影响高强度紧固件磷化处理摩擦系数的因素
磷化工艺中的各种影响因素
磷化工艺的影响因素磷化膜的质量直接影响与有机膜、涂层的附着力和防护性,影响磷化工件的耐磨、耐微动力磨损和抗擦伤性,以及磷化膜能否成为润滑剂的载体。
磷化膜质量的高低,取决于磷化所采用的工艺是否恰当,磷化过程是否符合工艺要求,因此要十分注意影响磷化工艺的因素。
影响磷化工艺的主要因素有:材质及表面状态、磷化前处理、磷化后处理、磷化液的化学成分等。
下面试就影响磷化工艺的主要因素作一分析。
(一)材质及表面状态。
同是钢铁工件,受含有的其它元素不同,表面晶格是否遭受腐蚀等因素的影响,形成的磷化膜颜色、均匀性、抗腐蚀能力不一样。
低碳钢容易磷化,膜的结晶致密,颜色较浅;中、高碳钢和低合金钢比较容易磷化,结晶有变粗的倾向,磷化膜颜色深;含有较多铬、钼、钨、钒、硅等元素的钢材不容易磷化。
磷化膜随钢材中碳化物含量和分布的不同存在差异,因此,不同钢材应选用不同的磷化工艺和相应的磷化产品。
(二)前处理。
磷化前的表面处理程度是影响磷化质量的重要因素。
因此,要求除净所有的锈迹、油污。
具体要求是,脱脂后的工件,不应有油脂、乳浊液等污物,其表面应能被水完全湿润;酸洗后的工件,不应有目视可见的氧化物、锈及过腐蚀现象.为防止过腐蚀,减轻氢脆,应在酸洗液中加入缓蚀剂.为防止酸雾,酸洗液中可加入酸雾抑制剂;喷抛丸清理后的工件,不应有漏喷、磨料粘附、锈蚀及油污,其表面应露出金属本色.从除油后到磷化前这一过程,工件不允许直接接触手或有油的污物。
经强酸、强碱处理后的钢铁件,一般会增大结晶粒度,增加膜的重量。
水洗是将工件表面从前道处理工序中带出来的残留化学成分除去,防止对下道处理工序的影响。
除油后的不良水洗会使油污再沉积,更多地消耗酸,造成不均匀的酸洗,形成不均匀的磷化膜;酸洗后的不良水洗,导致磷化槽液游离酸度升高,形成稀疏、不均匀的磷化膜,甚至磷化后的工件生锈。
要保证水洗质量,应保持清水的特定pH值或更有效的导电率,延长清洗时间和次数。
(三)后处理。
影响磷化的因素
影响磷化的因素影响磷化的因素影响磷化的因素很多,当磷化膜出现质量问题时,可以从磷化工艺参数、促进剂、磷化工艺(含设备)管理以及被处理钢材表面几大方面考虑。
一、磷化工艺参数的影响1、总酸度————总酸度过低、磷化必受影响,因为总酸度是反映磷化液浓度的一项指标。
控制总酸度的意义在于使磷化液中成膜离子浓度保持在必要的范围内。
2、游离酸度————游离酸度过高、过低均会产生不良影响。
过高不能成膜,易出现黄锈;过低磷化液的稳定性受威胁,生成额外的残渣。
游离酸度反映磷化液中游离H+的含量。
控制游离酸度的意义在于控制磷化液中磷酸二氢盐的离解度,把成膜离子浓度控制在一个必须的范围。
磷化液在使用过程中,游离酸度会有缓慢的升高,这时要用碱来中和调整,注意缓慢加入,充分搅拌,否则碱液局部过浓会产生不必要的残渣,出现越加碱,游离酸度越高的现象。
单看游离酸度和总酸度是没有实际意义的,必须一起考虑。
3、酸比————酸比即指总酸度与游离酸度的比值。
一般的说酸比都在5~30的范围内。
酸比较小的配方,游离酸度高,成膜速度慢,磷化时间长,所需温度高。
酸比较大的配方,成膜速度快,磷化时间短,所需温度低。
因此必须控制好酸比。
4、温度————磷化处理温度与酸比一样,也是成膜的关键因素。
不同的配方都有不同的温度范围,实际上,他在控制着磷化液中的成膜离子的浓度。
温度高,磷酸二氢盐的离解度大,成膜离子浓度相应高些,因此可以利用此种关系在降低温度的同时提高酸比,同样可达到成膜,其关系如下:70℃60℃50℃40℃30℃20℃1/5 1/7 1/10 1/15 1/20 1/25生产单位确定了某一配方后,就应该严格控制好温度,温度过高要产生大量沉渣,磷化液失去原有平衡。
温度过低,成膜离子浓度总达不到浓度积,不能生成完整磷化膜。
温度过高,磷化液中可溶性磷酸盐的离解度加大,成膜离子浓度大幅度提高,产生不必要的沉渣,白白浪费了磷化液中的有效成分,原有的平衡被迫坏,形成一个新的温度下的平衡,如,低温磷化液在温度失控而升高时,H2PO4→H++PO43-的离解反应向右进行,从而使磷酸根浓度升高,产生磷酸锌沉淀,使磷化液的酸比自动升高。
高强度螺栓连接摩擦面抗滑移系数试验介绍及其影响因素
禽强茂螺栓臨棲摩瘵面抗情参t救试验介殆g宴影响®素邓宗梁(福建省建筑科学研究院有限责任公司,福建省绿色建筑技术重点实验室,福建福州350108)摘要介绍了钢结构工程用高强度螺栓连接摩擦面的抗滑移系数试验,从摩擦面的表面处理方式、钢板抗滑移试件的存放时间及预拉力控制方法等三个方面研究了影响高强度螺栓连接摩擦面抗滑移系数的主要因素。
研究表明,抗滑移系数会随着连接件表面处理方式的不同而不同,会随其生锈时间的长短而改变,不同的预拉力控制方法所测得的抗滑移系数各异,选择在螺栓杆部上粘贴应变片的方式控制预拉力有较高的准确性和可靠性。
关键词高强度螺栓;连接摩擦面;抗滑移系数;影响因素0引言钢结构高强度螺栓连接中,使连接件摩擦面产生滑动时的外力与垂直于摩擦面的高强度螺栓预拉力之和的比值称为高强度螺栓连接摩擦面的抗滑移系数叫抗滑移系数是摩擦型高强度螺栓的重要设计参数,对构件的承载力有直接影响。
高强度摩擦型螺栓连接时是把高强度螺栓拧紧,使其产生紧固轴力压紧构件,紧固轴力即预拉力,利用接触面的摩擦力实现传力的作用叫为确保高强度螺栓连接的可靠性,抗滑移系数必须满足设计要求,否则可认为连接件的表面处理不到位,应禁止出厂或工地禁止进行拼装,必须重新处理,直到符合要求为止。
1抗滑移系数试验介绍《钢结构工程施工质量验收标准》GB50205—2020标准第6.3.1条规定,应分别对工厂和安装单位进行摩擦面的抗滑移系数试验,构件摩擦面在现场处理的应单独进行试验,其结果应合格。
该条为强制性条文,必须严格执行。
检查数量和试验方法按GB50205—2020标准附录B执行。
《钢结构高强度螺栓连接技术规程》JGJ82—2011标准第3.2.4条中规定了高强度螺栓连接摩擦面抗滑移系数“的取值,如普通钢结构构件材质Q235表面喷砂处理的“取0.45叫1.1检验频率检验批可按分部工程(子分部工程)所含高强度螺栓用量划分:每5万个高强度螺栓用量的钢结构为一批,不足5万个高强度螺栓用量的钢结构视为_批。
磷化处理工艺流程 磷化常见问题及处理方法
磷化处理工艺流程磷化常见问题及处理方法磷化处理磷化处理是一种化学反应,在表面形成一层膜(磷化膜)的一种表面处理工艺。
磷化处理工艺主要用在金属表面,目的也是为金属表面提供一层保护膜,让金属与空气隔绝,防止其被腐蚀;还会用于一些产品涂漆之前的打底,有了这层磷化膜能够提高漆层的附着力和防腐蚀能力,提高装饰性让金属表面看起来更漂亮,并且还能够在部分金属冷加工过程中起到润滑的作用。
经过磷化处理后能让工件在很长时间内不会氧化生锈,所以磷化处理的应用非常广泛,也是常用的一种金属表面处理工艺,在汽车,船舶,机械制造等行业中应用越来越多。
但磷化处理也有着溶液沉渣多,表面粗糙,磷化温度较高,时间长以及成本较高的缺点。
磷化的发展历史其实磷化处理工艺发展至今已经有很长时间了,它应该是现代金属表面处理中,发明时间较早的一种,其发展也经过了不同的时期。
在1869年的英国,有人就发现了磷化膜可以用在金属表面,能有效的保护金属长时间不被腐蚀,并且当时还将其申请了专利,这也为磷化处理的技术和发展奠定了基础。
从20世纪初开始,磷化处理开始用在工业产品中,这也促进了磷化工艺的发展和进步,从此磷化处理得到了快速的发展和进入实际应用时期。
到了现代,为了适应各种需求,磷化处理工艺也在不断的改进,主要是向着低温,低渣,环保无毒的方向发展。
磷化的分类及应用通常情况下,一种表面处理后都是呈现出一种颜色,但是磷化处理可以根据实际需求,通过使用不同的磷化剂就会呈现不同的颜色,这也就是我们经常会看到磷化处理有灰色,彩色或者是黑色。
铁系磷化磷化后表面会呈现出彩虹色以及蓝色,所以又被称为彩磷,磷化液主要以铝酸盐为原料,会在钢铁材料表面形成彩虹色的磷化膜,也主要是用于涂装底层,以达到工件的防腐蚀能力和提高表面涂层的结合力。
锌系磷化颜色呈灰色,所以被称为灰膜磷化,主要使用的磷化液由磷酸,氟化钠以及乳化剂等组成,会在工件表面形成灰色的磷化膜,它主要也是为涂装底层,与后道的喷塑,喷漆或者电泳等工序进行结合。
影响高强度紧固件磷化处理摩擦系数的因素
影响高强度紧固件磷化处理摩擦系数的因素影响高强度紧固件表面磷化处理摩擦系数的主要因素探讨前言:汽车紧固件常用的表面处理有镀锌钝化、非电解锌铝涂层、氧化及磷化处理等种类,但汽车高强度紧固件多用的表面处理种类是磷化处理,尤其是发动机用高强度紧固件。
钢铁零件在含有锰、铁、锌的磷酸盐溶液中经过化学处理,其表面生成一层难溶于水的磷酸盐保护膜,这种化学处理过程称之为磷化。
磷化的种类很多,可以根据磷化液的主要成份和成膜离子的种类分为锌系、锰系、铁系、锌钙系、锌锰系等。
磷化膜的分类不同,其性质及用途也不同:锌盐磷化膜:外观为浅灰至深灰结晶,主要用于耐蚀及增加有机涂层结合力、冷加工润滑、电绝缘,也用于减摩。
锰盐磷化膜:外观为灰至深灰结晶,主要用于减摩,也用于耐蚀及增加有机涂层结合力。
铁盐磷化膜:外观为深灰结晶,主要用于耐蚀及增加有机涂层结合力。
锌盐磷化膜、锰盐磷化膜具有特殊的高弥散度微孔结构和一定的硬度、抗热性、吸震性等特点,能有效地降低摩擦副表面的摩擦系数,防止咬合或擦伤,减小机械运动阻力和噪音。
这种以改善润滑减摩,提高耐磨性为主要作用的磷化处理工艺,被广泛应用于汽车摩擦运动承载的高强度紧固件上。
本文主要以PK公司和CH公司研制的锌盐磷化液、锰盐磷化液来进行磷化处理的汽车发动机的连杆螺栓、缸盖螺栓及主轴承螺栓等高强度螺栓,通过多组实验,综合比较、分析得出影响汽车紧固件表面磷化处理摩擦系数的因素及其摩擦系数受的影响规律,为在实际生产中调控汽车高强度紧固件磷化摩擦系数,提供了有一定价值的参考。
l 试验1.1 工艺流程磷化工艺的工艺过程一般为:脱脂—水洗—表面调整—磷化一水洗一干燥一后处理。
1.2 磷化液配方A、PK公司磷化配方锌盐磷化配方(以下简称为PK-1):锰盐磷化配方(以下简称为PK-2):PB-210 47 g/L PL复合磷化液 145 g/LFe2+ 1±0.5 g/L Fe2+ 2±0.5 g/L总酸度 12~27 Pt 总酸度60±10点添加剂10 20 g/L 游离酸度10±5点温度80±10 ℃温度95±4 ℃时间15±5min 时间15±3 minB、CH公司磷化配方锌盐磷化配方(以下简称为CH-1):LK复合磷化液 80 g/LFe2+ 1.5±0.5 g/L总酸度 36~45 Pt游离酸度 6~8 Pt温度 70~85 ℃时间 10~20min1.3 实验样件实验样件采用汽车发动机高强度紧固件,机械性能为12.9级,螺栓材料选为中碳合金钢:SCM435或SCM440。
影响摩擦系数的主要因素
影响摩擦系数的主要因素两个物体之间的摩擦力与其法向压力之比值为摩擦系数,有静摩擦系数和动摩擦系数之分。
同一摩擦副在相同条件下,静摩擦系数大于动摩擦系数。
摩擦系数的大小取决于摩擦种类、材料种类、摩擦面的粗糙度等条件,不同种类的摩擦系数大致如下:干摩擦系数为0.1—0.8,边界摩擦系数为0.05一0.1;液体摩擦系数为0.001一0.1;滚珠摩擦系数为0.001—0.03,滚柱摩擦系数为0.002一0.07 影响摩擦系数的主要因素有:1:材料的性质相同金属或互溶性加大的金属摩擦副容易发生粘着现象,使摩擦系数增大。
不同金属由于互溶性差,不易发生粘着,摩擦系数一般比较低。
2:表面膜的存在基建在空气中总有一层氧化膜,可以使摩擦系数降低。
3:速度和温度的影响4:载荷的影响对大多数物质来说,载荷的变化会直接影响到摩擦系数。
5:振动的影响6:光洁度的影响材料的摩擦系数与温度摘要:本文介绍了温度变化对材料摩擦系数的影响,并分析了实际应用中对薄膜摩擦系数的实际检测要求。
关键词:摩擦系数,温度,粘滑1、摩擦系数摩擦系数是对两表面摩擦力的一种量度,它表征了材料的摩擦行为。
薄膜表面的摩擦系数取决于薄膜表面的粘着性(表面张力和结晶度)、添加剂(爽滑剂、颜料等)、以及表面抛光。
在进行以下操作工序时需要严格控制材料的摩擦系数,如当薄膜越过自由转辊、袋成型、产品缠绕膜、以及包装袋及其它容器的堆放。
除了材料的内部可变因素能够影响材料的摩擦系数,环境因素(如机器运转的速度、温度、静电积累、以及湿度)也能影响摩擦系数的试验结果。
2、温度对摩擦系数的影响高分子材料分子运动状态的改变按照动力学的观点称作松弛。
温度升高时,一方面可提高各运动单元的热运动能力,另一方面由于热膨胀,分子间距离增加,即高聚物内部的自由体积增加,这就增大了各运动单元活动空间,有利于分子运动,使松弛时间缩短,松弛过程加快。
伴随着高聚物的松弛,它的热力学性质、粘弹性能和其它物理性质会发生急剧地改变。
影响紧固件摩擦系数检测因素
影响紧固件摩擦系数检测的因素李大维上海汽车集团股份有限公司乘用车分公司前言:紧固件连接的装配质量直接关系到产品的安全性和可靠性,而摩擦系数是影响紧固件装配质量的重要因素之一。
本文主要对紧固件摩擦系数检测过程对结果的影响进行了探讨,通过试验标准中所列的标准物质及试验方法都对产品的摩擦系数进行对比试验,从而识别影响检测过程中对产品摩擦系数真值的因素。
螺纹紧固件的功能,通过施加一定的扭矩,在螺栓上产生相应的预紧力(F),保证被连接牢固的联接在一起不松动,同时又可拆卸以便于维修。
预紧力的大小是保证连接质量的重要因素,而影响预紧力的主要因素除了使用的工具及拧紧方法外就是紧固件本身的摩擦系数。
摩擦系数有明确的物理意义,可理解为一个材料常数,当摩擦面的材质、表面状态和润滑条件确定后,摩擦系数也就随之确定。
那么标准中提到不同的试验条件、不同的试验方法对试验结果是否有影响呢?以下试验以IS0 16047标准中要求的不同状态进行对比测试。
试验设备ISO 16047标准中要求试验设备应满足:能够应用扭紧扭矩和用自动或手动旋转螺帽和螺栓头部,显示精度值要求±2%,角度的测量精度要求必须达到显示值的±2°或±2%。
为了达到仲裁的目的,扭紧时使用能控制的动力工具并控制旋转速度保持恒定。
测量结果能以电子记录方式记录。
本文所有试验结果均使用德国Schatz多功能螺栓紧固分析系统。
此实验测试机传感器精度均为0. 5%,符合《ISO 16047—紧固件的扭矩/夹紧力测试标准》中的试验测试机要求。
试验机周期对传感器进行标定。
试验过程中影响摩擦系数结果因素1.试验螺母对摩擦系数结果的影响ISO 16047标准中,检测螺栓使用的标准螺母处要求和被测螺栓等级对应外,对标准试验螺母的表面状态有有两种要求:(1)未镀层表面平整并脱脂处理。
⑵锻锌要求按照ISO 4042并脱脂处理。
试验方案:试验采用M10×1.5×45 9.8级镀锌并涂封闭剂六角头螺栓,平均镀层厚度为9.3μm;试验速度为30r/min,拧紧到30Nm,其它试验状态一致,试验各做5组数据。
高强度螺栓连接摩擦面抗滑移系数
高强度螺栓连接摩擦面抗滑移系数1. 引言在工程领域中,螺栓连接是一种常用的连接方式。
高强度螺栓连接摩擦面抗滑移系数是评估螺栓连接性能的重要指标之一。
本文将详细介绍高强度螺栓连接摩擦面抗滑移系数的定义、影响因素以及测试方法。
2. 高强度螺栓连接摩擦面抗滑移系数的定义高强度螺栓连接摩擦面抗滑移系数,简称为摩阻系数,是指在给定力矩下,防止螺栓松动和失效的能力。
它反映了材料间表面之间的黏附力和阻力。
3. 影响高强度螺栓连接摩擦面抗滑移系数的因素3.1 摩擦面材料摩擦面材料是影响高强度螺栓连接摩擦面抗滑移系数的重要因素之一。
不同材料具有不同的表面粗糙度和黏附性能,从而影响摩阻系数的大小。
3.2 接触压力接触压力是指螺栓连接处的压力大小。
较大的接触压力可以增加摩擦面间的黏附力,提高摩阻系数。
3.3 涂层材料在一些特殊情况下,为了增加摩阻系数,可以在螺栓连接处涂覆一层特殊材料。
这种涂层材料通常具有较高的粘附性能和摩擦系数。
3.4 螺栓预紧力螺栓预紧力是指在装配过程中施加在螺栓上的拉伸力。
适当的螺栓预紧力可以增加摩阻系数,提高螺栓连接的抗滑移性能。
4. 高强度螺栓连接摩擦面抗滑移系数的测试方法4.1 实验方法通过实验来测试高强度螺栓连接摩擦面抗滑移系数是一种常用的方法。
实验中通常采用试件进行测试,将试件固定在夹具上,并施加一定的拉伸力或剪切力。
通过测量试件上的位移和施加力的大小,可以计算出摩阻系数。
4.2 数值模拟方法除了实验方法,还可以使用数值模拟方法来评估高强度螺栓连接摩擦面抗滑移系数。
数值模拟方法可以通过建立几何模型和材料参数,利用有限元分析等技术来求解摩阻系数。
5. 结论高强度螺栓连接摩擦面抗滑移系数是评估螺栓连接性能的重要指标之一。
影响摩阻系数的因素包括摩擦面材料、接触压力、涂层材料以及螺栓预紧力等。
测试高强度螺栓连接摩擦面抗滑移系数可以采用实验方法和数值模拟方法。
通过合理选择材料和优化设计,可以提高螺栓连接的抗滑移性能。
磷化处理影响因素及常见问题
磷化处理影响因素及常见问题磷化处理是一种常用的表面处理工艺,用于改善金属材料的耐腐蚀性能和机械性能。
在进行磷化处理时,有许多因素会影响磷化层的质量和性能。
本文将详细介绍磷化处理的影响因素以及常见问题,并提供解决方案。
一、影响磷化处理的因素1.材料的选择不同的金属材料对磷化处理的影响是不同的。
普通来说,碳钢、不锈钢、铝合金等金属材料都可以进行磷化处理。
但是,不同材料的表面状态和成份会对磷化层的形成和质量产生影响。
2.表面处理在进行磷化处理之前,需要对金属材料的表面进行预处理,以去除表面的氧化物、油脂和其他杂质。
常用的表面处理方法包括酸洗、碱洗、喷砂等。
表面处理的质量和方法选择对磷化层的形成和质量有重要影响。
3.磷化液的配方磷化液的配方对磷化层的形成和质量起着至关重要的作用。
磷化液的主要成份包括磷酸盐、氟化物、氯化物等。
不同的金属材料和要求的磷化层性能需要选择不同的磷化液配方。
4.磷化工艺参数磷化工艺参数包括温度、时间、搅拌速度等。
这些参数的选择会直接影响磷化层的形成和质量。
普通来说,温度越高、时间越长,磷化层的厚度越大,但过高的温度和时间会导致磷化层的结晶粗糙和脆性增加。
5.磷化层的后处理磷化层形成后,需要进行后处理,以提高磷化层的耐腐蚀性能和机械性能。
常用的后处理方法包括中和、封闭、涂覆等。
后处理的质量和方法选择对磷化层的性能有重要影响。
二、常见问题及解决方案1.磷化层不均匀磷化层不均匀可能是由于磷化液的搅拌不均匀、材料表面存在油脂或者氧化物等杂质、磷化液配方不合理等原因造成的。
解决方法包括加强搅拌、提高表面处理质量、优化磷化液配方等。
2.磷化层结晶粗糙磷化层结晶粗糙可能是由于磷化液温度过高、时间过长、磷化液配方不合理等原因造成的。
解决方法包括控制磷化液的温度和时间、优化磷化液配方等。
3.磷化层附着力差磷化层附着力差可能是由于材料表面存在油脂、氧化物等杂质、磷化液配方不合理等原因造成的。
解决方法包括提高表面处理质量、优化磷化液配方等。
影响高强度紧固件磷化处理摩擦系数的因素
影响高强度紧固件表面磷化处理摩擦系数的主要因素探讨前言:汽车紧固件常用的表面处理有镀锌钝化、非电解锌铝涂层、氧化及磷化处理等种类,但汽车高强度紧固件多用的表面处理种类是磷化处理,尤其是发动机用高强度紧固件。
钢铁零件在含有锰、铁、锌的磷酸盐溶液中经过化学处理,其表面生成一层难溶于水的磷酸盐保护膜,这种化学处理过程称之为磷化。
磷化的种类很多,可以根据磷化液的主要成份和成膜离子的种类分为锌系、锰系、铁系、锌钙系、锌锰系等。
磷化膜的分类不同,其性质及用途也不同:锌盐磷化膜:外观为浅灰至深灰结晶,主要用于耐蚀及增加有机涂层结合力、冷加工润滑、电绝缘,也用于减摩。
锰盐磷化膜:外观为灰至深灰结晶,主要用于减摩,也用于耐蚀及增加有机涂层结合力。
铁盐磷化膜:外观为深灰结晶,主要用于耐蚀及增加有机涂层结合力。
锌盐磷化膜、锰盐磷化膜具有特殊的高弥散度微孔结构和一定的硬度、抗热性、吸震性等特点,能有效地降低摩擦副表面的摩擦系数,防止咬合或擦伤,减小机械运动阻力和噪音。
这种以改善润滑减摩,提高耐磨性为主要作用的磷化处理工艺,被广泛应用于汽车摩擦运动承载的高强度紧固件上。
本文主要以PK公司和CH公司研制的锌盐磷化液、锰盐磷化液来进行磷化处理的汽车发动机的连杆螺栓、缸盖螺栓及主轴承螺栓等高强度螺栓,通过多组实验,综合比较、分析得出影响汽车紧固件表面磷化处理摩擦系数的因素及其摩擦系数受的影响规律,为在实际生产中调控汽车高强度紧固件磷化摩擦系数,提供了有一定价值的参考。
l 试验1.1 工艺流程磷化工艺的工艺过程一般为:脱脂—水洗—表面调整—磷化一水洗一干燥一后处理。
1.2 磷化液配方A、PK公司磷化配方锌盐磷化配方(以下简称为PK-1):锰盐磷化配方(以下简称为PK-2):PB-210 47 g/L PL复合磷化液 145 g/LFe2+ 1±0.5 g/L Fe2+ 2±0.5 g/L总酸度 12~27 Pt 总酸度 60±10点添加剂10 20 g/L 游离酸度 10±5点温度 80±10 ℃温度 95±4 ℃时间 15±5min 时间 15±3 minB、CH公司磷化配方锌盐磷化配方(以下简称为CH-1):LK复合磷化液 80 g/LFe2+ 1.5±0.5 g/L总酸度 36~45 Pt游离酸度 6~8 Pt温度 70~85 ℃时间 10~20min1.3 实验样件实验样件采用汽车发动机高强度紧固件,机械性能为12.9级,螺栓材料选为中碳合金钢:SCM435或SCM440。
影响紧固件磷化原因分析
影响紧固件磷化原因分析影响紧固件磷化原因分析本文从磷化紧固件耐腐蚀的影响因素分析,总结出如何提高磷化紧固件耐腐蚀性能。
1、存在的问题磷化膜耐蚀性按GB11376-1989进行中性盐雾试验,90min不产生锈蚀。
汽车紧固件其耐中性盐雾试验不合格率达45%,磷化膜外观、色泽不一致,结晶粗大,挂灰多。
2、影响因素2.1、溶液成分配比不佳溶液的组成与配比对磷化质量有很大的影响,采用自调整的钙盐磷化液进行生产时,工件表面形成的磷化膜结晶粗大、挂灰多,产品外观质量差,该方案配制的黑色磷化液生产时产生的沉淀相对较多,基本上每日都需要打涝沉渣。
经多种磷化液比较,采用PF-MIAM和PF-MIAR磷化液。
该磷化液调整简单、磷化膜结晶细密,使汽车紧固件耐蚀性能得到较大提高,而且工件挂灰少、溶液沉淀少。
其磷化效果基本能满足汽车钢质紧固件黑色磷化要求。
2.2、酸比不正确酸比是指游离酸度(Tb)与总酸度(T a)的关系。
游离酸度过高,与钢铁件的作用快,会大量析氢,使界面层磷酸盐不易饱和,导致晶核形成困难,膜层结晶粗大、疏松多了孔,搞蚀性能降低,而且合磷化时间延长;游离酸度过低,磷化膜薄、甚至没有磷化膜生成。
总酸度过高会使膜层过薄,总酸度过低会使膜层疏松粗糙。
所以,总酸度一般控制在85 ̄140点。
2.3、磷化前处理方式的影响小型紧固件采用篮装,工件容易接触,在磷化过程中不能让其充分磷化,接触部位难以形成完整的磷化膜,故耐中性盐雾性能差;若采用挂装或让工件间不接触,使其能充分反应,便对提高耐中性盐雾性能有事半功倍的作用。
2.4、溶液温度的影响磷化液温度升高,可提高磷化的结合力、硬度、耐蚀性。
但是温度也不宜过高,否则会使Fe2+氧化成Fe3+,并使沉淀物增多,溶液挥发快,导致溶液不稳定。
3、抗蚀性能差的原因及排除对策磷化紧固件抗腐蚀性能差产生的原因及排除对策⑴溶液成分配比不佳:改进磷化液配方,采用PL-VM磷化液。
⑵酸比不正确:游离酸性太高,可加碳酸锰等调节:总酸太低,可加主剂调节,总酸控制在85点以上。
紧固件摩擦系数-概述说明以及解释
紧固件摩擦系数-概述说明以及解释1.引言1.1 概述概述部分的内容可以按照以下方式编写:在紧固件设计和应用中,摩擦系数是一个十分重要的参数。
摩擦系数是指在两个表面接触并相对滑动时所产生的摩擦力与正压力之比。
它不仅会影响到紧固件的性能和可靠性,也会对装配过程和使用寿命产生重要的影响。
在工程实践中,选择合适的摩擦系数对于确保紧固件的工作正常以及减少因松动或脱落而引起的潜在危险十分重要。
低摩擦系数可确保紧固件在正常工作条件下保持稳定,而高摩擦系数则可以提高紧固件的保持力。
然而,摩擦系数的确定并不是一个简单的过程。
它受到多种因素的影响,包括材料的选择、表面处理、润滑条件等。
因此,在设计和选择紧固件时,需要综合考虑各种因素以确定最合适的摩擦系数。
本文将从紧固件的定义和分类开始,介绍摩擦系数的概念和作用,深入探讨影响紧固件摩擦系数的因素,并介绍常用的测试方法。
最后,我们将总结摩擦系数对紧固件性能的影响,探讨摩擦系数的优化方法,以及紧固件摩擦系数在不同应用领域中的具体应用。
通过对紧固件摩擦系数的研究,我们可以更好地理解该参数的重要性和潜在价值,为紧固件的设计和选择提供科学依据。
综上所述,本文旨在全面介绍紧固件摩擦系数及其相关内容,希望能够对读者在紧固件设计和选择方面提供有益的参考和指导。
文章结构部分的内容为:1.2 文章结构本文共分为三个部分:引言、正文和结论。
(1)引言部分主要包括概述、文章结构、目的和总结四个方面。
概述部分对紧固件摩擦系数的重要性进行了简要介绍,并引出了摩擦系数对紧固件性能的影响。
文章结构部分向读者介绍了文章的整体结构,包括引言、正文和结论三个部分,并简要描述了每个部分的内容。
目的部分明确了本文的研究目标,即探讨紧固件摩擦系数的定义、影响因素、测试方法,以及摩擦系数对紧固件性能的影响和优化方法。
总结部分提前总结了文章的主要内容和结论。
(2)正文部分是本文的核心内容,主要包括紧固件的定义和分类、摩擦系数的概念和作用、影响紧固件摩擦系数的因素,以及紧固件摩擦系数的测试方法。
磷化处理影响因素及常见问题
一、磷化工艺参数的影响1、总酸度————总酸度过低、磷化必受影响,因为总酸度是反映磷化液浓度的一项指标。
控制总酸度的意义在于使磷化液中成膜离子浓度保持在必要的范围内。
2、游离酸度————游离酸度过高、过低均会产生不良影响。
过高不能成膜,易出现黄锈;过低磷化液的稳定性受威胁,生成额外的残渣。
游离酸度反映磷化液中游离H+的含量。
控制游离酸度的意义在于控制磷化液中磷酸二氢盐的离解度,把成膜离子浓度控制在一个必须的范围。
磷化液在使用过程中,游离酸度会有缓慢的升高,这时要用碱来中和调整,注意缓慢加入,充分搅拌,否则碱液局部过浓会产生不必要的残渣,出现越加碱,游离酸度越高的现象。
单看游离酸度和总酸度是没有实际意义的,必须一起考虑。
3、酸比————酸比即指总酸度与游离酸度的比值。
一般的说酸比都在5~30的范围内。
酸比较小的配方,游离酸度高,成膜速度慢,磷化时间长,所需温度高。
酸比较大的配方,成膜速度快,磷化时间短,所需温度低。
因此必须控制好酸比。
4、温度————磷化处理温度与酸比一样,也是成膜的关键因素。
不同的配方都有不同的温度范围,实际上,他在控制着磷化液中的成膜离子的浓度。
温度高,磷酸二氢盐的离解度大,成膜离子浓度相应高些,因此可以利用此种关系在降低温度的同时提高酸比,同样可达到成膜,其关系如下:70℃ 60℃ 50℃ 40℃ 30℃ 20℃1/5 1/7 1/10 1/15 1/20 1/25生产单位确定了某一配方后,就应该严格控制好温度,温度过高要产生大量沉渣,磷化液失去原有平衡。
温度过低,成膜离子浓度总达不到浓度积,不能生成完整磷化膜。
温度过高,磷化液中可溶性磷酸盐的离解度加大,成膜离子浓度大幅度提高,产生不必要的沉渣,白白浪费了磷化液中的有效成分,原有的平衡被迫坏,形成一个新的温度下的平衡,如,低温磷化液在温度失控而升高时,H2PO4→H++PO43- 的离解反应向右进行,从而使磷酸根浓度升高,产生磷酸锌沉淀,使磷化液的酸比自动升高。
高强度螺栓连接摩擦面抗滑移系数
高强度螺栓连接摩擦面抗滑移系数1. 引言在工程结构设计和制造过程中,螺栓连接是一种常见的连接方式。
而摩擦面的抗滑移系数则是评估螺栓连接性能的重要参数之一。
本文将从深度和广度两个方面探讨高强度螺栓连接摩擦面抗滑移系数的相关内容。
2. 摩擦面抗滑移系数的定义和意义摩擦面抗滑移系数是指两个表面之间的相对运动阻力与两个表面之间的正压力之比。
在螺栓连接中,摩擦面抗滑移系数的大小直接影响着连接的可靠性和稳定性。
较大的摩擦面抗滑移系数意味着更大的阻力,从而能够有效地防止螺栓连接在受力情况下发生滑移。
3. 螺栓连接摩擦面抗滑移系数的影响因素(1)表面粗糙度:摩擦面的抗滑移系数受到表面粗糙度的影响。
表面越粗糙,摩擦系数越大,连接性能也就越好。
(2)润滑情况:润滑可以降低摩擦面的抗滑移系数,但不同的润滑剂会对摩擦面性能产生不同的影响。
(3)预紧力:预紧力的大小也会对摩擦面抗滑移系数产生影响。
适当的预紧力可以提高摩擦面抗滑移系数,但过大的预紧力可能导致螺栓过紧,甚至损坏。
4. 高强度螺栓连接摩擦面抗滑移系数的测试和评估(1)实验方法:常用的测试方法包括摩擦系数试验机、力矩试验机等。
通过施加力或力矩来测试螺栓连接的滑移性能,从而得到摩擦面抗滑移系数。
(2)评估标准:国际上对于摩擦面抗滑移系数的评估标准较为统一,但在不同的行业和领域,对于摩擦系数的要求可能有所不同。
5. 我的观点和理解在工程设计和制造领域,摩擦面抗滑移系数是十分重要的参数。
合理选用螺栓和合适的连接方式可以保证连接的牢固和可靠,避免出现滑移或者松动的情况。
在实际应用中要考虑到润滑条件、工作环境等因素,选择合适的螺栓及润滑剂是十分重要的。
6. 总结高强度螺栓连接摩擦面抗滑移系数是影响连接性能的重要参数,其大小会直接影响到螺栓连接的可靠性和稳定性。
在工程设计和制造过程中,需要对摩擦面抗滑移系数进行充分的评估和测试,以确保连接的安全性和可靠性。
合理运用润滑技术和调节预紧力也是确保连接性能的重要手段。
紧固件磷化常见问题及解决
紧固件磷化常见问题及解决(2009-12-25)紧固件磷化常用有两种,锌系磷化和锰系磷化,锌系磷化润滑性能比锰系磷化好,锰系磷化抗腐蚀性,耐磨性较锌系好。
它的使用温度可达105~205℃(华氏225F°-400F°)。
机械工业用紧固件很多用磷化涂油处理。
因为它扭矩-预紧力一致性很好,装配时能保证达到设计所预期的紧固要求,所以在机械工业中使用较多。
特别是一些重要零部件的连接。
如:钢结构连接副、发动机的连杆螺栓、螺母,缸盖、主轴承、飞轮螺栓、车轮螺栓螺母等。
高强度螺栓采用磷化,还可以避免氢脆问题,所以在机械工业领域10.9级以上的螺栓一般采用磷化表面处理。
紧固件磷化常见缺陷、产生原因及改进对策如下:常见磷化故障的解决办法类别:技术问题发布时间:2010/5/31 10:32:00浏览数:3862近年来,表面处理中转化膜技术发展较快。
在汽车摩托车的紧固件上采用较多的是磷酸盐(磷化)和氧化(发黑)。
虽然它们的防腐性能耐久性等级属于轻度保护,由于成本低廉,使用方便在表面防护领域还占有一席之地。
磷化是借磷化溶液在紧固件表面上人为地造成一层厚约10μm保护膜,这层膜是难溶的磷酸盐的混合物。
根据磷化液用的磷酸盐分类有:磷酸锌系、磷酸铁系、磷酸锰系。
此外,还有在磷酸锌中加钙的锌钙系,在磷酸锌中加铜、加镍的三元体系磷化等。
一、常见磷化故障的解决办法故障1:工件表面均匀泛黄,均匀疏松的磷化膜主要原因:⑴总酸度低、酸比低;⑵促进剂浓度低;⑶磷化温度低、时间短。
解决方法:⑴补加磷化液和碱;⑵补加促进剂;⑶提高温度,延长时间。
故障2:磷化成膜速度慢,但延长磷化时间仍可形成均匀完整膜主要原因:⑴表面调整能力不强;⑵促进剂溶度不够;⑶酸比低;⑷磷化温度低。
解决方法:⑴改进表调或换槽;⑵补加促进剂;⑶补加碱;⑷提高温度。
故障3:㈠磷化膜局部块状条状挂灰;㈡挂灰处磷化膜不均匀;㈢时有彩色膜。
主要原因:⑴工件在进入磷化槽前已经形成二次黄绿锈;⑵表面调整能力差;⑶磷化液中杂质多。
高强度螺栓摩擦连接中,螺栓的抗滑系数
高强度螺栓摩擦连接中,螺栓的抗滑系数让我们来深入探讨一下高强度螺栓摩擦连接中螺栓的抗滑系数这一主题。
螺栓的抗滑系数是指在螺栓松动前,螺栓与连接件之间的摩擦阻力。
这个参数对于螺栓连接的安全性和可靠性至关重要。
在高强度螺栓摩擦连接中,螺栓的抗滑系数直接影响着连接件的紧固性能,因此我们需要深入了解这一参数的特点和影响因素。
1. 螺栓的抗滑系数的定义和测定方法螺栓的抗滑系数是指螺栓在受到拉力作用时产生的摩擦力与连接面之间的比值。
通常情况下,螺栓的抗滑系数是通过实验测定得到的。
测定时,需要考虑螺栓和连接面的材料、表面处理情况、紧固力等因素。
螺栓的抗滑系数不仅与材料本身的摩擦性能有关,还与紧固力和工作环境有关,因此需要进行全面的试验和分析。
2. 螺栓的抗滑系数对连接性能的影响螺栓的抗滑系数直接影响着连接件的紧固性能。
当螺栓的抗滑系数较大时,可以减小螺栓在工作时的松动可能性,提高连接件的安全性和可靠性。
而当螺栓的抗滑系数较小时,容易导致连接件在受到外力作用时产生松动,从而影响整个系统的稳定性和安全性。
3. 影响螺栓抗滑系数的因素螺栓的抗滑系数受到许多因素的影响,主要包括螺栓材料的摩擦性能、螺纹表面处理、连接面的状态、紧固力的大小等因素。
其中,螺栓材料的摩擦性能是决定抗滑系数大小的重要因素之一。
一般情况下,表面粗糙的螺栓在紧固时能产生更大的摩擦力,因此具有较大的抗滑系数。
连接面的状态和紧固力大小也会对抗滑系数产生影响,需要在实际工程中进行综合考虑。
4. 我对高强度螺栓摩擦连接中螺栓抗滑系数的理解作为文章写手,我对高强度螺栓摩擦连接中螺栓抗滑系数有着深刻的理解。
在工程实践中,螺栓的抗滑系数是确保连接件安全可靠的关键参数之一。
通过对螺栓抗滑系数的全面评估和合理选择,可以有效提高螺栓连接的紧固性能,保证整个系统的安全运行。
我强调在进行螺栓连接设计和使用时,需要充分考虑螺栓的抗滑系数,从而确保连接件的可靠性和安全性。
总结回顾:通过本文的深入探讨,我们对高强度螺栓摩擦连接中螺栓抗滑系数这一重要参数有了全面的了解。
紧固件的摩擦系数标准
紧固件的摩擦系数标准
一、表面处理
紧固件的表面处理对摩擦系数有显著影响。
常见的表面处理方法包括镀锌、喷塑、氧化等。
这些处理方法可以提高紧固件表面的光滑度,降低摩擦系数。
例如,镀锌层具有较好的抗腐蚀性能和摩擦性能,能够有效地减小摩擦力。
二、材料类型
不同材料类型对紧固件的摩擦系数也有很大影响。
一般来说,高强度合金钢、不锈钢等材料的摩擦系数较低,而铸铁、碳钢等材料的摩擦系数相对较高。
因此,在选择紧固件材料时,应充分考虑其摩擦系数的要求。
三、测试条件
测试条件也是影响紧固件摩擦系数的重要因素。
例如,温度、湿度、润滑条件等都会对摩擦系数产生影响。
在标准测试条件下,紧固件的摩擦系数通常具有较好的重复性和稳定性。
因此,在进行紧固件摩擦系数测试时,应尽量保证测试条件的标准化和规范化。
四、紧固方式
紧固方式也是影响紧固件摩擦系数的重要因素。
例如,螺栓的拧紧方式、拧紧力矩等都会影响其摩擦系数。
在拧紧过程中,应尽量保证螺栓与螺母的贴合度良好,避免出现间隙或过盈现象,这样可以有效地减小摩擦力。
五、使用环境
使用环境对紧固件的摩擦系数也有一定影响。
例如,在高温、高湿、腐蚀等恶劣环境下,紧固件的摩擦系数可能会发生变化。
因此,在使用紧固件时,应充分考虑其使用环境的要求,选择合适的材料和表面处理方法,以保证紧固件的摩擦系数符合要求。
高强度螺栓连接摩擦面抗滑移系数
高强度螺栓连接摩擦面抗滑移系数
高强度螺栓连接摩擦面的抗滑移系数取决于材料的摩擦性能和紧固力。
一般来说,高强度螺栓连接摩擦面的抗滑移系数应达到0.2以上。
具体影响高强度螺栓连接摩擦面抗滑移系数的因素有:
1. 材料摩擦性能:连接摩擦面的材料摩擦系数越大,抗滑移能力越强。
一般来说,选择具备高摩擦系数的材料,如带有防滑表面处理或涂层的材料,可以提高抗滑移性能。
2. 紧固力:高强度螺栓连接的抗滑移能力与紧固力有直接关系。
紧固力越大,抗滑移能力越强。
因此,螺栓的预紧力对抗滑移性能至关重要。
应按照设计和规范要求进行正确的预紧力计算和紧固。
3. 表面处理:摩擦面表面的处理也是影响抗滑移性能的重要因素。
在螺栓和连接板的摩擦面上进行表面处理,如喷砂、镀锌或涂覆特殊涂层等,可以增加摩擦系数,提高抗滑移性能。
需要注意的是,高强度螺栓连接摩擦面的抗滑移系数并非固定不变的数值,它会受到使用环境的影响。
因此,在设计和实际使用中,应进行充分的力学计算和实验验证,以确保连接的可靠性和稳定性。
紧固件摩擦系数简介
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载紧固件摩擦系数简介地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容紧固件摩擦系数简介浙江长华汽车零件有限公司李大维在汽车装配中,螺纹紧固件装配的质量将直接影响整车的装配质量和行驶的可靠性。
为此,在施加外载荷之前,需拧紧螺纹紧固件,以加紧被联接件。
称拧紧螺纹紧固件为预紧,称该力为轴向预紧力。
保证螺栓的可靠服役,必须在装配时要保证有适当的轴向夹紧力。
目前的装配工艺上最经济可行的方法是通过控制扭矩来间接实现对轴向夹紧力的控制。
预紧力的大小是保证链接质量的重要因素,螺栓的拧紧过程是一个克服摩擦的过程,在这一过程中存在螺纹副的摩擦及端面摩擦。
而影响预紧力的主要因素除了使用的工具及拧紧方法外就是紧固件的摩擦系数。
摩擦系数是一个明确的物理概念,它是摩擦力与正压力之间的比值,也可以理解为一个材料常数,当摩擦面的材料、表面处理状态和润滑条件确定后,摩擦系数也就确定下来。
但是摩擦系数与零件表面状态和制造公差有关。
摩擦系数的测量必须在一定的基准条件下进行,才能保证有良好的重复性。
紧固件摩擦系数检测、计算方法试验设备要求试验设备能够应用扭紧扭矩和用自动或手动旋转螺帽和螺栓头部,测量功能能够显示表1中的项目,显示精度值要求±2%,除非有其它的特殊要求。
角度的测量精度要求无论什么条件下必须达到显示值的±2°或±2%。
为了达到仲裁的目的,扭紧时使用能控制的动力工具并控制旋转速度保持恒定。
测量结果能以电子记录方式记录。
目前汽车行业使用比较多的设备是德国Schatz 多功能螺栓紧固分析系统,此实验测试机传感器精度均为0.5%,符合各大汽车公司紧固件分析要求中的试验测试机要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响高强度紧固件表面磷化处理摩擦系数的主要因素探讨前言:汽车紧固件常用的表面处理有镀锌钝化、非电解锌铝涂层、氧化及磷化处理等种类,但汽车高强度紧固件多用的表面处理种类是磷化处理,尤其是发动机用高强度紧固件。
钢铁零件在含有锰、铁、锌的磷酸盐溶液中经过化学处理,其表面生成一层难溶于水的磷酸盐保护膜,这种化学处理过程称之为磷化。
磷化的种类很多,可以根据磷化液的主要成份和成膜离子的种类分为锌系、锰系、铁系、锌钙系、锌锰系等。
磷化膜的分类不同,其性质及用途也不同:锌盐磷化膜:外观为浅灰至深灰结晶,主要用于耐蚀及增加有机涂层结合力、冷加工润滑、电绝缘,也用于减摩。
锰盐磷化膜:外观为灰至深灰结晶,主要用于减摩,也用于耐蚀及增加有机涂层结合力。
铁盐磷化膜:外观为深灰结晶,主要用于耐蚀及增加有机涂层结合力。
锌盐磷化膜、锰盐磷化膜具有特殊的高弥散度微孔结构和一定的硬度、抗热性、吸震性等特点,能有效地降低摩擦副表面的摩擦系数,防止咬合或擦伤,减小机械运动阻力和噪音。
这种以改善润滑减摩,提高耐磨性为主要作用的磷化处理工艺,被广泛应用于汽车摩擦运动承载的高强度紧固件上。
本文主要以PK公司和CH公司研制的锌盐磷化液、锰盐磷化液来进行磷化处理的汽车发动机的连杆螺栓、缸盖螺栓及主轴承螺栓等高强度螺栓,通过多组实验,综合比较、分析得出影响汽车紧固件表面磷化处理摩擦系数的因素及其摩擦系数受的影响规律,为在实际生产中调控汽车高强度紧固件磷化摩擦系数,提供了有一定价值的参考。
l 试验1.1 工艺流程磷化工艺的工艺过程一般为:脱脂—水洗—表面调整—磷化一水洗一干燥一后处理。
1.2 磷化液配方A、PK公司磷化配方锌盐磷化配方(以下简称为PK-1):锰盐磷化配方(以下简称为PK-2):PB-210 47 g/L PL复合磷化液 145 g/LFe2+ 1±0.5 g/L Fe2+ 2±0.5 g/L总酸度 12~27 Pt 总酸度 60±10点添加剂10 20 g/L 游离酸度 10±5点温度 80±10 ℃温度 95±4 ℃时间 15±5min 时间 15±3 minB、CH公司磷化配方锌盐磷化配方(以下简称为CH-1):LK复合磷化液 80 g/LFe2+ 1.5±0.5 g/L总酸度 36~45 Pt游离酸度 6~8 Pt温度 70~85 ℃时间 10~20min1.3 实验样件实验样件采用汽车发动机高强度紧固件,机械性能为12.9级,螺栓材料选为中碳合金钢:SCM435或SCM440。
1.4 实验方法试验方法,按照《ISO 16047—紧固件的扭矩/夹紧力测试标准》有关规定。
1.5 实验设备1.5.1、磷化膜形貌(1)外观:用眼睛直接观察膜层的色泽,数码相机拍摄外观形貌照片;(2)微观形貌:用体视显微镜观察。
1.5.2、磷化膜厚度:可采用横断面厚度显微镜测量法或采用磁性测厚仪。
1.5.3、摩擦系数测试:采用多功能螺栓紧固分析系统。
试验符合《ISO 16047—紧固件的扭矩/夹紧力测试》标准。
试验测试机要求:能够应用扭紧扭矩和用自动或手动旋转螺帽和螺栓头部,测量功能能够显示表1中的项目,显示精度值要求±2%,除非有其它的特殊要求。
角度的测量精度要求无论什么条件下必须达到显示值的±2°或±2%。
为了达到仲裁的目的,扭紧时使用能控制的动力工具并控制旋转速度保持恒定。
测量结果能以电子记录方式记录。
实验测试机的测量项目应包含表2中要求测量项目,通过测试分析系统软件程序,可以求得总摩擦系数、螺纹之间的摩擦系数及支承表面摩擦系数。
表1 可测量的参数及可求出的拧紧特性图1:实验设备2 试验结果与分析2.1 膜层性能测试1、磷化膜形貌(1)外观以磷化工艺方案得到的锌盐、锰盐磷化膜层,用眼睛直接观察,图2是数码相机拍摄的外观形貌照片。
锌盐磷化的样件锰盐磷化的样件图2 数码相机拍摄从图2中可以看出,锌系磷化膜层的色泽为深灰色,锰系磷化膜层色泽为乌黑色。
(2)微观结构用体视显微镜观察到的锌盐、锰盐磷化膜的微观结构,如图3所示。
锌系磷化锰系磷化图3: 磷化膜微观照片从图3中可以看出,锌系、锰系试样磷化膜均是连续、均匀、细致的结晶,但锰盐磷化膜更为细致。
2.2 影响摩擦系数的因素(1)不同的磷化对摩擦系数的影响此试验采用PK-1和PK-2磷化液对试验样件进行磷化处理,再对试验样件进行摩擦系数测试,从图 4-锌盐磷化、锰盐磷化摩擦系数测试结果中,可以看出:锌盐磷化、锰盐磷化的总摩擦系数、端面摩擦系数、螺纹摩擦系数均较大,锌盐磷化在同工艺下样件的总摩擦系数相差很大,试验范围为0.33~0.39,且同一个样件总摩擦系数、端面摩擦系数、螺纹摩擦系数相差也较为悬殊;而锰盐磷化在同工艺下样件的总摩擦系数相差很小,试验范围为0.2~0.23,且同一个样件总摩擦系数、端面摩擦系数、螺纹摩擦系数相差也不大。
从锌、锰盐磷化摩擦系数对照图中,很显然发现:锌盐磷化摩擦系数大于锰盐磷化的摩擦系数,且锌盐磷化摩擦系数没有锰盐磷化摩擦系数那么集中。
根据分析,锌盐磷化膜微观结构为定型晶结构,树枝状、针状、空隙较多。
而锰盐磷化膜微观结构为密集颗粒状,空隙少,从锌、锰盐磷化膜的微观结构分析,可知锰盐磷化膜比锌盐磷化膜的摩擦系数相对较小且稳定。
图4(2)不同的磷化温度对摩擦系数的影响由于锌盐磷化未经润滑封闭的摩擦系数较大,为了便于分析,此实验采用采用我公司磷化配方在不同温度下进行锌系磷化,由此得到的不同温度下的样件,进行摩擦系数对比。
图5从图 5-总摩擦系数—磷化温度图,可以看出未经磷化后处理的摩擦系数随温度增加而下降。
据分析:磷化液的工作温度对获得结晶细致的磷化膜非常重要,温度低时,所得磷化膜的耐磨性下降,温度高有利于磷化的顺利进行,且磷化膜具有较高的附着力、硬度和较好的耐蚀性。
高温时比低温时磷化膜生成的也快,结晶体更为细致,由结晶的机理,磷化膜的摩擦系数随温度极有可能是随温度升高而降低。
(3)磷化膜厚度对摩擦系数的影响磷化膜厚度测量方法较多,可以采用GB 6462《金属的氧化覆盖层横断面厚度显微镜测量法》,也可采用测厚仪,按照GB 4956《磁性金属基体上非磁性覆盖层厚度测量磁性方法》或GB 4957《非磁性金属基体上非导电覆盖层测量涡流方法》。
图6为了便于分析磷化膜厚度对摩擦系数影响,同时,结合温度与摩擦系数关系,此实验采用CH-1磷化配方,在同一磷化工艺下进行锌系磷化,实验样件仅磷化干燥,由此得到的不同磷化厚度的样件,进行摩擦系数对比,见图6。
由图 6-总摩擦系数—磷化膜厚度关系图可知,摩擦系数与磷化膜厚度的关系类似与温度的关系,实际上摩擦系数与磷化的温度关系也包含了摩擦系数与磷化膜厚度的关系,由于摩擦系数与磷化膜成型的微观结构有密切关系,当磷化膜薄时,磷化结晶体疏散、不均匀,此时具有摩擦系数较大,随磷化的进行磷化膜将随之变为连续、均匀、细致的结晶,此时磷化膜的摩擦系数较小。
(4)磷化膜封闭对摩擦系数的影响由于磷化膜是由许多大小相差悬殊的结晶组成,这些结晶从晶核散布开来,然后连接在一起,逐步覆盖整个工件的磷化表面。
所以磷化膜是弥散的微孔结构,采用液体的润滑封闭剂封闭磷化膜是汽车紧固件广泛运用的方法。
为了研究封闭剂对摩擦系数影响,通过几组常用的封闭剂对同一磷化工艺下的样件进行摩擦系数测试,并与其未经封闭前的摩擦系数进行比较。
A、用PKY-1乳化油CHY-1快干油封闭进行样件封闭处理,分别测的其摩擦系数对比。
图7从图 7-PKY-1乳化油、CHY-1快干油封闭处理后的样件摩擦系数对照图中,可知:封闭后的样件摩擦系数比封闭前的摩擦系数得于改善,两种封闭剂封闭后的样件摩擦系数都比未封闭的摩擦系数小且稳定。
相对快干油封闭,乳化油封闭的样件摩擦系数小且稳定。
B、CHY-1快干油与PKY-6快干油封闭样件后的摩擦系数对比。
由图 8-CHY-1快干油、PKY-6快干油封闭处理后的试验样件摩擦系数对照图,可以看出,经过快干油封闭处理后的试验样件摩擦系数比未经封闭处理的样件摩擦系数小且较为稳定,但不同种的快干油封闭处理后的试样摩擦性能也不一样。
经过CHY-1快干油封闭处理后的样件摩擦系数比PKY-6快干油封闭处理的样件摩擦系数大且不均匀!图 8C、德国科文特亚公司提供的80% 111封闭剂封闭与PKY-1乳化油封闭对摩擦系数的影响。
通过80% 111封闭剂、PKY-1乳化油封闭处理后样件摩擦系数测试数据,可知:经过两种封闭剂封闭处理后,样件摩擦系数较小且稳定。
与PKY-1乳化油封闭处理的样件相比,80% 111封闭剂封闭的样件的总摩擦系数、端面摩擦系数、螺纹摩擦系数较稳定。
经过A、B、C三组封闭处理后摩擦系数对比,实验表明,汽车紧固件磷化封闭处理对摩擦系数影响很大,不仅摩擦系数变小,且总摩擦系数、端面摩擦系数、螺纹摩擦系数均较集中。
(5)乳化油封闭烘烤温度对摩擦系数的影响为了便于分析乳化油封闭烘烤温度对摩擦系数的影响,本实验采用两种磷化配方磷化处理及相同的封闭下,对样件进行摩擦系数对比。
a、PK-1磷化后由PKY-1乳化油封闭的试样件在60℃、90℃、风干15min条件下的摩擦系数,如图 9。
图 9b、CH-1磷化后由PKY-1乳化油封闭的样件在60℃、90℃15min条件下的摩擦系数,如图 10。
通过PKY-1乳化油封闭烘烤温度与摩擦系数关系数据表,可以看出,在时间相同的情况下,烘烤温度对摩擦系数影响几乎不大,实验表明,经PK-1磷化后由PKY-1乳化油封闭的样件在60℃、90℃干燥条件下,有较小的差别,但与风干条件下差别较大。
而CH-1磷化的样件封闭处理后在60℃、90℃干燥条件下摩擦系数完全一样。
可以推测:乳化油封闭烘烤温度相差不大时,对摩擦系数的影响不大。
图 10(6)不同的磷化工艺条件下的试样在相同的封闭工艺处理下的摩擦系数 为进一步分析封闭处理对磷化摩擦系数影响,采用不同的磷化工艺条件下的不同摩擦系数试样在相同的封闭工艺处理下的摩擦系数对比。
Ⅰ、在不同的锌系磷化在相同的PKY-1乳化油封闭条件下摩擦系数。
A 、CH-1锌盐磷化后的试样件在未经封闭时,测的摩擦系数为表 2:表 2经过PKY-1乳化油封闭处理后的摩擦系数为表 3:表 3B 、PK-1锌盐磷化后的试样件在未经封闭时,测的摩擦系数为表 4:表 4经过PKY-1乳化油封闭处理后的摩擦系数为表 5:表 5通过不同的锌系磷化在相同的PKY-1乳化油封闭条件下摩擦系数数据,可知:即使试样封闭前摩擦系数相差悬殊,但经过PKY-1乳化油封闭处理后,摩擦系数相对集中。