解基团的中性氨基酸,其等电 点是它的 p K ’ 1 和 p K ’ 2 的算术平均值: p I = (pK’1 + pK’2 )/2 同样,对于侧链含有可解离基团的氨基酸, 其pI值也决定于两性离子两边的pK’值的算术 平均值。 酸性氨基酸: p I = (p K ’ 1 + p K ’ R-COO )/2 硷性氨基酸:pI = (pK’2 &点
发酵工程-第十章-氨基酸
4.谷氨酸产生菌(全是细菌)
棒杆菌属
Corynebacterium
短杆菌属
北京棒杆菌 C. pekinense 钝齿棒杆菌 C. crenatum 谷氨酸棒杆菌 C. glutamicum 黄色短杆菌 B. flvum 产氨短杆菌 B. ammoniagenes
Brevibacterium
小杆菌属
应采用的最好方法是(
)
A.加大菌种密度
B.改变碳源和氮源比例 C.改变菌体细胞膜通透性
D.加大葡萄糖释放量
为什么添加适量生物素或青霉素可提高谷氨酸产量?
控制生物素含量,可改变细胞膜的成分,改变膜的透性、谷氨
生物素:乙酰-CoA羧化酶的辅酶,与脂肪酸及磷脂合成有关。
酸的分泌和反馈调节。
生物素含量高时,细胞膜致密,阻碍Glu分泌,并引起反馈 抑制,加适量青霉素可提高Glu产量。
另外,组氨酸的合成为单独的一条途径。
氨基酸的生物合成
1、天冬氨酸族生物合成途径
合成苏氨酸、蛋氨酸和异亮氨酸。
天冬酰氨 甲硫氨酸 琥珀酰高丝氨酸 →异亮氨酸 DAP合成酶 二氨基庚二酸→赖氨酸 合成酶
天冬氨酸族氨基酸合成可以以草酰乙酸或天冬氨酸为原料,
草酰乙酸→天冬氨酸→天冬氨酸磷酸→天冬氨酸-β-半醛→高丝氨酸→苏氨酸
因而用阳离子交换树脂。
理论上讲发酵液上柱的pH值应低于3.22, 但实际上控制在5.0 6.0之间,因Na+、 NH4+交换能力>谷氨酸,优先交换,臵换出
H+使pH值低于3.2,使谷氨酸成为阳离子,
但不能>6.0。
4.电渗析法
膜分离过程,利用的是电位差。
二次电渗析法:
pH3.2:除去各种盐类。 pH3.2:除去蛋白质、残糖和色素等非电解质。
东北师范大学生物化学 第十章氨基酸代谢
必需氨基酸
(氨基酸和糖的转 变是不可逆的)
酮体
生酮兼生糖氨基酸
Tyr(酪),Phe(苯),Ile(异), Trp(色)
生酮氨基酸 Lys Leu 生糖氨基酸:
三 氨基酸合成代谢 非必需氨基酸(10) 必需氨基酸(8):
Phe 、Met 、 Thr、 Val、 Leu、 Lys、Trp、Ile
半必需氨基酸:His Arg
NAD+ + H2O + (NADP+)
+ NH4+ + NADH +H+ (NADPH)
在动物体内辅酶为NAD+,在植物体内辅酶为NADP+
非必需氨基酸由相应的α -酮酸氨基化生成
八种必需氨基酸中,除赖氨酸和苏氨酸外其余六种亦可由相 应的α-酮酸加氨生成。但和必需氨基酸相对应的α-酮酸不能 在体内合成,所以必需氨基酸依赖于食物供应。
一 蛋白质的酶促降解
(一)外源蛋白质的降解
(二)内源蛋白质的降解
(一)外源蛋白质的降解(细胞外途径)
1 蛋白质的消化
胃蛋白酶:水解芳香族氨基酸的羧基形成的肽键
胰蛋白酶:水解碱性氨基酸羧基形成的肽键
肽链内切酶
胰凝乳蛋白酶:水解芳香族氨基酸的羧基形成 的肽键
弹性蛋白酶:脂肪族氨基酸的羧基形成的肽键 氨肽酶
肝脏是合成尿素的主要器官,肾脏是排出尿素的主要器官
氨基甲酰磷酸合成酶
一种在线粒体中参与尿素的合成
一种在细胞质中参与嘧啶的从头合成
尿素合成的特点: 主要在肝脏的线粒体和胞液中进行 一分子尿素需消耗4个 高能磷酸键 精氨琥珀酸合成酶是尿素合成的关键酶 尿素分子中的两个氮原子,一个来源于NH3, 一个来源于天冬氨酸
氨基酸代谢A
6
二、氨基酸的吸收
主要在小肠进行,是一种主动转运 过程,需由特殊载体携带。转运氨 基酸进入细胞时,同时转运入Na+。
除此之外,也可经γ-谷氨酰循环进 行。需由γ-谷氨酰基转移酶催化, 利用谷胱甘肽(GSH),合成γ-谷 氨酰氨基酸进行转运。消耗的GSH可 重新再合成。
氨基酸的
分解代谢
脱羧基作用 → CO2 + 胺 一般分解代谢→
酮酸
脱氨基作用 → NH3 + α-
9
一、氨基酸的脱氨基作用
氨基酸主要通过三种方式脱氨基,即
氧化脱氨基,联合脱氨基和非氧化脱 氨基。
(一)氧化脱氨基:反应过程包括脱氢 和水解两步。
-2H
+H2O
R-CCOHC(OONHH2)+ CNOHO3H → R-C(=NH)COOH → R-
41
二、一碳单位的代谢
Metabolism of one carbon unit (一)一碳单位的定义和化学结构: 一碳单位(one carbon unit)是指只含一个
碳原子的有机基团,这些基团通常由其载 体携带参加代谢反应。 常见的一碳单位有甲基(-CH3)、亚甲基或 甲烯基(-CH2-)、次甲基或甲炔基(=CH) 、 甲 酰 基 ( -CHO ) 、 亚 氨 甲 基 ( CH=NH)、羟甲基(-CH2OH)等。
Leu 由于酪氨酸在体内需由苯丙氨酸
为原料来合成,半胱氨酸必需以 蛋氨酸为原料来合成,故这两种 氨基酸被称为半必需氨基酸。
4
第二节 蛋白质的消化、吸收
5
一、蛋白质的消化 (一)胃中的消化: 胃蛋白酶水解食物蛋白质为多肽、
第十章蛋白质降解与氨基酸代谢
三、氨的转运
氨对生物机体有毒,特别是高等动物的脑对 氨极敏感,血中1%的氨会引起中枢神经中毒, 因此,脱去的氨必须排出体外。
(一)氨的转运
1、丙氨酸-葡萄糖循环 (Alanine- glucose cycle)
① 肌肉中氨以无毒的丙氨酸形式运输到肝。 ② 肝为肌肉提供葡萄糖。
在肌肉中,糖酵解提供丙酮酸,在肝中,丙酮 酸又可生成Glc。肌肉运动产生大量的氨和丙酮 酸,两者都要运回肝脏进一步转化,而以Ala的 形式运送,一举两得。
二酸、琥珀酰CoA、延胡索酸、草酰乙酸。 最后集中为5种物质进入TCA: 乙酰CoA、α-酮戊二酸、琥珀酰CoA、延胡
索酸、草酰乙酸。
糖 葡萄糖或糖原
甘油三酯
脂肪
氨
磷酸丙糖
基
α-磷酸甘油
脂肪酸
酸
PEP
ቤተ መጻሕፍቲ ባይዱ、 糖
丙氨酸 半胱氨酸
丙酮酸
及 丝氨酸
异亮氨酸 乙酰CoA
乙酰乙酰CoA
酮体
脂 苏氨酸
亮氨酸
肪 色氨酸 代 谢
鸟氨酸转氨甲酰酶存在于线粒体中,需要Mg2+作为 辅因子。
瓜氨酸形成后就离开线粒体,进入细胞液。
此时Asp的氨基转移到Arg上。
来自Asp的碳架被保留下来,生成延胡索酸。延胡 索酸可以经苹果酸、草酰乙酸再生为天冬氨酸。
尿素形成后由血液运到肾脏随尿排出。
尿素循环小结
总反应式:NH4+ + 2ADP + AMP + 2Pi
排尿素动物在肝脏中合成尿素的过程称 尿素循环。
CO2 + NH3 + H2O
鸟
2ATP
N-乙酰谷氨酸
第十章 蛋白质的酶促降解及氨基酸代谢
第十章蛋白质的酶促降解及氨基酸代谢一、名词解释1、氨基酸代谢库2、必需氨基酸、非必需氨基酸、半必需氨基酸3、氧化脱氨基作用4、转氨基作用5、联合脱氨基作用6、嘌呤核苷酸循环7、鸟氨酸循环8、生糖氨基酸、生酮氨基酸、生糖兼生酮氨基酸9、泛素10、S-腺苷甲硫氨酸11、一碳单位二、填空1、氨基酸代谢库中的内源氨基酸是由和组成。
2、多肽链经胰蛋白酶降解后,产生新肽段羧基端主要是和氨基酸残基。
3、胰凝乳蛋白酶专一性水解多肽链由氨基酸端形成的肽键。
4、氨基酸的最主要脱氨基方式是。
5、转氨酶和脱羧酶的辅酶通常是。
6、谷氨酸经脱氨后产生和氨,前者进入进一步代谢。
7、尿素循环中产生的和两种氨基酸不是蛋白质氨基酸。
8、尿素分子中两个N原子,分别来自和。
9、在人体中氨在中通过循环生成经排泄。
10、体内最重要的转氨酶有和。
11、肝细胞线粒体中的氨基甲酰磷酸合成酶Ⅰ的催化作用需要______﹑_____,______参与。
12、精氨酸在的催化下,生成尿素和。
13、氨基酸脱下氨的主要去路有、和。
14、不同氨基酸与之间通过作用生成谷氨酸,这是氨基酸分解代谢反应,催化这一反应的酶叫酶,其辅酶是。
15、嘌呤核苷酸循环将氨基酸的和结合,生成,随后裂解为和延胡索酸。
16、人体内合成尿素的直接前体是,它水解后生成尿素和,后者又与反应,生成,这一产物再与反应,最终合成尿素,这就是尿素循环,尿素循环的后半部是在中进行的。
17、嘌呤核苷酸循环最终将氨释放出的化合物称,催化此反应的酶是。
18、氨甲酰磷酸合成酶Ⅰ定位于细胞内的,它催化和合成氨甲酰磷酸。
19、人体内不能合成而需要从食物供应的氨基酸称为。
20、是除氨的主要器官,它可通过将NH3和CO2合成无毒的,而禽类则合成的是。
21、合成一分子尿素需消耗分子的高能键。
22、生酮氨基酸经代谢后可产生,它是合成酮体的原料。
23、提供一碳单位的氨基酸有、、和等。
常见的一碳单位有、、、、和等。
24、生物体中活性蛋氨酸是,它是活泼的供应者。
第十章氨基羟基的保护与脱保护
MeO OMe NH COOMe
S ynth. C om m un.; 1989, 3139-3142.
BocHN
S iO 2, h e atin g TB S O Tf, Lutidine
H 2N
G
N
Z nB r2 , C H 2C l2
G N
R
ZnB r2, R S H , C H 2C l2
R
O
S
Cbz-Cl
O
NH2.HCl
K2CO 3
98%
O S
O NHCbz
Org. Syn., 70, 29
1.1.2 苄氧羰基的脱去 苄氧羰基的脱去主要有以下几种方法
1). 催化氢解 2). 酸解裂解(HBr, TMSI) 3). Na/NH3(液)还原 实验室常用简洁的方法是催化氢解(用H2或其它供氢体,一般常温常压氢化即可); 当分子中存在 对催化氢解敏感(有苄醚,氯溴碘等)或钝化催化剂的基团(硫醚等)时,我们就需要采用化学方法 如酸解裂解HBr或Na/NH3(液)还原等。
OTBS O
H2N
1.3.2 笏甲氧羰基的引入示例
Fmoc-Cl
sat. NaHCO3 CH2Cl2 79%
OTBS O
HN Fmoc
T etr ahedron: Asymmetr y, 2003, 12, 1645
O OH Boc
N
H2N
O
O O ON
OO
NaHCO3, DMF (Fmoc-OSu) 78%
H2/10%Pd-C
(Boc)2O 54%
BocHN ON H WO2004092166
H
O
N
N
N
氨基酸药物PPT课件
此法优点为反应条件温和,无需特殊设备, 氨基酸不破坏,无消旋作用。缺点是水解不彻 底,产物中除氨基酸外,尚含较多肽类。工业 上很少用该法生产氨基酸而主要用于生产水解 蛋白及蛋白胨。
.
20 目 录
目前,在药用氨基酸的生产中,组氨酸、 精氨酸、亮氨酸、丝氨酸、胱氨酸及酪 氨酸仍需以水解法生产。
.
21 目 录
.
26 目 录
固定化酶
凡限制在一定的空间范围内并能连续反 复的使用的酶都称为固定化酶。
.
27 目 录
四、发酵法(直接发酵法与微生物转化法)
发酵:生物化学中称酵母无氧呼吸过程 为发酵,工业上,发酵就是微生物纯种 培养过程,实质上是利用微生物细胞中 酶的作用,将培养基中有机物转化为细 胞或其他有机物的过程。
.
48 目 录
药用赖氨酸及其复合药
L-赖氨酸盐酸盐颗粒剂
.
17 目 录
(1)酸水解法
蛋白质原料用6~10mol/L盐酸或8mol/ L硫酸于110~120℃(回流煮沸)水解 12~24h,除酸后即得多种氨基酸混合物。
此法优点是水解迅速而彻底,产物全部为L型氨基酸,无消旋作用。
缺点是色氨酸全部被破坏,丝氨酸及酪氨酸 部分被破坏,且产生大量废酸污染环境。
.
丙氨酸在稀乙醇或甲醇中溶解度较小,
且pI为6.0,故丙氨酸可在pH6.0时,用 50%冷乙醇结晶或重结晶加以精制
.
38 目 录
三、生产实例-水解法生产亮氨酸
.
39 目 录
直接发酵法生产氨基酸
按生产菌株的特性,直接发酵法可分为五类
1、野生菌株发酵法
2、营养缺陷型突变型菌株发酵法 3、氨基酸结构类似物抗性突变株发酵法 4、营养缺陷型突变菌株型兼抗性突变株发酵法 5、基因工程菌
第十章 氨基酸
肝昏迷(血氨升高,使α-酮戊二酸下降,TCA受阻)可加Asp或Arg缓解。
3、 生成尿酸(见核苷酸代谢)
尿酸(包括尿素)也是嘌呤代谢的终产物。
四、 氨基酸碳架的去向
20种aa有三种去路
(1)氨基化还原成氨基酸。
因此当ATP、GTP不足时,Glu的氧化脱氨会加速进行,有利于a.a分解供能(动物体内有10%的能量来自a.a氧化)。
(二) 非氧化脱氨基作用(大多数在微生物的中进行)
P 221
①还原脱氨基(严格无氧条件下)
图
②水解脱氨基
图
P226 图16-4通过嘌呤核苷酸循环的联合脱氨基做用
骨骼肌、心肌、肝脏、脑都是以嘌呤核苷酸循环的方式为主
二、 脱羧作用
生物体内大部分a.a可进行脱羧作用,生成相应的一级胺。
a.a脱羧酶专一性很强,每一种a.a都有一种脱羧酶,辅酶都是磷酸吡哆醛。
a.a脱羧反应广泛存在于动、植物和微生物中,有些产物具有重要生理功能,如脑组织中L-Glu脱羧生成r-氨基丁酸,是重要的神经介质。His脱羧生成组胺(又称组织胺),有降低血压的作用。Tyr脱羧生成酪胺,有升高血压的作用。
一、 脱氨基作用
主要在肝脏中进行
(一) 氧化脱氨基
第一步,脱氢,生成亚胺。第二步,水解。
P219 反应式:
生成的H2O2有毒,在过氧化氢酶催化下,生成H2O+O2↑,解除对细胞的毒害。
1、 催化氧化脱氨基反应的酶(氨基酸氧化酶)
(1)、 L—氨基酸氧化酶
(2)氧化成CO2和水(TCA)。
转氨作用机制 P224 图16-2
第十章 氨基酸代谢
P217
此反应发生在线粒体中; 鸟氨酸转氨甲酰酶(ornithine transcarbamoylase)催 化该反应;
鸟氨酸产生于细胞溶胶,所以它必须通过一个特异的运 送体系进入线粒体;
尿素循环的以后几步都在细胞溶胶中进行,瓜氨酸必须 从线粒体中脱出。
(3)尿素第二个氮原子的获取
不同生物其合成蛋白质的能力不同,所摄取的氮源也不
同,但要合成蛋白质,必须先合成氨基酸;
蛋白质代谢的概念(阅读)2-2
蛋白质的代谢主要是讨论生物机体内氨基酸和蛋白质的
合成、分解和转变的化学过程,以及这些过程与生物机
体的生殖、发育和一切生理之间的关系;
微生物、植物与动物的蛋白质代谢途径有其相同的一面,
(1)尿素第一个氮原子的获取
P216
反应发生于细胞溶胶; NH4+在ATP、Mg2+存在下与HCO3-缩合: 形成氨甲酰磷酸;
氨甲酰磷酸合成酶(carbamoylphosphate synthetase, CPS) (该酶不属于尿素循环的一员)催化该反应;
反应伴随有两个ATP的水解。
(2)氨甲酰磷酸的氨甲酰基转移到鸟氨酸上形成瓜氨酸
在柠檬酸循环中形成的草酰乙酸(经转氨基反应形成天 冬氨酸)将两循环连接在一起;
鸟氨酸循环把两个氨基和一个碳原子(CO2)转化为非 毒性的排泄物尿素;
每生成1mol尿素消耗3molATP;
尿素是哺乳动物的蛋白质代谢的最终产物;
尿素循环中的能量变化
循环中使用了4个“高能”磷酸键(3个ATP水解为两个
合成的尿素进入血液,再被肾脏汇集,从尿中排除;
第十章 氨基酸及核苷酸的代谢
具有很强的专一性, 有特异的识别位点,通常具有 二重旋转对称性的回文序列
常用的DNA限制性内切酶的专一性
酶
辨认的序列和切口
说明
Alu I Bam H I Bgl I
‥ ‥A G C T ‥‥ ‥ ‥T C G A ‥ ‥
‥ ‥G G A T C C ‥‥ ‥ ‥C C T A G G ‥‥
‥ ‥A G A T C T ‥‥ ‥ ‥T C T A G A ‥‥
四核苷酸,平端切口 六核苷酸,粘端切口 六核苷酸,粘端切口
Eco R I Hind Ⅲ
‥ ‥G A A T T C ‥‥ ‥ ‥C T T A A G ‥‥
5
精氨酸
延胡索酸
4
精氨琥珀酸
谷氨酸
谷氨酸
2ATP+CO2+NH3+H2O
鸟氨酸 1 2ADP+Pi
氨甲酰磷酸 线
2
粒
体
瓜氨酸
AMP+PPi
3
ATP
瓜氨酸
基质
天冬氨酸
-酮戊二酸
草酰乙酸
谷氨酸
氨基酸
(二)α-酮酸的代谢转变
氨基酸碳骨架
葡萄糖
磷酸烯醇 式丙酮酸
丙氨酸 苏氨酸 甘氨酸 丝氨酸 半胱氨酸
丙酮酸
一、 核酸的酶促降解
核酸酶
核苷酸酶 核苷酸磷酸化酶
核酸
核苷酸
核苷 磷酸
碱基+戊糖
一、核 酸 酶
1、核酸酶的分类
(1)根据对底物的 专一性分为
第 10 篇 氨基酸类药物
叠氮化反应:常作为多肽合成活性中间体,活化羧基。
脱羧反应:酶催化的反应
成肽反应:是多肽和蛋白质生物合成的基本反应
侧链基团反应:与金属离子的螯合性质可用于体内解毒。
②氨基酸的基团特殊反应
茚三酮反应
米伦反应 Mliion reaction 酪氨酸与米伦试剂(硝酸汞溶于含有少量亚硝酸的硝酸中) 反应即生成白色沉淀,加热后变成红色。含有酪氨酸的蛋 白质也有此反应; 坂口反应 Sakaguchi reaction 在碱性溶液中,胍基与含有萘酚及次溴酸盐的试剂反应, 生成红色物质。这是对于精氨酸专一性较强、灵敏度较高 的一个反应; Pauly反应 组氨酸的咪唑基在碱性条件下,可与重氮化的对氨基苯磺 酸偶联产生红色物质。酪氨酸也有此反应; 醛类反应 在硫酸存在下,色氨酸与对二甲氨基苯甲醛反应产生紫红 色化合物,此反应用于鉴定色氨酸; 铅黑反应 胱氨酸和半胱氨酸被强碱破坏后,能放出硫化氢,与醋酸 铅反应生成黑色的硫化铅沉淀。
第 10 章 氨基酸类药物
第一节、氨基酸的种类及物化性质 第二节、氨基酸的生产方法 第三节、氨基酸及其衍生物在医药中的应用 第四节、赖氨酸的生产 第五节、赖氨酸的提取与精制
氨基酸在医药上主要用来制备复方氨基酸输液,也用作治 疗药物和用于合成多肽药物。目前用作药物的氨基酸有一 百几十种,其中包括构成蛋白质的氨基酸有20种和构成非 蛋白质的氨基酸有100多种。 由多种氨基酸组成的复方制剂在现代静脉营养输液以及 “要素饮食”疗法中占有非常重要的地位,对维持危重病 人的营养,抢救患者生命起积极作用,成为现代医疗中不 可少的医药品种之一。 谷氨酸、精氨酸、天门冬氨酸、胱氨酸、L-多巴等氨基 酸单独作用治疗一些疾病,主要用于治疗肝病疾病、消化 道疾病、脑病、心血管病、呼吸道疾病以及用于提高肌肉 活力、儿科营养和解毒等。此外氨基酸衍生物在癌症治疗 上出现了希望。
第十章兴奋性氨基酸类递质第一节谷氨酸能神经元的分布及纤
第十章兴奋性氨基酸类递质第一节 谷氨酸能神经元的分布及纤维联系谷氨酸广泛分布于哺乳动物的CNS中,是CNS中含量最高的一种氨基酸,在人类大脑皮层中可达9~11μmol/g。
一. 谷氨酸能神经元的分布谷氨酸在中枢神经系统中的分布不均,以大脑皮层、小脑和纹状体的含量最高,脑干和下丘脑的含量较低。
二. 谷氨酸能神经元的纤维联系㈠大脑皮质的传出性联系㈡与海马有关的神经联系㈢其它嗅球发出的纤维经外侧嗅束止于前梨状皮质。
下橄榄核的纤维,可投射于小脑浦肯野细胞小脑的颗粒细胞发出的纤维,终止于浦肯野细胞的树突。
第二节 谷氨酸的生物合成、降解、释放与再摄取一.谷氨酸的合成和储存谷氨酸是组成蛋白质的20种氨基酸之一,在脑内有其合成的酶系统。
目前已知谷氨酸在脑内的合成主要有两个途径:㈠作为三羧酸循环的一个分支,由于三羧酸循环存在于线粒体中,合成的谷氨酸需要进行运输,因此主要跟代谢作用有关。
㈡谷氨酰胺在谷氨酰胺酶的作用下水解成谷氨酸。
由于谷氨酰胺酶可以由胞体运输到突触末梢,因此可以在突触末梢内合成谷氨酸。
该途径是谷氨酸合成的主要途径。
目前已经证明在中枢神经系统中突触末梢存在储存谷氨酸的囊泡。
而且谷氨酸在囊泡中的富集是由囊泡膜上的谷氨酸转运体(Vesicular glutamate transporters VGLUTs)来完成的。
这是一种低亲和力的谷氨酸转运体,目前已经克隆得到三种VGLUTs。
二.谷氨酸的释放谷氨酸的释放是具有Ca2+离子依赖性的。
但是在胶质细胞中,去极化虽然可以使胶质细胞释放谷氨酸,但并不依赖于Ca2+离子的存在。
三. 谷氨酸的重摄取㈠神经元重摄取和神经胶质细胞重摄取谷氨酸递质被消除的方式主要是通过重摄取。
㈡摄取机制谷氨酸的重摄取依赖于突触前膜上的高亲和力谷氨酸转运体(GluTs)来完成。
该转运体是生电性的,五种GluTs在分子结构特征上具有一些共性。
高亲和力和低亲和力谷氨酸转运体无论在分布还是功能上都有显著的差别,其比较见(表11-1)表11-1低亲和力与高亲和力谷氨酸转运体的比较低亲和力转运体高亲和力转运体分布部位突触囊泡膜突触质膜亲和性(K m) 1.6mmol/l 2-20μmol/lNa+依赖性无依赖依赖Cl-依赖性依赖无依赖专一性 L-GluL,D-Glu,L,D-Asp等生理功能将谷氨酸富集入囊泡以备释放降低胞外谷氨酸浓度(灭活)四. 谷氨酸的代谢谷氨酸-谷氨酰胺循环:第三节谷氨酸受体分类及其调节剂谷氨酸受体分为五型:即NMDA受体、AMPA受体、KA受体、L-AP4受体和代谢性谷氨酸受体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.4 赖氨酸的生产
1 赖氨酸概述
2 赖氨酸的性质 3 赖氨酸生物合成途径法生产赖氨酸
10.4.1 赖氨酸概述
赖氨酸是人和动物营养的必需氨基酸,对机体的生长有重 要的影响,且在八种必需氨基酸中是惟一的仅L型成分才 能有效利用的基本氨基酸。而在小麦、玉米、稻米等植物 蛋白质中缺乏赖氨酸,因此赖氨酸广泛应用于营养食品、 食品强化剂、饲料及医药等方面。
10.1.2 氨基酸的命名与分类
1.氨基酸的命名 氨基酸的化学名称是根据有机化学标准命名法命名的。氨 基位置有α 、β 、γ 、δ 、ε 之分。如:赖氨酸的化学名
为α ,ε -二氨基己酸。
10.1.2 氨基酸的命名与分类
2.氨基酸的分类 ① 根据氨基酸在pH=55溶液中带电状况可分为酸性、中性 及碱性氨基酸三大类;② 按照氨基酸侧链的化学结构,
10.3.4 用于治疗肿瘤的氨基酸及其 衍生物
近年来,发现不同癌细胞的增殖需要大量消耗某种特定氨 基酸。寻找这种氨基酸的结构类似物——代谢拮抗剂,被 认为是治疗癌症的一种有效手段,天冬酰胺的结构类似物 是S-氨甲酰基半胱氨酸。目前已试制氨基酸类抗癌药物 多种,如N-乙酰-L-苯丙氨酸、N-乙酰-L-缬氨酸。已发现 天冬酰胺酶能阻止要求天冬酰胺的癌细胞(白血病)的增 殖。
10.1.1 氨基酸的组成与结构
2.化学通性 α -氨基酸共同的化学反应有两性解离、酰化、烷基化、 酯化、酰氯化、叠氮化、脱羧及脱氨反应、肽键结合反应
等。此外,某些氨基酸的特殊基团也产生特殊的理化反应 ,如:酪氨酸的酚羟基可产生米伦反应与福林达尼斯反 应;精氨酸的胍基产生坂口反应;色氨酸的吲哚基与芳醛 产生红色反应;组氨酸的咪唑基产生Pauly反应等。另外 色氨酸、苯丙氨酸及酪氨酸均有特征紫外吸收,色氨酸的 最大吸收波长为279nm,苯丙氨酸为259nm,酪氨酸为 278nm。但构成天然蛋白质的20种氨基酸在可见光区均无 吸收。
内酰胺水解酶的隐球酵母混合培养,使DL-氨基己内酰胺 直接转化,全部生成L-赖氨酸。②利用D-氨基己内酰胺消 旋酶,将D-氨基己内酰胺消旋化,生成L-氨基己内酰胺, 再利用L-氨基己内酰胺水解酶将L-氨基己内酰胺水解,生 成L-赖氨酸。
10.4.5 赖氨酸的酶法生产
(2)酶法反应工艺 反应实例:10%、100mL(780mmol)的DL-氨基己内酰胺( 用HCl调pH=8.0),加入0.1g隐球酵母的丙酮干燥菌体及 0.1g无色杆菌的冷冻干燥菌体,置于300mL的三角瓶中, 在往复式摇瓶机上进行振荡培养,温度保持40℃,反应时 间为24h。上清液中测不出D氨基己内酰胺,L赖氨酸 的量为778.4m mol,转化率达到99.8%。加入少量活性炭 ,搅拌并煮沸3min,冷却至室温,过滤后用盐酸调pH=4.1 ,真空浓缩,60℃干燥,得到L-赖氨酸盐酸盐,纯度为 99.5%。
10.3.2 治疗消化道疾病的氨基酸及 其衍生物
此类氨基酸及其衍生物有谷氨酸及其盐酸盐、谷氨酰胺、 乙酰谷酰胺铝、甘氨酸及其铝盐、硫酸甘氨酸铁、组氨酸 盐酸盐等。其中谷氨酸、谷氨酰胺、乙酰谷酰胺铝主要通 过保护消化道或促进黏膜增生,而达到防治综合性胃溃疡 病、十二指肠溃疡、神经衰弱等疾病的作用。甘氨酸及其 铝盐、谷氨酸盐酸盐主要是通过调节胃液酸碱度实现治疗 作用。
10.2.1 蛋白水解法
以毛发、血粉及废蚕丝等蛋白为原料,通过酸、碱或酶水 解成多种氨基酸的混合物,经分离纯化获得各种氨基酸的 生产方法。目前蛋白质水解分为酸水解法、碱水解法及酶 水解法。水解法生产氨基酸的主要过程为水解、分离、精 制结晶三个步骤。随着氨基酸生产技术的进步,由蛋白水 解法提取氨基酸这一方法受到了很大的冲击,但在药用氨 基酸的生产中仍有一定的意义。目前,我国至少有6种氨 基酸尚需要用提取法生产,如组氨酸、精氨酸、亮氨酸、 丝氨酸、胱氨酸及酪氨酸。
第十章 氨基酸药物
1 氨基酸的种类及物化性质 2 氨基酸的生产方法 3 氨基酸及其衍生物在医药中的应用
4 赖氨酸的生产 5 赖氨酸的提取和精制
10.1 氨基酸的种类及物化性质
1 氨基酸的组成与结构
2 氨基酸的命名与分类
10.1.1 氨基酸的组成与结构
所有α -氨基酸的表达通式为:
10.1.1 氨基酸的组成与结构
10.5.2 发酵液的预处理发酵液的预 处理
1. 离心分离法采用高速离心机(4500~6000r/min)分离除 去,菌体小需反复分离,成本高。 2. 添加絮凝剂沉淀法是先将发酵液调节到一定的pH值,加适
宜的絮凝剂如聚丙烯酰胺,使菌体絮凝而沉淀,加助滤剂 过滤除去。
10.5.3 赖氨酸的提取
1.沉淀法,利用赖氨酸生成难溶性盐而沉淀分离,或使赖氨 酸结晶析出。 2.有机溶剂抽提法。
10.4.2 赖氨酸的性质
10.4.3 赖氨酸生物合成途径
10.4.3 赖氨酸生物合成途径
10.4.3 赖氨酸生物合成途径
10.4.3 赖氨酸生物合成途径
• 根据赖氨酸的生物合成途径,由葡萄糖生成赖氨酸的化学 反应式为: 3C6H12O6+4NH3+4O2 →2C6H14N2O2+6CO2+10H2O
10.4.5 赖氨酸的酶法生产
(4)L-赖氨酸的分离 酶水解后生成的L-赖氨酸不溶于有机溶剂,而N-乙酰-D赖氨酸则能溶解。故加入有机溶剂,L赖氨酸即析出,
而与溶解的N-乙酰-D-赖氨酸分开。常用的有机溶剂为乙 醇、醋酸乙酯或磷酸三丁酯。
10.4.5 赖氨酸的酶法生产
(5)D-赖氨酸的回收 母液中的乙酰-D-赖氨酸经真空浓缩至干,再用6mol/L HCl水解,即得D-赖氨酸的二盐酸盐。
1.物理通性 天然氨基酸纯品均为白色结晶性粉末,其熔点及分解点均 在200℃以上,各种氨基酸均能溶于水,但溶解度不同。
所有氨基酸都不溶于乙醚、氯仿等非极性溶剂,而均溶于 强酸、强碱中。除甘氨酸外,所有天然氨基酸都具有旋光 性。天然氨基酸的旋光性在酸液中可以保持,在碱液中由 于互变异构,容易发生外消旋化。
10.3.1 氨基酸的营养价值及其与疾 病的关系
氨基酸是构成蛋白质的基本单位,它参与体内代谢和各种 生理机能活动,故蛋白质的营养价值实际是氨基酸作用的 反应。健康人靠膳食中的氨基酸或蛋白质,获取机体对营 养的需求。缺乏蛋白质或氨基酸,则会影响机体的生长发 育及正常的生理功能,导致抗病能力减弱引起病变。消化 道功能严重障碍者及手术后病人,常因禁食无法获得足够 蛋白质,而使自身蛋白质过量消耗,导致病情恶化或预后 不良。
10.4.5 赖氨酸的酶法生产
(3)酶法拆分操作要点 首先配制0.1~0.5mol/L浓度的N-乙酰-DL-赖氨酸的水溶 液,用氢氧化钠调节pH=7.0,加入一定量的米曲霉丙酮干
粉,38℃ 24h以上。待水解反应基本完全,加入醋酸调 pH=5.0,停止酶的作用并加入少量的活性炭,加热至70℃ 脱色,过滤,浓缩。
10.3.5 治疗其他疾病的氨基酸及其 衍生物
谷氨酸可被脑组织氧化,能作为脑组织的“能源”,是脑 组织代谢作用较活跃的成分,故用来作为神经衰弱患者的 中枢神经及大脑皮质的补剂,有改善神经系统功能的作用 。γ -酪氨酸是中枢神经突触的抑制性递质,能激活脑内 葡萄糖代谢,促进乙酰胆碱合成。恢复脑细胞功能并有中 枢性降血压作用,用于治疗记忆障碍、语言障碍、脑外伤 后遗症等。
• 赖氨酸对糖的理论转化率为:
• 赖氨酸盐酸盐对糖的理论转化率为:
10.4.4 赖氨酸的发酵生产
直接发酵法工艺流程如下:
1.L-赖氨酸生产菌种及扩大培养 (1)生产菌种 (2)种子扩大培养
10.4.4 赖氨酸的发酵生产
2.赖氨酸发酵工艺及控制要点 (1)发酵工艺流程
10.4.4 赖氨酸的发酵生产
10.4.5 赖氨酸的酶法生产
2.赖氨酸的酶法拆分 (1)酶法拆分消旋体原理
10.4.5 赖氨酸的酶法生产
(2)酰化酶的制取 用米曲霉制备米曲。将米曲置于冰浴中,加4倍蒸馏水或 去离子水混匀压滤,残渣用2倍水洗,合并两次滤液,室
温离心(2500~3000r/min)30min,上清液调pH=5。加入 硫酸铵至0.6饱和度,冰浴中放置2h,离心后弃去上清液 ,沉淀用水洗涤,得粗酶液。加入甲苯后置冰箱中备用, 可保存1~2天。将粗酶液于-2℃下加入60%(体积分数) 的冷丙酮(1~2℃),经冷冻离心,收集沉淀,用少量水 洗,对蒸馏水透析48h,冷冻干燥即得。
10.3.3 治疗肝病的氨基酸及其衍生 物
治疗肝病的氨基酸有精氨酸盐酸盐、磷葡精氨酸、鸟氨酸 、天冬氨酸、谷氨酸钠、蛋氨酸、乙酰蛋氨酸、赖氨酸盐 酸盐及天冬氨酸等。精氨酸是鸟氨酸循环(ornithine cycle)的一员,具有重要的生理意义。多吃精氨酸,可 以增加肝脏中精氨酸酶(arginase)活性,有助于将血液 中的氨转变为尿素而排泄出去。所以精氨酸对治疗高氨血 症、肝机能障碍等疾病颇有效果。精氨酸还是肝性昏迷禁 钠病人的急救用药。L精氨酸、L鸟氨酸是机体尿素循 环的中间体或重要成分。蛋氨酸和乙酰蛋氨酸是体内胆碱 合成的甲基供体,可促进磷脂酰胆碱的合成,用于慢性肝 炎、肝硬化、脂肪肝、药物性肝障碍的治疗。
3.离子交换树脂吸附法。
4.电渗析法。
10.5.3 赖氨酸的提取
• 强酸性阳离子交换树脂对氨基酸的交换势为:精氨酸>赖 氨酸>组氨酸>苯丙氨酸>亮氨酸>蛋氨酸>缬氨酸>丙 氨酸>甘氨酸>谷氨酸>丝氨酸>苏氨酸>天冬氨酸。 • 赖氨酸提取精制工艺流程如下:
10.2.3 酶法
10.2.4 直接发酵法
10.2.4 直接发酵法
10.2.5 微生物生物合成法
10.3 氨基酸及其衍生物在医药中的 应用
1 氨基酸的营养价值及其与疾病的关系
2 治疗消化道疾病的氨基酸及其衍生物 3 治疗肝病的氨基酸及其衍生物 4 用于治疗肿瘤的氨基酸及其衍生物 5 治疗其他疾病的氨基酸及其衍生物
(2)发酵培养基组成