初中数学竞赛专题复习第二篇平面几何第18章整数几何试题新人教版

合集下载

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值.AD⌒ PA PC PBP ABCD【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ()A.到CD 的距离保持不变B.位置不变C.等分D.随C 点的移动而移动DB⌒A【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.B【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB⌒ 的长度;(3)求证:CD 2+3CH 2是定值.BOACE HG D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.(1)求点C的坐标;(2)连接MG,BC,求证:MG∥BC;OF(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,的比值是否PF发生变化?若不变,求出比值;若变化,说明变化规律.(图1)(图2)【例6】如图,已知等边△ABC内接于半径为1的圆O,P是⊙O上的任意一点.求证:PA2+PB2+PC2为定值.A【能力训练】1.如图,点A ,B 是双曲线上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则xy 3=_______.=+21S SABCDEF(第1题图)(第3题图)(第4题图)2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A.30°B.40°C.50°D.60°5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作⊥AB ,,且A A 'AB B B ⊥'=AP ,=BP .连接,当点P 从点A 移动到点B 时,的中点的位置( )A A 'B B 'B A ''B A ''A .在平分AB 的某直线上移动B.在垂直AB 的某直线上移动C.在弧AMB 上移动D.保持固定不移动AB'(第5题图) (第6题图)6.如图,A ,B 是函数图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构xky成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( )A.3B.6C.9D.127.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,PA ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.①①①①①①(B )B(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线上时停止旋转.旋转过程x y =中,AB 边交直线于点M ,BC 边交x 轴于点N .x y =(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.(第9题图) (第10题图) (第11题图)10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证:(1)是定值;2222DK CK BK AK +++(2)是定值.2222DA CD BC AB +++11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:的值为定值.DPCP BPAP ++1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2.已知A ,B ,C ,D ,E 是反比例函数(x >0)图象上五个整数点(横、纵坐标均为整数),分xy 16=别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).3.如图,将六边形ABCDEF沿直线GH折叠,使点A,B落在六边形ABCDEF的内部,记∠C+∠D+∠E+∠F=α,则下列结论一定正确的是()A. ∠1+∠2=900°-2αB. ∠1+∠2=1080°-2α1C. ∠1+∠2=720°-αD. ∠1+∠2=360°-α2(第3题图)(第4题图)4.如图,正△ABO的高等于⊙O的半径,⊙O在AB上滚动,切点为T,⊙O交AO,BO于M,N,则弧MTN()A.在0°到30°变化B.在30°到60°变化C.保持30°不变D.保持60°不变5.如图,AB是⊙O的直径,且AB=10,弦MN的长为8.若MN的两端在圆上滑动时,始终与AB相交,记点A,B到MN的距离分别为h1,h2,则∣h1-h2∣等于()A.5B.6C.7D.8(第5题图)(第6题图)6.如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A,C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B,D.(1)求点A的坐标(用m表示)(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F.试证明:FC(AC+EC)为定值.7.如图,已知等边△ABC内接于圆,在劣弧AB上取异于A,B的点M.设直线AC与BM相交于K,直线CB与AM相交于点N.证明线段AK和BN的乘积与M点的选择无关.(第7题图) (第8题图)8.如图,设H 是等腰三角形ABC 两条高的交点,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.9.如图,在平面直角坐标系xOy 中,抛物线与x 轴的交点为点A ,与y 轴的交点10941812--=x x y 为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒).(1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由;290<<t(4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程.(第9题图)(第10题图)10.已知抛物线C 1:,点F (1,1).12121+-=x x y (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:.211=+BFAF (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点Q (x Q ,y Q ),试判断是否成立?请说明理由.211=+QFPF11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变.参考答案例1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故例2 B 提示:连结AC ,BC ,可以证明P 为的中点. P A P C C E P C P E P B P B P B++=== A P B 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =∠SOT 为定角. 例124 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 .DG =DE =×3=1. (3)设CD =x ,延长OG 交CD 1313于N ,则CN =DN = x , , .∴,而ON =CH ,∴12229C E x =-2214D N x =22394O N x =-32.故CD 2+3CH 2=x 2+3(4-x 2)=x 2+12-x 2为定值.例5 ⑴C (0,4) ⑵先求得22143C H x =-13AM =CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得,O G =,,又OG AO MN AN =3238OG OM OC OB ==∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP =.动点F 在⊙M 的圆周上运动时,从特殊位置探求163的值.当F 与点A 重合时,;当点F 与点B 重合时,OF PF2316523OF AO PF AP ===-;当点F 不与点A ,B 重合时,连接8316583OF OB PF PB ===+OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即,又FM MP OM FM =∠OMP =∠FMP ,∴△MFO ∽△MPF ,,故的比值不35OF MO PF MF ==OF PF 变,比值为.例6 ∠BPC =120°,在△BPC 中,由余弦定理得35BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •PA +PC •AB ,而AB =BC =AC ,∴PA =PB +PC ,从而PA 2+PB 2+PC 2=(PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×=6.故PA 2+PB2+PC 221.4提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4. 2.提示:1+3+5=9是等边三角形的高.3.r 2提示:先考查OB 与OA 垂直的情形.4.D提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC ==6,∴S OEBF =OE •OF =x B •y B =6. 7.⑴略 ⑵当点P 在⊙O 内时,过P 作直径A A x y k = k =CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值.结论:过不22OP r -在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值.8.⑴ ⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△2πOCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=,又()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值.11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP ,DP •a =BP •a +AP ,两式相加并整理得(CP +DP )a =(AP +BP )(a ),从而为定值.1AP BP CP DP+=-+1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=BC 2=1.∴S △ABC •S △HBC =141122BC AD BC HD ⎛⎫⎛⋅⋅⋅ ⎪ ⎝⎭⎝=1.当∠A ≥90°时,结论成立.2.13π-26提示:∵A ,B ,C ,DE 是反比例函数y =(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为16x1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是=5π-10+8π-16=13π-26. 2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦3.B 提示:如图,设FA 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD =3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴.∴E G =2OD =6,∴=E G =6. 6.⑴A (3-m ,0) 12OD FO GE FG ==12h h AF BE -=-⑵y =x 2-2x +1 ⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN =3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴,即,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴,即QM PM EC PC =()2112x x EC --=QN BN FC BC=,得FC =.又AC =4,∴FC (AC +EC )= =8为定值. ()24134x x FC ---=41x +()44211x x +-⎡⎤⎣⎦+7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关.8.提示:S △ABC •S △HBC =BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △116HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-) ⑵若四边形PQCA 为平行四边989形,由于QC ∥PA ,故只要QC =PA 即可,而PA =18-4t ,CQ =t ,故18-4t =t ,得t =. ⑶设185点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P 在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故.同理QC ∥AF ,故,即,144QD QC t DP OP t ===14QC CE AF EA ==14t AF =∴AF =4t =OP .∴PF =PA +AF =PA +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =•PF •d =×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),1212F (18+4t ,0),Q (8-t ,-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=.∵2≤t +2≤6.5,∴t +2.∴t = 2. ②若24425=QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足.③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224,又0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52=<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,22984124⎛⎫= ⎪⎝⎭当t = 2时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,). ⑵略 ⑶作PM ⊥AB 12于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易12证△PMF ∽△QNF ,则,∴,即,∴=2. 11.先PM QN PF QF =11Q P y y PF QF --=11PF QF PF QF --=11PF QF+从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB 的距离为AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过12C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP ⊥AB ,OP =(EM +G N )= (AH +BH )=1212AB .∴无论点C 在AB 同一侧的位置如何,E G 中点P 的位置不变.12。

数学奥赛平面几何

数学奥赛平面几何

《竞赛数学解题研究》之平面几何专题一、平面几何中的一些重要定理:1、梅涅劳斯定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。

2、塞瓦定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则AF 、BE 、CD 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。

3、托勒密定理:四边形ABCD 内接于圆的充要条件是CD BC CD AB BD AC ⋅+⋅=⋅4、西摩松定理:设P 是ABC ∆外接圆上任一点,过P 向ABC ∆的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

5、斯德瓦特定理:设P 是ABC ∆的边BC 边上的任一点,则BC PC BP AP BC AB PC AC BP ⋅⋅+⋅=⋅+⋅2226、共角定理:设ABC ∆和C B A '''∆中有一个角相等或互补(不妨设A=A ')则 C A B A ACAB S S C B A ABC ''⋅''⋅='''∆∆7、共边定理:设ABC ∆和C B A '''∆中有一个边相等,则CA B A ACAB S S C B A ABC ''⋅''⋅='''∆∆举例说明:1、设M 、N 分别是正六边形ABCDEF 的对角线AC 、CE 上的点,且AM:AC=CN:CE=k,如果BMN 三点共线,试求k 。

(IMO23,1982)2、在四边形ABCD 中,ABD ∆、BCD ∆、ABC ∆的面积之比为3:4:1,点M 、N 分别 是AC 、CD 上的点,且AM:AC=CN:CD, 并且BMN 三点共线,求证:M 、N 分别是AC 、 CD 的中点。

中学平面几何竞赛练习题及答案

中学平面几何竞赛练习题及答案

中学平面几何竞赛练习题及答案1.两线平行与垂直的证明(1)利用两线平行与垂直的判定定理。

(2)利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。

(3)利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。

2.线段或角的和差倍分的证明(1)转化为相等问题。

如要证明a=b±c,可以先作出线段p=b±c,再去证明a=p,即所谓“截长补短”,角的问题仿此进行。

(2)直接用已知的定理。

例如:中位线定理,Rt△斜边上的中线等于斜边的一半;△的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。

3.线段或角相等的证明(1)利用全等△或相似多边形;(2)利用等腰△;(3)利用平行四边形;(4)利用等量代换;(5)利用平行线的性质或利用比例关系(6)利用圆中的等量关系等。

【竞赛例题剖析】【例1】∠ABC的顶点B在⊙O外,BA、BC均与⊙O相交,过BA与圆的交点K引∠ABC 平分线的垂线,交⊙O于P,交BC于M。

求证:线段PM为圆心到∠ABC平分线距离的2倍。

【分析】若角平分线过O,则P、M重合,PM=0,结论显然成立。

若角平分线不过O,则延长DO至D‘,使OD’=OD,则只需证DD‘=PM。

连结D’P、DM,则只需证DMPD‘为平行四边形。

过O作m⊥PK,则DD’,K P,∴∠D‘PK=∠DKPBL平分∠ABC,MK⊥BL→BL为MK的中垂线→∠DKB=∠DMK∴∠D’PK=∠DMK,∴D‘P∥DM。

而D’ D∥PM,∴DMPD‘为平行四边形。

【例2】在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH于Q,求证:PQ∥AB。

【分析】方法1、结合中线和角平分线的性质,考虑用比例证明平行。

倍长中线:延长AM至M’,使AM=MA‘,连结BA’,如图6-1。

PQ∥AB←←←←∠A‘BQ=180°-(∠HBA+∠BAH+∠CAP)= 180°-90°-∠CAP=90°-∠BAP=∠ABQ方法2、结合角平分线和BH⊥AH联想对称知识。

初中几何竞赛试题及答案

初中几何竞赛试题及答案

初中几何竞赛试题及答案1. 题目:已知三角形ABC中,AB=AC,点D在BC边上,且BD=DC。

求证:AD是角BAC的平分线。

答案:由于AB=AC,根据等腰三角形的性质,我们知道角B等于角C。

又因为BD=DC,所以三角形ABD和三角形ACD是全等的。

根据全等三角形对应角相等的性质,我们可以得出角BAD等于角CAD。

因此,AD是角BAC的平分线。

2. 题目:在一个矩形ABCD中,E是边AB上的一点,且AE=2EB。

如果三角形BCE的面积是6平方厘米,求矩形ABCD的面积。

答案:设矩形ABCD的长为a,宽为b。

则三角形BCE的底边BC等于b,高EC等于2/3a。

根据三角形面积公式,三角形BCE的面积为1/2 *BC * EC = 1/2 * b * (2/3)a = 6。

解得ab = 18。

因此,矩形ABCD的面积为ab = 18平方厘米。

3. 题目:如果一个圆的半径增加20%,那么它的面积增加了多少百分比?答案:设原圆的半径为r,那么增加后的半径为1.2r。

原圆的面积为πr^2,增加后的面积为π(1.2r)^2 = 1.44πr^2。

面积增加的百分比为(1.44πr^2 - πr^2) / πr^2 * 100% = 44%。

因此,圆的面积增加了44%。

4. 题目:在直角三角形ABC中,角C为直角。

如果角A的正切值是3/4,求角B的正切值。

答案:在直角三角形ABC中,角A和角B互为余角,即角A + 角B = 90度。

根据正切的定义,tan(A) = 对边/邻边 = 3/4。

由于tan(90度- B) = cot(B) = 1/tan(B),我们可以得出tan(B) = 4/3。

因此,角B的正切值为4/3。

5. 题目:一个正五边形的内角和是多少度?答案:正五边形有5个内角,每个内角的度数可以通过公式(n-2) * 180度/n计算,其中n为边数。

将5代入公式,我们得到(5-2) * 180度/5 = 540度/5 = 108度。

七年级数学尖子生培优竞赛专题辅导第十八讲 平移、对称、旋转(含答案)

七年级数学尖子生培优竞赛专题辅导第十八讲 平移、对称、旋转(含答案)

第十八讲平移、对称、旋转趣题引路】如图18-1,已知△ABC内有一点M,沿着平行于边BC的直线运动到CA边上时,再沿着平行于AB的直线运动到BC边时,又沿着平行于AC直线运动到AB边时,再重复上述运动,试证:点M最后必能再经过原来的出发点证明设点M运动过程中依次与三角形的边相遇于点A1,B1,B2,C2,C3,A3,A4,B5,….易知△AC2B₂≌△A1CB1≌△A3C3B.按点M平移的路线,△A C2B2可由△A1CB1平移得到;△A3C3B可由△AC2B2平移得到;△A1CB1可由△A3C3B平移得到,此时,A3应平移至A4,所以A4与A1重合.而这时的平移方向恰与点M开始平移时的方向一致,因此从A3平移到A1的过程中必经过点M,这表明在第七步时,点M又回到了原来的出发点.图18-1知识拓展】1.平移、对称和旋转是解决平面几何问题常用的三种图形变换方法,它们零散地分布在初中几何教材之中.例如,平行四边形的对边可以看成是平行移动而形成,这里的平行移动,就是平移变换.2.一般地,把图形F上的所有点都按照一定的方向移动一定距离形成图形F'.则由F到F'的变换叫做平移变换,简称平移.由此可知,线段平移可以保持长短、方向不变,角、三角形等图形平移保持大小不变.将平面图形F变到关于直线l成轴对称的图形F',这样的几何变换简称为对称,它可使线段、角大小不变.3.将平面图形F绕着平面内的一个定点O旋转一个定角a到图形F',由F到F'的变换简称为旋转.旋转变换下两点之间的距离不变,两直线的夹角不变,且对应直线的夹角等于旋转角.4.运用平移、对称或旋转变换,能够集中图形中的已知条件,沟通各条件间的联系.例1 已知:如图18-2,△ABC中,AD平分∠CAB,交BC于D,过BC中点E作AD的平行线交AB于F,交CA的延长线于C.求证:2ACAB=CG=BF.图18-2解析直接证三角形全等或者用角平分线定理显然不能解决问题.注意到要证式的形式,条件中又有角平分线和中点,如果能切分BF、CG,使分出的两部分一部分是AB的一半,余下的是AC的一半,问题就解决了.由中点,我们不难想到中位线,两条有推论效力的辅助线(EH和EI)就产生了,H、I切分了BF、CG,由平行线性质∠1=∠2=∠3=∠4=∠6,再由中位线定理,等腰三角形的判定定理,切分后的结论不难证明.略证过E作AC、AB的平行线交AB、AC于H、I,由平行线性质及已知条件得,∠1=∠2=∠3=∠4=∠6, ∴EI =GI ,EH =FH .∵E 为BC 中点,EH ∥AC ,EI ∥AB , ∴EI =2AB =BH ,EH =2AC=CI , ∴EI =GI =2AB=BH , FH =EH =2AC=CI . 由于BF =BH +FH , CG =GI +CI , ∴2ACAB =BF =CG .例2 如图18-3,E 是正方形ABCD 的BC 边上的一点,F 是∠DAE 的平分线与CD 的交点,求证:AE =FD +BE .图18-3解析 表面上看所要证等式的各边分布在正方形不同的边上,欲证它们之间的关系,似乎不可能.但我们可以将某一条边作适当的延伸,使等量关系转移(比如证某两个三角形全等,中位线的关系等).此题中可将FD 延长至G ,使得DG =BE ,于是易证△AGD ≌△AEB ,则将AE 与AG ,BE 与GD 联系了起来,转而只需证明AG =GF ,即只要证明△AGF 为等腰三角形即可,由∠1=∠2,∠3=∠4及AB ∥CD 即证得.略证 延长FD 至G 使DG =BE , ∵△ADG ≌△ABE ,∴AG =AE ,GD =BE ,∠1=∠2. 又∵ ∠3=∠4, ∴∠1+∠4=∠2+∠3. 由于DC ∥AB ,∴∠DFA =∠2+∠3, ∴∠1+∠4=∠DFA , ∴GF =AG .即GD +DF =BE +FD =AE .例3 已知∠MON =40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上的点,则△PAB 的周长取最小值时,求∠APB 的度数.图18-4解析 如图18-4,若在OM 上A 点固定,不难在ON 上找出点B (B 为P 关于ON 的对称点P ''与A 点的连线与ON 的交点),同样若在ON 上B 点已固定,则点P 关于OM 的对称点P'与B 点的连线与OM 交于A ,因此A 、B 应为P'P ''与0M 、ON 的交点,这时可求得∠A .解 作P'为P 关于OM 的对称点,P ''为P 关于ON 的对称点,连接P'P ''分别交OM 、ON 于A 、B 两点,则△PAB 周长为最小,这时△ABP 的周长等于P'P ''的长(连接两点间距离最短).∵OM P P ⊥',ON P P ⊥''垂足分别为C 、D , ∴∠OCP =∠ODP =90°. ∵∠M O N=40°,∴∠CPD =180°-40°=140°.∴∠PP'P ''=∠P P ''P'=180°-140°=40°.由对称性可知:∠PAB =2∠P',∠PBA =2∠P '', ∴∠APB =180°-(∠PAB -∠PBA )=180°-(2∠P'-2∠P '')=100°.例4 如图18-5,在ABC 中,BC =h ,AB +AC =l ,由B ,C 向∠BAC 外角平分线作垂线,垂足为D 、E , 求证:BD ·CE =定值.图18-5解析 BC =h 是定值,AB +AC =l 是定值,要证BD ·CE 是定值,设法使BD ·CE 用h ,l 的代数式来表示,充分利用DE 是BAC 的外角平分线,构造对称图形,再利用勾股定理。

初一几何竞赛试题及答案

初一几何竞赛试题及答案

初一几何竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 任意五边形D. 等腰三角形答案:D2. 一个圆的半径为5厘米,那么它的周长是多少厘米?A. 10πB. 20πC. 25πD. 30π答案:C3. 一个等腰三角形的底边长为6厘米,腰长为8厘米,那么它的高是多少厘米?A. 4.8B. 6C. 7.2D. 8答案:A4. 下列哪个选项是正确的?A. 两条平行线被第三条直线所截,内错角相等B. 两条平行线被第三条直线所截,同位角互补C. 两条平行线被第三条直线所截,同旁内角互补D. 两条平行线被第三条直线所截,内错角互补答案:C5. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是多少厘米?A. 5B. 6C. 7D. 8答案:A二、填空题(每题3分,共15分)6. 如果一个角的补角是120°,那么这个角的度数是______。

答案:60°7. 一个正方形的边长为a,那么它的周长是______。

答案:4a8. 一个等边三角形的边长为b,那么它的高是______。

答案:(b√3)/29. 一个圆的直径为d,那么它的面积是______。

答案:π(d²)/410. 如果一个角的余角是30°,那么这个角的度数是______。

答案:60°三、解答题(每题10分,共70分)11. 已知一个直角三角形的两条直角边长分别为6厘米和8厘米,求这个三角形的面积。

答案:根据直角三角形面积公式,面积 = (底 ×高) / 2 = (6 × 8)/ 2 = 24平方厘米。

12. 已知一个等腰三角形的底边长为10厘米,腰长为13厘米,求这个三角形的周长。

答案:周长 = 底边长 + 2 ×腰长 = 10 + 2 × 13 = 10 + 26 = 36厘米。

初中数学竞赛试卷人教版

初中数学竞赛试卷人教版

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -1/2B. -√2C. √2D. 02. 下列各数中,绝对值最小的是()A. -1/2B. -√2C. √2D. 03. 若a=3,b=-3,则a-b的值为()A. 0B. 6C. -6D. -94. 已知等差数列{an}的前三项分别为1,4,7,则第10项an的值为()A. 19B. 23C. 27D. 315. 在直角坐标系中,点A(2,3),点B(-1,-4),则线段AB的中点坐标是()A. (1,-1)B. (3,2)C. (1,2)D. (2,3)6. 若x^2+4x+4=0,则x的值为()A. -2B. 2C. -4D. 47. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是()A. 105°B. 120°C. 135°D. 150°8. 若a+b=5,ab=4,则a^2+b^2的值为()A. 21B. 25C. 29D. 339. 已知一元二次方程x^2-3x+2=0的两个根为x1,x2,则x1+x2的值为()A. 1B. 2C. 3D. 410. 在等腰三角形ABC中,AB=AC,∠B=50°,则∠A的度数是()A. 40°B. 50°C. 60°D. 70°二、填空题(每题5分,共25分)11. 若a=√2,b=√3,则a^2+b^2的值为______。

12. 已知等差数列{an}的前三项分别为2,5,8,则第10项an的值为______。

13. 在直角坐标系中,点P(3,4),点Q(-2,-1),则线段PQ的长度为______。

14. 若x^2-6x+9=0,则x的值为______。

15. 在△ABC中,∠A=40°,∠B=60°,则∠C的度数是______。

三、解答题(每题10分,共20分)16. (10分)已知等差数列{an}的前三项分别为1,4,7,求该数列的通项公式。

九年级数学竞赛 第18讲 平面几何中的最值问题

九年级数学竞赛 第18讲 平面几何中的最值问题

九年级数学竞赛第十八讲平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.例1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,所以所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.-x2+2Rx+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.例2 如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.例3 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB 渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则∠P′C′B=∠P′BC=∠PCB=45°,所以A,B,C′,C四点共圆,所以∠CC′A=∠CBA=90°,所以在△ACC′中,AC>AC′,即PA+PB>P′A+P′B.例4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD ⊥BC于D,所以∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以∠1=∠2=45°,∠3=∠4,所以△ADN∽△BDM,又因为∠MDN=90°=∠ADB,所以△MDN∽△BDA,所以∠BAD=∠MND.由于∠BAD=∠LCD,所以∠MND=∠LCD,所以D,C,L,N四点共圆,所以∠ALK=∠NDC=45°.同理,∠AKL=∠1=45°,所以AK=AL.因为△AKM≌△ADM,所以AK=AD=AL.而而从而所以 S△ABC≥S△AKL.例5 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则P1C≤BC=AB.对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.例6 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C 到l的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A 的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.例7 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD 面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为练习十八1.设M为圆O外一定点,P为圆O上一动点.试求MP的最大值和最小值.2.设AB是圆O的动切线,直线OA,OB保持互相垂直.如果圆O的半径为r,试求OA+OB的最小值.3.一直角三角形的周长为10厘米(cm),则其面积的最大值是多少厘米?4.已知l1∥l2,A,B是直线l1上的两个定点,且AB=10,l1,l2的距离为8,P为直线l2上的一个动点,试求△ABP周长的最小值.5.如果矩形ABCD的周长为40厘米,那么这个矩形面积的最大值是多少平方厘米?。

人教版初一下数学竞赛试题及答案

人教版初一下数学竞赛试题及答案

人教版初一下数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果a和b是两个连续的整数,且a > b,那么a-b的值是:A. 1B. 0C. -1D. 23. 一个数的平方根是它本身,这个数可以是:A. 1B. -1C. 0D. 44. 一个数的立方等于它本身,这个数有:A. 1个B. 2个C. 3个D. 4个5. 一个圆的半径是r,它的面积是:A. πr²B. 2πrC. πrD. r²6. 一个长方体的长、宽、高分别是a、b、c,它的体积是:A. abcB. 2abcC. a+b+cD. a²b²c²7. 一个等差数列的首项是a,公差是d,第n项是:A. a+(n-1)dB. a+ndC. a-dD. a-d(n-1)8. 如果一个三角形的三边长分别为a、b、c,且a² + b² = c²,那么这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 不规则三角形9. 一个分数的分子和分母同时扩大相同的倍数,其值:A. 增大B. 减小C. 不变D. 无法确定10. 一个数的绝对值是它本身,这个数:A. 必须为正数B. 必须为负数C. 可以是正数或零D. 可以是负数或零二、填空题(每题4分,共20分)11. 一个数的平方等于16,这个数是________。

12. 如果一个数的相反数是-5,那么这个数是________。

13. 一个数的绝对值等于5,这个数可以是________。

14. 一个数的立方根是2,那么这个数是________。

15. 一个数的倒数是1/4,这个数是________。

三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3+5)² - 2×(4-1)。

17. 一个长方体的长是10厘米,宽是8厘米,高是6厘米,求它的表面积和体积。

初中平面几何竞赛题

初中平面几何竞赛题

初中平面几何竞赛题题目一:已知在△ABC 中,AB = AC,D 是BC 中点,E 是AD 上一点,求证:BE = CE。

解析:因为AB = AC,D 是BC 中点,根据等腰三角形三线合一性质,AD 垂直平分BC。

所以BE = CE(垂直平分线上的点到线段两端距离相等)。

题目二:在矩形ABCD 中,E、F 分别是AB、CD 上的点,且AE = CF,求证:四边形AECF 是平行四边形。

解析:因为四边形ABCD 是矩形,所以AB△CD,AB = CD。

又因为AE = CF,所以BE = DF。

且BE△DF,所以四边形BEDF 是平行四边形,所以BF△DE。

又因为AB△CD,AE = CF,所以四边形AECF 是平行四边形。

题目三:已知在圆O 中,弦AB 与弦CD 相交于点E,且△AEC = 45°,AE = 3,CE = 5,求圆O 的半径。

解析:连接OA、OC,过O 作OF△AB 于F,OG△CD 于G。

则AF = FB,CG = GD。

因为△AEC = 45°,所以△FEG = 45°,则OF = OG。

设圆O 的半径为r,在Rt△AOF 和Rt△COG 中,根据勾股定理可得:AF² + OF² = r²,CG² + OG² = r²。

又因为AF = (AE + EF)/2,CG = (CE - EG)/2,且EF = EG = OF = OG。

设OF = OG = x,则可得方程组:[(3 + x)/2]² + x² = r²,[(5 - x)/2]² + x² = r²。

解方程组可得r 的值。

题目四:在△ABC 中,△BAC = 90°,AD 是BC 边上的高,E 是BC 中点,求证:AE² = DE² + BD²。

初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何证明的基本方法(1)一、常用定理梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。

塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。

角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD,当且仅当A,B ,C ,D 四点共圆时取等号.斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•BC PC +AC 2•BCBP -BP •PC 。

人教版八年级数学下册 第18章 菱形、正方形创新题及解析

人教版八年级数学下册 第18章 菱形、正方形创新题及解析

人教版八年级数学下册 第18章 菱形、正方形创新题及解析一、操作题例1.在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n表示),设计如图1-1所示的几何图形.(1)请你利用这个几何图形求2341111122222n ++++⋅⋅⋅+的值为__________.(2)请你利用图2-2,再设计一个能求2341111122222n ++++⋅⋅⋅+的值的几何图形.解:由图形知利用的是面积法:第一次把面积为1的正方形等分,得到12,第二次把面积为12的一个矩形等分得到212,第三次把面积为212的一个正方形等分得到312,第四次把面积为312的一个等腰直角三角形等分得到412,…,最后把面积为112n -的一个等腰直角三角形的面积等分得到两个12n ,从而易知2341111122222n ++++⋅⋅⋅+=112n -,由以上过程知:首次把正方形的面积等份,以后每次均为等分上次所得的两个图形中的一个,n-1次即达到目的,如图2给出供参考,事实上,方法还有很多,不再列举,答案如下: (1)112n-. (2)如图2-1或如图2-2或如图2-3或如图2-4等,图形正确.二、拼图题图2-1图2-2 图2-3 图2-4例2.如图3,是由四个形状大小完全相同的长方形拼成的图形,利用面积的不同表示法,写出一个代数恒等式: .分析:如何展示一个代数恒等式的几何意义,又如何从一个图形中挖掘提炼一个抽象的代数恒等式,成为近年中考命题的一大亮点,事实上,利用面积的割补原理,可列出22()()4a b a b ab +=-+,或22()4()a b ab a b +-=-, 或22()()4a b a b ab +--=.三、探究题例3.如图4甲,四边形ABCD 是等腰梯形,AB ∥DC .由4个这样的等腰梯形可以拼出图乙所示的平行四边形.(1)求四边形ABCD 四个内角的度数;(2)试探究四边形ABCD 四条边之间存在的等量关系,并说明理由;(3)现有图甲中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你画出大致的示意图.解:(1)如图,∠1=∠2=∠3,∠1+∠2+∠3=360°, 所以3∠1=360°,即∠1=120°.所以梯形的上底角均为120°,下底角均为60°(2)由于EF 既是梯形的腰,又是梯形的上底,所以梯形的腰等于上底. 连接MN ,则∠FMN=∠FNM=30°.图4从而∠HMN=30°,∠HNM=90°.所以NH=AH 21. 因此,梯形的上底等于下底的一半,且等于腰长. (3)能拼出菱形.如图5:(拼法不唯一) .评析:本题是考察学生观察能力和综合分析能力的好素材,由图甲(等腰梯形)到图乙(平行四边形)的拼合中隐含了等腰梯形内角之间的内在的关系.只要认真观察,就不难发现角的关系:即下底角的3倍等于180°或三个上底角拼成了一个周角,同时由乙图中隐含的信息很容易看出等腰梯形上底等于其腰长,这样问题便很容易得到解决了.四、猜想题例4.如图6-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图6-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图6-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.图6-2图6-3图6-1A ( G )B ( E )分析:本题是以正方形为背景的操作探究题,以学生非常熟悉的学具------等腰直角三角尺进行操作,只要动手、动脑就能发现不变量,用“不变应万变”、“以静制动”,借助正方形和全等知识就可以解决了.解:(1)BM =FN .证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴ ∠ABD =∠F =45°,OB = OF .又∵∠BOM =∠FON ,∴ △OBM ≌△OFN ,∴ BM =FN . (2)BM =FN 仍然成立.证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴∠DBA =∠GFE =45°,OB =OF .∴∠MBO =∠NFO =135°.点评:本题是一道以正方形为背景的三角板操作题,它推广旋转角度的变化,来探究图形的规律,寻找出不变量,并证明猜想的开放题.五、方案设计题例5.正方形通过剪切可以拼成三角形,方法如下: 仿上用图7(1)示的方法,解答下列问题:操作设计:(1)对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.(2)如图7(2),对任意三角形设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.分析:本题通过对图形的剪裁拼接,考查学生的创新求索, 发散思维,优化解题方案和过程的策略.本题的方案很多, 略举几例:(1)方案1. 方案2.图7(1)图7(2)(2)方案1. 方案2.课后自测小练习1、如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC,CD 上,P 为AE 的中点,连接PG ,则PG 的长为________.第1题图解析:如图,延长GE 交AB 于点O ,作PH ⊥OE 于点H ,则PH ∥AB .中点 中点 ①②∵P是AE的中点,∴PH是△AOE的中位线,∴PH=12OA=12(3-1)=1.∵Rt△AOE中,∠OAE=45°,∴△AOE是等腰直角三角形,即OA=OE=2,同理可得HE=PH=1.∴HG=HE+EG=1+1=2.∴在Rt△PHG中,PG=PH2+HG2=12+22= 5.故答案是 5.2、在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,AH=2AE,求AE的长.2、解析:(1)证明:∵四边形ABCD 是矩形,∴AD =BC ,∠BAD =∠BCD =90°,∴∠EAH =∠GCF =90°.∵BF =DH ,∴AH =CF .在△AEH 和△CGF 中,⎩⎪⎨⎪⎧AE =CG ,∠EAH =∠GCF ,AH =CF ,∴△AEH ≌△CGF (SAS)∴EH =FG .(4分)同理EF =HG ,∴四边形EFGH 为平行四边形.(2) 解:在正方形ABCD 中,AB =AD =1,设AE =x ,则BE =x +1. 在Rt △BEF 中,∠BEF =45°,∴BE =BF .∵BF =DH ,∴DH =BE =x +1, ∴AH =AD +DH =x +2.在Rt △AEH 中,AH =2AE ,∴2+x =2x , 解得x =2,∴AE =2.3、如图①,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动.①当点Q与点C重合时(如图②),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.解析:3、(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF. 又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP 为菱形.(3)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°.∵点B与点E关于PQ对称,∴CE=BC=5cm. 在Rt△CDE中,DE=CE2-CD2=4cm,∴AE=AD-DE=5-4=1(cm).在Rt△APE中,AE=1,AP=3-PB=3-EP,∴EP2=12+(3-EP)2,∴EP=53 cm,∴菱形BFEP的边长为53 cm.②当点Q与点C重合时,如图②所示.点E离点A最近,由①知,此时AE=1cm.当点P与点A重合时,如图③所示.点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.4、如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.图1 图2解:(1)PB=PQ.证明:过P作PE⊥BC,PF⊥CD,∴∠PEB=∠PFQ=90°.∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°.∴PF=PE.∴四边形PECF为正方形.∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF.∴Rt△PQF≌Rt△PBE(ASA).∴PB=PQ.(2)PB=PQ.证明:过P作PE⊥BC,交BC的延长线于点E,PF⊥CD,交DC的延长线于点F.∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°.∴PF=PE.∴四边形PECF为正方形.∴BE∥PF. ∴∠EBP=∠BPF.∵∠BPF+∠QPF=90°,∠Q+∠QPF=90°,∴∠BPF=∠Q.∴∠EBP=∠Q.∴Rt△PQF≌Rt△PBE(AAS).∴PB=PQ.5、 先阅读下面题目及解题过程再根据要求回答问题:已知如图在平行四边形ABCD 中,∠BAD 的平分线BC 交于E ,∠ABD 的平分线交AD 于F ,AE ,BF 相交于O ,则四边形ABEF 为菱形,说明理由.理由:(1)因为四边形ABCD 为平行四边形,(2)所以AD //BC(3)所以∠ABE +∠BAF =18︒0(4)因为AE ,BF 分别是∠BAD ,∠ABC 的平分线(5)所以∠1=∠2=21∠BAF ,∠3=∠4=21∠ABE (6)所以∠1+∠3=21(∠BAF +∠ABE )=︒⨯18021=9︒0 (7)所以∠AOB =︒90(8)所以AE ⊥BF(9)所以四边形ABEF 是菱形问:(1)上述理由是否充分?回答:(2)如有错误,指出其错误的原因是 应在第 步后添加如下说理过程解析:这是一通纠错探索型阅读题.关注知识形成过程,考查阅读、分析能力,通过阅读再现菱形的判定方法,在分析过程中培养作题的主动性.(1)不充分(2)错误的原因是设有说明四边形ABEF是否为平行四边形,而仅靠对角线互相垂直,不足以说明其为菱形,(8)又在△ABE中∠3=∠4,BO⊥AE所以OA=OE,同理可得OB=OF.。

人教版初中数学竞赛专题复习第18章 整数几何(含答案)

人教版初中数学竞赛专题复习第18章 整数几何(含答案)

第18章 整数几何18.1.1★已知ABC △的两条高长分别是5、15,第三条高的长数,求这条高之长的所有可能值. 解析 由面积知,三条高的倒数可组成三角形三边,这是它们的全部条件. 设第三条高为h ,则111,155111.515h h⎧+>⎪⎪⎨⎪+>⎪⎩ 解得151545h <<,h 可取4、5、6、7这四个值. 18.1.2★已知ABC △的三边长分别为3AB n x =+,2BC n x =+,CA n x =+,且BC 边上的高AD 的长为n ,其中n 为正整数,且01x <≤,问:满足上述条件的三角形有几个? 解析 注意AB 为ABC △之最长边,故90B ∠<︒,设BD y =,CD z =,则0y >,而z 可正可负.AB D C由2y z n x +=+,及()()()22223242y z n x n x n x x -=+-+=+⋅,得4y z x -=,32ny x =+,由勾股定理,知()222332n x n n x ⎛⎫++=+ ⎪⎝⎭,展开得12n x =,由01x <≤及n 为正整数,知1n =,2,…,12,这样的三角形有12个.18.1.3★已知一个直角三角形的三条边均为正整数,其中一条直角边不超过20,其外接圆半径与内切圆半径之比为52∶,求此三角形周长的最大值.解析 设该直角三角形直角边长为a 、b ,斜边为c ,则外接圆半径2cR =,内切圆半径2a b cr +-=,不妨设20a ≤. 由条件知52c a b c =+-,557a b c +=,平方,得()()222225249a b ab a b ++=+,即()2212250a b ab +-=,()()34430a b a b --=,于是3a k =,4b k =,5c k =,或4a k =,3b k =,5c k =,周长为12k ,k 为正整数.k 的最大值为6,此时各边为18、24、30,周长最大值为72.18.1.4★ABC △为不等边三角形,60A ∠=︒,7BC =,其他两边长均为整数,求ABC △的面积.A BCx y60°解析设AB x =,AC y =,则由余弦定理,有2249x y xy +-=.由条件x y ≠,不妨设x y <,则AB 为ABC △之最小边,x 只能取值1、2、3、4、5、6,分别代入,发现当3x =或5时,8y =,其余情形均无整数解.于是1sin 602ABC S xy =︒=△. 18.1.5★★一点P 与半径为15的圆的圆心距离是9,求经过P 且长为整数的弦的条数. 解析 如图,O 半径为15,9OP =,过P 的弦ST 长为整数,APB 为直径,6AP =,24PB =,则144SP TP PA PB ⋅=⋅=,因此24ST SP TP =+≥.又30ST AB =≤,故这样的弦共有()302412212-+⨯-=条,其中与AB 垂直的弦及AB 各一条,其余的弦每种长度有两条(关于AB 对称).18.1.6★★在直角三角形ABC 中,各边长都是整数,90C ∠=︒,CD 为边AB 上的高,D 为垂足,且3BD p =(p 奇素数),求ACAB的值(用p 表示). C解析由2BC BD AB =⋅知2BD BC ,故设2BC p t =(t 为正整数),则2BA pt =,又由勾股定理,知22442AC p t p t =-,故tp AC .设AC kpt =,代入得()()222p t k t k t k =-=+-,易知只能有2t k p +=,1t k -=,解得212p t +=,212p k -=,于是2211AC p AB p -=+. 18.1.7★★设正三角形ABC ,M 、N 分别在AB 、AC 上,MN BC ∥,两端延长MN ,交ABC △外接圆于P 、Q ,若PM 、MN 、AB 长均为正整数,求AB 的最小值. 解析 如图, 易知NQ PM =也是整数.设AM x =,BM y =,PM NQ z ==,则M N x =,于是由相交弦定理,得()xy z x z =+,2z x y z=-.APQM NB C设y ks =,z kt =,(),k y z =,s t >,(),1s t =,则2kt x s t=-,由于()2,1s t t -=,故s tk -,要使2t AB x y k ks s t=+=+-达到最小,k 得取s t -,于是()2AB t s t s =+-.由于s t >,2s ≥,1t ≥,知()223t s t s t s +-+≥≥.当1AM =,2BM =时AB 取到最小值3,此时1PM =.18.1.8★★已知凸四边形ABCD 的四边长是两两不相等的整数,对边乘积之和等于四边形面积的两倍,且22250AD BC +=,求该四边形面积、对角线长度. 解析 不妨设AB α=,BC b =,CD c =,DA d =,AC 与BD 交于O ,则sin 2ABCD AC BD AOB S ac bd AC BD ⋅⋅∠==+⋅≥,于是由托勒密定理,知A 、B 、C 、D 必共圆,且满足AC BD ⊥.又由已知条件,22250b d +=,22250a c +=.经搜索知250表为平方和只有两组:22515+和22913+.由对称性,不妨设5a =,13b =,15c =,9d =,则19622ABCD ac bdS AC BD +=⋅==.由余弦定理,因cos cos 0BAD BCD ∠+∠=,得222222591315045195B D B D +-+-+=,得BD =AC18.1.9★★是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的ABC △?证明你的结论. 解析 存在满足条件的三角形.当ABC △的三边长分别为6a =,4b =,5c =时,2A B ∠=∠.如图,当2A B ∠=∠时,延长BA 至点D ,使AD AC b ==.连结CD ,ACD △为等腰三角形.CD A因为BAC ∠为ACD △的一个外角,所以2BAC D ∠=∠.由已知,2BAC B ∠=∠,所以B D ∠=∠.所以CBD △为等腰三角形.又D ∠为ACD △与CBD △的一个公共角,有~ACD CBD △△,于是AD CD CD BD =,即b aa b c=+,所以()2a b b c =+.而()26445=⨯+,所以此三角形满足题设条件,故存在满足条件的三角形. 评注满足条件的三角形是唯一的.若2A B ∠=∠,可得()2a b b c =+.有如下三种情形:(ⅰ)当a c b >>时,设1a n =+,c n =,1b n =-(n 为大于1的正整数),代入()2a b b c =+,得()()()21121n n n +=--,解得5n =,有6a =,4b =,5c =;(ⅱ)当c a b >>时,设1c n =+,c n =,1b n =-(n 为大于1的正整数),代入()2a b b c =+,得()212n n n =-⋅.解得2n =,有2a =,1b =,3c =,此时不能构成三角形;(ⅲ)当a b c >>时,设1a n =+,b n =,1c n =-(n 为大于1的正整数),代入()2a b b c =+,得()()2121n n n +=-,即2310n n --=,此方程无整数解.所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4、5、6构成的三角形满足条件.18.1.10★★三边长为连续整数、周长不大于100、且面积是有理数的三角形共有多少个? 解析 设三角形三边依次为1n -、n 、1n +,则333n ≤≤,()131122p n n n n =-+++=,S △==于是()234n -是平方数,令()()22343n k -=,得2243n k -=,则32n ≤,224102034033n k -==≤,18k ≤.又k 不可能是奇数,否则()222343n k k =+≡,得2243n k -=,则32n ≤,224102034033n k -==≤,18k ≤.又k 不可能是奇数,否则()22343mod 4n k =+≡,将2k =,4,6,8,10,12,14,16,18代入,发现仅当2k =,8时满足要求.因此这样的三角形共有两个,三边长依次为3、4、5与13、14、15.18.1.11★★某直角三角形边长均为整数,一直角边比斜边小1575,求其周长的最小值. 解析 设直角三角形直角边长a 、b ,斜边为1575a +,则 ()2221575a b a +=+,()2157521575b a =+.由于221575357=⨯⨯,设105b k =,则2721575k a =+,设7a s =,则22225k s =+,于是k 的最小值为17,此时32s =,224a =,1785b =,1799c =.此时的最小周长为3808. 18.1.12★★已知ABC △,AD 是角平分线,14AB =,24AC =,AD 也是整数,求AD 所有可取的值.AEB DC解析 如图,作DE AB ∥,E 在AC 上,则易知AE ED =. 又ED CD AC AB BC AB AC==+,故 22AB ACAD AE DE ED AB AC⋅<+==+33617.6819==…, 故17AD ≤.又当17AD ≤时,不难通过AED △构造出ABC △,故AD 所有可取的值为1,2, (17)18.1.13★面积为c 的正方形DEFG 内接于面积为1的正三角形ABC ,其中a 、b 、c 是整数,且b 不能被任何质娄的平方整除,求a cb-的值.ADGB E F C解析设正方形DEFG 的边长为x ,正三角形ABC 的边长为m ,则2m ,由ADG ABC △∽△,可得xx m -=.解得()3x m =.于是()222348x m ==.由题意得28a =,3b =,48c =,所以203a cb -=-. 17.1.14★★如图,AD 是ABC △的高,四边形PQRS 是ABC △的内接正方形,若BC ab =(即两位数),SRc =,ADd =,且a 、b 、c 、d 恰为从小到大的4个连续正整数,求ABC S △的所有可能值.AS RP D Q解析易知11SR AR CR SR BC AC AC AD ==-=-,于是有110c c a b d +=+,或1111132a a a +=+++,移项,得()()1111123a a a =+++,或2650a a -+=,解得1a =或5.于是有两解: 12,3,4;BC SR AD =⎧⎪=⎨⎪=⎩56,7,8.BC SR AD =⎧⎪=⎨⎪=⎩易知这两组数据都符合要求,故24ABC S =△或224.18.1.15★★已知ABC △中,B ∠是锐角.从顶点A 向BC 边或其延长线作垂线,垂足为D ;从顶点C 向AB 边或其延长线作垂线,垂足为E .当2BD BC 和2BEAB均为正整数时,ABC △是什么三角形?并证明你的结论. 解析设2BD m BC =,2BEn AB=,m 、n 均为正整数,则 244cos 4BD BE mn B AB BC=⋅⋅=<, 所以,1mn =,2,3. (1)当1mn =时,1cos 2B =,60B ∠=︒,此时1m n ==.所以AD 垂直平分BC ,CE 垂直平分AB ,于是ABC △是等边三角形.(2)当2mn =时,cos B =45B ∠=︒,此时1m =,2n =,或2m =1n =,所以点E 与点A 重合,或点D 与点C 重合.故90BAC ∠=︒,或90BCA ∠=︒,于是ABC △是等腰直角三角形.(3)3mn =时,cos B =,30B ∠=︒,此时1m =,3n =,或3m =,1n =.于是AD 垂直平分BC ,或CE 垂直平分AB .故30ACB ∠=︒,或30BAC ∠=︒,于是ABC △是顶角为120︒的等腰三角形.18.1.6★★某直角三角形两直角边长均为整数,周长是面积的整数倍(就数字上讲),问问这样的直角三角形有多少个?解析 设直角边分别为a 、b ,则斜边c =,由条件知它是有理数,故必定是整数.设2ka b ab +=,k 为正整数,于是k =.由于a b +1、2或4,记作k '.由a b k +-'=()2220ab k a b k -'++'=,()()22a k b k k -'-'=',1k '=时无解;2k '=时,有()()222a b --=,{a ,b }={3,4};4k '=时,()()448a b --=,{a ,b }={5,12}或{6,8},所以这样的直角三角形共有3个. 18.1.17★★在等腰ABC △中,已知AB AC kBC ==,这里k 为大于1的自然数,点D 、E 依次在AB 、AC 上,且DB BC CE ==,CD 与BE 相交于O ,求使OCBC为有理数的最小自然数k .ADEBCO解析如图,连结DE ,则DE BC ∥,11DE AD AB BC BC AB AB k -===-,1k DE BC k-=. 由于四边形DBCE 为等腰梯形,则由托勒密定理(或过D 、E 作BC 垂线亦可),2222121k k CD CD BE DE BC DB CE BC BC BCk k --=⋅=⋅+⋅=+=,又21CO BC kCD DE BC k ==+-,于是CO BC =k 与21k -互质,由题设知其必须均为平方数,1k >,25k =适合,这是满足要求的最小自然数.18.1.18★★★对于某些正整数n 来说,只有一组解xyz n =(不计顺序),这里,x 、y 、z 是正整数且可构成三角形的三边长,这样的()100n ≤共有多少个? 解析显然,当n p =(素数)时无解;当2n p =或1时只有一组解(1,p ,p )或(1,1,1);当n pq =(p 、q 为不同素数)时无解;当4n p =(p 为大于3的素数)时也无解.剩下的数为8,12,16,18,24,27,30,32,36,40,42,45,48,50,54,56,60,63,64,66,70,72,75,78,80,81,84,88,90,96,98,99,100. 易验证,无解的n 有:30,42,54,56,63,66,70,78,88,99;唯一解的n 有:8,12,16,18,24,27,32,40,45,48,50,75,80,81,84,90,96,98;不止一组解的n 有:36,60,64,72,100.注意:判定无解的主要依据是,abc n =,c ab >时无解,困为1c ab a b ++≥≥. 因此,有解的n 共有23个.18.1.19★★面积为整数的直角三角形周长为正整数k ,求k 的最小值,并求此时这个直角三角形的两条直角边的可取值(如不止一组解,只需举了一组即可).解析设该直角三角形的直角三角形周长分别为a 、b ,则112ab ≥,a b +≥2,2k a b =+,故5k ≥.下令5k =,2ab =,如有解,则可.()5a b -+,平方得()222225102a b a b a b ab +=-++++.取2ab =,得29,102.a b ab ⎧+=⎪⎨⎪=⎩因此a 、b 为方程21029200x x -+=的根,解得a 、bk 的最小值是5.18.1.20★★若ABC △的三边长a 、b 、c 均为整数,且140abc =,求ABC △内切圆半径. 解析 不妨设a b c ≤≤,于是7c ≥.又14011c a b ab c<++=+≤,故140c c ≤,得10c ≤.于是c 只可能为7或10. 7c =时,20ab =,只可能4a =,5b =,()182p a b c =++=,内切圆半径r =. 10c =时,14ab =,没有满足要求的解.18.1.21★★证明:若a 、b 、c 是一组勾股数()222a b c +=,则存在正整数k 、u 、v 、u v >,(),1u v =使得()22c k u v =+,而()22a k u v =-,2b kuv =;或2a kuv =,()22b k u v =-.解析222a b c +=,设(a ,b ,c )k =,则1a ka =,1b kb =,1c kc =,222111a b c +=.易知1a 、1b 、1c 两两互质;1a 与1b 不可能同偶,否则12a ,1b ,1c ;1a 与1b 也不会同奇,否则()212mod 4c =,矛盾.于是1a 与1b 必一奇一偶,不妨设1a 奇而1b 偶,于是1c 为奇数.从而()()211111a c b c b =+-,11c b +与11c b -必互质,否则有一奇素数11|p c b +,11c b -,得|2p c ,12b ,故|p (1c ,1b ),与(1c ,1b )=1矛盾. 于是可设2111c b u +=,2111c bv -=,(1u ,1v )=1,且1u 、1v 均为奇数,解得221111122u v u v c +-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,11111222u v u v b +-=⋅⋅,221111122u v u v a +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,令112u v u +=,112u v v -=,即得结论. 18.1.22★★★如图,F 、E 在ABC △的边AB 、AC 上,FE 的延长线与BC 的延长线交于D ,求证:AF 、BF 、CB 、CD 、AE 、EC 、FE 、ED 的长度不可能是1~8的排列. 解析 如果1EF =,则1A E A F E F -<=,得A E A F =,矛盾,故1EF ≠,同理AF 、AE 、ED 、CD 、EC 都不等于1.AFE GDCB因此1只可能等于FB 或BC 之长,不失对称性,设1BF =,则1FD BD BF -<=,FD BD =,作CG AB ∥,G 在ED 上,四边形FBCG 乃一等腰梯形,于是EG FG EF BC EF =-=-为正整数.又1EG EC CG BF -<<=,故E G E C =,但BFD ∠为等腰三角形DFB 的底角,90BFD <︒∠,18090EGC BFD =︒->︒∠∠,为EGC △的最大内角,EC EG >,矛盾,因此结论证毕.18.1.23★★★已知梯形ABCD 中,AD BC <,E 、F 分别在AB 、CD 上,EF AD BC ∥∥,ED BF ∥,如果AD 、EF 、BC 均为正整数,称该梯形为“整数梯形”.现对于正整数n ,有正整数x x <′<y ′<y ,x y x +=′+y ′=n ,且x 、y 为一“整数梯形”的上、下底, x ′、y ′为另一“整数梯形”的上、下底,求n 的最小值.解析 如图,由AED EFD △∽△,DEF FBC △∽△,得AD AE DF EFEF BE FC BC===,得E F C =,于是问题变为求最小的n ,使xy 与x ′y ′均为平方数. A DEFB Cxy 、x ′y ′不可能都为4,故至少有一组≥9,显然另一组也不可能为4,于是xy ,x ′y ′≥9.如果xy 或x ′y ′25≥,则10n =≥.若xy 或x ′y ′=9或16,则19n =+或2810+=.于是n 的最小值为10,1x =,x ′=2,y ′=8,y =9.18.1.24★★★求证:存在无穷多个每边及对角线长均为不同整数的、两两不相似的凸四边形.ABDPC解析 如图,作圆内接四边形ABCD ,AC 与BD 垂直于P ,设a 为一整数,2a >,4AP a =,24BP a =-,241DP a =-,则24AB a =+,241AD a=+,,由此知()()224414aa CP a--=,而由ABP DCP △∽△,BPC APD △∽△知,()224414a BC a a -=+,()224144a CD a a -=+.同时乘以系数4a ,得()244AB a a =+,()2441AD a a =+,()()22441BC a a =-+,()()22414CD a a =-+,4244AC a a =-+,()2201BD a a =-.易知上述6个多项式无二者恒等,于是任两者相等只能得有限个a ,但正整数有无限个,因此有无限个a ,使6个多项式两两不等,又当a →+∞时,0BDAC→,因此有无限个这样的凸四边形两两不相似. 18.1.25★★★已知PA 、PB 为圆的切线,割线过P ,与圆交于M 、N ,与AB 交于S ,若PA 、PM 、MS 、SN 均为正整数,求PA 的最小值.PMABSN解析 如图,易知有PM PNMS SN=(调和点列). 设PM a =,MS b =,SN c =,则()b ab c a ++=,()b c b c a b+=-,从而PA = 设a ks =,b kt =,k =(a ,b ),则(s ,t )=1,s t >,s tc kts t+=-,PA =易见(s t +,s t -)=1,则s 、t 一奇一偶.于是由(()t s t +,s t -)=1,得|s t k -,且由PA 为整数知2s t x +=,2s t y -=,x 、y 为奇数.因为|s t k -,于是k 的最小值为s t -,()c t s t =+,PA sxy ==,当s =1,2,3,4时,t 无解(即PA 不是整数),故5s ≥,又3x ≥,1y ≥,于是PA ≥15,当a =5,b =4,c =36时取到15PA =.若(s t +,s t -)=2,此时s 、t 同奇,k 的最小值为2s t-,此时()2t s t c +=,PA =22s t x +=,22s t y -=,当1s =,3时,无t 使PA 为整数,于是5s ≥,又x y >,所以1y ≥,2x ≥,5210PA sxy =⨯=≥.当5a =,3b =,12c =时取到PA =10. 综上,PA 的最小值是10.18.1.26★★★一圆内接四边形的四边长及对角线长都是整数,求这类四边形中周长最小者. 解析 显然长与宽为4、3的矩形满足要求,其周长=14.若等腰梯形上、下底分别为3、4,腰为2,则由托勒密定理,对角线长为4,满足要求,此时周长为11.故最小周长≤11. 显然对圆内接凸四边形ABCD ,无边长为1.否则若设1AB =,—1AD BD AB <=,得AD BD =,同理AC CB =,于是C 、D 均在AB 中垂线上,构不成凸四边形.因此最小周长≥2×4=8.四边均为2,得正方形,对角线为2,另一边为3,得等腰梯形,10.当周长为10时,显然至少有两边为2.若是2、2、2、4能为2、2、3、3故最小周长为11.18.1.27★★★在Rt ABC △中,90BCA =︒∠,CD 是高,已知ABC △的三边长都是整数,且311BD =,求BCD △与ACD △的周长之比.CB D A解析 设ABC △的三边长分别为a 、b 、c .由题设知 2BC BD BA =⋅,故2311a c =.于是设211a l =,得211l c =由勾股定理得11b ==2211l -是 完全平方数,设为()20t t >,则22211l t -=,()()211l t l t -+=.由于0l t l t <-<+,所以21,11.l t l t -=⎧⎨+=⎩解得61,60.l t =⎧⎨=⎩于是21161a =⨯,116160b =⨯⨯. 因为BCD CAD △∽△,所以它们的周长比等于它们的相似比,即1160a b =.18.1.28★★★已知锐角三角形ABC 中,AD 是高,矩形SPQR 的面积是ABC △的1/3,其顶点S 、P 在BC 上,Q 、R 分别在AC 、AB 上,且BC 、AD 及矩形SPQR 的周长均为有理数,求AB ACBC+的最小值. 解析 如图,设ABC △的三边长依次为a 、b 、c ,AD h =,PQ x =,RS y =,则16xy ah =,及1x y AQ CQ a h AC AC+=+=.由条件,知a 、h 、x y +均为有理数. AR QB S D P C由16x a a x+=,得x a =,33y h =,)2a h x y a h ++=-,因此只能有a h =.若过A 作BC 的平行线l ,再作C 关于l 的对称点C ',则AB AC AB AC +=+′≥BC ′,于是AB ACBC+,仅当AB AC =时取到. 18.1.29★★★★整数边三角形ABC 中,90BAC =︒∠,AD 是斜边上的高,BD 也是整数.若对同一个BD 能长度,有两个不全等的直角整数边三角形ABC 满足要求,求BD 的最小值.解析 不妨设ABC △的三边长为a 、b 、c ,AD h =,BD d =,首先bch a=为有理数,又222h c d =-为整数,因此h 也是整数.又CD 为整数,故2h d也是整数.又ABD CBA △∽△,故h b d c=. AB D C因此,只需正整数h 、c 、d 满足222h c d =-及2|d h ,这样的整数边三角形就存在.因为此时hcb d=是有理数,而222b h CD =+为整数,从而b 为整数.易知由2|d h 可得2|d c . 设21d d σ=,σ、1d 为正整数,且σ无平方因子,于是由2|h σ及2c 知|h σ,c .设1h h σ=,1c c σ=,代入得422111d c h =-,又由2|d h ,2c 得2211|d h σ,21c σ,今对1d 的任一素因子p ,其在1d 的指数()1s d 不会比1h 的指数高,否则()()111s d s h +≥,()()22112s d s h +≥,而()s σ最多为1,于是()()2211s d s h σ>,这是不可能的.于是11|d h ,同理11|d c .又令112h d h =,112c d c =,代入422111d c h =-得222122d c h =-. 于是对1d 有两组不同的2c 、2h 满足222122d c h =-.经计算18d ≥,故64d ≥.当64d =时,确实有满足要求的两组解:80AB =,60AC =,100BC =,和136AB =,255AC =,289BC =.故BD 的最小值是64.18.1.30★★★★试找一不等边三角形ABC ,使BC 及BC 边上的中线、角平分线、高的长度都是整数,BC 可以是多少(此时的中线、角平分线、高的长度分别为多少)?若要求BC 不是整数,但2BC 是整数,则BC 可为多少(此时中线、角平分线、高的长度分别为多少)?解析 首先处理BC 为整数的问题,我们选择的是直角三角形ABC ,对应边为a 、b 、c ,中线AM ,角平分线AD ,高AH ,2aAM =,bc AH a =,又ABC ABD ACDS S S =+△△△,得)2bc b c AD =+,故AD b c =+,于是a 为偶数2k ,b =,c =,mn AH k =而2mn AD m n =+,2222m n k +=,这个方程有解1m =,7n =,5k =,得75AH =,5AM =,74AD =.乘以一个系数20,即得直角三角形ABC ,它的斜边为200,斜边上的中线为100,角平分线为35,高为28.下面处理BC 为无理数、2BC 为整数的情形,如图,延长AD ,与MP 交于P ,此处MP BC ⊥.易知A 、B 、P 、C 共圆(P 是ABC △外接圆弧BC 之中点).今从基本勾股数出发构造.取12AH =,13AD =,15AM =,则5DH =,9MH =,4MD =,485MD MP AH HD =⋅=,45255PD AD ==. ABMD HCP易知BPD APB △∽△,于是25211760845525BP PD PA =⋅=⨯=,()22222608448302444425255BC BM PB MP ⎛⎫==-=-= ⎪⎝⎭. 再乘以系数5,得所求三角形的高60AH =,角平分线65AD =,中线75AM =,边BC =是无理数,但15120BC =.18.1.31★★作圆外切凸五边形ABCDE ,现知该五边形每边长均为整数,1AB =,又圆与BC 切于K ,求BK .解析 如图,设CD 、DE 、EA 、AB 分别与圆切于P 、Q 、R 、S .则RE DP ED +=为整数,于是由题设,AR CP +亦为整数,而AR CP AS KC +=+.于是22BK BS BK BS ==+为整数,由于1BS AB <=,故22BS <,221BK BS ==,12BK =. A S RB EQ K CPD。

初中竞赛平面几何数学竞赛题目

初中竞赛平面几何数学竞赛题目

一、三角法解几何题的基本定理:1.正弦定理:∆ABC中,asin A=bsin B=csin C=2R(其中,R为∆ABC的外接圆半径).2.余弦定理:∆ABC中,a2=b2+c2-2bc cos A;…cos A=b2+c2-a22bc;….二、常用的结论:3.张角定理:sin(α+β)t=sinαb+sinβa.4.r=4R sin A2sinB2sinC2.典型例题例1.已知一个直角三角形ABC,其斜边BC被分成n等分,n是大于1的奇数,α表示点A对包含斜边中点在内的那一等分线段的视角.a为斜边的长,h为斜边上的高,求证:tanα=4nha(n2-1).例2.锐角ABC的∠A的平分线交BC于L,交外接圆于N,作LK ⊥AB,LM⊥AC,垂足分别为K,M.求证:四边形AKNM的面积=ΔABC 的面积.例3.设P为⊿ABC内一点,∠APB-∠ACB=∠APC-∠ABC,又设D、E分别是⊿APB与⊿APC的内心.求证:AP、BD、CE交于一点.例4.在筝形ABCD中,AB=AD,BC=CD,经AC、BD的交点O 任作两条直线分别交AD于E,交BC于F,交AB于G,交CD于H,GF、EH分别交BD于I、J.求证:IO=OJ.例5.设a、b、c为三角形的三边,a≤b≤c,R和r分别表示⊿ABC 的外接圆半径与内切圆半径.令f=a+b-2R-2r,试用∠C的大小来判定f的符号.例6.给定a,2<a<2,内接于单位圆P的凸四边形ABCD适合以tαβabAB CAKLMNt3t2t4t1JHEFGBCDAOαβabcIC‘B‘BCDAOA‘⑴ 圆心在这凸四边形内部;⑵ 最大边长为a ,最小边长为4-a 2 ,过点A 、B 、C 、D 依次作圆P 的四条切线l A 、l B 、l C 、l D ,已知l A 与l B ,l B 与l C ,l C 与l D ,l D 与l A 分别交于点A',B',C',D'.求面积之比S 四边形A 'B 'C 'D 'S 四边形ABCD的最大值与最小值.例7.一条直线l 与具有圆心O 的圆ω不相交,E 是l 上的点,OE ⊥l ,M 是l 上不同于E 的点,从M 作w 的两条切线切ω于点A 和B ,C 是MA 的点,使得EC 垂直于MA ,D 是MB 上的点,使得ED 垂直于MB ,直线CD 交OE 于F .求证点F的位置不依赖于点M 的位置.例8.凸四边形的四个角分别为 2α, 2β, 2γ, 2δ,四条边分别为l , m , n , k .求证它的面积 S = (l + m + n + k ) 24(cot α + cot β + cot γ + cot δ) -(l + n -m -k ) 24(tan α + tan β + tan γ + tan δ).例9.在△ABC 的三边中点D 、E 、F 向内切圆引切线,设所引的切线分别与EF 、FD 、DE 交于I 、L 、M .求证:I 、L 、M 三点共线.例10.已知平面上一个半径为R 的定圆⊙O ,A 、B 是⊙O 上两个定点,且A 、B 、O 不共线,C 为异于A 、B 的点,过点A 作⊙O 1与直线BC 切于点C ,过点B 作⊙O 2与直线AC 切于点C ,⊙O 1与⊙O 2相交于DC (异于C 点).求证:(1) CD ≤ R ;(2) 当点C 在⊙O 上移动时,且与A 、B 不重合时,直线CD 过一定点.例11.已知P 是△ABC 内一点,过P 作BC 、CA 、AB 的垂线,其垂足分别为D 、E 、F ,又Q 是△ABC 内的一点,且使得∠ACP = ∠BCQ , ∠BAQ = ∠CAP .证明∠DEF = 90︒的充要条件是Q 为△BDF 的垂心.例12.设点D 、E 、F 分别是△ABC 的边BC 、CA 、AB 上的点,并且△AEF 、△BFD 、△CDE 的内切圆都与△DEF 的内切圆外切.求证AD 、BE 、CF 三线共点.12AB CDE MF OPP lDL MNBαKβA δγrrr r ●●●●BDI E F●●●OACBDEF AC P QXYO 1●3●2M●●O O O ●●I HA J A21MBCO POO ●1.设M 是⊿ABC 的AB 边上的任一点,r 1、r 2、r 分别是ΔAMC 、ΔBMC 、ΔABC 的内切圆半径,ρ1、ρ2、ρ分别是这些三角形在∠ACB 内部的旁切圆半径.求证:r 1ρ1·r 2ρ2=rρ.2.设正方形ABCD 边长为1,试求其内接正三角形面积的最大值与最小值.3.在∠A 内有一定点P ,过点P 作直线交角的两边于B 、C ,问何时PB ·PC 取最小值. 4.在平面上有一个定点P ,考虑所有可能的正三角形ABC ,其中AP =3,BP =2,求CP 长度的最大值.5.设⊿ABC 的三个内角A 、B 、C 分别为α、β、γ,求证:在AB 上有一点D ,使CD 为AD 与BD 的几何中项的充要条件为sin αsin β≤sin 2γ2.6.在梯形ABCD 中(AB ∥CD ),两腰AD 、BC 上分别有点P 、Q 满足∠APB =∠CPD ,∠AQB =∠CQD .求证:点P 与Q 到梯形对角线的交点O 的距离相等.7.在一个非钝角⊿ABC 中,AB >AC ,∠B =45︒,O 与I 分别是⊿ABC 的外心与内心,且2 OI =AB -AC ,求sin A .8.ABCD 内接于圆,AB ∩CD = E ,AD ∩BC = F ,M 、N 为AC 、BD 中点,已知AC = a , BD = b ,求MNEF. 9.△ABC 内心为I ,A 对应的旁心为I a ,II a 分别交BC 、⊙ABC 于A '、M ,N 为 ⌒ABM 的中点,NI 、NI a 分别交⊙ABC 于S 、T .求证S 、A '、T 三点共线.10.设△ABC 内切圆与BC 、CA 、AB 相切于D 、E 、F ,一圆与△ABC 内切圆切于D ,并与△ABC 外接圆切于K ,点M 、N 类似定义.求证DK 、EM 、FN 相交于△DEF 的欧拉线上.γ2γ1βαBCAD。

初中数学人教版第十八章经典试题及答案

初中数学人教版第十八章经典试题及答案

A . 11 cmB . 15 cmC . 18 cmD . 19 cm第十八章平行四边形一、选择题1. 已知正方形 BDEF 的边长是正方形 ABCD 的对角线,贝U S 正方形BDEF : S 正方形 ABCD = ( ). A . 2 : 1B . 2、2 : 1C . 4 : 1D . 1 : 22. 四边形 ABCD 中,/ A =Z C ,Z B =Z D ,则下列结论不一定正确的是 () .A . AB = CD B . AD // BC C ./ A =Z BD .对角线互相平分3.正方形具有而矩形不一定具有的特征是 (). A .对角线相等 B .对边都相等 C .对角线互相平分 D .对角线互相垂直4.如图,在菱形ABCD 中,对角线AC 与BD 相交于点 O, 0E // DC , OE 交BC 于点E ,AD = 6,贝U 0E =() . A . 6 B . 4 C . 3 D . 2 5.如图,在菱形 ABCD 中,对角线 (第4题)AC 与BD 相交于点 0, 0E 丄AB ,垂足为 E .若 / ADC = 130°则/ A0E 的大小为() A 75 B . 65 ° C . 55 ° D 50 B (第5题) 6.已知口 ABCD 周长为60 cm ,对角线 AC , BD 交于点 0,A A0B 的周长比厶B0C 的 周长长8 cm ,则AB 为().7.如图,在矩形 ABCD 中,BC = 2, AE 丄BD ,垂足为 E , / BAE = 30° 则 E CD 为().A . 2.3的周长为 ____________&如图,EF 过矩形ABCD 对角线交点0,且分别交AB , CD 于E , F ,那么阴影部分的面积是矩形 ABCD 面积的()1A.-5 C .-3D . -3 109.如图, 在 □ABCD 中,AE 丄 BC 于 E , AF _ CD 于 F , 若 AE = 4, AF = 6, □ ABCD 的周长为 40,^U D ABCD 的面 积为()A . 24B . 36C . 40D . 4810 .如图,连接边长为 1的正方形对边中点,可将一个正方形分成 正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成4个更小的小正方形…重复这样的操作,则 小正方形面积是()6次操作后右下角的、填空题11 .如图,矩形 ABCD 的AB 边长为4, M 为BC 中点,/ AMD = 90 °则矩形ABCD(第8题)12 .如图,在梯形 ABCD 中,AD // BC , AB = DC , BD 丄 DC 于 D ,且/ C = 60 ° 若14. 如图,在口ABCD 中,CE 是/ DCB 的角平分线,F 是AB 的中点,AB = 6, BC = 4,贝U AE : EF : FB 为 ______15. 如图,□ABCD 的对角线相交于点 0,且 AD 工CD ,过点 0作0M _ AC ,交 AD于点M ,如果△ CDM 的周长为a ,那么口ABCD 的周长为 __________________ .16. 如图,在菱形 ABCD 中,AB = 4a , E 在边 BC 上, BE = 2a ,/ BAD = 120 ° P 点在 BD 上,贝U PE + PC 的最小值为 ______ .AD = 5 cm ,则梯形腰长为贝V S»DE + S ^BCE=13.如图,在(第14题)(第16题)17. 正方形ABCD中,将厶ABP绕点B顺时针旋转后与厶CBP'重合,若BP = a,则PP'18. 如图,P是矩形ABCD内的任意一点,连结PA、PB、PC、PD ,得到△ PAB、△ PBC、△ PCD、△ PDA,设它们的面积分别是S i、S2、S3、S4.给出如下C② S2+ S4= S1+ S3③若S3= 2S i,贝y S4= 2S2④若S= S2,则P点在矩形的对角线上结论:① S1+ $4 = S2 + S3其中正确结论的序号是____________ (把所有正确结论的序号都填在横线上).三、解答题19. 如图,在口ABCD中,E, F, G, H分别是各边上的点,且AE= CG, AH = CF .求证:四边形EFGH是平行四边形.20. □ABCD 的周长为 16,对角线 AC , BD 相交于点 O , 0E 丄AC 交AD 于E ,求(第19题)△ CDE的周长.21. 已知:如图,□ABCD的对角线AC的垂直平分线与边AD , BC分别相交于E, F,求证:四边形AFCE是菱形.B22 .如图,已知E为口ABCD的边DC的延长线上的一点,且CE = DC ,连接AE,分别交BC, BD于点F, G, 求证:AB= 2OF.23. 如图,已知口ABCD的对角线交于点0,点E, F, P分别是OB, OC, AD的中点,若 AC = 2AB ,求证:EP = EF .24. 如口E ,F ,G ,H ,连接 EG , FH .求证:EG = FH.25. 点0是厶ABC所在平面内一动点,连接OB, 0C,并把AB, OB , OC, CA的中点D , E, F , G顺次连接起来.设DEFG能构成四边形.(1) 如图①,当点0在厶ABC内时,求证:四边形DEFG是平行四边形;(2) 当点0移动到△ ABC外时,(1)的结论是否成立?画出图形说明理由;(3) 若四边形DEFG为矩形,则点0所在位置满足什么条件?试说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18章 整数几何ABC △,第三条高的长数,求这条高之长的所有可能值.解析 由面积知,三条高的倒数可组成三角形三边,这是它们的全部条件. 设第三条高为h ,则解得151545h <<,h 可取4、5、6、7这四个值. ABC △3AB n x =+,2BC n x =+,CA n x =+,且BC 边上的高AD 的长为n ,其中n 为正整数,且01x <≤,问:满足上述条件的三角形有几个?解析 注意AB 为ABC △之最长边,故90B ∠<︒,设BD y =,CD z =,则0y >,而z 可正可负.由2y z n x +=+,及()()()22223242y z n x n x n x x -=+-+=+⋅,得4y z x -=,32ny x =+,由勾股定理,知()222332n x n n x ⎛⎫++=+ ⎪⎝⎭,展开得12n x =,由01x <≤及n 为正整数,知1n =,2,…,12,这样的三角形有12个.,其中一条直角边不超过20,其外接圆半径与内切圆半径之比为52∶,求此三角形周长的最大值.解析设该直角三角形直角边长为a 、b ,斜边为c ,则外接圆半径2cR =,内切圆半径2a b cr +-=,不妨设20a ≤. 由条件知52c a b c =+-,557a b c +=,平方,得()()222225249a b ab a b ++=+,即()2212250a b ab +-=,()()34430a b a b --=,于是3a k =,4b k =,5c k =,或4a k =,3b k =,5c k =,周长为12k ,k 为正整数.k 的最大值为6,此时各边为18、24、30,周长最大值为72.ABC △,60A ∠=︒,7BC =,其他两边长均为整数,求ABC △的面积. 解析 设AB x =,AC y =,则由余弦定理,有 2249x y xy +-=.由条件x y ≠,不妨设x y <,则AB 为ABC △之最小边,x 只能取值1、2、3、4、5、6,分别代入,发现当3x =或5时,8y =,其余情形均无整数解.于是1sin 602ABC S xy =︒=△. P ,求经过P 且长为整数的弦的条数.解析 如图,O 半径为15,9OP =,过P 的弦ST 长为整数,APB 为直径,6AP =,24PB =,则144SP TP PA PB ⋅=⋅=,因此24ST SP TP =+≥.又30ST AB =≤,故这样的弦共有()302412212-+⨯-=条,其中与AB 垂直的弦及AB 各一条,其余的弦每种长度有两条(关于AB 对称).ABC ,各边长都是整数,90C ∠=︒,CD 为边AB 上的高,D 为垂足,且3BD p =(p 奇素数),求ACAB的值(用p 表示). 解析由2BC BD AB =⋅知2BD BC ,故设2BC p t =(t 为正整数),则2BA pt =,又由勾股定理,知22442AC p t p t =-,故tp AC .设AC kpt =,代入得()()222p t k t k t k =-=+-,易知只能有2t k p +=,1t k -=,解得212p t +=,212p k -=,于是2211AC p AB p -=+. ABC ,M 、N 分别在AB 、AC 上,MN BC ∥,两端延长MN ,交ABC △外接圆于P 、Q ,若PM 、MN 、AB 长均为正整数,求AB 的最小值. 解析 如图, 易知NQ PM =也是整数.设AM x =,BM y =,PM NQ z ==,则MN x =,于是由相交弦定理,得()xy z x z =+,2z x y z=-.设y ks =,z kt =,(),k y z =,s t >,(),1s t =,则2kt x s t=-,由于()2,1s t t -=,故s t k -,要使2t AB x y k ks s t=+=+-达到最小,k 得取s t -,于是()2AB t s t s =+-.由于s t >,2s ≥,1t ≥,知()223t s t s t s +-+≥≥.当1AM =,2BM =时AB 取到最小值3,此时1PM =.ABCD ,对边乘积之和等于四边形面积的两倍,且22250AD BC +=,求该四边形面积、对角线长度.解析 不妨设AB α=,BC b =,CD c =,DA d =,AC 与BD 交于O ,则sin 2ABCD AC BD AOB S ac bd AC BD ⋅⋅∠==+⋅≥,于是由托勒密定理,知A 、B 、C 、D 必共圆,且满足AC BD ⊥.又由已知条件,22250b d +=,22250a c +=.经搜索知250表为平方和只有两组:22515+和22913+.由对称性,不妨设5a =,13b =,15c =,9d =,则19622ABCD ac bdS AC BD +=⋅==.由余弦定理,因cos cos 0BAD BCD ∠+∠=,得222222591315045195BD BD +-+-+=,得BD =AC,且其中一个内角等于另一个内角2倍的ABC △?证明你的结论. 解析 存在满足条件的三角形.当ABC △的三边长分别为6a =,4b =,5c =时,2A B ∠=∠.如图,当2A B ∠=∠时,延长BA 至点D ,使AD AC b ==.连结CD ,ACD △为等腰三角形.因为BAC ∠为ACD △的一个外角,所以2BAC D ∠=∠.由已知,2BAC B ∠=∠,所以B D ∠=∠.所以CBD △为等腰三角形.又D ∠为ACD △与CBD △的一个公共角,有~ACD CBD △△,于是AD CD CD BD =,即b aa b c=+,所以()2a b b c =+.而()26445=⨯+,所以此三角形满足题设条件,故存在满足条件的三角形. 评注满足条件的三角形是唯一的.若2A B ∠=∠,可得()2a b b c =+.有如下三种情形:(ⅰ)当a c b >>时,设1a n =+,c n =,1b n =-(n 为大于1的正整数),代入()2a b bc =+,得()()()21121n n n +=--,解得5n =,有6a =,4b =,5c =;(ⅱ)当c a b >>时,设1c n =+,c n =,1b n =-(n 为大于1的正整数),代入()2a b bc =+,得()212n n n =-⋅.解得2n =,有2a =,1b =,3c =,此时不能构成三角形;(ⅲ)当a b c >>时,设1a n =+,b n =,1c n =-(n 为大于1的正整数),代入()2a b b c =+,得()()2121n n n +=-,即2310n n --=,此方程无整数解.所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4、5、6构成的三角形满足条件.解析 设三角形三边依次为1n -、n 、1n +,则333n ≤≤,()131122p n n n n =-+++=,=于是()234n -是平方数,令()()22343n k -=,得2243n k -=,则32n ≤,224102034033n k -==≤,18k ≤.又k 不可能是奇数,否则()222343n k k =+≡,得2243n k -=,则32n ≤,224102034033n k -==≤,18k ≤.又k 不可能是奇数,否则()22343mod 4n k =+≡,将2k =,4,6,8,10,12,14,16,18代入,发现仅当2k =,8时满足要求.因此这样的三角形共有两个,三边长依次为3、4、5与13、14、15.,一直角边比斜边小1575,求其周长的最小值.解析设直角三角形直角边长a 、b ,斜边为1575a +,则()2221575a b a +=+,()2157521575b a =+.由于221575357=⨯⨯,设105b k =,则2721575k a =+,设7a s =,则22225k s =+,于是k 的最小值为17,此时32s =,224a =,1785b =,1799c =.此时的最小周长为3808. ABC △,AD 是角平分线,14AB =,24AC =,AD 也是整数,求AD 所有可取的值. 解析 如图,作DE AB ∥,E 在AC 上,则易知AE ED =. 又ED CD ACAB BC AB AC==+,故 33617.6819==…, 故17AD ≤.又当17AD ≤时,不难通过AED △构造出ABC △,故AD 所有可取的值为1,2, (17)c DEFG ABC ,其中a 、b 、c 是整数,且b 不能被任何质娄的平方整除,求a cb -的值. 解析设正方形DEFG 的边长为x ,正三角形ABC 的边长为m ,则2m ,由ADG ABC △∽△,可得xx m -=.解得()3x m =.于是()222348x m ==.由题意得28a =,3b =,48c =,所以203a cb -=-. ,AD 是ABC △的高,四边形PQRS 是ABC △的内接正方形,若BC ab =(即两位数),SR c =,AD d =,且a 、b 、c 、d 恰为从小到大的4个连续正整数,求ABC S △的所有可能值.解析易知11SR AR CR SR BC AC AC AD ==-=-,于是有110c c a b d +=+,或11111132a a a +=+++,移项,得()()1111123a a a =+++,或2650a a -+=,解得1a =或5.于是有两解: 易知这两组数据都符合要求,故24ABC S =△或224.ABC △,B ∠是锐角.从顶点A 向BC 边或其延长线作垂线,垂足为D ;从顶点C 向AB 边或其延长线作垂线,垂足为E .当2BD BC 和2BEAB均为正整数时,ABC △是什么三角形?并证明你的结论. 解析设2BD m BC =,2BEn AB=,m 、n 均为正整数,则 244cos 4BD BE mn B AB BC=⋅⋅=<, 所以,1mn =,2,3. (1)当1mn =时,1cos 2B =,60B ∠=︒,此时1m n ==.所以AD 垂直平分BC ,CE 垂直平分AB ,于是ABC △是等边三角形.(2)当2mn =时,cos 2B =45B ∠=︒,此时1m =,2n =,或2m =1n =,所以点E 与点A 重合,或点D 与点C 重合.故90BAC ∠=︒,或90BCA ∠=︒,于是ABC △是等腰直角三角形.(3)3mn =时,cos B =,30B ∠=︒,此时1m =,3n =,或3m =,1n =.于是AD 垂直平分BC ,或CE 垂直平分AB .故30ACB ∠=︒,或30BAC ∠=︒,于是ABC △是顶角为120︒的等腰三角形.,周长是面积的整数倍(就数字上讲),问问这样的直角三角形有多少个?解析 设直角边分别为a 、b ,则斜边c =,由条件知它是有理数,故必定是整数.设2ka b ab +=,k 为正整数,于是k =.由于a b +1、2或4,记作k '.由a b k +-'=()2220ab k a b k -'++'=,()()22a k b k k -'-'=',1k '=时无解;2k '=时,有()()222a b --=,{a ,b }={3,4};4k '=时,()()448a b --=,{a ,b }={5,12}或{6,8},所以这样的直角三角形共有3个.ABC △,已知AB AC kBC ==,这里k 为大于1的自然数,点D 、E 依次在AB 、AC 上,且DB BC CE ==,CD 与BE 相交于O ,求使OCBC为有理数的最小自然数k . 解析如图,连结DE ,则DE BC ∥,11DE AD AB BC BC AB AB k -===-,1k DE BC k-=. 由于四边形DBCE 为等腰梯形,则由托勒密定理(或过D 、E 作BC 垂线亦可),2222121k k CD CD BE DE BC DB CE BC BC BCk k --=⋅=⋅+⋅=+=,又21CO BC kCD DE BC k ==+-,于是CO BC =k 与21k -互质,由题设知其必须均为平方数,1k>,25k=适合,这是满足要求的最小自然数.n,只有一组解xyz n=(不计顺序),这里,x、y、z是正整数且可构成三角形的三边长,这样的()100n≤共有多少个?解析显然,当n p=(素数)时无解;当2n p=或1时只有一组解(1,p,p)或(1,1,1);当n pq=(p、q为不同素数)时无解;当4n p=(p为大于3的素数)时也无解.剩下的数为8,12,16,18,24,27,30,32,36,40,42,45,48,50,54,56,60,63,64,66,70,72,75,78,80,81,84,88,90,96,98,99,100.易验证,无解的n有:30,42,54,56,63,66,70,78,88,99;唯一解的n有:8,12,16,18,24,27,32,40,45,48,50,75,80,81,84,90,96,98;不止一组解的n有:36,60,64,72,100.注意:判定无解的主要依据是,abc n=,c ab>时无解,困为1c ab a b++≥≥.因此,有解的n共有23个.k,求k的最小值,并求此时这个直角三角形的两条直角边的可取值(如不止一组解,只需举了一组即可).解析设该直角三角形的直角三角形周长分别为a、b,则112ab≥,a b+≥2,2k a b=+,故5k≥.下令5k=,2ab=,如有解,则可.()5a b-+,平方得()222225102a b a b a b ab+=-++++.取2ab=,得29,102.a bab⎧+=⎪⎨⎪=⎩因此a、b为方程21029200x x-+=的根,解得a、bk的最小值是5.ABC△a b c,且140abc=,求ABC△内切圆半径.解析不妨设a b c≤≤,于是7c≥.又14011c a b abc<++=+≤,故140cc≤,得10c≤.于是c只可能为7或10.7c=时,20ab=,只可能4a=,5b=,()182p a b c=++=,内切圆半径r=.10c=时,14ab=,没有满足要求的解.a b c ()222a b c +=,则存在正整数k 、u 、v 、u v >,(),1u v =使得()22c k u v =+,而()22a k u v =-,2b kuv =;或2a kuv =,()22b k u v =-.解析222a b c +=,设(a ,b ,c )k =,则1a ka =,1b kb =,1c kc =,222111a b c +=.易知1a 、1b 、1c 两两互质;1a 与1b 不可能同偶,否则12a ,1b ,1c ;1a 与1b 也不会同奇,否则()212mod 4c =,矛盾.于是1a 与1b 必一奇一偶,不妨设1a 奇而1b 偶,于是1c 为奇数.从而()()211111a c b c b =+-,11c b +与11c b -必互质,否则有一奇素数11|p c b +,11c b -,得|2p c ,12b ,故|p (1c ,1b ),与(1c ,1b )=1矛盾. 于是可设2111c b u +=,2111c b v -=,(1u ,1v )=1,且1u 、1v 均为奇数,解得221111122u v u v c +-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,11111222u v u v b +-=⋅⋅,221111122u v u v a +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,令112u v u +=,112u v v -=,即得结论. ,F 、E 在ABC △的边AB 、AC 上,FE 的延长线与BC 的延长线交于D ,求证:AF 、BF 、CB 、CD 、AE 、EC 、FE 、ED 的长度不可能是1~8的排列. 解析 如果1EF =,则1AE AF EF -<=,得AE AF =,矛盾,故1EF ≠,同理AF 、AE 、ED 、CD 、EC 都不等于1.因此1只可能等于FB 或BC 之长,不失对称性,设1BF =,则1FD BD BF -<=,FD BD =,作CG AB ∥,G 在ED 上,四边形FBCG 乃一等腰梯形,于是EG FG EF BC EF =-=-为正整数.又1EG EC CG BF -<<=,故EG EC =,但BFD ∠为等腰三角形DFB 的底角,90BFD <︒∠,18090EGC BFD =︒->︒∠∠,为EGC △的最大内角,EC EG >,矛盾,因此结论证毕.ABCD ,AD BC <,E 、F 分别在AB 、CD 上,EF AD BC ∥∥,ED BF ∥,如果AD 、EF 、BC 均为正整数,称该梯形为“整数梯形”.现对于正整数n ,有正整数x x <′<y ′<y ,x y x +=′+y ′=n ,且x 、y 为一“整数梯形”的上、下底, x ′、y ′为另一“整数梯形”的上、下底,求n 的最小值.解析 如图,由AED EFD △∽△,DEF FBC △∽△,得AD AE DF EFEF BE FC BC===,得EF =,于是问题变为求最小的n ,使xy 与x ′y ′均为平方数.xy 、x ′y ′不可能都为4,故至少有一组≥9,显然另一组也不可能为4,于是xy ,x ′y ′≥9.如果xy 或x ′y ′25≥,则10n =≥.若xy 或x ′y ′=9或16,则19n =+或2810+=.于是n 的最小值为10,1x =,x ′=2,y ′=8,y =9.边形.解析 如图,作圆内接四边形ABCD ,AC 与BD 垂直于P ,设a 为一整数,2a >,4AP a =,24BP a =-,241DP a =-,则24AB a =+,241AD a=+,,由此知()()224414aa CP a--=,而由ABP DCP △∽△,BPC APD △∽△知,()224414a BC a a -=+,()224144a CD a a -=+.同时乘以系数4a ,得()244AB a a =+,()2441AD a a =+,()()22441BC a a =-+,()()22414CD a a =-+,4244AC a a =-+,()2201BD a a =-.易知上述6个多项式无二者恒等,于是任两者相等只能得有限个a ,但正整数有无限个,因此有无限个a ,使6个多项式两两不等,又当a →+∞时,0BDAC→,因此有无限个这样的凸四边形两两不相似. PA PB ,割线过P ,与圆交于M 、N ,与AB 交于S ,若PA 、PM 、MS 、SN 均为正整数,求PA 的最小值.解析 如图,易知有PM PNMS SN=(调和点列). 设PM a =,MS b =,SN c =,则()b a b c ac ++=,()b c b c a b+=-,从而PA =设a ks =,b kt =,k =(a ,b ),则(s ,t )=1,s t >,s tc kts t+=-,PA =易见(s t +,s t -)=1,则s 、t 一奇一偶.于是由(()t s t +,s t -)=1,得|s t k -,且由PA 为整数知2s t x +=,2s t y -=,x 、y 为奇数.因为|s t k -,于是k 的最小值为s t -,()c t s t =+,PA sxy ==,当s =1,2,3,4时,t 无解(即PA 不是整数),故5s ≥,又3x ≥,1y ≥,于是PA ≥15,当a =5,b =4,c =36时取到15PA =.若(s t +,s t -)=2,此时s 、t 同奇,k 的最小值为2s t-,此时()2t s t c +=,PA =22s t x +=,22s t y -=,当1s =,3时,无t 使PA 为整数,于是5s ≥,又x y >,所以1y ≥,2x ≥,5210PA sxy =⨯=≥.当5a =,3b =,12c =时取到PA =10. 综上,PA 的最小值是10.,求这类四边形中周长最小者.解析 显然长与宽为4、3的矩形满足要求,其周长=14.若等腰梯形上、下底分别为3、4,腰为2,则由托勒密定理,对角线长为4,满足要求,此时周长为11.故最小周长≤11. 显然对圆内接凸四边形ABCD ,无边长为1.否则若设1AB =,—1AD BD AB <=,得AD BD =,同理AC CB =,于是C 、D 均在AB 中垂线上,构不成凸四边形.因此最小周长≥2×4=8.四边均为2,得正方形,对角线为2,另一边为3,得等腰梯形,10.当周长为10时,显然至少有两边为2.若是2、2、2、4能为2、2、3、3 故最小周长为11.Rt ABC △,90BCA =︒∠,CD 是高,已知ABC △的三边长都是整数,且311BD =,求BCD △与ACD △的周长之比.解析 设ABC △的三边长分别为a 、b 、c .由题设知 2BC BD BA =⋅,故2311a c =.于是设211a l =,得211l c =由勾股定理得11b ==2211l -是 完全平方数,设为()20t t >,则22211l t -=,()()211l t l t -+=.由于0l t l t <-<+,所以21,11.l t l t -=⎧⎨+=⎩解得61,60.l t =⎧⎨=⎩于是21161a =⨯,116160b =⨯⨯. 因为BCD CAD △∽△,所以它们的周长比等于它们的相似比,即1160a b =. ABC ,AD 是高,矩形SPQR 的面积是ABC △的1/3,其顶点S 、P 在BC 上,Q 、R 分别在AC 、AB 上,且BC 、AD 及矩形SPQR 的周长均为有理数,求AB ACBC+的最小值. 解析 如图,设ABC △的三边长依次为a 、b 、c ,AD h =,PQ x =,RS y =,则16xy ah =,及1x y AQ CQ a h AC AC+=+=.由条件,知a 、h 、x y +均为有理数.由16x a a x+=,得x a =33y h =,)2a h x y a h ++=-,因此只能有a h =.若过A 作BC 的平行线l ,再作C 关于l 的对称点C ',则AB AC AB AC +=+′≥BC ′=,于是AB ACBC+,仅当AB AC =时取到. ABC ,90BAC =︒∠,AD 是斜边上的高,BD 也是整数.若对同一个BD 能长度,有两个不全等的直角整数边三角形ABC 满足要求,求BD 的最小值.解析 不妨设ABC △的三边长为a 、b 、c ,AD h =,BD d =,首先bch a=为有理数,又222h c d =-为整数,因此h 也是整数.又CD 为整数,故2h d也是整数.又ABD CBA △∽△,故h b d c=.因此,只需正整数h 、c 、d 满足222h c d =-及2|d h ,这样的整数边三角形就存在.因为此时hcb d=是有理数,而222b h CD =+为整数,从而b 为整数.易知由2|d h 可得2|d c . 设21d d σ=,σ、1d 为正整数,且σ无平方因子,于是由2|h σ及2c 知|h σ,c .设1h h σ=,1c c σ=,代入得422111d c h =-,又由2|d h ,2c 得2211|d h σ,21c σ,今对1d 的任一素因子p ,其在1d 的指数()1s d 不会比1h 的指数高,否则()()111s d s h +≥,()()22112s d s h +≥,而()s σ最多为1,于是()()2211s d s h σ>,这是不可能的.于是11|d h ,同理11|d c .又令112h d h =,112c d c =,代入422111d c h =-得222122d c h =-.于是对1d 有两组不同的2c 、2h 满足222122d c h =-.经计算18d ≥,故64d ≥.当64d =时,确实有满足要求的两组解:80AB =,60AC =,100BC =,和136AB =,255AC =,289BC =.故BD 的最小值是64.ABC ,使BC 及BC 边上的中线、角平分线、高的长度都是整数,BC 可以是多少(此时的中线、角平分线、高的长度分别为多少)?若要求BC 不是整数,但2BC 是整数,则BC 可为多少(此时中线、角平分线、高的长度分别为多少)?解析 首先处理BC 为整数的问题,我们选择的是直角三角形ABC ,对应边为a 、b 、c ,中线AM ,角平分线AD ,高AH ,2aAM =,bc AH a =,又ABC ABD ACD S S S =+△△△,得)bc b c AD +,故AD ,于是a 为偶数2k ,b =,c =,mn AH k =而2mn AD m n =+,2222m n k +=,这个方程有解1m =,7n =,5k =,得75AH =,5AM =,74AD =.乘以一个系数20,即得直角三角形ABC ,它的斜边为200,斜边上的中线为100,角平分线为35,高为28.下面处理BC 为无理数、2BC 为整数的情形,如图,延长AD ,与MP 交于P ,此处MP BC ⊥.易知A 、B 、P 、C 共圆(P 是ABC △外接圆弧BC 之中点).今从基本勾股数出发构造.取12AH =,13AD =,15AM =,则5DH =,9MH =,4MD =,485MD MP AH HD =⋅=,45255PD AD ==. 易知BPD APB △∽△,于是 25211760845525BP PD PA =⋅=⨯=,()22222608448302444425255BC BM PB MP ⎛⎫==-=-= ⎪⎝⎭. 再乘以系数5,得所求三角形的高60AH =,角平分线65AD =,中线75AM =,边文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。

相关文档
最新文档