第7课弹簧模型(动量守恒定律应用)

合集下载

动量守恒定律 子弹 弹簧模型

动量守恒定律 子弹 弹簧模型

一、子弹大木块1、如图所示,质量为M的木块固定在光滑的水平面上,有一质量为m的子弹以初速度v0水平射向木块,并能射穿,设木块的厚度为d,木块给子弹的平均阻力恒为f.若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?2、如图所示,静止在光滑水平面上的木块,质量为、长度为。

—颗质量为的子弹从木块的左端打进。

设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题二、板块3、如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量v从木块的左端滑向右端,设物块与木块间的动为m的物块(可视为质点),以水平初速度摩擦因数为 ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。

图14、如图所示,—质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M.现以地面为参照系给A和B以大小相等、方向相反的初速度(如图),使A开始向左运动、B开始向右运动,但最后A刚好没有滑离B板.以地面为参照系,(1)若已知A和B的初速度大小为,求它们最后的速度的大小和方向.(2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离.三、 弹簧5.(8分)如图2所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.小木块A 以速度v 0=10 m/s 由滑板B 左端开始沿滑板B 表面向右运动.已知木块A 的质量m =1 kg ,g 取10 m/s 2.求:(1)弹簧被压缩到最短时木块A 的速度 ; 2 m/s (2)木块A 压缩弹簧过程中弹簧的最大弹性势能. 39 J6、(09·山东·38)(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。

动量守恒典型模型

动量守恒典型模型
动量守恒定律的典型模型及其应用
一、碰撞类。 二、子弹打木块类。 三、弹簧类。 四、人船模型类。
一、碰撞类(区分弹性碰撞和非弹性碰撞)
V1
' 1 1
V2=0 弹性碰撞
' 2 2
m1v1 m v m v
(m1 m2 ) v v1 m1 m2
' 1
1 1 1 2 '2 '2 m1v1 m1v1 m2v2 2 2 2
动能损失为
1 1 1 2 2 2 E= m1v10 m2 v 20 m1 m2 v 2 2 2 m1m1 2 v10 v20 2m1 m2
例1
如图所示,车厢长度L,质量为M,静止于光滑水平 面上,车厢内有一质量为m的物体以速度v向右运动, 与车厢壁来回碰撞n次后,静止于车厢中,这时车厢 的速度为:学.科.网 A v,水平向右 B 0 v C mv/(m+M),水平向右 D mv/(m-M),水平向右
学.科.网
θ
斜面和小物块组成的 系统在整个运动过程中都不受 水平方向外力,故系统在 水平方向上动量守恒。
1.如图所示:质量为m长为a的汽车由静止开始从 质量为M、长为b的平板车一端行至另一端时, 汽车和平板车的位移大小各为多少?(水平地面 光滑) M(b-a)/M+m; m(b-a)/M+m 2.质量为m半径为R的小球,放在半径2R、质 量相 同的大空心球壳内,小球开始静止在光滑 水平面上,当小球从图示位置无初速地沿内壁 滚到最低点时,大球移动的距离多大? R/3
v’2
m 2 (v0 2 gH ) 2 h 2 gM 2
二、滑块类
【例2】长木板质量为M, 有一质量为m的物块 (可以看作是质点)以水平速度v0从木板的左端 滑上。他们间的动摩擦因素为μ,当相对静止时, 物快仍在木板上. (M>m)

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。

A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。

同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。

A 、B 均视为质点,取重力加速度210m/s g =。

求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。

的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。

A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。

现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。

动量守恒定律的典型模型

动量守恒定律的典型模型
v0
M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2

2
解①、②两式得 x
Mv02

(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?

动量守恒定律应用2:弹簧模型

动量守恒定律应用2:弹簧模型
F
VP>VQ 弹簧一直缩短
弹簧最短时 VP=VQ
弹簧原长时 弹性势能为零
变式训练
如图所示,位于光滑水平桌面上的小滑块P和Q都 可视为质点,质量相等,都为m。P、Q与轻质弹簧 相连,弹簧处于原长。设P静止, Q以初速度v0向 右运动,在弹簧拉伸过程中,弹簧具有的最大弹性 势能是多少?
V0
弹簧模型规律
1滑块和木板 2弹簧模型 3光滑1/4圆轨道轨道 (某一方向的动量守恒) 4人船模型 (平均动量守恒)
动量和机械能守恒情况常见模型图
m
v0
A
B
O
h
R
M
b
a
动量守恒定律
一、动量(P)
1、概念: 物体的质量m和速度v的乘积叫做动量。
2、定义式: P = m v
3、单位: 千克米每秒,符号是 kg ·m/s
m1=2kg的物块以v1=2m/s的初速冲向
质量为m2=6kg静止的光滑圆弧面斜
1
劈体,物块不会冲出斜劈。求:
1. 物块m1滑到最高点位置时,二者的速度 2. 物体上升的最大高度 3. 物块m1从圆弧面滑下后,二者速度 4. 若m1= m2物块m1从圆弧面滑下后,二者速度
动量和能量综合典型物理模型
弹簧最短时 VP=VQ
弹簧模型1
如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视为质点,质量相等,都为 m.Q 与轻质弹簧相 连.设 Q 静止, P 以初速度 v0 向 Q 运动并与弹簧发 生碰撞. (1)在整个碰撞过程中,弹簧具有的最大弹性势能是多 少? (2)弹簧再次恢复原长时,P 的动能是多少?
4、方向:与运动方向相同
(1)矢量性 (2)瞬时性
运算遵循平行四边形定则 是状态量。

在四种常见模型中应用动量守恒定律(解析版)

在四种常见模型中应用动量守恒定律(解析版)

在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。

2如图所示,滑块和小球的质量分别为M 、m 。

滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。

开始时,轻绳处于水平拉直状态,小球和滑块均静止。

现将小球由静止释放,下列说法正确的是( )。

A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。

动量守恒定律的应用弹簧问题

动量守恒定律的应用弹簧问题
压缩至最短时,下列的结论中正确的应是( BD)
A.P的速度恰好为零
B.P与Q具有相同速度
C.Q刚开始运动
D.P、Q弹簧组成的系统动量守恒
理解:弹簧被压缩至最短时的临界条件。动量守恒定律的应 Nhomakorabea(弹簧问题)
5
4.质量分别为3m和m的两个物体, 用一根细线相连,中 间夹着一个被压缩的轻质弹簧,整个系统原来在光滑 水平地面上以速度v0向右匀速运动,如图所示.后来细 线断裂,质量为m的物体离开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度
(1)当弹簧的弹性势能最大时,物体A的速度是多大? (2)弹性势能最大值是多少?
v
AB
C
动量守恒定律的应用(弹簧问题)
7
2
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧
压缩,当撤去外力后,下列说法正确的是(BC)
A.a尚未离开墙壁前,a和b组成的系统动量守恒
B.a尚未离开墙壁前,a和b组成的系统动量不守恒
C.a离开墙壁后,a和b组成的系统动量守恒
B、C组成系统的动量守恒
C.若A、B所受的摩擦力大小相等,A、B、C组成系
统的动量守恒
D.若平板车足够长,
A
B
最终A、B、C将静止。
动量守恒定律的应用(弹簧问题)
4
题型二、两个物体的问题
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
D.a离开墙壁后,a和b组成的系统动量不守恒
a
动量守恒定律的应用(弹簧问题)

微专题一动量守恒之弹簧模型

微专题一动量守恒之弹簧模型
微专题一动量守恒之弹簧模型
一、弹簧模型
1.对于光滑水平面上的弹簧类问题,在作用过程中,系统所受合外力为零,
满足动量守恒条件;
2.系统只涉及弹性势能、动能,因此系统机械能守恒;
3.弹簧压缩至最短或拉伸到最长时,弹簧连接的两物体共速,此时弹簧的弹
性势能最大。
4.弹簧从原长到最短或最长相当于完非,从原长再到原长相当于完弹。
1
解得 v3= v1=1 m/s
6
由机械能守恒定律有
1
1
2
Ep=2(mA+mB)v2 -2(mA+mB+mC)v32
解得Ep=3 J
被压缩弹簧再次恢复自然长度时,滑块C脱离
弹簧,设此时滑块A、B的速度为v4,滑块C的
速度为 v5 ,由动量守恒定律和机械能守恒定
律有
(mA+mB)v2=(mA+mB)v4+mCv5
5.具体过程及规律如下:
vB′是滑块B全程最大的速度,若A未与弹簧连接,则3状态是滑块A脱离弹
簧的时刻,脱离时的速度为vA′,其大小方向如何由mA、mB决定。
6.A、B运动过程的v-t图像如图所示。
1.A、B 两小球静止在光滑水平面上,用轻质弹簧相连接,A、B 两球
的质量分别为 mA 和 mB(mA <mB)。若使A球获得初速度 v (图甲),弹
C.两物块的质量之比为m1∶m2=1∶2
D.在t2时刻A与B的动能之比Ek1∶Ek2=1∶8
3.如图所示,质量为2m的小球B与轻质弹簧连接后静止于光滑水平面上,质量为m的小球A
以初速度v0向右运动逐渐压缩弹簧,A,B通过弹簧相互作用一段时间后A球与弹簧分离。若
以水平向右为正方向,且A球与弹簧分离时A,B小球的动量分别为pA和pB,运动过程中弹簧

高中物理弹簧模型教案

高中物理弹簧模型教案

高中物理弹簧模型教案
课时:1
教学目标:学生能够理解和运用弹簧模型解决物理问题。

教学重点:弹簧的力的特点和计算方法。

教学难点:弹簧系数和弹簧的能量问题。

教学资源:教科书、课件、实验器材。

教学过程:
一、导入(5分钟)
1. 引导学生回顾上一节课学过的内容,了解力的概念和计算方法。

2. 提问:你们平时见过弹簧吗?弹簧有什么特点?
二、讲解(15分钟)
1. 弹簧的力:介绍弹簧的拉伸和压缩力,以及弹簧系数的概念。

2. 计算方法:解释如何计算弹簧的拉伸和压缩力,引导学生进行实际计算练习。

三、实验演示(15分钟)
1. 准备实验器材,演示弹簧的力的变化和计算方法。

2. 让学生观察实验现象,记录数据并进行分析。

四、练习(10分钟)
1. 班内分组讨论,解决弹簧相关问题,加深理解和应用。

2. 组织学生进行练习题的解答,检查学生掌握情况。

五、总结(5分钟)
1. 整理弹簧模型的重点知识,进行总结归纳。

2. 引导学生思考弹簧的应用和相关现象。

六、作业布置(5分钟)
1. 布置相关作业,巩固今天所学知识。

2. 激发学生对物理学习的兴趣,提高学习积极性。

教学反思:本节课主要介绍了弹簧模型的基本概念和计算方法,通过实验演示和练习让学
生理解和应用弹簧知识。

但在今后的教学中,需要更加注重引导学生自主探究和综合应用,提高学生的物理素养和解决问题的能力。

动量守恒定律的典型模型及其应用+课件

动量守恒定律的典型模型及其应用+课件

动能损失为
E=12m1v12012m2v22012 m1m2v2
m1m1
2m1 m2
v10v20 2
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则
二. 能量不增加的原则
三. 物理情景可行性原则
例如: 追赶碰撞:
碰撞前: V追赶 V被追
碰撞后:
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
2 特例: 质量相等的两物体发生弹性正碰
v1
m1 m2 v10 2m2v20 m1 m2
v2
m2 m1 v20 2m1v10 m1 m2
碰后实现动量和动能的全部转移 (即交换了速度) 第219页2题
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m 1 v 1 0 m 2 v 2 0 m 1 m 2 v
ABD
• 图中,轻弹簧的一端固定,另一端与滑块B相连,B静 止在水平直导轨上,弹簧处在原长状态。另一质量与B 相同滑块A,从导轨上的P点以某一初速度向B滑行,当 A滑过距离l1时,与B相碰,碰撞时间极短,碰后A.B紧
贴在一起运动,但互不粘连。已知最后A恰好返回出发
点P并停止,滑块A和B与导轨的滑动摩擦因数都为
高三物理重点专题
动量守恒定律的典型模型 及其应用
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)反冲运动、爆炸模型
(三)子弹打木块类的问题:
(四)人船模型: 平均动量守恒
• (1)在弹性形变增大的过程中,系统中两物 体的总动能减小,弹性势能增大,在系统形变 量最大时,两物体速度相等. 在形变减小(恢 复)的过程中,系统的弹性势能减小,总动能 增大.

动量守恒定律的应用弹簧问题课件

动量守恒定律的应用弹簧问题课件

PART 05
弹簧问题中的能量守恒
能量守恒定律的定 义
能量守恒定律
能量既不会凭空产生,也不会凭空消失,它只能从一种形式 转化为传递过程中能量的总量保持不变。
弹性势能
物体由于发生弹性形变而具有的能,与物体的形变量大小有 关,形变量越大,弹性势能越大。
事、体育等领域,如炮弹发射、弹弓等。
THANKS
感谢观看
性。
弹射装置设计
总结词
弹射装置设计中,利用动量守恒定律和能量守恒定律,通过弹簧等弹性元件的作用,将 储存的能量瞬间释放,将物体快速弹出。
详细描述
在弹射装置设计中,通过设计合理的弹簧结构和参数,根据动量守恒定律和能量守恒定 律,将储存的能量瞬间释放,产生足够的推力将物体快速弹出。这种设计广泛应用于军
非完全弹性碰撞
总结词
非完全弹性碰撞中,弹簧的弹力作用使得部分动能转化为内能,系统动量仍然守恒。
详细描述
在非完全弹性碰撞中,弹簧的弹力作用使得部分动能转化为内能,系统动量仍然守恒。此时,两个物 体在碰撞后速度减缓,动能减小,部分能量转化为内能。这种情况下,需要通过动量守恒定律和能量 守恒定律来求解碰撞后的速度和运动状态。
弹簧问题中的能量守恒应用实例
弹簧振荡器
利用弹簧的振动来产生振荡的装 置,如钟摆、振动筛等。通过调 节弹簧的刚度和质量分布,可以
改变振荡器的频率和振幅。
减震器
利用弹簧的弹性来吸收和分散冲 击能量的装置,广泛应用于车辆、
建筑和各种机械设备中,以减少 振动和噪音。
弹簧碰撞实验
通过控制弹簧的长度和刚度,以 及物体的质量和速度等参数,可 以进行碰撞实验,研究能量守恒 定律在碰撞过程中的表现和应用。
确定相互作用

弹簧模型动量守恒定律应用PPT课件

弹簧模型动量守恒定律应用PPT课件

水平向右为正方向,有Ep=
1 2
mBv12
I=mBvB-mBv1
代入数据得I=-4 N·s,其大小为4 N·s
(3)设绳断后A的速度为vA,取水平向右为正方
向,有mBv1=mBvB+mAvA
W= 1
2
mAvA2
代入数据得W=8 J
答案 (1)5 m/s (2)4 N·s (2)8 J
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
SUCCESS
THANK YOU
2019/8/24
选修3-5 动量 近代物理初步
解析 (1)设B在绳被拉断后瞬间的速度为vB, 到达12 Cm点BvB时2=的12 速mBv度C2为+2vmCB,g有R mB代g=入mB数vRc2据得vB=5 m/s (2)设弹簧恢复到自然长度时B的速度为v1,取
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
第一讲 动量 动量守恒定律
第7课 弹簧模型
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv
N
F弹F弹GG Nhomakorabea两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转

由①②③式得弹簧所释放的势能为 Ep=13mv0 2
[答案]
1 3mv0
2
选修3-5 动量 近代物理初步
1.如图所示,光滑轨道上,小车A、B用轻弹 簧连接,将弹簧压缩后用细绳系在A、B上, 然后使A、B以速度v0沿轨道向右运动,运动 中细绳突然断开, 当弹簧第一次恢复到自 然长度时, A的速度刚好为0 ,已知A、B的 质量分别为mA、mB,且mA<mB ,求:被压缩的弹 簧具有的弹性势能Ep.

弹簧模型动量守恒定律应用PPT23页

弹簧模型动量守恒定律应用PPT23页
பைடு நூலகம்
弹簧模型动量守恒定律应用
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

第7课弹簧模型(动量守恒定律应用)

第7课弹簧模型(动量守恒定律应用)
选修3-5 动量 近代物理初步
例:如图所示,A,B,C三个木块的质量 均为m。置于光滑的水平面上,B,C之间 有一轻质弹簧,弹簧的两端与木块接触而 不固连,将弹簧压紧到不能再压缩时用细 线把B和C紧连,使弹簧不能伸展,以至于 B,C可视为一个整体,现A以初速v0沿B, C的连线方向朝B运动,与B相碰并黏合在 一起,以后细线突然断开,弹簧伸展,从 而使C与A,B分离,已知C离开弹簧后的速 度恰为v0,求弹簧释放的势能。
选修3-5 动量 近代物理初步
解析 设弹簧第一次恢复自然长度时B
的速度为vB ,以A、B及弹簧组成的系统为研 究对象,系统在水平方向上所受合外力为零
(弹簧对A、B的相互作用力为系统的内
力),故系统动量守恒,机械能守恒,有
(mA+mB)v0=mBvB
①ห้องสมุดไป่ตู้
1(mA+mB)v02+Ep= 1mBvB2 ②
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
第一讲 动量 动量守恒定律
第7课 弹簧模型
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv
N
F弹
F弹
G
G
两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转
有许多书籍还能培养我们的道德情操,
给我们巨大的精神力量,
鼓舞我们前进。
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
复习巩固 如图所示,木块A的质量mA=1kg,足够长的木板 B的质量mB=4kg,质量为mC=2kg的木块C置于木 板B上,水平面光滑,B、C之间有摩擦。现使A 以v0=10m/s的初速度向右匀速运动,与B碰撞 后将以vA′=2m/s的速度弹回。求: (1)B运动过程中的最大速度。 (2)若B、C间的动摩擦因数为0.6,则C在B上 滑动的距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修3-5 动量 近代物理初步
解析 (1)设B在绳被拉断后瞬间的速度为vB, 到达12 Cm点BvB时2=的12 速mBv度C2为+2vmCB,g有R mB代g=入mB数vRc2据得vB=5 m/s (2)设弹簧恢复到自然长度时B的速度为v1,取
水平向右为正方向,有Ep=
1 2
mBv12
I=mBvB-mBv1
代入数据得I=-4 N·s,其大小为4 N·s
(3)设绳断后A的速度为vA,取水平向右为正方
向,有mBv1=mBvB+mAvA
W= 1
2
mAvA2
代入数据得W=8 J
答案 (1)5 m/s (2)4 N·s (2)8 J
选修3-5 动量 近代物理初步
例:如图所示,质量M=4kg的滑板B静止放在光滑 水平面上,其右端固定一根轻质弹簧,弹簧的自 由端C到滑板左端的距离L=0.5m,这段滑板与木 块A之间的动摩擦因数=0.2,而弹簧自由端C到 弹簧固定端D所对应的滑板上表面光滑.可视为 质点的小木块A以速度v0=10m/s,由滑板B左端开 始沿滑板B表面向右运动.已知A的质量m =lkg, g 取10m/s2 。 求:(1)弹簧被压缩到最短时木块A 的速度; (2)木块A 压缩弹簧过程中弹簧的最大弹性势 能.
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
人有了知识,就会具备各种分析能力,
明辨是非的能力。
所以我们要勤恳读书,广泛阅读,
古人说“书中自有黄金屋。
”通过阅读科技书籍,我们能丰富知识,
培养逻辑思维能力;
通过阅读文学作品,我们能提高文学鉴赏水平,
培养文学情趣;
通过阅读报刊,我们能增长见识,扩大自己的知识面。
化为弹性势能
选修3-5 动量 近代物理初步
弹簧弹力联系的“两体模型”
注意:状态的把握 由于弹簧的弹力随形变量变化,所以弹簧 弹力联系的“两体模型”一般都是作加速度变 化的复杂运动,所以通常需要用“动量关系” 和“能量关系”分析求解。复杂的运动过程不 容易明确,特殊的状态必须把握:弹簧最长 (短)时两体的速度相同;弹簧自由时两体的 速度最大(小)。
选修3-5 动量 近代物理初步
[审题指导] 第一步:抓关键点
关键点
获取信息
光滑的水平面
A,B,C组成的系统动量守恒
B,C可视为一个整体 A与B碰后,A,B,C三者速度相同
A与B相碰并黏合在一起 弹簧伸展以后,A,B的速度也相同 第二步:找突破口 要求弹簧释放的势能→A,B,C系统增加的机械能→利用
动量守恒定律确定A,B,C在弹簧伸展前的速度→利用动量守 恒定律确定A,B,C在弹簧伸展后的速度。
选修3-5 动量 近代物理初步
[解析] 设碰后 A、B 和 C 的共同速度大小为 v,由动量守
恒有 mv0=3mv

设 C 离开弹簧时,A、B 的速度大小为 v1,由动量守恒有
3mv=2mv1+mv0
复习巩固 如图所示,木块A的质量mA=1kg,足够长的木板 B的质量mB=4kg,质量为mC=2kg的木块C置于木 板B上,水平面光滑,B、C之间有摩擦。现使A 以v0=10m/s的初速度向右匀速运动,与B碰撞 后将以vA′=2m/s的速度弹回。求: (1)B运动过程中的最大速度。 (2)若B、C间的动摩擦因数为0.6,则C在B上 滑动的距离。
选修3-5 动量 近代物理初步
(ii)由②式可知 v2<v1,A 将继续压缩弹簧, 直至 A、B、C 三者速度相同,设此速度为 v3, 此时弹簧被压缩至最短,其弹性势能为 Ep,
由动量守恒定律和能量守恒定律得
mv0=3mv3⑤ 12mv0 2-ΔE=21×(3m)v3 2+Ep⑥ 联立④⑤⑥式得 Ep=4183mv0 2
选修3-5 动量 近代物理初步
【规律总结】
含有弹簧的碰撞问题,在碰撞过程 中系统的机械能也不一定守恒,如本例
中,弹簧压缩之前,B 与 C 碰撞的过程
为完全非弹性碰撞,但在碰撞结束后, 弹簧压缩的过程中,系统的动量和机械 能均守恒。
选修3)(填正确答案标号。选对1个得 2分,选对2个得4分,选对3个得5分;每选 错1个扣3分,最低得分为0分)。
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
第一讲 动量 动量守恒定律
第7课 弹簧模型
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv
N
F弹
F弹
G
G
两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
12. (2013·新课标Ⅱ·35(2))如图,光滑水平 直轨道上有三个质量均为m的物块A、B、 C.B的左侧固定一轻弹簧(弹簧左侧的挡板 质量不计).设A以速度v0朝B运动,压缩弹 簧;当A、B速度相等时,B与C恰好相碰 并粘接在一起,然后继续运动.假设B和C碰 撞过程时间极短.求从A开始压缩弹簧直至 与弹簧分离的过程中, (i)整个系统损失的 机械能; (ii)弹簧被压缩到最短时的弹性 势能.
有许多书籍还能培养我们的道德情操,
给我们巨大的精神力量,
鼓舞我们前进。
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步

设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过
程中机械能守恒,有
12(3m)v2+Ep=12(2m)v1 2+12mv0 2

由①②③式得弹簧所释放的势能为 Ep=13mv0 2
[答案]
1 3mv0
2
选修3-5 动量 近代物理初步
1.如图所示,光滑轨道上,小车A、B用轻弹簧 连接,将弹簧压缩后用细绳系在A、B上,然 后使A、B以速度v0沿轨道向右运动,运动中 细绳突然断开, 当弹簧第一次恢复到自然长 度时, A的速度刚好为0 ,已知A、B的质量分 别为mA、mB,且mA<mB ,求:被压缩的弹簧 具有的弹性势能Ep.
2
2
由①②解出Ep=
mA(mA 2mB
mB
)
v02

选修3-5 动量 近代物理初步
2.光滑水平面上放着质量mA=1 kg的物块 A与质量 mB=2 kg的物块B,A与B均可视为质点, A靠在竖直 墙壁上, A、B间夹一个被压缩的轻弹簧(弹簧与 A、B 均不拴接 ), 用手挡住 B 不动, 此时弹 簧弹性势能Ep= 49 J. 在A、B间系一轻质细绳,细 绳长度大于弹簧的自然长度,如图所示.放手后B 向右运动,绳在短暂时间内被拉 断,之后B冲上与水平面相切的 竖直半圆光滑轨道,其半径 R =0.5 m, B恰能到达最 高点C.取g=10 m/s2,求:(1)绳拉断后瞬间B的速 度vB的大小. (2)绳拉断过程绳对B的冲量I的大 小. (3)绳拉断过程绳对A所做的功W.
选修3-5 动量 近代物理初步
解析 设弹簧第一次恢复自然长度时B
的速度为vB ,以A、B及弹簧组成的系统为研 究对象,系统在水平方向上所受合外力为零
(弹簧对A、B的相互作用力为系统的内
力),故系统动量守恒,机械能守恒,有
(mA+mB)v0=mBvB

1(mA+mB)v02+Ep= 1mBvB2 ②
A.原子核的结合能越大,该原子核越稳定 B.原子核的核子数越多,该原子核的比结 合能越大 C.光电效应现象说明了光具有粒子性 D.玻尔理论的局限性在于过多地保留了经 典电磁理论 E.爱因斯坦为解释光电效应现象,提出了 光的光子说
选修3-5 动量 近代物理初步
当堂检测 (10分)如图所示,质量为M、长为L的木 板放置于光滑水平地面上,其右端固定一轻 质弹簧。质量为m的物块从木板左端以速度 v0滑入木板,物块将弹簧压缩至最短后弹簧 又将物块弹回,最终物块恰好回到木板左 端,与木板保持相对静止共同运动。不计物 块尺寸和弹簧长度,求运动过程中弹簧的最 大弹性势能及物块与木板之间的动摩擦因 数。
选修3-5 动量 近代物理初步
解析 (i)从 A 压缩弹簧到 A 与 B 具有相同速度 v1 时,对 A、B 与弹簧组成的系统,由动量守恒定律 得 mv0=2mv1① 此时 B 与 C 发生完全非弹性碰撞,设碰撞后它们 的瞬时速度为 v2,损失的机械能为 ΔE,对 B、C 组成的系统,由动量守恒定律和能量守恒定律得 mv1=2mv2② 12mv1 2=ΔE+12×(2m)v2 2③ 联立①②③式得 ΔE=116mv0 2④
选修3-5 动量 近代物理初步
例:如图所示,A,B,C三个木块的质量 均为m。置于光滑的水平面上,B,C之间 有一轻质弹簧,弹簧的两端与木块接触而 不固连,将弹簧压紧到不能再压缩时用细 线把B和C紧连,使弹簧不能伸展,以至于 B,C可视为一个整体,现A以初速v0沿B, C的连线方向朝B运动,与B相碰并黏合在 一起,以后细线突然断开,弹簧伸展,从 而使C与A,B分离,已知C离开弹簧后的速 度恰为v0,求弹簧释放的势能。
相关文档
最新文档