初中三角形有关知识点总结及习题大全-带答案
七年级数学下册第七章《三角形》知识点及练习
《七年级数学第七章*三角形》一、知识点(1)➢ 与三角形有关的线段 (1)三角形的定义(2) ①⎪⎩⎨⎩⎨⎧等边三角形底和腰不相等的三角形等腰三角形三角形按边)( ②⎪⎩⎪⎨⎧⎩⎨⎧钝角三角形锐角三角形斜三角形直角三角形三角形按角(3)三角形的主要线段①三角形的中线:顶点与对边中点的连线,三中线交点叫②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三角角平分线的交点叫③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫 (分锐角三角形,钝角三角形和直角三角形的交点的位置不同)(4)三角形三边间的关系.①两边之和大于第三边 b a c a c b c b a >+>+>+,, ②两边之差小于第三边 a c b c b a b a c <-<-<-,, (5)三角形的稳定性:三角形的三条边确定后,三角形的形状和大小不变了,这个性质叫做三角形 的稳定性.三角形的稳定性在生产和生活中有广泛的应用.二、例题分析例1:已知BD,CE 是 的高, 直线BD,CE 相交, 所成的角中有一个角为50°, 则等于BAC ∠例2:如图,已知 中, 的角平分线BD,CE 相交于点O,且 , 求例3:三角形的最长边为10,另两边的长分别为x和4,周长为c,求x和c的取值范围.一、知识点(2)➢与三角形有关的角(1)三角形的内角和定理及性质定理: 三角形的内角和等于。
推论1: 直角三角形的两个锐角。
推论2: 三角形的一个外角等于与它不相邻的两个内角的。
推论3: 三角形的一个外角大于与它不相邻的任何一个。
(2)三角形的外角及外角和①三角形的外角: 三角形的一边与另一边的延长线组成的角叫做三角形的外角。
②三角形的外角和等于。
(3)多边形及多边形的对角线①正多边形: 各个角都相等, 各条边都的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线, 若整个图形都在这条直线的同一侧, 这样的多边形称为凸多边形;, 若整个多边形不都在这条直线的同一侧, 称这样的多边形为凹多边形。
人教版八年级数学-三角形-知识点考点典型例题(含答案)
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
最新初中三角形有关知识点总结及习题大全-带答案
__________________________________________________一、三角形内角和定理一、选择题1.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°2.将一副三角板按图中的方式叠放,则角α等于()A.75B.60C.45D.303.如图,直线m n∥,︒∠1=55,︒∠2=45,则∠3的度数为()A.80︒B.90︒C.100︒D.110︒【解析】选C. 如图,由三角形的外角性质得001004555214=+=∠+∠=∠,由m n∥,得010043=∠=∠5.(2009·新疆中考)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于()A.50°B.30°C.20°D.15°【解析】选C 在原图上标注角4,所以∠4=∠2,因为∠2=50°,所以∠4=50°,又因为∠1=30°,所以∠3=20°;6.(2009·朝阳中考)如图,已知AB∥CD,若∠A=20°,∠E=35°,则∠C等于().A.20°B. 35°C. 45°D.55°【解析】选D 因为∠A=20°,∠E=35°,所以∠EFB=55º,又因为AB∥CD,所以∠C=∠EFB=55º;7.(2009·呼和浩特中考)已知△ABC的一个外角为50°,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角三角形或锐角三角形AB C D40°120°α【解析】选B 因为△ABC 的一个外角为50°,所以与△ABC 的此外角相邻的内角等于130°,所以此三角形为钝角三角形. 8.(2008·聊城中考)如图,11002145∠=∠=,,那么3∠=( )6A .55°B .65°C .75°D .85°答案:选B 二、 填空题9.(2009·常德中考)如图,已知//AE BD ,∠1=130o,∠2=30o,则∠C = .【解析】由//AE BD 得∠AEC=∠2=30o,∴∠C =180°-∠1-∠AEC=180°-130o-30o=20o答案:20o10.(2009·邵阳中考)如图,AB//CD,直线EF 与AB 、CD 分别相交于E 、F 两点,EP 平分∠AEF,过点F 作FP ⊥EP,垂足为P ,若∠PEF=300,则∠PFC=__________。
初中数学《三角形》知识点总结及习题大全(附答案)
.一、三角形内角和定理一、选择题1.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°2.将一副三角板按图中的方式叠放,则角α等于()A.75B.60C.45D.303.如图,直线m n∥,︒∠1=55,︒∠2=45,则∠3的度数为()A.80︒B.90︒C.100︒D.110︒【解析】选C. 如图,由三角形的外角性质得001004555214=+=∠+∠=∠,由m n∥,得010043=∠=∠5.(2009·新疆中考)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于()A.50°B.30°C.20°D.15°【解析】选C 在原图上标注角4,所以∠4=∠2,因为∠2=50°,所以∠4=50°,又因为∠1=30°,所以∠3=20°;6.(2009·朝阳中考)如图,已知AB∥CD,若∠A=20°,∠E=35°,则∠C等于().A.20°B. 35°C. 45°D.55°【解析】选D 因为∠A=20°,∠E=35°,所以∠EFB=55º,又因为AB∥CD,所以∠C=∠EFB=55º;7.(2009·呼和浩特中考)已知△ABC的一个外角为50°,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角三角形或锐角三角形AB C D40°120°α【解析】选B 因为△ABC 的一个外角为50°,所以与△ABC 的此外角相邻的内角等于130°,所以此三角形为钝角三角形. 8.(2008·聊城中考)如图,11002145∠=∠=,,那么3∠=( )6A .55°B .65°C .75°D .85°答案:选B 二、 填空题9.(2009·常德中考)如图,已知,∠1=130o,∠2=30o,则∠C = .【解析】由得∠AEC=∠2=30o,∴∠C =180°-∠1-∠AEC=180°-130o-30o=20o答案:20o10.(2009·邵阳中考)如图,AB//CD,直线EF 与AB 、CD 分别相交于E 、F 两点,EP 平分∠AEF,过点F 作FP ⊥EP,垂足为P ,若∠PEF=300,则∠PFC=__________。
工作总结-初中三角形有关知识点总结及习题大全 精品
初中三角形有关知识点总结及习题大全篇一:初中三角形有关知识点总结及习题大全-带答案一、三角形内角和定理一、选择题40°1如图,在△中,是延长线上一点,∠=40°,∠=120°,则∠等于().60°.70°.80°.90°????°2将一副三角板按图中的方式叠放,则角?等于().75.60.45.?∠1=55?,∠2=45?,3如图,直线∥,则∠3的度数为().80?.90?.100?.110?【解析】选如图,由三角形的外角性质得?4??1??2?550?450?1000,由∥,得?3??4?10005(2019·新疆中考)如图,将三角尺的直角顶点放在直尺的一边上,?1?30°,?2?50°,则?3的度数等于().50°.30°.20°.15°【解析】选在原图上标注角4,所以∠4=∠2,因为∠2=50°,所以∠4=50°,又因为∠1=30°,所以∠3=20°;6(2019·朝阳中考)如图,已知∥,若∠=20°,∠=35°,则∠等于()20°35°45°55°【解析】选因为∠=20°,∠=35°,所以∠=55,又因为∥,所以∠=∠=55;7(2019·呼和浩特中考)已知△的一个外角为50°,则△一定是().锐角三角形.钝角三角形.直角三角形.钝角三角形或锐角三角形【解析】选因为△的一个外角为50°,所以与△的此外角相邻的内角等于130°,所以此三角形为钝角三角形8(2019·聊城中考)如图,?1?100?,?2?145?,那么?3?()6.55°.65°.75°.85°答案:选二、填空题9(2019·常德中考)如图,已知,∠1=130,∠2=30,则∠=.【解析】由得∠=∠2=30,∴∠=180°-∠1-∠=180°-130-30=20答案:2019(2019·邵阳中考)如图,,直线与、分别相交于、两点,平分∠,过点作⊥,垂足为,若∠=30,则∠=__________。
初中数学三角形专题知识总结与练习答案
专题 三角形 知识要点:知识点1 三角形的边、角关系①三角形任何两边之和大于第三边; ②三角形任何两边之差小于第三边; ③三角形三个内角的和等于180°; ④三角形三个外角的和等于360°;⑤三角形一个外角等于和它不相邻的两个内角的和; ⑥三角形一个外角大于任何一个和它不相邻的内角。
知识点2 三角形的主要线段和外心、内心 ①三角形的角平分线、中线、高;②三角形三边的垂直平分线交于一点,这个点叫做三角形的外心,三角形的外心到各顶点的距离相等; ③三角形的三条角平分线交于一点,这个点叫做三角形的内心,三角形的内心到三边的距离相等;④连结三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边且等于第三边的一半。
知识点3 等腰三角形 等腰三角形的识别:①有两边相等的三角形是等腰三角形;②有两角相等的三角形是等腰三角形(等角对等边); ③三边相等的三角形是等边三角形; ④三个角都相等的三角形是等边三角形;⑤有一个角是60°的等腰三角形是等边三角形。
等腰三角形的性质: ①等边对等角;②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合; ③等腰三角形是轴对称图形,底边的中垂线是它的对称轴; ④等边三角形的三个内角都等于60°。
知识点4 直角三角形 直角三角形的识别:①有一个角等于90°的三角形是直角三角形; ②有两个角互余的三角形是直角三角形;③勾股定理的逆定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
直角三角形的性质:①直角三角形的两个锐角互余;②直角三角形斜边上的中线等于斜边的一半;③勾股定理:直角三角形两直角边的平方和等于斜边的平方。
知识点5 全等三角形 定义、判定、性质 知识点6 相似三角形⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧三条对应边的比相等两个对应角相等夹角相等两对应边的比相等判定方法定义相似三角形, ⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎪⎬⎫相似比平方面积比等于相似比周长比对应高的比对应边的比相似三角形的性质知识点7 锐角三角函数三角函数 0° 30°45°60°90° sinα21 2223 1cos α 123 2221 0tan α 0 33 13不存在cot α 不存在 3133例1. (1)已知:等腰三角形的一边长为12,另一边长为5,求第三边长。
初中三角形有关知识点总结及习题大全-带答案
.A一、三角形内角和定理一、 选择题120°40° 1. 如图,在△ 中, D 是 延长线上一点, ∠ B = 40°,∠ = 120 °,则∠ A 等于( ) BCD ABC BC ACDA .60°B .70°C .80°D .90°2. 将一副三角板按图中的方式叠放,则角等于( )A . 75B .60C .45D . 30 3. 如图,直线 m ∥ n ,∠1= 55 ,∠ 2 = 45 , ∠ 3 的度数为( )则A . 80B . 90C .100D .110【解析】选 C. 如图,由三角形的外角性质得4 0 0 01255 45 100 ,由 得 4 100m ∥ n , 35. ( 2009·新疆中考)如图,将三角尺的直角顶点放在直尺的一边上,1 30°,2 50°,则 3的度数等于()A .50° B .30° C .20° D .15°【解析】选 C 在原图上标注角4,所以∠ 4=∠2,因为∠ 2= 50°,所以∠ 4=50°,又因为∠ 1=30°,所以∠3= ;20°6. ( 2009·朝阳中考)如图,已知 AB ∥CD,若∠ A=20°,∠ E=35°,则∠ C 等于( ). A.20 ° B. 35 ° C. 45 °D.55 °【解析】选 D 因为∠ A=20°,∠ E=35°,所以∠ EFB = 55o ,又因为 AB ∥CD,所以∠ C =∠ EFB =55o ;7. ( 2009·呼和浩特中考)已知△ ABC 的一个外角为 50°,则△ ABC 一定是( )A.锐角三角形 B .钝角三角形C.直角三角形 D .钝角三角形或锐角三角形..【解析】选 B 因为△ ABC的一个外角为50°,所以与△ ABC的此外角相邻的内角等于130°,所以此三角形为钝角三角形.8. ( 2008·聊城中考)如图, 1 100 , 2 145 ,那么 3 ()6A. 55°B.65°C. 75°D.85°答案:选 B二、填空题9. ( 2009·常德中考)如图,已知AE //BD ,∠ 1=130o,∠ 2=30o,则∠= .C【解析】由AE //BD 得∠ AEC=∠2=30o,∴∠ =180°-∠1- ∠AEC=180°-130 o-30 o=20oC答案: 20o10. ( 2009·邵阳中考)如图, AB//CD, 直线 EF 与 AB、CD分别相交于 E、F 两点, EP平分∠ AEF,过点 F 作 FP⊥EP,垂足为 P,若∠ PEF=300 ,则∠ PFC=__________。
(最新整理)初中三角形有关知识点总结及习题大全_带答案
2.(2010·凉山中考)将一副三角板按图中的方式叠放,则角 等于( ) A. 75 B. 60 C. 45 D. 30
【解析】选 A,如图,由题意知,
α
1
2
∠1=45°,∠2=30°,所以 =∠1+∠2=75° 3。(2009·济宁中考)如图,△ABC 中, A 70°,B 60° ,点 D 在 BC 的延长线上,则 ACD 等于 () A.100° B.120° C.130° D.150°
∠1∠2
度.
答案:230 三、解答题 14.(2010·黄冈中考)如图,一个含 45°的三角板 HBE 的两条直角边与正方形 ABCD 的两邻边重 合,过 E 点作 EF⊥AE 交∠DCE 的角平分线于 F 点,试探究线段 AE 与 EF 的数量关系,并说明理由.
页脚内容
初中三角形有关知识点总结及习题大全_带答案
D.钝角三角形或锐角三角形
【解析】选 B 因为△ABC 的一个外角为 50°,所以与△ABC 的此外角相邻的内角等于 130°,
所以此三角形为钝角三角形. 8.(2008·聊城中考)如图, 1 100,2 145 C.75°
D.85°
答案:选 B
二、填空题
【解析】选 D 因为∠A=20°,∠E=35°,所以∠EFB=55º,又因为 AB∥CD,所以∠C=∠EFB=55º; 7。(2009·呼和浩特中考)已知△ABC 的一个外角为 50°,则△ABC 一定是( )
页脚内容
A.锐角三角形
初中三角形有关知识点总结及习题大全_带答案
B.钝角三角形
C.直角三角形
9。(2009·常德中考)如图,已知 AE // BD ,∠1=130o,∠2=30o,则∠C=
初二数学:三角形知识点总结及压轴题练习(附答案解析)
初二三角形所有知识点总结和常考题知识点:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.常考题:一.选择题(共13小题)1.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm2.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°3.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270° C.180° D.135°4.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°7.如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120° D.100°8.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米9.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°10.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.5411.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条 D.内角和增加180°12.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形13.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16二.填空题(共13小题)14.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.15.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.18.若一个多边形内角和等于1260°,则该多边形边数是.19.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.20.一个多边形的内角和比外角和的3倍多180°,则它的边数是.21.若正多边形的一个内角等于140°,则这个正多边形的边数是.22.在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C﹣∠B,则∠B=度.23.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度.24.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.25.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.26.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.三.解答题(共14小题)27.如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.28.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.29.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.30.如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是度.(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.31.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.32.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.33.如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD:∠E=1:3,求∠E的度数.34.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=,∠XBC+∠XCB=.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ 仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.35.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON 上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.36.平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.37.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E.(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化说明你的结论的正确性.(3)把图(2)中的点C向上移到BD上时(1)如图(3)所示,五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化说明你的结论的正确性.38.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.39.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.40.将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.初二三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共13小题)1.(2008•福州)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.2.(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.故选:B.【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.3.(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270° C.180° D.135°【分析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.【点评】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.4.(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.5.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.6.(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D ﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.7.(2004•陕西)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120° D.100°【分析】根据垂直的定义和四边形的内角和是360°求得.【解答】解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=90°,∴∠BPC=∠DPE=180°﹣50°=130°.故选B.【点评】主要考查了垂直的定义以及四边形内角和是360度.注意∠BPC与∠DPE 互为对顶角.8.(2009•黑河)如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【解答】解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.【点评】已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.9.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°【分析】利用多边形的内角和公式即可求出答案.【解答】解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.10.(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.54【分析】设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.【解答】解:设这个内角度数为x°,边数为n,∴(n﹣2)×180﹣x=1510,180n=1870+x=1800+(70+x),∵n为正整数,∴n=11,∴=44,故选:C.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.11.(2011春•滨城区期末)一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条 D.内角和增加180°【分析】利用多边形的内角和定理和外角和特征即可解决问题.【解答】解:因为n边形的内角和是(n﹣2)•180°,当边数增加一条就变成n+1,则内角和是(n﹣1)•180°,内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°;根据多边形的外角和特征,边数变化外角和不变.故选:D.【点评】本题主要考查了多边形的内角和定理与外角和特征.先设这是一个n 边形是解题的关键.12.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形【分析】已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.【解答】解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.【点评】本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.13.(2014•毕节市)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【解答】解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.【点评】本题考查了多边形内角与外角,多边形的内角和公式是解题关键.二.填空题(共13小题)14.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.15.(2006•镇江)如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.16.(2014•随州)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.17.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.【解答】解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.【点评】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.18.(2013•遂宁)若一个多边形内角和等于1260°,则该多边形边数是9.【分析】根据多边形内角和定理及其公式,即可解答;【解答】解:∵一个多边形内角和等于1260°,∴(n﹣2)×180°=1260°,解得,n=9.故答案为9.【点评】本题考查了多边形的内角定理及其公式,关键是记住多边形内角和的计算公式.19.(2015•北京)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(2014•自贡)一个多边形的内角和比外角和的3倍多180°,则它的边数是9.【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.【解答】解:根据题意,得(n﹣2)•180°=3×360°+180°,解得:n=9.则这个多边形的边数是9.故答案为:9.【点评】考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.21.(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是 9 .【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.【点评】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.22.(2013•黔东南州)在△ABC 中,三个内角∠A 、∠B 、∠C 满足∠B ﹣∠A=∠C ﹣∠B ,则∠B= 60 度.【分析】先整理得到∠A +∠C=2∠B ,再利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵∠B ﹣∠A=∠C ﹣∠B ,∴∠A +∠C=2∠B ,又∵∠A +∠C +∠B=180°,∴3∠B=180°,∴∠B=60°.故答案为:60.【点评】本题考查了三角形的内角和定理,是基础题,求出∠A +∠C=2∠B 是解题的关键.23.(2013•达州)如图,在△ABC 中,∠A=m°,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD的平分线交于点A 2013,则∠A 2013= 度.【分析】利用角平分线的性质、三角形外角性质,易证∠A 1=∠A ,进而可求∠A 1,由于∠A 1=∠A ,∠A 2=∠A 1=∠A ,…,以此类推可知∠A 2013=∠A=°. 【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=m°,∵∠A1=∠A,∠A2=∠A1=∠A,…以此类推∠A2013=∠A=°.故答案为:.【点评】本题考查了角平分线性质、三角形外角性质,解题的关键是推导出∠A1=∠A,并能找出规律.24.(2012春•金台区期末)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=74度.【分析】利用三角形的内角和外角之间的关系计算.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90﹣72=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的一个外角>任何一个和它不相邻的内角.注意:垂直和直角总是联系在一起.25.(2006•临安市)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 36度.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n﹣2).26.(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.三.解答题(共14小题)27.(2013春•临清市期末)如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.【分析】先根据三角形的内角和定理求出∠A的度数,再根据三角形外角的性质求出∠BDF的度数.【解答】解:因为∠A+∠B+∠ACB=180°,所以∠A=180°﹣67°﹣74°=39°,所以∠BDF=∠A+∠AED=39°+48°=87°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是外角和内角的关系.28.(2013•湖州校级模拟)如图,已知D为△ABC边BC延长线上一点,DF⊥AB 于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.答:∠ACD的度数为83°.【点评】三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.29.(2015秋•全椒县期中)已知△ABC中,∠ACB=90°,CD为AB边上的高,BE 平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.【分析】题目中有两对直角,可得两对角互余,由角平分线及对顶角可得两对角相等,然后利用等量代换可得答案.【解答】证明:∵∠ACB=90°,∴∠1+∠3=90°,∵CD⊥AB,∴∠2+∠4=90°,又∵BE平分∠ABC,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE=∠CEF.【点评】本题考查了三角形角平分线、中线和高的有关知识;正确利用角的等量代换是解答本题的关键.30.(2010春•横峰县校级期末)如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是度.(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角和,∠BED=∠ABE+∠BAE=75°;(2)三角形高的基本作法:用圆规以一边两端点为圆心,任意长为半径作两段弧,交于角的两边,再以交点为圆心,用交轨法作两段弧,找到两段弧的交点,连接两个交点,并过另一端点作所成直线的平行线,叫该边所在直线一点,连接该点和另一端点,则为高线;(3)我们通过证明不难得出三角形中线将三角形分成面积相等的两个三角形,那么可依据D是BC中点,E是AD中点,求出三角形BED的面积.三角形BDE 中,E到BD的距离就是BD边上的高,有了三角形BDE的面积,BD的长也容易求得.那么高就求出来了.【解答】解:(1)∠BED=∠ABE+∠BAE=75°;(2)CH为所求的高.(3)解:如图,过点E作EF⊥BD于点F,∵AD是BC的中线∴BD=CD=S△ACD==×60=30∴S△ABD=S△ABE==×30=15同理S△BED又∵S=BD•EF=×5EF=15△BED∴EF=6即点E到BC边的距离为6.【点评】本题主要考查了基本作图中,三角形高的作法,三角形的内角和外角等知识点.31.(2015春•单县期末)如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.【分析】(1)中,首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;(2)中,根据第(1)小题的思路即可推导这些角之间的关系.【解答】解:(1)∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD平分∠BAC,∴∠DAC=30°,∴∠ADC=65°,∴∠E=25°;(2).设∠B=n°,∠ACB=m°,∵AD平分∠BAC,∴∠1=∠2=∠BAC,∵∠B+∠ACB+∠BAC=180°,∵∠B=n°,∠ACB=m°,∴∠CAB=(180﹣n﹣m)°,∴∠BAD=(180﹣n﹣m)°,∴∠3=∠B+∠1=n°+(180﹣n﹣m)°=90°+n°﹣m°,∵PE⊥AD,∴∠DPE=90°,∴∠E=90°﹣(90°+n°﹣m°)=(m﹣n)°=(∠ACB﹣∠B).【点评】运用了三角形的内角和定理以及角平分线的定义.特别注意第(2)小题,由于∠B和∠ACB的大小不确定,故表达式应写为两种情况.32.(2010春•朝阳区期末)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.【分析】要求∠EDF的度数,只需求出∠BDE和∠FDC的度数即可,由FD⊥BC,得∠FDC=90°;而∠BDE在Rt△BDE中,故只需求出∠B的度数.因∠B=∠C,只需求出∠C的度数即可.因∠AFD是△CDF的外角,∠AFD=158°∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°.【解答】解:∵FD⊥BC,所以∠FDC=90°,∵∠AFD=∠C+∠FDC,∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°,∴∠B=∠C=68°.∵DE⊥AB,∵∠DEB=90°,∴∠BDE=90°﹣∠B=22°.又∵∠BDE+∠EDF+∠FDC=180°,∴∠EDF=180°﹣∠BDE﹣∠FDC=180°﹣22°﹣90°=68°.【点评】考查三角形内角和定理,外角性质,垂直定义等知识.33.(2014春•岱岳区期末)如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD:∠E=1:3,求∠E的度数.【分析】(1)由于AD平分∠BAC,根据角平分线的概念可得∠BAD=∠CAD,再根据三角形的一个外角等于和它不相邻的两个内角和,结合已知条件可得∠EAC 与∠B相等;(2)若设∠CAD=x°,则∠E=3x°.根据(1)中的结论以及三角形的内角和定理及其推论列方程进行求解即可.【解答】解:(1)相等.理由如下:∵AD平分∠BAC,∴∠BAD=∠CAD.又∠EAD=∠EDA,∴∠EAC=∠EAD﹣∠CAD=∠EDA﹣∠BAD=∠B;。
初中三角形有关知识点总结及习题大全-带答案
、三角形内角和定理一、选择题1. 如图,在△ ABC中,D是BC延长线上一点,/ B = 40° / ACD=120 °则/ A等于()A. 60°B. 70 ° C . 80° D. 90 °2. 将一副三角板按图中的方式叠放,则角:•等于()A.75 B . 60: C . 45:3. 如图,直线m // n, Z1= 55,/ 2 = 45,则/ 3的度数为()A. 80B. 90 C . 100 D . 110【解析】选C.如图,由三角形的外角性质得.4=. 1:»/2 =55°450 =100°,由m // n,得.3 =/4 =100。
5.(2009新疆中考)如图,将三角尺的直角顶点放在直尺的一边上,N1 = 30°Z2 = 50°则.3的度数等于()A. 50°B. 30°C. 20°D. 15°【解析】选C在原图上标注角4,所以/ 4=2 2,因为/ 2=50°,所以/ 4=50 °又因为/仁30 °所以/ 3=20°;6. (2009朝阳中考)如图,已知AB// CD,若2 A=20°,2 E=35°,则2 C等于().A.20 °B. 35 °C. 45 °D.55 °【解析】选D因为2 A=20°,2 E=35°,所以2 EFB= 55o,又因为AB//CD,所以2 C-2 EFB= 55q7. (2009呼和浩特中考)已知△ ABC的一个外角为50°则厶ABC一定是()A.锐角三角形 B .钝角三角形C.直角三角形 D .钝角三角形或锐角三角形【解析】选B因为△ ABC的一个外角为50°所以与△ ABC的此外角相邻的内角等于130°所以此三角形为钝角三角形D.40°120°8. (2008聊城中考)如图,G =100、,乙2=145",那么乙3 =()A. 55°B. 65°C. 75°D. 85°答案:选B二、填空题9. (2009 常德中考)如图,已知AE//BD,/ 仁130°,/ 2=30°,则/ C=【解析】由AE//BD 得/ AEC=/ 2=30°,二/ C=180°- / 1- / AEC=180-130 °-30 °=20°答案:20°10. (2009邵阳中考)如图,AB//CD,直线EF与AB CD分别相交于E、F两点,EP平分/ AEF,过点F作FP丄EP,垂足为P,若/ PEF=30°,_则/ PFC= ________【解析】由EP平分/ AEF, / PEF=300得/ AEF=60°,由A B//CD 得/ EFC=1200,由FP丄EP得/ P=900,/•Z PFE=180°-90 0 -30 0 =60 0,二/ PFC=1200 -60 0 =60 0 .答案:60°11. (2008 长沙中考)△ ABC中,Z A=55,Z B=25,则Z C= .答案:100 -12. (2008赤峰中考)如图,是一块三角形木板的残余部分,量得乙A = 100:,乙B = 40,这块三角形木板另外一个角是___________ 度.13. (2008内江中考)在如图所示的四边形中,若去掉一个50的角得到一个五边形,则Z1 - / 2=度.答案:40答案:230 三、解答题【解析】丁 AB" CD / A =37o :丄 ECD / A=37o. •/ DE1 AE •:/ D =180 o-90o-Z ECD 180 o-90o437o=53o. 16. (2009嘉兴中考)在四边形 A BCDK /D =60° / B 比/A 大20 ° / C 是/ A 的2倍,求/ A,Z B,/ C 的大小.【解析】设.A =x (度),则.B =x 20,. C =2x •根据四边形内角和定理得, x (x 20) 2x 6^360 .解得,x =70.•: A =70,■ B =90, C =140二、特殊三角形1.A ABC 中,/ A : / B: / C=4: 5: 9,则 A ABC 是(c )i A .直角三角形,且/ A=90° B . 直角三角形,且/ B=90° ( C直角三角形,且/ C=90°D . 锐角三角形2.在等腰A ABC 中,如果AB 的长是BC 的2倍,且周长为40,那么AB 等于(b ) A . 20B. 16C . 20或16D . 以上都不对3•等腰三角形一腰上的高与另一腰的夹角的度数为20°则顶角的度数是 _____________分析: 本题要分情况讨论•当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.14. ( 2010黄冈中考)如图,一个含 45°勺三角板HBE 的两条直角边与正方形 ABCD 的两邻边重合,过 E 点作EF 丄AE 交/ DCE 的角平分线【解析】提示:由/ H =Z FCE AH= CE / HAE=Z FEC 可证△ HAE^A CEF 从而得到AE = EF. 15. (2009淄博中考)如图,AB/ CD AE 交CD 于点C DE ^AE 垂足为E ,/ A =37o 求/ D 的度数.于F 点13. (2008内江中考)在如图所示的四边形中,若去掉一个50的角得到一个五边形,则 Z 1 - / 2=度.分析: 根据线段垂直平分线定理,MCD 勺周长=AC+BC解:在 Rt △ ABC 中,AB=13 AC=5由勾股定理得BC=12. •/ DE 垂直且平分AB/• AD=BD (线段垂直平分线上的点到线段两端点的距离相等) /• BD+CD=AD+CD=12 /• AC+CD+AD=17 即厶ACD 的周长为17解答:解答: 解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是 90°20°110°当等腰三角形的顶角是锐角时,腰上的高在其内部, 故顶角是90°- 20°70°综上,三角形的顶角度数为 110°或70°.4.如图,A ABC 中, AB=AC Z BAC 与Z BCA 的平分线 AD CD 交于点 D,若Z B=70°,则Z ADC= 125 度.考点: 三角形内角和定理;角平分线的定义。
初二三角形知识点总结和常考题
初二三角形知识点总结和常考题一、三角形的基本概念。
1. 定义。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形的边、顶点、内角。
- 组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
3. 三角形的表示方法。
- 三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
二、三角形的分类。
1. 按角分类。
- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形。
直角三角形可以用符号“Rt△”表示,直角所对的边叫做斜边,另外两条边叫做直角边。
- 钝角三角形:有一个角是钝角的三角形。
2. 按边分类。
- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形。
相等的两边叫做腰,另外一边叫做底边;两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
等腰三角形中,三边都相等的三角形叫做等边三角形(也叫正三角形)。
三、三角形的三边关系。
1. 定理。
- 三角形两边的和大于第三边。
2. 推论。
- 三角形两边的差小于第三边。
四、三角形的高、中线与角平分线。
1. 高。
- 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
三角形的三条高所在直线相交于一点。
2. 中线。
- 在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
三角形的三条中线相交于一点,这点叫做三角形的重心。
3. 角平分线。
- 在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线相交于一点。
五、三角形的内角和定理及推论。
1. 内角和定理。
- 三角形三个内角的和等于180°。
2. 推论。
- 直角三角形的两个锐角互余。
- 有两个角互余的三角形是直角三角形。
六、三角形的外角。
1. 定义。
- 三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
人教版八年级数学-三角形-知识点+考点+典型例题(含答案)
例题 2:边长相等的下列两种正多边形的组合,不能作平面镶嵌的是
(B )
A. 正方形与正三角形
B. 正五边形与正三角形 C. 正六边形与正三角形
D.正八边形与正方形
5
练习:
1. 下列正多边中,能铺满地面的是( B )
A、正方形 B 、 正五边形 C 、 等边三角形 D 、 正六边形
2. 下列正多边形的组合中,不能够铺满地面的是
练习:
1、如图,若∠ AEC=100°,∠ B=45°,∠ C=38°,则∠ DFE等于 ( A )
A. 125 ° B. 115 ° C. 110 ° D. 105 °
2、如图,∠ 1=______.
_A _D
_F
_B _E
_C
_1 题图
_80
_1
_140
_2题 图
_3 _2
_50
_1 _150
_3 题 图
求证:
.
( 1)
( 2)
变式 1:如图( 2)所示,△
中,内角
和外角
( 3) 的平分线交于点 ,
求证:
.
变式 2:如图( 3)所示,△
中,外角
的平分线交于点 ,
求证:
.
分析: 本题已知△
的内角平分线和外角平分线,从而想到可利用三角形角平分线的性质,三角
形的内角和定理以及外角与内角的关系证题。
解答: 如图( 1),∵在△
90° 108° 120° 135° 144° 150° 158°
(n 2)180 或180 360
n
n
每一个外角
120°90°Fra bibliotek72°
60°
45°
人教版八年级数学三角形知识点考点典型例题(含答案)
第七章三角形【知识要点】一.熟悉三角形1.关于三角形的概念及其按角的分类概念:由不在同一直线上的三条线段首尾按序相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判定三条线段可否组成三角形的方式、比较线段的长短)依照公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个极点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部份;三角形的高:过三角形的一个极点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角极点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中最多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——经常使用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
解三角形(总结+题+解析)
解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。
俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。
初中三角形有关知识点总结及习题大全
初中三角形有关知识点总结及习题大全一、三角形内角和定理一、选择题40°1.如图,在△ABC中,D是BC延长线上一点,∠B = 40°,∠ACD = 120°,则∠A等于()A.60°B.70°C.80°D.90°????B°C2.将一副三角板按图中的方式叠放,则角?等于()A.75 B.60 C.45D. ?∠1=55?,∠2=45?,3.如图,直线m∥n,则∠3的度数为()A.80? B.90?C.100? D.110?【解析】选C. 如图,由三角形的外角性质得?4??1??2?550?450?1000,由m∥n,得?3??4?10005.(xx·中考)如图,将三角尺的直角顶点放在直尺的一边上,?1?30°,?2?50°,则?3的度数等于() A.50°B.30°C.20°D.15°【解析】选C 在原图上标注角4,所以∠4=∠2,因为∠2=50°,所以∠4=50°,又因为∠1=30°,所以∠3=20°;6.(xx·朝阳中考)如图,已知AB∥CD,若∠A=20°,∠E=35°,则∠C等于(). A.20°B. 35°C. 45°D.55°【解析】选D 因为∠A=20°,∠E=35°,所以∠EFB=55o,又因为AB∥CD,所以∠C=∠EFB=55o;7.(xx·呼和浩特中考)已知△ABC的一个外角为50°,则△ABC一定是() A.锐角三角形 B.钝角三角形C.直角三角形 D.钝角三角形或锐角三角形【解析】选B 因为△ABC的一个外角为50°,所以与△ABC的此外角相邻的内角等于130°,所以此三角形为钝角三角形. 8.(xx·聊城中考)如图,?1?100?,?2?145?,那么?3?()6A.55°B.65°C.75°D.85°答案:选B 二、填空题9.(xx·常德中考)如图,已知AE//BD,∠1=130o,∠2=30o,则∠C=.【解析】由AE//BD得∠AEC=∠2=30o,∴∠C=180°-∠1-∠AEC=180°-130o-30o=20o 答案:20o10.(xx·邵阳中考)如图,AB//CD,直线EF与AB、CD分别相交于E、F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30,则∠PFC=__________。
(完整版)八年级数学上知识点+习题+答案
(一)三角形部分一、知识点汇总1. 三角形的定义定义:不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC。
三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b 表示,顶点A所对的边BC可用a表示。
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的没有意义.2、(1)三角形按边分类:(2)三角形按角分类:3、三角形的三边关系三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是:任意两边之和大于第三边.4、和三角形有关的线段:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段表示法:1、AD是△ABC的BC上的中线. 2、BD=DC=0.5BC。
3、AD是ABC的中线;注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角与交点之间的线段。
表示法:1、AD是△ABC的∠BAC的平分线.2、∠1=∠2=0。
5∠BAC。
3、AD平分BAC,交BC于D注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;(3)三角形的高三角形的高:从三角形的一顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高,表示法:1、AD是△ABC的BC上的高。
2、AD⊥BC于D。
3、∠ADB=∠ADC=90°.4、AD是△ABC的高.注意:①三角形的高是线段:高与垂线不同,高是线段,垂线是直线.②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在三角形外;三角形三条高所在直线交于一点.(而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.A一、三角形内角和定理一、选择题40°120°BCD1.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°2.将一副三角板按图中的方式叠放,则角等于()A.75B.60C.45D.303.如图,直线m∥n,∠1=55,∠2=45,则∠3的度数为()A.80B.90C.100D.110【解析】选C.如图,由三角形的外角性质得000 4125545100,由m∥n,得340 1005.(2009·新疆中考)如图,将三角尺的直角顶点放在直尺的一边上,130°,250°,则3的度数等于()A.50°B.30°C.20°D.15°【解析】选C在原图上标注角4,所以∠4=∠2,因为∠2=50°,所以∠4=50°,又因为∠1=30°,所以∠3=20°;6.(2009·朝阳中考)如图,已知AB∥CD,若∠A=20°,∠E=35°,则∠C等于().A.20°B.35°C.45°D.55°【解析】选D因为∠A=20°,∠E=35°,所以∠EFB=55o,又因为AB∥CD,所以∠C=∠EFB=55o;7.(2009·呼和浩特中考)已知△ABC的一个外角为50°,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角三角形或锐角三角形..【解析】选B因为△ABC的一个外角为50°,所以与△ABC的此外角相邻的内角等于130°,所以此三角形为钝角三角形.4.(2008·聊城中考)如图,1100,2145,那么3()6A.55°B.65°C.75°D.85°答案:选B二、填空题oo5.(2009·常德中考)如图,已知AE//BD,∠1=130,∠2=30,则∠C=.【解析】由AE//BD得∠AEC=∠2=30o,∴∠C=180°-∠1-∠AEC=180°-130o,∴∠C=180°-∠1-∠AEC=180°-130 o-30o=20oo答案:206.(2009·邵阳中考)如图,AB//CD,直线EF与AB、CD分别相交于E、F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=300, 则∠PFC=__________。
0 【解析】由EP平分∠AEF,∠PEF=30 0得∠AEF=60 0,由AB//CD得∠EFC=120 0,由FP⊥EP得∠P=90,∴∠PFE=1800-900-300=600,∴∠PFC=1200-600=600.答案:60°7.(2008·长沙中考)△ABC中,∠A=55,∠B=25,则∠C=.答案:100°8.(2008·赤峰中考)如图,是一块三角形木板的残余部分,量得A100,B40,这块三角形木板另外一个角是度..答案:409.(2008·内江中考)在如图所示的四边形中,若去掉一个50的角得到一个五边形,则∠1∠2度.答案:230三、解答题10.(2010·黄冈中考)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
【解析】提示:由∠H=∠FCE,AH=CE,∠HAE=∠FEC可证△HAE≌△CEF,从而得到AE=EF.11.(2009·淄博中考)如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37o,求∠D的度数.【解析】∵AB∥CD,∠A=37o,∴∠ECD=∠A=37o.∵DE⊥AE,∴∠D=180o–90o–∠ECD=180o–90o–37o=53o.12.(2009·嘉兴中考)在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.A x(度),则B x20,C2x【解析】设.根据四边形内角和定理得,x(x20)2x60360..解得,x70.∴A70,B90,C140二、特殊三角形1.△ABC中,∠A:∠B:∠C=4:5:9,则△ABC是(c)A.直角三角形,且∠A=90°B.直角三角形,且∠B=90°C.直角三角形,且∠C=90°D.锐角三角形2.在等腰△ABC中,如果AB的长是BC的2倍,且周长为40,那么AB等于(b)A.20B.16C.20或16D.以上都不对3.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是分析:本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.解答:解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.综上,三角形的顶角度数为110°或70°.4.如图,△ABC中,AB=AC,∠BAC与∠BCA的平分线AD、CD交于点D,若∠B=70°,则∠ADC=125度.考点:三角形内角和定理;角平分线的定义。
菁优网版权所有5.如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD的周长为考点:线段垂直平分线的性质。
菁优网版权所有分析:根据线段垂直平分线定理,△ACD的周长=AC+BC.解答:解:在Rt△ABC中,AB=13,AC=5由勾股定理得BC=12..∵DE垂直且平分AB∴AD=BD(线段垂直平分线上的点到线段两端点的距离相等).∴BD+CD=AD+CD=.12∴AC+CD+AD=1.7即△ACD的周长为176.如图,AD是等腰三角形ABC的底边BC上的高,DE∥AB,交AC于点E,判断△ADE是不是等腰三角形,并说明理由.考点:等腰三角形的判定;平行线的性质。
菁优网版权所有合.得到∠BAD=∠CAD,两直线平行,内错分析:利用等腰三角形的三线合一的性质:底边上的高与顶角的平分线、底边上的中线重角相等,则∠BAD=∠ADE,即∠CAD=∠ADE,即可证得△ADE是等腰三角形.解答:解:△ADE是等腰三角形.理由如下:∵AD是等腰三角形ABC的底边BC上的高,,∴∠BAD=∠CAD(等腰三角形三线合一)∵DE∥AB,∴∠BAD=∠ADE(两直线平行,内错角相等),∴∠CAD=∠ADE,,∴AE=DE(等角对等比)∴△ADE是等腰三角形.键.点评:本题利用了等腰三角形的判定及性质和平行线的性质;进行角的等量代换是正确解答本题的关7.如图,在△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交AC于D,过C作BD垂线交BD的延长线于E,交BA的延长线于F,求证:BD=2CE.权所有考点:等腰三角形的判定与性质;全等三角形的判定与性质。
菁优网版分析:根据已知条件,易证△BFE≌△BCE,所以BF=BC,所以∠F=∠BCE,根据等腰三角形三线合一这一性质,CE=FE,再证明△ABD≌△ACBD=2CE.解答:证明:∵∠ABC的平分线交AC于D,∴∠FBE=∠CBE,∵BE⊥CF,∴∠BEF=∠BEC=90°,在△BFE和△BCE中.,∴△BFE≌△BCE(ASA),∴CE=EF,∴CF=2CE,∵∠BAC=90°,且AB=AC,∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,∴∠FBE=∠CBE=22.5°,∴∠F=∠ADB=67.5°,又AB=AC,在△ABD和△ACF中,,∴△ABD≌△ACF(AAS),∴BD=CF,∴BD=2CE.三:三角形全等的判定及其应用一、选择题13.(2009·江西中考)如图,已知ABAD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CBCDB.∠BAC∠DACC.∠BCA∠DCAD.∠B∠D90【解析】选C.根据SSS可知添加A正确,根据SAS可知添加B正确,根据HL可知添加D正确.14.(2009·江苏中考)如图,给出下列四组条件:①ABDE,BCEF,ACDF;②ABDE,BE,BCEF;③BE,BCEF,CF;④ABDE,ACDF,BE..其中,能使△ABC≌△DEF的条件共有()D.4组A.1组B.2组C.3组C.①②③均可.【解析】选15.(2009·太原中考)如图,△ACB≌△ACB,BCB=30°,则ACA的度数为()A.20°B.30°C.35°D.40°【解析】选B.由△ACB≌△ACB得BCABCA,∴ACABCABCAACBBCABCB30.16.(2010·温州中考)如图,AC、BD是矩形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个DABCE【解析】选D.在矩形ABCD中,△CDA、△BAD、△DCB都和△ABC全等,由题意不难得出四边形ACED为平行四边形,得出△DCE也和△ABC全等.17.(2009·黄冈中考)在△ABC和ABC中,∠C=C,且b-a=ba,b+a=ba,则这两个三角形()A.不一定全等B.不全等C.全等,根据“ASA”D.全等,根据“SAS”【解析】选D.由b-a=ba,b+a=ba可得aa,bb,又∠C=C,根据“SAS”,可得这两个三角形全等.18.(2010·凉山中考)如图所示,EF90,BC,AEAF,结论:①EMFN;②CDDN;③FANEAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个..CEMDABNFC【解析】选∵EF90,BC,AEAF,∴△ABE≌△ACF,∴∠EAB=∠FAC,∴FANEAM∴△EAM≌△FAN,∴EMFN.易证△ACN≌△ABM.19.(2007·诸暨中考)如图,已知△A BC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲乙B.甲丙C.乙丙D.乙C.答案:选二、填空题△ABC≌△ABC,且A110°,B40°,则C1=8.(2009·清远中考)如图,若111【解析】C180AB1801104030,由△ABC≌△A1B1C1得C1=C30答案:309、(2009·怀化中考)如图,已知ABAD,BAEDAC,要使△ABC≌△ADE,可补充的条件是(写出一个即可).ACEDB.【解析】如AE=AC或∠B=∠D.答案:AE=AC(答案不唯一);10、(2009·龙岩中考)如图,点B、E、F、C在同一直线上.已知∠A=∠D,∠B=∠C,要使△ABF≌△DCE,需要补充的一个条件是(写出一个即可).答案:AB=DC(填AF=DE或BF=CE或BE=CF也对)20.(2010·兰州中考)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接A E、CE,为3,则B C的长为.△ADE的面积B M=AD=2【解析】过点E作EF⊥AF交AD的延长线于点F,过点D作DM⊥BC交BC于点M,因此四边形ABMD是矩形,则且,∠EFD=∠DMC=9°0,根据题意可知DE=DC∠,EDC=90°,因此∠EDF+∠CDF=90°,又因为∠CDM∠+CDF=90°,所以∠EDF=∠CDM,从而△EDF≌△MCD,CM=EF因,为△ADE的面积为3,AD=2,所以EF=3,所以BC=BM+CM=5.答案:512.(2008·黑河中考)如图,BACABD,请你添加一个条件:,使OCOD(只添一个即可).答案:CD或ABCBAD或ACBD或OADOBC三、解答题8.(2009·宜宾中考)已知:如图,在四边形ABCD中,AB=CB,AD=CD.求证:∠C=∠A..【证明】因为A B=CB,AD=C,DB D=BD,又因为所以△ABD≌△CBD,所以∠C=∠A.E点作EF⊥AE交∠DCE的角平分线14.(2010·黄冈中考)如图,一个含45°的三角板HBE的两条直角边与正方形A BCD的两邻边重合,过于F点,试探究线段A E与EF的数量关系,并说明理由。