对勾函数的性质课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

性质简介
1.对号函数是双曲线旋转得到的,所以也有渐近线、 焦点、顶点等等
2.对号函数永远是奇函数,关于原点呈中心对称 3.对号函数的两条渐进线永远是y轴和y=ax 4.当a、b>0时,图像分布在第一、三象限两条渐近 线的锐角之间部分,由于其对称性,只讨论第一象 限中的情形。利用平均值不等式(a>0,b>0且ab 的值为定值时,a+b≥2√ab)可知最小值是2倍根号 ab,在x=根号下b/a的时候取得,所以在(0,负根 号下b/a)上单调递减,在(根号下b/a,正无穷) 上单调递增
对勾函数的性质
简介
对勾函数:图像,性质,单调性 对勾函数是数学中一种常见而又特殊的函数,见 图示。
对勾函数是一种类似于反比例函数的一般函 数,又被称为“双勾函数”、"勾函数"等。也被 形象称为“耐克函数”
所谓的对勾函数(双曲线函Baidu Nhomakorabea),是形如 f(x)=ax+b/x的函数。由图像得名。
当x>0时,f(x)=ax+b/x有最小值(这里为 了研究方便,规定a>0,b>0),也就是当 x=sqrt(b/a)的时候(sqrt表示求二次方根)
图像一
图象二
图像三
性质一
➢ 函数y=ax+b/x的性质 ➢ Ⅰ当a、b均大于零时,性质 : ➢ ⑴定义域:x≠0 ➢ ⑵值 域:(-∞,-2 根号ab)∪(2根号ab ,
+∞) ⑶奇偶性:奇函数 ➢ ⑷单调性:当x﹥0时,当0﹤x﹤根号b/a 时,
y为减函数 当x﹥根号b/a 时,y为增函 数 当x﹤0时,当- 根号b/a﹤x﹤0时,y 为减函数 当x﹤根号b/a- 时,y为增函 数
性质二
⑸极 值: 当x﹥0时,当x= 根号b/a 时,y最小=2根号ab 当x﹤0时, 当x=- 根号b/a时,y最大=-2 根号 ab ⑹对称性:图像关于原点对称 ⑺顶点坐标:(根号b/a ,2根号ab )、 (-根号b/a ,-2根号ab ) ⑻渐 近线:y轴和y=ax Ⅱ当a、b均小 于零时
相关文档
最新文档