第七讲 隶属函数的确定方法

合集下载

隶属函数的确定方法

隶属函数的确定方法

cd
x
(3)抛物型分布 ①偏小型 1 k b x A( x ) b a 0 ②偏大型 0 k x a A( x ) b a 1
xa a xb b x xa
1
1
0
a
b
x
a xb b x
0 x a1 a1 a2 1 1 A( x ) sin x a1 x a2 2 2 2 a2 a1 1 a2 x
③中间型
0 x a 2 1 1 a1 a2 sin x a2 x a1 2 2 2 a2 a1 A( x ) 1 a1 x a1 1 1 a1 a2 sin x a1 x a2 2 2 2 a2 a1 0 a2 x
所以有
A1 ( x ) P{ x }
x
P ( x )dx
类似地
A3 ( x ) P{ x }
x
P ( x )dx
其中P ( x )和P ( x )分别是随机变量 和的概率密度,即
A2 ( x ) 1 A1 ( x ) A3 ( x )
分 组 13.5~14.5 14.5~15.5 15.5~16.5 16.5~17.5 17.5~18.5 18.5~19.5 19.5~20.5 20.5~21.5 21.5~22.5 22.5~23.5 23.5~24.5 24.5~25.5 频数 2 27 51 67 124 125 129 129 129 129 129 128 隶属频率 0.016 0.210 0.395 0.519 0.961 0.969 1 1 1 1 1 0.992 分 组 25.5~26.5 26.5~27.5 27.5~28.5 28.5~29.5 29.5~30.5 30.5~31.5 31.5~32.5 32.5~33.5 33.5~34.5 34.5~35.4 35.5~36.5 频数 103 101 99 80 77 27 27 26 26 26 1 隶属频率 0.798 0.783 0.767 0.620 0.597 0.209 0.209 0.202 0.202 0.202 0.008

模糊数学1、模糊集、隶属度函数、如何确定隶属度函数

模糊数学1、模糊集、隶属度函数、如何确定隶属度函数

模糊数学1、模糊集、⾪属度函数、如何确定⾪属度函数------------------------2021.3.14更新------------------------------⼀个关于模糊和概率的趣味⼩问题------------------------2021.3.14更新------------------------------------------------------2020.8.17更新------------------------------总算学完了,这懒病改改改了,放⼀下所有的笔记链接集合的概念:⼀些具有相同特征的不同对象构成的全体,也称集或者经典集合。

经典集合的特征函数(和模糊集的⾪属度函数⼀样):f(x) = \left\{ \begin{array}{l} 1\quad x \in A \\ 0\quad x \notin A \\ \end{array} \right.⼀个经典集合A,它的特征函数为f(),那么怎么判断⼀个新的对象x是不是属于这个集合呢,计算f(x)是0还是1,是1代表属于A,是0代表不属于。

与之对应的是模糊集合,假设A是⼀个模糊集合,它的⾪属度函数是\mu _A ( \cdot ),那么⼀个新的对象x属于A的程度就是\mu _A (x)(是⼀个0到1之间的数)。

⾪属度函数的构造极为重要,⼀般根据这个模糊集的性质相关。

⼀般也把A的⾪属度函数写成A( \cdot )接下来是模糊集的表⽰⽅法,共三种:扎德表⽰法,序偶表⽰法,向量表⽰法。

假设论域U = \left\{ {x_1 ,x_2 , \cdot \cdot \cdot ,x_n }\right\},模糊集为A,A(x)是x的⾪属度,A( \cdot )是⾪属度函数。

扎德表⽰法容易与加法混淆。

序偶表⽰法与向量表⽰法的含义都⼀样,向量表⽰法更简洁,所以我们⼀般就只⽤向量表⽰法。

⽐如上⾯公式的意思就是每个对象x_i属于模糊集合A的程度(⾪属度)接下来讲⼀讲⾪属度函数的确定。

隶属函数法

隶属函数法
利用其他指标的弥补与缓和从而使评定出的结果与实际结果较为接隶属函数评估法是根据模糊数学的原理利用隶属函数进行综合评估
吕国利



不同植物和品种适应胁迫的方式是多种多样的,如一些植物具有综合 的、几种机理共同起作用的抗旱特征,任何单项机理的研究都有一定 的局限性,都不能有效准确地评价作物抗旱性。 没有一项抗旱指标能单独运用从而达到筛选的目标,需从植物抗旱性 的整体上进一步阐明。 利用多个指标综合评价的抗旱性,使单个指标对评定抗旱性的片面性 受到其他指标的弥补与缓和,从而使评定出的结果与实际结果较为接 近。



隶属函数评估法是根据模糊数学的原理,利用隶属函 数进行综合评估。 隶属函数在模糊控制系统中所起的作用是将普通的清 晰量转化为模糊量,以便进行模糊逻辑运算和推理。 实际上,隶属函数分析提供了一条在多指标测定基础 上,对各植物特性进行综合评价的途径。抗旱性隶属 函数法为目前应用最广的林木抗旱综合分析方法。
求出各抗旱指标 在各品种中的具 体隶属值
累加指定品种各 指标的抗旱隶属 值
求其平均值以评 定抗逆性
根据各品种平均 值的大小确定其 抗旱性强弱

隶属函数及其确定方法

隶属函数及其确定方法

美国加利福尼亚大学控制论教授扎得(L、A、Zadeh)经过多年的琢磨,终于在1965年首先发表了题为《模糊集》的论文。

指出:若对论域(研究的范围)U中的任一元素x,都有一个数A(x)∈[0,1]与之对应,则称A为U上的模糊集,A(x )称为x对A的隶属度。

当x在U中变动时,A(x)就是一个函数,称为A的隶属函数。

隶属度A(x)越接近于1,表示x属于A的程度越高,A(x)越接近于0表示x属于A的程度越低。

用取值于区间[0,1]的隶属函数A(x)表征x 属于A的程度高低,这样描述模糊性问题比起经典集合论更为合理。

隶属度属于模糊评价函数里的概念:模糊综合评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。

隶属度函数及其确定方法分类隶属度函数是模糊控制的应用基础,正确构造隶属度函数是能否用好模糊控制的关键之一。

隶属度函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属度函数的确定又带有主观性。

隶属度函数的确立目前还没有一套成熟有效的方法,大多数系统的确立方法还停留在经验和实验的基础上。

对于同一个模糊概念,不同的人会建立不完全相同的隶属度函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。

下面介绍几种常用的方法。

(1)模糊统计法:模糊统计法的基本思想是对论域U上的一个确定元素vo是否属于论域上的一个可变动的清晰集合A3作出清晰的判断。

对于不同的试验者,清晰集合A3可以有不同的边界,但它们都对应于同一个模糊集A。

模糊统计法的计算步骤是:在每次统计中, v o是固定的,A3的值是可变的,作n次试验,其模糊统计可按下式进行计算v0对 A 的隶属频率= v0∈A 的次数/ 试验总次数n随着n的增大,隶属频率也会趋向稳定,这个稳定值就是vo对A 的隶属度值。

确定隶属函数的几种主要方法

确定隶属函数的几种主要方法
§6 确定隶属函数的方法综述
一、确定隶属函数的几种主要方法
1.F统计方法 确定“青年人”的隶属函数.
以年龄为论域 U , A是“青年人”在 U上的F集. 选取u0 27岁, 用F统计实验确定u0对A的隶属度. 选择若干(n)合适人选,请他们写出各自认为 “青年人”最适宜、最恰当的年限,即将模糊概念 明确化。
隶属频率
m/n
0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78
m A(27) 0.78 n 将论域U分组,每组以中值为代表,分别计算各组
隶属频率.(见表2 2)
表2-2 分组计算隶属频率(实验次数129)
分组
频数 隶属频率
1
33.5~34.5 26 0.202
22.5~23.5 129
1
34.5~35.4 26 0.202
23.5~24.5 129
1
35.5~36.5 1 0.008
24.5~25.5 128 0.992
连续描出图形,可得到“青年人”隶属函数曲线。
1
0.8
0.6
0.4
0.2
0 15 20 25 30 35
设进行了n次试验,第k次试验的映射为ek .

aik
(u)
1 0
ek (u) Ai ek (u) Ai
aik (u)为元素u在第k次试验划归Ai的次数
u对Ai的隶属频率
Ai
(u)
1 n
n
aik
(u)
k 1
m
Ai
i 1
(u)
m1 i 1n
n
aik
(u)

确定隶属函数的几种主要方法

确定隶属函数的几种主要方法

区别: 区别:
若把概率统计比喻为“变动的点” 若把概率统计比喻为“变动的点”是否 落在“不动的圈” 落在“不动的圈”内, 则把模糊统计比喻为“变动的圈” 则把模糊统计比喻为“变动的圈”是否 盖住“不动的点” 盖住“不动的点”.
二相F统计 二相 统计: 设有二相集 P2 = { A, A } 统计
x
−∞
Pη ( x )dx
的概率密度, 其中Pξ ( x )和Pη ( x )分别是随机变量 ξ和η的概率密度,即
A2 ( x ) = 1 − A1 ( x ) − A3 ( x )
按概率方法计算,得 按概率方法计算,
x − a1 A1 ( x ) = 1 − Φ σ1 x − a2 A3 ( x ) = Φ σ2
A3 ( x )
0
a1
a2
x
数对(ξ ,η )确定映射
e(ξ ,η ) :

U → { A1 , A2 , A3 }
x≤ξ A1 ( x ) e(ξ ,η )( x ) = A2 ( x ) ξ < x ≤ η A ( x) x >η 3
概率P{ x ≤ ξ }是随机变量 ξ落在区间[ x , b )的可能大小.
次实验中覆盖27岁的年龄区间的次数为 若n次实验中覆盖 岁的年龄区间的次数为 , 次实验中覆盖 岁的年龄区间的次数为m, 则称m/n为27岁对于(青年人)的隶属频率。 为 岁对于 青年人)的隶属频率。 岁对于( 则称
岁对( 表2-1 27岁对(青年人)的隶属频率 岁对 青年人)
实验次数n 实验次数 隶属次数m 隶属次数 隶属频率 m/n 0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78 10 20 30 40 6 14 23 31 50 39 60 47 70 53 80 62 90 100 110 68 76 85 120 130 95 101

模糊控制中隶属度函数的确定方法

模糊控制中隶属度函数的确定方法

模糊控制中隶属度函数的确定方法模糊控制是一种基于模糊逻辑的控制方法,其中隶属度函数是模糊控制的重要组成部分。

隶属度函数的作用是将输入信号映射到隶属度空间,为控制器提供输入参数。

确定合适的隶属度函数能够提高模糊控制器的精度和稳定性。

本文将介绍几种常用的隶属度函数的确定方法。

一、试验法试验法是最基本的隶属度函数确定方法,即通过试验的方式逐步调整隶属度函数,直到达到最佳效果。

该方法适用于控制系统较简单、规模较小的场景。

试验法需要较多的实验数据和多次改进,且缺乏理论和数学基础支持。

二、专家法专家法是利用经验和判断力,根据被控对象和控制目标的特点,设计隶属度函数。

专家法相对于试验法具有更高的效率和准确性,适用于大规模、复杂的控制系统。

但是,该方法需要控制领域的专家评估隶属度函数的质量,并征询其他领域的专家意见,所以其设计具有一定的主观性。

三、数学建模法数学建模法是利用系统建模方法对控制对象进行数学描述,从而确定隶属度函数的方法。

该方法需要掌握数学建模技术和数学分析方法,运用数学软件工具进行系统的建立和分析。

该方法较为科学,可以系统的分析控制对象,而且不依赖于控制领域的专家知识和经验。

四、经验法经验法是使用过往的经验数据和样本数据来确定隶属度函数的方法。

该方法适用于控制对象特征类似的场景,具有低成本的优势。

经验法需要提取出具有代表性的样本集,并根据样本集的特点进行隶属度函数的设计。

该方法缺点是其适用性相对较弱,需要额外的数据处理方法来提取有用的特征。

五、混合法混合法是将多种方法结合使用来确定隶属度函数,以尽可能综合各种方法的优点,提高确定隶属度函数的准确性。

混合法需要根据具体情况,结合试验法、专家法、数学建模法、经验法等多种方法进行综合性分析和处理,提出最终的隶属度函数。

混合法确定隶属度函数的准确性和实用性较为综合,但需要在方法融合的过程中考虑不同方法的权重和影响因素,难度较高。

综上所述,确定隶属度函数的方法因系统的复杂性、预测的精确度和需要的优化目标等多种因素而异。

直觉方法-隶属函数的确定方法

直觉方法-隶属函数的确定方法

虽然直觉的方法非常简单,也很直观,但它却包含着对象的背 景、环境以及语义上的有关知识,也包含了对这些知识的语言学描 述。因此,对于同一个模糊概念,不同的背景、不同的人可能会建 立出不完全相同的隶属函数。例如,模糊集A = “很冷”的隶属函 数。不同性别、不同生活环境的人所得出的曲线方法
1、直觉方法
直觉的方法就是人们用自己对模糊概念的认 识和理解,或者人们对模糊概念的普遍认同来建立 隶属函数。这种方法通常用于描述人们熟知、有共 识的客观模糊现象,或用于难于采集数据的情形。
例 1 考虑描述空气温度的模糊变量或“语言”变量,
我们取之为“很冷”、“冷”、“正好”、“热”和 “很热”,则凭借我们对“很冷”、“冷”、“凉 爽”、“适宜”和“热”这几个模糊概念的认知和理 解,规定这些模糊集的隶属函数曲线如图1 所示。

隶属函数

隶属函数
矮个子,中等个子和高个子的区 间是随机区间 ,
从而和是随机变量 .它们服从正态分布 .
2 2 ~ N (a1 , 1 ), ~ N (a2 , 2 )
A1 ( x ) A2 ( x )
A3 ( x )
0
a1
a2
x
数对( , )确定映射
e( , ) : U { A1 , A2 , A3 }
xa a xb b x xa
1 1
0
a
b
x
a xb b x
0
a
b
x
(4)正态分布 ①偏小型
1 A( x ) x a 2 e
②偏大型
xa xa
1
0
a
x
0 xa 2 A( x ) x a 1 e xa
用随机区间的思想处理模糊性(模糊性的清晰化)
建立矮个子A1 ,中等个子A2 ,高个子A3的隶属函数
设 P3 { A1 , A2 , A3 }, U [0,3] (单位:m )
每次F试验确定U的一次划分, 每次划分确定 一对数( ,) .
: 矮个子与中等个子的分 界点 : 中等个子与高个子的分 界点
按概率方法计算,得
x a1 A1 ( x ) 1 1 x a2 A3 ( x ) 2
从而
x a1 x a2 A2 ( x ) 1 2
这里
x
( x )
§6
1.F统计方法
确定隶属函数的方法综述
一、确定隶属函数的几种主要方法
确定“青年人”的隶属函数.
以年龄为论域U , A是“青年人”在U上的F集. 选取u0 27岁, 用F统计实验确定 u0对A的隶属度.

隶属函数及确定方法

隶属函数及确定方法

隶属函数正确地确定隶属函数,是运用模糊集合理论解决实际问题的基础。

隶属函数是对模糊概念的定量描述。

我们遇到的模糊概念不胜枚举,然而准确地反映模糊概念的模糊集合的隶属函数,却无法找到统一的模式。

隶属函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属函数的确定又带有主观性。

一般是根据经验或统计进行确定,也可由专家、权威给出。

例如体操裁判的评分,尽管带有一定的主观性,但却是反映裁判员们大量丰富实际经验的综合结果。

对于同一个模糊概念,不同的人会建立不完全相同的隶属函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。

事实上,也不可能存在对任何问题对任何人都适用的确定隶属函数的统一方法,因为模糊集合实质上是依赖于主观来描述客观事物的概念外延的模糊性。

可以设想,如果有对每个人都适用的确定隶属函数的方法,那么所谓的“模糊性”也就根本不存在了。

2.5.1 隶属函数的几种确定方法这里仅介绍几种常用的方法,不同的方法结果会不同,但检验隶属函数建立是否合适的标准,看其是否符合实际及在实际应用中检验其效果。

1.模糊统计法在有些情况下,隶属函数可以通过模糊统计试验的方法来确定。

这里以张南组等人进行的模糊统计工作为例,简单地介绍这种方法。

图2-5-1 27岁对“青年”隶属频率的稳定性张南纶等人在武汉建材学院,选择129人作抽样试验,让他们独立认真思考了“青年人”的含义后,报出了他们认为最适宜的“青年人”的年龄界限。

由于每个被试者对于“青年人”这一模糊概念理解上的差异,因此区间不完全相同,其结果如表2-5-1所示。

现选取0u=27岁,对“青年人”的隶属频率为)调查人数()岁的区间数(隶属次数包含n 27=μ (2-5-1) 用μ作为27岁对“青年人”的隶属度的近似值,计算结果见表2-5-2。

78.027)=(青年人μ按这种方法计算出15~36岁对“青年人”的隶属频率,从中确定隶属度。

隶属函数确定问题

隶属函数确定问题

隶属函数确定问题standalone; self-contained; independent; self-governed;autocephalous; indie; absolute; unattached; substantive隶属函数确定问题一、隶属函数的确定原则1、表示隶属度函数的模糊集合必须是凸模糊集合;即:在一定范围内或者一定条件下,模糊概念的隶属度具有一定的稳定性;从最大的隶属度函点出发向两边延伸时,其隶属度是单调递减的,而不许有波浪性,呈单峰;一般用三角形和梯形作为隶属度函数曲线。

2、变量所取隶属度函数通常是对称和平衡的模糊变量的标值选择一般取3-9个为宜,通常取奇数(平衡),在“零”“适中”等集合的两边语言值通常取对称。

3、隶属度函数要避免不恰当的重复在相同的论域上使用的具有语意顺序的若干标称的模糊集合,应该合力排序。

4、论语中的每个点应该至少属于一个隶属度函数的区域,同时它一般应该属于之多不超过两个隶属度函数的区域。

5、对于同一输入,没有两个隶属度函数会同时有最大隶属度6、对两个隶属度函数重叠时,重叠部分对于两个隶属度函数的最大隶属度不应该有交叉。

二、隶属度函数确定的方法1、模糊统计法模糊统计法的基本思想是对论域U上的一个确定元素v是否属于论域上的一个可变的清晰集的判断。

(清晰集、模糊集)模糊统计法计算步骤:Step1 确定论域Step2形成调查表Step3统计成频数分布表Step4建立隶属函数Step5隶属度(由频数分布表或者隶属函数可得)所谓模糊统计实验包含以下四个要素:假设做n次模糊统计试验,则可计算出:实际上,当n不断增大时,隶属频率趋于稳定,其频率的稳定值称为0x 对A的隶属度,即2、例证法例证法由已知的有限个隶属度函数的值,来估计论域U上的模糊子集A的隶属函数。

3、专家经验法是根据专家的实际经验给出模糊信息的处理算式或者相应的权系数值隶属函数的一种方法。

4、二元对比排序法5、群体决策法6、指派方法(待定来自算法大全第22章模糊数学模型)指派方法是一种主观的方法,它主要依据人们的实践经验来确定某些模糊集隶属函数的一种方法。

隶属函数确定问题

隶属函数确定问题

隶属函数确定问题一、隶属函数的确定原则1、表示隶属度函数的模糊集合必须就是凸模糊集合;即:在一定范围内或者一定条件下,模糊概念的隶属度具有一定的稳定性;从最大的隶属度函点出发向两边延伸时,其隶属度就是单调递减的,而不许有波浪性,呈单峰;一般用三角形与梯形作为隶属度函数曲线。

2、变量所取隶属度函数通常就是对称与平衡的模糊变量的标值选择一般取3-9个为宜,通常取奇数(平衡),在“零”“适中”等集合的两边语言值通常取对称。

3、隶属度函数要避免不恰当的重复在相同的论域上使用的具有语意顺序的若干标称的模糊集合,应该合力排序。

4、论语中的每个点应该至少属于一个隶属度函数的区域,同时它一般应该属于之多不超过两个隶属度函数的区域。

5、对于同一输入,没有两个隶属度函数会同时有最大隶属度6、对两个隶属度函数重叠时,重叠部分对于两个隶属度函数的最大隶属度不应该有交叉。

二、隶属度函数确定的方法1、模糊统计法模糊统计法的基本思想就是对论域U上的一个确定元素v就是否属于论域上的一个可变的清晰集的判断。

(清晰集、模糊集)模糊统计法计算步骤:Step1 确定论域Step2形成调查表Step3统计成频数分布表Step4建立隶属函数Step5隶属度(由频数分布表或者隶属函数可得)所谓模糊统计实验包含以下四个要素:假设做n次模糊统计试验,则可计算出:实际上,当n不断增大时,隶属频率趋于稳定,其频率的稳定值称为0x 对A的隶属度,即2、例证法例证法由已知的有限个隶属度函数的值,来估计论域U上的模糊子集A的隶属函数。

3、专家经验法就是根据专家的实际经验给出模糊信息的处理算式或者相应的权系数值隶属函数的一种方法。

4、二元对比排序法5、群体决策法6、指派方法(待定来自算法大全第22章模糊数学模型)指派方法就是一种主观的方法,它主要依据人们的实践经验来确定某些模糊集隶属函数的一种方法。

如果模糊集定义在实数域R上,则模糊集的隶属函数称为模糊分布。

模糊控制中隶属度函数的确定方法

模糊控制中隶属度函数的确定方法

模糊控制中隶属度函数的确定方法一、引言模糊控制是一种利用模糊逻辑进行控制的方法,广泛应用于各个领域。

其中,隶属度函数是模糊控制中的重要组成部分,用于描述输入和输出变量之间的隶属关系。

确定合适的隶属度函数对于模糊控制系统的稳定性和性能至关重要。

本文将详细探讨模糊控制中隶属度函数的确定方法。

二、隶属度函数的概念隶属度函数(Membership Function )是模糊集合中最核心的概念之一。

它用于描述一个元素对于某个模糊集合的隶属度程度。

在模糊控制中,输入和输出变量的隶属度函数决定了输入输出之间的映射关系。

三、常用的隶属度函数在模糊控制中,常用的隶属度函数包括三角隶属度函数、梯形隶属度函数、高斯隶属度函数等。

下面将分别介绍这些常用的隶属度函数。

3.1 三角隶属度函数三角隶属度函数是一种常见且简单的隶属度函数形式。

它以一个三角形为基础,通常具有两个参数:峰值和宽度。

三角隶属度函数的形状如图1所示。

3.1.1 三角隶属度函数公式三角隶属度函数的数学表达式如下所示:μ(x )={0,x ≤a or x ≥c x −a b −a ,a ≤x ≤b c −x c −b ,b ≤x ≤c 其中,a 、b 、c 分别表示三角隶属度函数的左脚、峰值和右脚的位置。

3.2 梯形隶属度函数梯形隶属度函数是一种介于三角隶属度函数和矩形隶属度函数之间的形式。

它以一个梯形为基础,通常具有四个参数:左脚、上升边沿、下降边沿和右脚。

梯形隶属度函数的形状如图2所示。

3.2.1 梯形隶属度函数公式梯形隶属度函数的数学表达式如下所示:μ(x )={ 0,x ≤a or x ≥d x −a b −a ,a ≤x ≤b 1,b ≤x ≤cd −x d −c ,c ≤x ≤d其中,a 、b 、c 、d 分别表示梯形隶属度函数的左脚、上升边沿、下降边沿和右脚的位置。

3.3 高斯隶属度函数高斯隶属度函数是一种基于高斯分布的隶属度函数形式。

它通常具有两个参数:峰值和方差。

隶属函数的确定方法

隶属函数的确定方法


1 2
t2 e 2 dt
用这种方法确定三相隶属函数的方法,叫做三分法.
2 2 ~ N (a1 , 1 ), ~ N (a2 , 2 )
A1 ( x ) A2 ( x )
A3 ( x )
0
a1
a2
x
3、F分布
实数R作为论域的情况 . 实数R上F集的隶属函数称为 F分布. 列出典型F分布, 根据问题性质选择适当 分布.
隶属频率
m/n 0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78
m A( 27) 0.78 n 将论域U分组, 每组以中值为代表,分 别计算各组 隶属频率.(见表2 2)
表2-2 分组计算隶属频率(实验次数129)
4.其他方法
①专家打分;②推理方法; ③二元对比排序法
二、确定隶属函数的注意事项
(1)带有主观色彩,但要符合实际。
(2)F统计实验确定
(3)借助概率统计确定
(4)推理的产物 (5)经F运算“并、交、余”
(6)先建立近似隶属函数,再逐步完善
(7)整体特性
b
x
(2)半梯形分布与梯形分布
①偏小型 1 b x A( x ) b a 0
②偏大型
xa a xb b x xa a xb b x
1
0
a b
x
0 x a A( x ) b a 1
1
0
a
b
x
(2)半梯形分布与梯形分布 ③中间型
在每次试验中, u0是确定的, F统计试验:
集合A 是随机变动的. 做n次试验

隶属函数法

隶属函数法

隶属函数法隶属函数法是一种数学方法,可用于解决多变量决策问题。

它由美国数学家和计算机科学家约翰拉金斯于1965年提出,在机器学习领域非常重要,可用于描述来自多个特性的综合表现。

隶属函数用于把输入变量映射到一组值,这些值表示变量对某种结果的支持程度。

隶属函数用来解决一些概率分布问题,比如说,给定一组变量,可以表示不确定性,这将用来推断一个结果可能发生的概率。

隶属函数也可以描述多变量之间的相互作用,包括评估和描述不同变量之间的决策。

例如,如果对一组变量有不同的观点或偏好,那么通过隶属函数可以确定这些变量如何结合以影响预期结果。

隶属函数在不同的领域有不同的应用。

在工程领域,它可以用来评估多个因素如何影响同一个决策。

例如,一个工程师可以使用隶属函数来评估不同的材料组合对最终效果的影响,从而挑选最合适的解决方案。

在金融行业,隶属函数也可以用来提高风险评估。

例如,可以使用此方法来衡量一系列经济因素是否有助于资产价格的上涨,以及资产在未来可能的价值状况。

此外,它还可以应用于从多变量中挑选最有利可图的投资组合,而这些投资组合能够满足投资者的利益需求。

在商业环境中,隶属函数可以用来帮助企业进行多变量分析,以确定最有利的市场营销战略。

同时,它也可用于品牌管理,以便确定如何最有效地利用品牌特征。

此外,隶属函数也可以用来识别提高客户体验的可能性,通过识别多个变量中哪些会对客户体验产生最大的影响。

总之,隶属函数是一种有用的数学方法,可用于多变量决策分析,从而为市场营销战略、资产评估、工程设计和其他应用领域提供有效决策支持。

它的最大优势之一是可以帮助确定哪些变量对结果的影响最大,从而确定最有利的方案。

8.3 隶属函数的确定

8.3 隶属函数的确定
1 (x 5)2
1 A(x)
1 1 (x 5)2 5
1 A(x)
1 1 (x 5)2 10
借用已有的客观尺度
论域 设备 产品 家庭
模糊集 设备完好 质量稳定 贫困家庭
隶属度 设备完好率
正品率 Engel系数
④ ☆随着n的增加,隶属频率趋于稳定
指派法Biblioteka 隶属函数类型举例一般表达
偏大型 偏小型 居中型
大、热、年老
A(x)

0f (,x)
x , x

a a

小、冷、年轻 中、暖、中年
A(x)

1f (, x)
,
x x

a a

A(x) f0(,x),
xa x [a,b]

0, x b
模糊数学
之隶属函数的确定
模糊统计法 指派法 借用已有的客观尺度
模糊统计法
模 糊 统 计 法 : 以 确 定 “青年人” 的隶属函数为 例 ① ☆以人的年龄作为论域U,调查n个人选
☆请他们认真考虑“青年人”的含义后 ②,
提出自己认为的最合适的年龄区间 ☆对于确定年龄(如27),若n个人选中,
③ 有m个人的年龄区间覆盖27,则称m/n 为27对 于 “青年人” 的 隶 属 频 率
例1 参数确定 试确定A = “年 轻 人 ” 的隶属 函数.
指派法选择偏小型柯西分布
1,
x a
A(x) 1,x(a1x a)
a 20, 2,A(30) 0.5
1/ 25
例2 函数修正 试确定A=“靠 近 5的 数 ” 的隶属 函数.
1 A(x)

2.2隶属函数的确定

2.2隶属函数的确定

粒状 微粒 体u8
0.00
壳质体 平均最 树脂体 大反射 u9 率u10
0.00 4.92
92.21
2.74
0.84
3.58
92.58
2.80
1.00
2.98
90.01
9.70
0.20
0.00
Байду номын сангаас0.00
3.98
无烟 煤 A1
… … …
… … …
… … …
… … …
… … …
… … …
… … …
… … …
… … …
… … …
8
1 6 其中 a j aij , j 1, 2,...,10. 6 i1 1 12 b j bij , j 1, 2,...,10. 12 i1 1 6 c j cij , j 1, 2,...,10. 6 i1 3)分别计算待识别煤样u ={u1 ,u2 ,...,u10 }与a (a1 , a2 ,..., a10 ), b (b1 , b2 ,..., b10 ), a (c1 , c2 ,..., c10 )之间的欧拉距离,得: d1(u,a )=((u j - a j ) ) ,
ai a i1 , a i 2 ,..., a im


其中
a ik
1 ki
a
j 1
ki
ij k
, k 1,2,..., m
称ai为Ai的均值样板.
2
(3) 计算模糊模式Ai的隶属函数 计算识别对象u=(u1,u2,…,um)与均值样板 的距离di(u, ai).令D=d1(u, a1)+d2(u, a2)+…+dp(u, ap), 则可取模糊模式Ai的隶属函数为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
−1
中间型隶属函数
1.矩形 2.尖型 3.正态型 4.柯西型 5.梯形
µA1 ( x) =
ɶ
1, a − b < x ≤ a + b 0, 其他 exp[ k (x − a)] , x ≤ a (k > 0) exp[ −k ( x − a)] , x > a
−1
µA2 ( x) =
参数法是指利用已知形状的隶属函数作为样板, 通过确定函数参数的方式来给出隶属函数的方 法。 常用隶属函数
偏小型 偏大型 中间型
偏小型隶属函数
x≤a 1, µ A ( x) = ɶ f ( x), x > a
1.降半矩阵型 2.降半伽马型 3.降半正态型 4.降半柯西型 5.降梯形 6.降岭形 7.k次抛物线
隶属函数的确定方法
模糊统计法 参数法
模糊统计法
通过模糊统计实验来确定隶属函数的方法 四要素
① 论域X ② 试验所要处理的论域X的固定元素x0 ③ 论域X的可变动的子集A*,它作为模糊集 A 的有可塑性 ɶ 边界的反映,可由它得到每次试验中x0是否符合模糊集A ɶ 所刻划的模糊概念的一个判决 ④ 条件集C,它限制着A*的变化
ɶ ɶ
µA3 ( x) = exp −k ( x − a)2 , (k > 0) µA4 ( x) = 1+ α ( x − a)β (α > 0, β是非负偶数)
(a2 + x − a) /(a2 − a1), a − a2 < x ≤ a − a1 1, a − a1 < x ≤ a + a1 µA5 ( x) = ɶ (a2 − x + a) /(a2 − a1), a + a1 < x ≤ a + a2 0, 其他 0.5 + 0.5sin [π /(b − a)( x + (b + a) / 2)] , −b < x ≤ −a 0.5 − 0.5sin [π /(b − a)( x − (b + a) / 2)] , a < x ≤ b µA6 ( x) = ɶ −a < x ≤ a 1, 0, 其他
−1
偏大型隶属函数
x≤a 0, µ A ( x) = ɶ f ( x), x > a
1.升半矩阵型 2.升半伽马型 3.升半正态型 4.升半柯西型 5.升半梯形 6.升岭形 7.S型
f1 ( x) ≡ 1 f2 ( x) = 1 − exp [ −k ( x − a)] (k > 0) f3 ( x) = 1 − exp −k ( x − a)2 (k > 0) f4 ( x) = 1 + α ( x − a)− β (α > 0, β > 0) ( x − a) /(b − a), a < x ≤ b f5 ( x) = 0, x >b 0.5 + 0.5sin [π /(b − a)( x − (b + a) / 2)] , a < x ≤ b f6 ( x) = x >b 0, 0.5( x − a)2 /(b − a)2 , a < x ≤ b f7 ( x) = 1 − 0.5( x − c)2 /(c − b)2 , b < x ≤ c 1, c
µ A ( x0 ) = lim ln ( A)( x0 )
ɶ n →∞
ɶ
模糊统计法( 模糊统计法(续)
例1:本例模糊统计实验为我国学者张南论等人在武汉建 :
材学院对模糊集“青年人”作的抽样试验。 U为0至100岁,A为“青年人”,u=27岁。对129人作抽 样调查,让各人给出“青年人”的比较合适的年龄段。最 后整理出反应27岁属于“青年人”的隶属频率表。
ɶ
6.岭形
n m t 10 6 0.6 20 14 0.7 30 23 40 31 50 39 60 47 70 53 80 62 90 68 100 76 110 85 120 95 129 101
0.77 0.78 0.78 0.78 0.76 0.78 0.76 0.76 0.75 0.79 0.78
参数法
模糊统计法( 模糊统计法(续)
基本ቤተ መጻሕፍቲ ባይዱ求
在每次试验中,对x0是否属于A*做出一个确定的判断,而A* 可以在每次试验中发生改变(即具有可塑性)
计算方法
设做了n次试验,则x0对于 A的隶属频度 ln ( A)( x0 ) 为 ɶ ɶ "x0 ∈ A*"的次数 ln ( A)( x0 )△ ɶ n 并称隶属频度的极限(若存在)为隶属度,即
f1 ( x) ≡ 0 f2 ( x) = exp [ −k ( x − a)] (k > 0) f3 ( x) = exp −k ( x − a)2 (k > 0) f4 ( x) = 1 + α ( x − a)β (α > 0, β > 0) (b − x) /(b − a), a < x ≤ b f 5 ( x) = 0, x>b 0.5 − 0.5sin [π /(b − a)( x − (b + a) / 2)] , a < x ≤ b f 6 ( x) = 0, x>b (b − x)k /(b − a)k , a < x ≤ b f7 ( x) = x>b 0,
相关文档
最新文档