二轮复习:圆锥曲线中的探索性问题(教师版)

合集下载

高考热点题型:圆锥曲线中的探索性问题

高考热点题型:圆锥曲线中的探索性问题

圆锥曲线中的探索性问题【必备知识】1.将直线y kx m =+代入椭圆22221(0)x y a b a b +=>>方程,化为关于x 的二次方程,即为222222()b x a kx m a b ++=,亦即222222222()20b a k x kma x a m a b +++-=.2.将直线y kx m =+代入抛物线22(0)y px p =>方程,得 2222()0k x km p x m +-+=,注意对k 分0k =(对应于直线与对称轴平行)与0k ≠(对应于直线与对称轴不平行)两类进行讨论.3.过点1112212(,),(,,)()P x y P x y x x ≠的直线斜率为122121P P y y k x x -=-.4.点00(,)P x y 到直线0Ax By C ++=的距离为0022d A B=+.5.直线l :y kx m =+与圆锥曲线相交所得弦长2221212121||1()4L k x x k x x x x =+-=+⋅+-=21||k a ∆+⋅. 【技巧点拨】解答圆锥曲线中探索性问题,一般可分为以下步骤: (1)假设结论成立;(2)以假设为条件,进行推理求解;(3)明确规范结论,若能推出合理结论,经验证成立即可肯定正确;若推出矛盾,即否定假设; (4)回顾反思解题过程. 【典例展示】【题型一】探索直线、曲线间的位置关系问题【例1】已知椭圆C :2233x y +=,过点()1,0D 且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅱ)试判断直线BM 与直线DE 的位置关系,并说明理由.【解析】(Ⅰ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 所以直线BM 的斜率112131BM y y k -+==-.(Ⅱ)直线BM 与直线DE 平行.证明如下: 当直线AB 的斜率不存在时,由(Ⅰ)可知1BM k =.高考热点题型又因为直线DE 的斜率10121DE k -==-,所以BM DE .当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠. 设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--. 令3x =,得点1113(3,)2y x M x +--.由2233(1)x y y k x ⎧+=⎨=-⎩,得2222(13)6330k x k x k +-+-=.直线BM 的斜率11212323BMy x y x k x +---=- 因为()()()()()()()11122121131232132k x x k x x x x k x x BM -+--------=--()()()()12122112332k x x x x x x --++-⎡⎤⎣⎦=--()()()222221331213131332k k k k k x x ⎛⎫-+-+- ⎪++⎝⎭=--0=,所以D 1k k BM E ==.所以BMDE .综上可知,直线BM 与直线DE 平行.【思维导图】【特别点拨】围绕点的坐标确定是解答本题的关键.1.已知圆C 的圆心为)3)(0,(<m m C ,半径为,圆C 与椭圆2222:1x y E a b +=(0)a b >>有一个交点为(3,1)A ,21,F F 分别是椭圆的左、右焦点.(Ⅰ)求圆C 的标准方程;(Ⅱ)若点P 的坐标为()4,4,试探究斜率为k 的直线1PF 与圆C 能否相切,若能,求出椭圆E 和直线1PF 的方程;若不能,请说明理由.1.【解析】(1)由已知可设圆C 的方程为22()5(3)x m y m -+=<,将点A 的坐标代入圆C 的方程,得22(3)15m -+=,即2(3)4m -=,解得1m =或5m =.∵3m <,∴1m =,∴圆C 的方程为22(1)5x y -+=.(2)依题意,可得直线1PF 的方程为(4)4y k x =-+,即440kx y k --+=. 若直线1PF 与圆C 相切,则251k =+0112442=+-∴k k ,解得112k =或12k = .当112=k 时,直线1PF 与x 轴的交点横坐标为36011>,不合题意,舍去.当12=k 时,直线1PF 与x 轴的交点横坐标为-4, ∴124,(4,0),(4,0)c F F =-,∴由椭圆的定义得2222122||||(34)1(34)152262a AF AF =+=+++-+=+=∴32a =,即218a =,2222b a c =-=.直线1PF 能与圆C 相切,直线1PF 的方程为240x y -+=,椭圆E 的方程为221182+=x y . 【题型二】探索与平面图形形状相关的问题【例2】设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,F F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且1F 恰是2QF 的中点,若过2,,A Q F 三点的圆恰好与直线:330l x y --=相切.(1)求椭圆C 的方程;(2)若直线2:1+=x y l 与椭圆C 交于H G ,两点,在x 轴上是否存在点)0,(m P ,使得以PH PG ,为邻边的平行四边形是菱形.如果存在,求出m 的值;如果不存在,请说明理由.【解析】(1)设椭圆C 的半焦距为()0c c >,由1F 为线段2F Q 中点,2AQ AF ⊥, 所以2,,A Q F 三点圆的圆心为()1,0F c -,半径为2c a =. 又因为该圆与直线l 相切,所以3212c c c --=∴=.所以224,3a b ==,故所求椭圆方程为22143x y +=; (2)将直线2:1+=x y l 代入22143x y +=得041672=++x x . 设),(),,(2211y x H y x G ,则74,7162121=-=+x x x x , ∴712422212121=++=+++=+x x x x y y ,∴GH 的中点)76,78(-M ,由于菱形对角线互相垂直,则1-=⋅CM PM k k ,∴1178076-=⨯---m ,解得72-=m .即存在满足题意的点P ,且m 的值为72-.【思维导图】(13.已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F 与x 轴不垂直的直线l 交椭圆于P Q ,两点.(Ⅰ)求椭圆的方程;(Ⅱ)当直线l 的斜率为1时,求POQ ∆的面积;(Ⅲ)在线段OF 上是否存在点)0,(m M ,使得以MP MQ ,为邻边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.3.【解析】(Ⅰ)由已知,椭圆方程可设为)0(12222>>=+b a by a x .因为两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,所以2,1===a c b .所求椭圆方程为1222=+y x . (Ⅱ)因为直线l 过椭圆右焦点)0,1(F ,且斜率为1,所以直线l 的方程为1-=x y .设),(),,(2211y x Q y x P .由⎩⎨⎧-==+,1,2222x y y x 得01232=-+y y ,解得31,121=-=y y ,所以32||21||||212121=-=-⋅=∆y y y y OF S POQ . (Ⅲ)假设在线段OF 上存在点)10)(0,(<<m m M ,使得以MP ,MQ 为邻边的平行四边形是菱形.因为直线l 与x 轴不垂直,所以设直线l 的方程为)0)(1(≠-=k x k y .由⎩⎨⎧-==+),1(,2222x k y y x 可得0224)21(2222=-+-+k x k x k , 因为0)1(8)22)(21(4162224>+=-+-=∆k k k k ,所以222122212122,214kk x x k k x x +-=+=+. 设PQ y x Q y x P ),,(),,(2211的中点为),(00y x N ,所以2022021,212kk y k k x +-=+=, 因为以MP ,MQ 为邻边的平行四边形是菱形,所以MN ⊥PQ ,1-=⋅k k MN ,所以121221222-=⋅-++-=⋅k mk kk kk k MN,整理得m k k k k ++-=+-222221221, 2222221212kk k k k m +=++-=,所以)0(2122≠+=k k k m ,所以210<<m . 【题型三】探索与平面图形面积相关的问题【例3】已知椭圆()2222:10x y C a b a b+=>>,短轴长为2.(1)求椭圆C 的方程;(2)若,A B 是椭圆C 上的两个动点,O 为坐标原点,,OA OB 的斜率分别为12,k k ,问是否存在非零常数λ使12k k λ⨯=时,AOB ∆的面积S 为定值?若存在,求λ的值;否则说明理由.【解析】(1)∵,222c e b a ===,∴222a b c =+,∴2,1,a b ==椭圆C 的方程为:2214x y +=;(2)假设存在这样的常数λ使12k k λ=时AOB S ∆为定值,设直线的方程为: ,y kx m =+且AB 与2214x y +=的交点坐标为()()1122,,,A x y B x y . 因为12,k k λ=所以,()()121212120,x x y y x x kx m kx m λλ-=-+++0=, 化为()221212()0k x x km x x m λ-+++=.将,y kx m =+代入2214x y +=,消去y 得:()222148440k x kmx m +++-=.由韦达定理得:12x x +2814kmk-=+,12x x 224414m k -=+, ∴()221212()0k x x km x x m λ-+++=,可化为()22414k m λλ-=-.因为点O 到直线AB的距离为d =,所以121122AOBSd AB x x m ==-= 22AOBS ∆⎛⎫= ⎪⎝⎭()()()()()2222222(14)41441414k k k k λλλλ⎡⎤+⋅----⎢⎥⎣⎦-+=()()4222426416141168114k k k k λλλλ-++⋅-⨯++- 要使上式为定值,只需26411641681λλλ-+-==,得,14λ=-,此时22AOB S ∆⎛⎫= ⎪⎝⎭14,即1AOB S ∆=, 故存在非零常数14λ=-,此时1AOB S ∆=. 【思维导图】(1(23.已知平面直角坐标系上一动点(,)P x y 到点(2,0)A -的距离是点P 到点(1,0)B的距离的2倍.(1)求点P 的轨迹方程;(2)过点A 的直线l 与点P 的轨迹C 相交于,E F 两点,点(2,0)M ,则是否存在直线l ,使EFM S △取得最大值,若存在,求出此时l 的方程,若不存在,请说明理由.3.【解析】(1= ∴2240x x y -+=,即22(2)4x y -+=,(2)由题意知l 的斜率一定存在,不妨假设存直线l 的斜率为k ,且1122(,),(,)E x y F x y 。

高考数学二轮复习专题六 第8讲 圆锥曲线的探索性问题

高考数学二轮复习专题六   第8讲 圆锥曲线的探索性问题

第8讲 探索性问题母题已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段A B 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝⎛⎭⎫m 3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由. (2)思路分析❶假设四边形OAPB 能为平行四边形 ↓❷线段AB 与线段OP 互相平分 ↓❸计算此时直线l 的斜率 ↓ ❹下结论(1)证明 设直线l :y =kx +b (k ≠0,b ≠0), A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2得 (k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x1+x22=-kb k2+9,y M =kx M +b =9bk2+9.于是直线OM 的斜率k OM =yM xM =-9k,即k OM ·k =-9. 所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝⎛⎭⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9k x .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x2+y2=m2得x 2P =k2m29k2+81,即x P =±km3k2+9.将点⎝⎛⎭⎫m 3,m 的坐标代入直线l 的方程得b =m (3-k )3, 因此x M =k (k -3)m3(k 2+9).四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km3k2+9=2×k (k -3)m 3(k 2+9),解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当直线l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形. [子题1] 已知椭圆C :x24+y 2=1的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2.(1)若M 为C 上任意一点,求|MF 1|·|MF 2|的最大值;(2)椭圆C 上是否存在点P (异于点A 1,A 2),使得直线PA 1,PA 2与直线x =4分别交于点E ,F ,且|EF |=1?若存在,求出点P 的坐标;若不存在,请说明理由. 解 (1)由椭圆的定义可知|MF 1|+|MF 2|=4,∴|MF 1|·|MF 2|≤⎝⎛⎭⎫|MF1|+|MF2|22=4,当且仅当|MF 1|=|MF 2|=2时等号成立, ∴|MF 1|·|MF 2|的最大值为4. (2)假设存在满足题意的点P . 不妨设P (x 0,y 0)(y 0>0),则-2<x 0<2. 由题意知直线PA 1的方程为y =y0x0+2(x +2),令x =4,得y E =6y0x0+2,直线PA 2的方程为y =y0x0-2(x -2),令x =4,得y F =2y0x0-2,由|EF |=y E -y F =6y0x0+2-2y0x0-2=4x0y0-16y0x20-4=4y0(x 0-4)-4y 20=4-x0y0=1,得x 0=4-y 0,由x 20+4y 20=4,得5y 20-8y 0+12=0, ∵Δ=-176<0,∴此方程无解. 故不存在满足题意的点P . [子题2] (2020·合肥适应性检测)已知抛物线C :y 2=4x ,过点(2,0)作直线l 与抛物线C 交于M ,N 两点,在x 轴上是否存在一点A ,使得x 轴平分∠MAN ?若存在,求出点A 的坐标;若不存在,请说明理由.解 ①当直线l 的斜率不存在时,由抛物线的对称性可知x 轴上任意一点A (不与点(2,0)重合),都可使得x 轴平分∠MAN ;②当直线l 的斜率存在时,设直线l 的方程为y =k (x -2)(k ≠0),设M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,消去y 得k 2x 2-(4k 2+4)x +4k 2=0, 显然Δ>0,∴x 1+x 2=4k2+4k2,x 1x 2=4,(*)假设在x 轴上存在一点A (a ,0),使得x 轴平分∠MAN , ∴k AM +k AN =0,∴y1x1-a +y2x2-a=0, ∴y1(x 2-a )+y 2(x 1-a )(x 1-a )(x 2-a )=0,又y 1=k (x 1-2),y 2=k (x 2-2), ∴2x1x2-(a +2)(x 1+x 2)+4ax 1x 2-a (x 1+x 2)+a 2=0,把(*)式代入上式化简得4a =-8, ∴a =-2,∴点A (-2,0),综上所述,在x 轴上存在一点A (-2,0),使得x 轴平分∠MAN . 规律方法 探索性问题的求解策略(1)若给出问题的一些特殊关系,要探索一般规律,并能证明所得规律的正确性,通常要对已知关系进行观察、比较、分析,然后概括一般规律.(2)若只给出条件,求“不存在”“是否存在”等语句表述问题时,一般先对结论给出肯定的假设,然后由假设出发,结合已知条件进行推理,从而得出结论. 跟踪演练 1.已知椭圆G :x24+y 2=1,点B (0,1),点A 为椭圆G 的右顶点,过原点O 的直线l 与椭圆G 交于P ,Q 两点(点Q 在第一象限),且与线段AB 交于点M .是否存在直线l ,使得△BOP 的面积是△BMQ 的面积的3倍?若存在,求出直线l 的方程;若不存在,请说明理由. 解 设Q (x 0,y 0),则P (-x 0,-y 0),可知0<x 0<2,0<y 0<1.假设存在直线l ,使得△BOP 的面积是△BMQ 的面积的3倍,则|OP |=3|MQ |,即|OQ |=3|MQ |, 即OM →=23OQ →=⎝⎛⎭⎫23x0,23y0,得M ⎝⎛⎭⎫23x0,23y0. 又A (2,0),∴直线AB 的方程为x +2y -2=0. ∵点M 在线段AB 上,∴23x 0+43y 0-2=0,整理得x 0=3-2y 0,①∵点Q 在椭圆G 上,∴x204+y 20=1,②把①式代入②式可得8y 20-12y 0+5=0, ∵判别式Δ=(-12)2-4×8×5=-16<0, ∴该方程无解.∴不存在直线l ,使得△BOP 的面积是△BMQ 的面积的3倍. 2.(2020·滁州模拟)已知椭圆E :x24+y23=1的左、右焦点分别为F 1,F 2,是否存在斜率为-1的直线l 与以线段F 1F 2为直径的圆相交于A ,B 两点,与椭圆E 相交于C ,D 两点,且|CD |·|AB |=12137?若存在,求出直线l 的方程;若不存在,说明理由.解 假设存在斜率为-1的直线l ,设为y =-x +m , 由题意知,F 1(-1,0),F 2(1,0),所以以线段F 1F 2为直径的圆为x 2+y 2=1,由题意,圆心(0,0)到直线l 的距离d =|-m|2<1,得|m |<2,|AB |=21-d2=21-m22=2×2-m2,由⎩⎪⎨⎪⎧x24+y23=1,y =-x +m 消去y ,整理得 7x 2-8mx +4m 2-12=0.由题意,Δ=(-8m )2-4×7×(4m 2-12)=336-48m 2=48(7-m 2)>0, 解得m 2<7,又|m |<2,所以m 2<2. 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=8m7,x 1x 2=4m2-127,|CD |=1+k2|x 2-x 1|=2×336-48m27=467-m27, 若|CD |·|AB |=12137, 则2×2-m2×467×7-m2=12137,整理得4m 4-36m 2+17=0, 解得m 2=12或m 2=172.又m 2<2,所以m 2=12,即m =±22.故存在符合条件的直线l ,其方程为y =-x +22或y =-x -22.专题强化练1.(2020·广州模拟)如图,已知椭圆C :x24+y22=1.过点P (0,1)的动直线l (直线l 的斜率存在)与椭圆C 相交于A ,B 两点,问在y 轴上是否存在与点P 不同的定点Q ,使得|QA||QB|=S △APQS △BPQ恒成立?若存在,求出定点Q 的坐标;若不存在,请说明理由.解 假设在y 轴上存在与点P 不同的定点Q ,使得|QA||QB|=S △APQS △BPQ恒成立.设Q (0,m )(m ≠1),A (x 1,y 1), B (x 2,y 2),直线l 的方程为y =kx +1, 由⎩⎪⎨⎪⎧x24+y22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0, 显然,Δ>0,∴x 1+x 2=-4k 2k2+1,x 1x 2=-22k2+1,S △APQ S △BPQ =12|QP||QA|sin ∠PQA12|QP||QB|sin ∠PQB =|QA|sin ∠PQA|QB|sin ∠PQB,∵|QA||QB|=S △APQS △BPQ,∴sin ∠PQA =sin ∠PQB , ∴∠PQA =∠PQB ,∴k QA =-k QB ,∴y1-m x1=y2-m-x2,∴(m -1)(x 1+x 2)=2kx 1x 2,即-(m -1)·4k 2k2+1=-2k ·22k2+1,解得m =2,∴存在定点Q (0,2),使得|QA||QB|=S △APQS △BPQ 恒成立.2.在平面直角坐标系xOy 中.①已知点Q (3,0),直线l :x =23,动点P 满足到点Q 的距离与到直线l 的距离之比为22. ②已知点H (-3,0),G 是圆E :x 2+y 2-23x -21=0上一个动点,线段HG 的垂直平分线交GE 于P . ③点S ,T 分别在x 轴,y 轴上运动,且|ST |=3,动点P 满足OP →=63OS →+33OT →.(1)在①②③这三个条件中任选一个,求动点P 的轨迹C 的方程;(注:如果选择多个条件分别解答,按第一个解答计分)(2)设圆O :x 2+y 2=2上任意一点A 处的切线交轨迹C 于M ,N 两点,试判断以MN 为直径的圆是否过定点?若过定点,求出该定点坐标;若不过定点,请说明理由. 解 (1)若选①,设P (x ,y ),根据题意得,(x -3)2+y 2|x -23|=22,整理,得x26+y23=1,所以动点P 的轨迹C 的方程为x26+y23=1.若选②,由E :x 2+y 2-23x -21=0得(x -3)2+y 2=24, 由题意得|PH |=|PG |,所以|PH |+|PE |=|PG |+|PE |=|EG |=2 6 >|HE |=23,所以点P 的轨迹C 是以H ,E 为焦点的椭圆,且a =6,c =3,则b =3,所以动点P 的轨迹C 的方程为x26+y23=1.若选③,设P (x ,y ),S (x ′,0),T (0,y ′),则x ′2+y ′2=9,(*) 因为OP →=63OS →+33OT →,所以⎩⎨⎧x =63x′,y =33y′,即⎩⎪⎨⎪⎧x′=62x ,y′=3y ,将其代入(*),得x26+y23=1, 所以动点P 的轨迹C 的方程为x26+y23=1.(2)当过点A 且与圆O 相切的切线斜率不存在时,切线方程为x =2,x =-2, 当切线方程为x =2时,M (2,2),N (2,-2), 以MN 为直径的圆的方程为(x -2)2+y 2=2.①当切线方程为x =-2时,M (-2,2),N (-2,-2), 以MN 为直径的圆的方程为(x +2)2+y 2=2.② 由①②联立,可解得交点为(0,0).当过点A 且与圆O 相切的切线斜率存在时,设切线方程为y =kx +m ,即|m|k2+1=2,即m 2=2(k 2+1).联立切线与椭圆C 的方程⎩⎪⎨⎪⎧y =kx +m ,x26+y23=1,并消去y ,得(1+2k 2)x 2+4kmx +2m 2-6=0.因为Δ=16k 2m 2-4(1+2k 2)(2m 2-6)=-8(m 2-6k 2-3)=-8(2k 2+2-6k 2-3)=8(4k 2+1)>0, 所以切线与椭圆C 恒有两个交点. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4km1+2k2,x 1x 2=2m2-61+2k2,因为OM →=(x 1,y 1),ON →=(x 2,y 2),所以OM →·ON →=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)·2m2-61+2k2+km ·-4km 1+2k2+m 2 =3m2-6-6k21+2k2=3×2(k 2+1)-6-6k 21+2k 2=0.所以OM ⊥ON ,所以以MN 为直径的圆过原点(0,0), 综上所述,以MN 为直径的圆过定点(0,0).。

高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题(含解析)

高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题(含解析)

高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题1.(2021·重庆八中月考)已知椭圆C :x 24+y 23=1的右焦点为F ,过点M (4,0)的直线l 交椭圆C 于A ,B 两点,连接AF ,BF 并延长分别与椭圆交于异于A ,B 的两点P ,Q. (1)求直线l 的斜率的取值范围; (2)若PF ⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,QF ⃗⃗⃗⃗⃗ =μFB ⃗⃗⃗⃗⃗ ,证明:λμ为定值.2.(2021·河北张家口三模)已知抛物线C :y 2=4px (p>0)的焦点为F ,且点M (1,2)到点F 的距离比到y 轴的距离大p. (1)求抛物线C 的方程;(2)若直线l :x-m (y+2)-5=0与抛物线C 交于A ,B 两点,问是否存在实数m ,使|MA|·|MB|=64√2?若存在,求出m 的值;若不存在,请说明理由.3.(2021·江苏南通适应性联考)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的两个焦点为F 1,F 2,一条渐近线方程为y=bx (b ∈N *),且双曲线C 经过点D (√2,1). (1)求双曲线C 的方程;(2)设点P 在直线x=m (y ≠±m ,0<m<1,且m 是常数)上,过点P 作双曲线C 的两条切线PA ,PB ,切点为A ,B ,求证:直线AB 过某一个定点.4.(2021·山东济南二模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,且经过点H (-2,1).(1)求椭圆C 的方程;(2)过点P (-3,0)的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点G (-2,0),若PM⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.5.(2021·广东汕头三模)已知圆C :x 2+(y-2)2=1与定直线l :y=-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y=-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A ,B.①求证:直线AB 过定点; ②求证:∠PCA=∠PCB.6.(2021·北京东城一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),且焦距为2√3. (1)求椭圆C 的方程;(2)过点A (-4,0)的直线l (不与x 轴重合)与椭圆C 交于P ,Q 两点,点T 与点Q 关于x 轴对称,直线TP 与x 轴交于点H ,是否存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立?若存在,求出λ的值;若不存在,说明理由.答案及解析1.(1)解 由题意知直线l 的斜率不为零,故设其方程为x=ty+4,与椭圆方程联立,消去x 得(3t 2+4)y 2+24ty+36=0,Δ=144(t 2-4)>0,解得t<-2或t>2.故直线l 的斜率k=1t 的取值范围为(-12,0)∪(0,12).(2)证明 F (1,0),设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由(1)得y 1+y 2=-24t3t 2+4,y 1y 2=363t 2+4,所以ty 1y 2=-32(y 1+y 2).由PF⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,得{1−x 3=λ(x 1-1),-y 3=λy 1,即{-x 3=λx 1-λ-1,-y 3=λy 1. 又点P 在椭圆上,即有3x 32+4y 32=12,代入上式得3(λx 1-λ-1)2+4λ2y 12=12,即λ2(3x 12+4y 12)-6λ(λ+1)x 1+3(λ+1)2=12, 又3x 12+4y 12=12,所以12(λ+1)(λ-1)-6λ(λ+1)x 1+3(λ+1)2=0.易知λ+1≠0,故λ=35−2x 1,同理可得μ=35−2x 2.又(5-2x 1)(5-2x 2)=25-10(x 1+x 2)+4x 1x 2 =25-10[t (y 1+y 2)+8]+4(ty 1+4)(ty 2+4)=9+6t (y 1+y 2)+4t 2y 1y 2=9+6t (y 1+y 2)+4t ·(-32)(y 1+y 2)=9, 所以λμ=9(5-2x1)(5-2x 2)=1.2.解 (1)由点M 到点F 的距离比到y 轴的距离大p ,得点M 到点F 的距离与到直线x=-p 的距离相等.由抛物线的定义,可知点M 在抛物线C 上,所以4=4p ,解得p=1. 所以抛物线C 的方程为y 2=4x.(2)存在满足题意的m ,其值为1或-3. 理由如下:由{y 2=4x,x-m(y +2)−5=0,得y 2-4my-8m-20=0. 因为Δ=16m 2+4(8m+20)>0恒成立,所以直线l 与抛物线C 恒有两个交点. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4(2m+5).因为MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=(y 124-1)(y 224-1)+(y 1-2)(y 2-2)=y 12y 2216−(y 1+y 2)2-2y 1y 24+y 1y 2-2(y 1+y 2)+5=16(2m+5)216−(4m)2+8(2m+5)4-4(2m+5)-8m+5=0,所以MA ⊥MB ,即△MAB 为直角三角形.设d 为点M 到直线l 的距离,所以|MA|·|MB|=|AB|·d=√1+m 2·√(y 1+y 2)2-4y 1y 2·√1+m 2=4·|1+m|·√16m 2+16(2m +5)=16·|1+m|·√(m +1)2+4=64√2,所以(m+1)4+4(m+1)2-32=0, 解得(m+1)2=4或(m+1)2=-8(舍). 所以m=1或m=-3.所以当实数m=1或m=-3时,|MA|·|MB|=64√2.3.(1)解 由{ba =b,2a 2-1b 2=1,解得{a =1,b =1,故双曲线方程为x 2-y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),直线PA 的斜率为k ,P (m ,y 0).则PA:y-y1=k(x-x1),联立方程组{y-y1=k(x-x1), x2-y2=1,消去y,可得x2-[kx+(-kx1+y1)]2=1,整理可得(1-k2)x2-2k(y1-kx1)x-(y1-kx1)2-1=0.因为PA与双曲线相切,所以Δ=4k2(y1-kx1)2+4(1-k2)·(y1-kx1)2+4(1-k2)=0,整理得4(y1-kx1)2+4(1-k2)=0.即k2x12-2kx1y1+y12+1-k2=0,即(x12-1)k2-2kx1y1+(y12+1)=0,因为x12−y12=1,所以x12-1=y12,y12+1=x12代入可得y12k2-2x1y1k+x12=0,即(y1k-x1)2=0,所以k=x1y1.故PA:y-y1=x1y1(x-x1),即y1y=x1x-1.同理,切线PB的方程为y2y=x2x-1.因为P(m,y0)在切线PA,PB上,所以有{y0y1=mx1-1, y0y2=mx2-1,A,B满足直线方程y0y=mx-1,而两点唯一确定一条直线,故AB:y0y=mx-1,所以当{x=1m,y=0时,无论y0为何值,等式均成立.故点(1m ,0)恒在直线AB上,故无论P在何处,AB恒过定点(1m,0).4.(1)解由题意知e=ca =√1−b2a2=√22,则a2=2b2.又椭圆C经过点H(2,1),所以4a2+1b2=1.联立解得a2=6,b2=3,所以椭圆C的方程为x 26+y23=1.(2)证明 设直线AB 的方程为x=my-3,A (x 1,y 1),B (x 2,y 2),由{x =my-3,x 26+y 23=1联立消去x ,得(m 2+2)y 2-6my+3=0,所以Δ=36m 2-12(m 2+2)>0,y 1+y 2=6mm 2+2,y 1y 2=3m 2+2,由题意知,y 1,y 2均不为1.设M (x M ,0),N (x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线,所以x M -x 1=(-y 1)(-2-x M ),化简得x M =x 1+2y 11−y 1.由H ,N ,B 三点共线,同理可得x N =x 2+2y 21−y 2.由PM ⃗⃗⃗⃗⃗⃗ =λPG⃗⃗⃗⃗⃗ ,得(x M +3,0)=λ(1,0),即λ=x M +3. 由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,同理可得μ=x N +3. 所以1λ+1μ=1xM+3+1xN+3=1x 1+2y 11−y 1+3+1x 2+2y 21−y 2+3=1−y 1x1-y 1+3+1−y 2x 2-y 2+3=1−y1(m-1)y1+1−y 2(m-1)y 2=1m-11−y 1y 1+1−y 2y 2=1m-1(y 1+y 2y1y 2-2)=1m-1(6mm 2+23m 2+2-2)=2,所以1λ+1μ为定值.5.(1)解 依题意知:M 到C (0,2)的距离等于M 到直线y=-2的距离,故动点M 的轨迹是以C 为焦点,直线y=-2为准线的抛物线.设抛物线方程为x 2=2py (p>0),则p2=2,则p=4,即抛物线的方程为x 2=8y ,故动圆圆心M 的轨迹E 的方程为x 2=8y. (2)证明 ①由x 2=8y 得y=18x 2,y'=14x.设A (x 1,18x 12),B (x 2,18x 22),P (t ,-2),其中x 1≠x 2, 则切线PA 的方程为y-18x 12=x 14(x-x 1),即y=14x 1x-18x 12.同理,切线PB 的方程为y=14x 2x-18x 22. 由{y =14x 1x-18x 12,y =14x 2x-18x 22,解得{x =x 1+x22,y =x 1x 28, 故{t =x 1+x 22,-2=x 1x 28,即{x 1+x 2=2t,x 1x 2=−16.故直线AB 的方程为y-18x 12=18x 22-18x 12x 2-x 1(x-x 1),化简得y=x 1+x 28x-x 1x 28,即y=t4x+2,故直线AB 过定点(0,2).②由①知:直线AB 的斜率为k AB =t4,(i)当直线PC 的斜率不存在时,直线AB 的方程为y=2,∴PC ⊥AB ,∴∠PCA=∠PCB ;(ii)当直线PC 的斜率存在时,P (t ,-2),C (0,2),直线PC 的斜率k PC =-2-2t-0=-4t,k AB ·k PC =t 4×-4t =-1,故PC ⊥AB ,∠PCA=∠PCB. 综上所述,∠PCA=∠PCB 得证.6.解 (1)因为椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),所以a=2,又2c=2√3,即c=√3,所以b 2=a 2-c 2=4-3=1,所以椭圆C 的方程为x 24+y 2=1.(2)存在常数λ=2,满足题意. 理由如下:显然直线l 的斜率存在且不为0,设直线l :y=k (x+4),联立{y =k(x +4),x 24+y 2=1,消去y 并整理,得(1+4k 2)x 2+32k 2x+64k 2-4=0, Δ=(32k 2)2-4(1+4k 2)(64k 2-4)>0,得0<k 2<112.设P (x 1,y 1),Q (x 2,y 2),则T (x 2,-y 2),所以x 1+x 2=-32k 21+4k 2,x 1x 2=64k 2-41+4k 2,直线PT :y-y 1=y 1+y2x 1-x 2(x-x 1),令y=0,得x=x 1-y 1(x 1-x 2)y 1+y 2,所以H x 1-y 1(x 1-x 2)y 1+y 2,0,若存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立, 所以1λ=|AD|-|DH||AD|·|DH|=1|DH|−1|AD|,又因为D (-2,0),A (-4,0),H (x 1-y 1(x 1-x 2)y 1+y 2,0),所以|AD|=2,|DH|=x 1-y 1(x 1-x 2)y 1+y 2+2 =x 1-k(x 1+4)(x 1-x 2)k(x 1+4)+k(x 2+4)+2=x 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 1(x 1+x 2)+8kx 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 12+kx 1x 2+8kx 1-kx 12+kx 1x 2-4kx 1+4kx 2k(x 1+x 2)+8k+2=4k(x 1+x 2)+2kx 1x 2k(x 1+x 2)+8k+2=4k·-32k 21+4k 2+2k·64k 2-41+4k 2k·-32k 21+4k 2+8k +2=-1+2=1,所以1λ=11−12,解得λ=2.所以存在常数λ=2,使得|AD|·|DH|=2(|AD|-|DH|)成立.。

剖析圆锥曲线中的探索性问题

剖析圆锥曲线中的探索性问题

ʏ南通大学附属中学张敏圆锥曲线中的探索性问题,一直是历年高考数学试卷考查的重点与难点之一㊂此类问题可以很好地考查圆锥曲线中的基础知识㊁基本技能等,同时还能重点考查考生的数学运算与逻辑推理素养,难度为中高档,具有很好的选拔性与区分度,备受命题者的青睐,常考常新,创新新颖㊂一、定值或定点的探索性问题圆锥曲线中的定值或定点的探索性问题,主要是涉及定值或定点的存在性问题,一般采用假设法,首先根据所解决的问题设出参数,然后假设定值成立或定点存在,再根据定值或定点问题的解决方法,列出参数所满足的等式关系,则可转化为方程或方程组的解的存在性问题㊂例1已知椭圆C:x2a2+y2b2=1(a> b>0)的左顶点和右顶点分别为A,B,O为坐标原点㊂以O B为对角线的正方形O P B Q 的顶点P,Q在椭圆C上㊂(1)求椭圆C的离心率㊂(2)当a=2时,过点(1,0)作与x轴不重合的直线l与椭圆C交于M,N两点(M在x轴上方),直线A M,B N的斜率分别为k1, k2㊂试判断:k1k2是否为定值?若是,求出定值;若不是,请说明理由㊂分析:(1)通过正方形的构建来确定参数之间的关系,进而利用离心率的变形公式加以分析与求解;(2)结合过定点的直线与椭圆相交于两点,进而研究这两点与对应的椭圆顶点的连线所对应的直线的斜率的比值为定值㊂解:(1)不妨设P点在第一象限,则以O B为对角线的正方形O P B Q的顶点坐标分别为B(a,0),P a2,a2,Q a2,-a2㊂因为P,Q在椭圆上,所以a24a2+a24b2=1,整理可得a2=3b2㊂所以椭圆的离心率e=ca=1-b2a2=63㊂(2)当a=2时,b=233,所以椭圆C的方程为x2+3y2=4㊂设直线l的方程为x=m y+1,mʂ0,设M(x1,y1),N(x2,y2),则y2<0<y1㊂联立x=m y+1,x2+3y2=4,消去x整理得(m2+ 3)y2+2m y-3=0,由根与系数的关系得y1+y2=-2mm2+3,y1y2=-3m2+3,所以y1+y2y1y2=2m3,即2m y1y2=3(y1+y2)㊂所以k1k2=y1x1+2y2x2-2=y1x1+2㊃x2-2y2=y1(m y2-1)(m y1+3)y2=m y1y2-y1m y1y2+3y2= 32(y1+y2)-y132(y1+y2)+3y2=12y1+32y232y1+92y2=13㊂综上所述,k1k2为定值13㊂点评:研究参数或代数式的定值问题,关键是设置对应的动直线或动曲线,结合直线与圆锥曲线的位置关系,借助函数与方程思6 2解题篇创新题追根溯源高考数学2023年4月Copyright©博看网. All Rights Reserved.想的转化,通过参数关系式的整体代换与变形,巧妙转化所求参数或代数式的定值问题,实现定值的探索性问题,这是解决此类问题最常用的技巧方法㊂需要特别注意的是:在利用整体代换法处理解析几何中的相关代数式时,由于变量比较多,运算量比较大,所以需要注意合理的整体化思维及变量代换㊂二、位置关系的探索性问题圆锥曲线中的位置关系的探索性问题,主要是涉及直线与圆锥曲线的位置关系的探索与开放问题,关键是利用代数法或几何法将直线和圆锥曲线的位置关系,转化为相关数量之间的关系,进而转化为数量关系的探究问题来分析与解决㊂例2在平面直角坐标系x O y中,O 为坐标原点,F(0,1),N(t,-1)(tɪR),已知әM F N是以F N为底边,且边MN平行于y轴的等腰三角形㊂(1)求动点M的轨迹C的方程㊂(2)已知直线l交x轴于点P,且与曲线C相切于点A,点B在曲线C上,且直线P B ʊy轴,点P关于点B的对称点为Q,试判断A,Q,O三点是否共线?并说明理由㊂分析:(1)根据题目条件,设出动点M的坐标,结合等腰三角形的性质确定MN= M F,由两点间的距离公式构建关系,加以变形转化来确定轨迹方程;(2)设出直线l的方程,与抛物线方程联立,利用直线与抛物线相切的条件结合判别式为零加以转化,确定参数之间的关系,得以确定点P的坐标,利用条件及中点坐标公式分别确定点B,Q的坐标,结合切线的几何意义得到点A的坐标,进而结合k A O=k O Q来判断三点共线问题㊂解:(1)设动点M(x,y),因为MNʊy 轴,所以MN与直线y=-1垂直,则MN= |y+1|㊂因为әM F N是以F N为底边的等腰三角形,所以MN=M F,即|y+1|= x2+(y-1)2,即x2+(y-1)2=(y+1)2,化简得x2=4y㊂因为当M为坐标原点时,M,F,N三点共线,无法构成三角形,所以动点M的轨迹C的方程为x2=4y(yʂ0)㊂(2)A,Q,O三点共线,理由如下:因为直线l与曲线C相切,所以直线l 的斜率必存在且不为零㊂设直线l的方程为y=k x+m,联立y=k x+m,x2=4y,消去y整理得x2-4k x-4m= 0,由Δ=16k2+16m=0,可得m=-k2,所以直线l的方程为y=k x-k2㊂令y=0,得x=k,则P(k,0)㊂因为点B在曲线C上,且直线P Bʊy 轴,所以B k,k24㊂结合点P关于点B的对称点为Q,可得Q k,k22㊂由x2-4k x+4k2=0,可得x=2k,所以A(2k,k2)㊂因为k A O=k22k=k2,k O Q=k22k=k2,所以k A O=k O Q㊂所以A,Q,O三点共线㊂点评:解决圆锥曲线中的位置关系的探索性问题,关键是回归问题本质,抓住所探究的位置关系中的特殊结构问题,根据题目条件分别确定相应点的坐标㊁直线或曲线的方程等,由几何直观特征转化为代数性质形式,结合代数与几何之间的关系,实现此类特殊结构问题的化归与转化,进而得以解决圆锥曲线中的位置关系的探索性问题㊂圆锥曲线中的探索性问题,由于没有明确的结论,需要通过探究后才能明确得到对应的结论,看似方向不明,自由度大,但具体的研究方向也有一定目的性,要有针对性地加以探索与研究㊂借助圆锥曲线中的探索性问题的分析与解决,在考查基本知识的同时,又能够很好地培养同学们的创新意识和应用能力㊂(责任编辑王福华)72解题篇创新题追根溯源高考数学2023年4月Copyright©博看网. All Rights Reserved.。

圆锥曲线中的探索性问题归纳通关

圆锥曲线中的探索性问题归纳通关

圆锥曲线中的探索性问题归纳通关一、椭圆中的探索性问题1.已知椭圆Ã:22143x y +=的右焦点为F ,过点F 且斜率为k 的直线与椭圆Ã交于A(x 1, y 1)、B(x 2, y 2)两点(点A 在x 轴上方),点A 关于坐标原点的对称点为P ,直线PA 、PB 分别交直线l :x=4于M 、N 两点,记M 、N 两点的纵坐标分别为y M 、y N .(1) 求直线PB 的斜率(用k 表示);(2) 求点M 、N 的纵坐标y M 、y N (用x 1, y 1表示) ,并判断y My N 是否为定值?若是,请求出该定值;若不是,请说明理由.2.已知椭圆C :22221(0)x y a b a b +=>>的离心率为22,且椭圆C 过点23,2-⎭.过点()1,0做两条相互垂直的直线1l 、2l 分别与椭圆C 交于P 、Q 、M 、N 四点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若MS SN =, PT TQ =,探究:直线ST 是否过定点?若是,请求出定点坐标;若不是,请说明理由.3.如图, ,A B 是椭圆22:12x C y +=长轴的两个端点, ,M N 是椭圆上与,A B 均不重合的相异两点,设直线,,AM BN AN 的斜率分别是123,,k k k .(1)求23k k ⋅的值;(2)若直线MN 过点22⎛⎫ ⎪ ⎪⎝⎭,求证: 1316k k ⋅=-; (3)设直线MN 与x 轴的交点为(),0t (t 为常数且0t ≠),试探究直线AM 与直线BN 的交点Q 是否落在某条定直线上?若是,请求出该定直线的方程;若不是,请说明理由.4.已知椭圆222:9x y m Ω+= (0)m >,直线l 不过原点O 且不平行于坐标轴, l 与Ω有两 个交点A 、B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆Ω上, 1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)若l 过点,3m m ⎛⎫ ⎪⎝⎭,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形? 若能,求此时l 的斜率;若不能,说明理由.5.已知椭圆G :22221(0)x y a b a b +=>>过点61,3A ⎛⎫ ⎪ ⎪⎝⎭和点()0,1B -. (Ⅰ)求椭圆G 的方程;(Ⅱ)设直线y x m =+与椭圆G 相交于不同的两点M , N ,是否存在实数m ,使得BM BN =?若存在,求出实数m ;若不存在,请说明理由.6.已知点P 是椭圆2222:1(0)x y C a b a b+=>>上一点, P 到椭圆C 的两个焦点12,F F 的距离之和为23,1222F F =.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ)设直线2y kx =+交椭圆于,M N 两点,是否存在实数k ,使以MN 为直径的圆过点()1,0F -,若存在,求k 的值,若不存在,请说明理由.7.已知点()()0,1,0,1A B -, P 为椭圆:2212x y +=上异于点A ,B 的任意一点. (Ⅰ)求证:直线PA 、PB 的斜率之积为12--; (Ⅱ)是否存在过点()2,0Q -的直线l 与椭圆C 交于不同的两点M 、N ,使得BM BN =?若存在,求出直线l 的方程;若不存在,请说明理由.8.已知椭圆()2222:10x y C a b a b +=>>的离心率22e =,且椭圆C 与圆224:3O x y +=的4个交点恰为一个正方形的4个顶点.(1)求椭圆C 的标准方程;(2)已知点A 为椭圆C 的下顶点, ,D E 为椭圆C 上与A 不重合的两点,若直线AD 与直线AE 的斜率之和为2a ,试判断是否存在定点G ,使得直线DE 恒过点G ,若存在,求出点G 的坐标;若不存在,请说明理由.9.已知椭圆22:14x C y +=,如图所示点112233(,),(,),(,)A x y B x y P x y 为椭圆上任意三点.(Ⅰ)若0OA OB OP ++=,是否存在实数λ,使得代数式1212x x y y λ+为定值.若存在,求出实数λ和1212x x y y λ+的值;若不存在,说明理由.(Ⅱ)若0OA OB ⋅=,求三角形OAB 面积的最大值;(Ⅲ)满足(Ⅱ),且在三角形OAB 面积取得最大值的前提下,若线段,PA PB 与椭圆长轴和短轴交于点,E F (,E F 不是椭圆的顶点).判断四边形ABFE 的面积是否为定值.若是,求出定值;若不是,说明理由.10.如图,已知圆(22:316E x y +=,点()3,0,F P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Γ的方程;(2)已知,,A B C 是轨迹Γ的三个动点,点A 在一象限, B 与A 关于原点对称,且CA CB =,问ABC ∆的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由. 11.如图,已知椭圆C : 22221(0)x y a b a b+=>>, 其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G , AB 的中垂线与x 轴和y 轴分别交于,D E 两点,且1AF 、12F F 、2AF 构成等差数列.(1)求椭圆C 的方程;(2)记1GF D ∆的面积为1S , OED ∆(O 为原点)的面积为2S ,试问:是否存在直线AB ,使得1212S S =?说明理由.12.椭圆中心为坐标原点O ,对称轴为坐标轴,且过M (2,2) ,6,1)两点, (I )求椭圆的方程;(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点A ,B ,且OA OB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由.13.在平面直角坐标系xoy 中,动点P 到两点()()3,0,3,0-的距离之和等于4,设动点P 的轨迹为曲线C ,直线L 过点E (-1,0)且与曲线C 交于A ,B 两点.(1)求曲线C 的方程;(2) ΔAOB 的面积是否存在最大值?若存在,求此时ΔAOB 的面积,若不存在说明理由.14.在平面直角坐标平面中, ABC ∆的两个顶点为()()0,1,0,1B C -,平面内两点P 、Q 同时满足:①PA PB PC 0++=;②QA QB QC ==;③PQ //BC .(1)求顶点A 的轨迹E 的方程;(2)过点)2,0F 作两条互相垂直的直线12,l l ,直线12,l l 与点A 的轨迹E 相交弦分别为1122,A B A B ,设弦1122,A B A B 的中点分别为,M N .①求四边形1212A A B B 的面积S 的最小值;②试问:直线MN 是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.15.如图,直线l 与圆 224:5O x y +=且与椭圆22x :14C y +=相交于,A B 两点.(1)若直线l 恰好经过椭圆的左顶点,求弦长AB ,(2)设直线,OA OB 的斜率分别为12k k ,判断12k k ⋅是否为定值,并说明理由(3)求OAB ∆,面积的最小值.16.如图所示,椭圆E 的中心为坐标原点,焦点12,F F 在x 轴上,且1F 在抛物线24y x =的准线上,点P 是椭圆E 上的一个动点,12PF F 面积的最大值为3.(Ⅰ)求椭圆E 的方程;(Ⅱ)过焦点12,F F 作两条平行直线分别交椭圆E 于,,,A B C D 四个点.①试判断四边形ABCD 能否是菱形,并说明理由;②求四边形ABCD 面积的最大值.17.已知点C 为圆(22316x y +=, )3,0F , P 是圆上的动点,线段FP 的垂直平分线交CP 于点Q .(1)求点Q 的轨迹D 的方程;(2)设()2,0A , ()0,1B ,过点A 的直线1l 与曲线D 交于点M (异于点A ),过点B 的直线2l 与曲线D 交于点N ,直线1l 与2l 倾斜角互补.①直线MN 的斜率是否为定值?若是,求出该定值;若不是,说明理由;②设AMN ∆与BMN ∆的面积之和为S ,求S 的取值范围. 二、双曲线中的探索性问题1.双曲线22221(0,0)x y a b a b-=>>的离心率为2,右焦点F 到它的一条渐近线的距离为3 . (1)求双曲线的标准方程;(2)是否存在过点F 且与双曲线的右支角不同的,P Q 两点的直线l ,当点满足()12OM OP OQ =+时,使得点M 在直线2x =-上的射影点N 满足0PN QN ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.2.平面内一动点P 与两定点()()1,0,1,0-斜率之积为2.(1)求动点P 的曲线C 的方程;(2)过点()1,1M 能否作一条直线l 与曲线C 交于,A B 两点,且M 为线段AB 中点,若能,求出l 的方程,不能请说明理由.三、抛物线中的探索性问题1.如图,已知二次函数y=ax 2+bx+c (a <0,c >0)与x 轴交于点A 、B ,与y 轴交于点C ,且以AB 为直径的圆经过点C .(1)若点A (﹣2,0),点B (8,0),求ac 的值;(2)若点A (x 1,0),B (x 2,0),试探索ac 是否为定值?若是,求出这个定值;若不是,请说明理由.(3)若点D 是圆与抛物线的交点(D 与 A 、B 、C 不重合),在(1)的条件下,坐标轴上是否存在一点P ,使得以P 、B 、C 为顶点的三角形与△CBD 相似?若存在,请直接写出点P 坐标;若不存在,请说明理由.2.已知抛物线2:4C y x =,点M 与抛物线C 的焦点F 关于原点对称,过点M 且斜率为k 的直线l 与抛物线C 交于不同两点,A B ,线段AB 的中点为P ,直线PF 与抛物线C 交于两点,E D .(Ⅰ)判断是否存在实数k 使得四边形AEBD 为平行四边形.若存在,求出k 的值;若不存在,说明理由; (Ⅱ)求22PFPM 的取值范围.3.直线l 与抛物线22y x =相交于,A B (异于坐标原点)两点.(1)若直线l 的方程为2y x =-,求证: OA OB ⊥;(2)若OA OB ⊥,则直线l 是否恒过定点?若恒过定点,求出定点坐标;如不是,请说明理由.4.已知椭圆1C 、抛物线2C 的焦点均在x 轴上, 1C 的中心和2C 的顶点均为原点O ,且椭圆1C 经过点22,2A ⎭, ()2,0B -,抛物线2C 过点()1,2D -. (Ⅰ)求1C 、2C 的标准方程;(Ⅱ)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点M 、N 且满足OM ON ⊥.若存在,求出直线l 的方程;若不存在,说明理由.5.已知抛物线24y x =的焦点为F ,点()2,1A . (1)求抛物线的焦点坐标和准线l 方程.(2)问在抛物线的准线上是否存在点B ,使线段AB 的中点到准线l 的距离正好等于到焦点F 的距离?如果存在,求出所有满足条件的点B ,如果不存在说明理由.6.已知直线1l 是抛物线2:2(0)C x py p =>的准线,直线2:3460l x y --=,且2l 与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线1l 和2l 的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线1l 上运动,过点M 做抛物线C 的两条切线,切点分别为12,P P ,在平面内是否存在定点N ,使得12MN PP ⊥恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.7.已知动圆M 过定点()0,P m (0)m >,且与定直线1:l y m =-相切,动圆圆心M 的轨迹方程为C ,直线2l 过点P 交曲线C 于,A B 两点.(1)若2l 交x 轴于点S ,求SPSPSA SB +的取值范围;(2)若2l 的倾斜角为030,在1l 上是否存在点E 使ABE ∆为正三角形?若能,求点E 的坐标;若不能,说明理由.8.在直角坐标系xOy 中,已知抛物线C :24y x =,抛物线C 的准线与x 交于点P .(1)过P 作曲线C 的切线,设切点为1Q , 2Q ,证明:以12Q Q 为直径的圆经过点P ;(2)过点()1,0作互相垂直的两条直线1l 、2l , 1l 与曲线C 交于A 、B 两点, 2l 与曲线C 交于E 、F 两点,线段AB , EF 的中点分别为M 、N ,试讨论直线MN 是否过定点?若过,求出定点的坐标;若不过,请说明理由.9.已知M 是抛物线2:2C y ax =(a 为常数)上一点, F 是抛物线的焦点, MF x ⊥轴且2FM =. (1)求抛物线C 的方程;(2)若抛物线C 的焦点在x 轴正半轴,点P 在y 轴正半轴,直线PF 交抛物线C 于,A B 两点,其中A 在PF 线段上,试问是否存在点P 使得·PA PB FA FB的值等于4?若是存在,求出该点P ;若不存在,请说明理由. 10.已知点()0,2F ,过点()0,2P -且与y 轴垂直的直线为1l , 2l x ⊥轴,交1l 于点N ,直线l 垂直平分FN ,交2l 于点M .(1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点()()1122,,,A x y B x y ,且2211x x m-=+(m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC ∆的面积是否为定值.若为定值,求出ABC ∆的面积;若不是定值,说明理由.11.已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为1x =-,直线l 与抛物线相交于不同的A , B 两点.(1)求抛物线的标准方程;(2)如果直线l 过抛物线的焦点,求OA OB ⋅的值;(3)如果4OA OB ⋅=-,直线l 是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.12.在平面直角坐标系xOy 中,动点P 到点()1,0F 的距离和它到直线1x =-的距离相等,记点P 的轨迹为C .(Ⅰ)求C 得方程;(Ⅱ)设点A 在曲线C 上, x 轴上一点B (在点F 右侧)满足AF FB =.平行于AB 的直线与曲线C 相切于点D ,试判断直线AD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. 13.已知抛物线2:2(0)C y px p =>与直线240x y -+=相切.(1)求该抛物线的方程;(2)在x 轴的正半轴上,是否存在某个确定的点M ,过该点的动直线l 与抛物线C 交于A ,B 两点,使得2211AM BM +为定值.如果存在,求出点M 的坐标;如果不存在,请说明理由.14.已知抛物线2:2(0)C y px p =>在第一象限内的点()2,P t 到焦点F 的距离为52. (1)若1,02M ⎛⎫- ⎪⎝⎭,过点M , P 的直线1l 与抛物线相交于另一点Q ,求QF PF 的值; (2)若直线2l 与抛物线C 相交于,A B 两点,与圆()22:1M x a y -+=相交于,D E 两点, O 为坐标原点, OA OB ⊥,试问:是否存在实数a ,使得DE 的长为定值?若存在,求出a 的值;若不存在,请说明理由.15.已知动点(),P x y 到点()1,0F 的距离比到直线3x =- 的距离小2,(1)求动点(),P x y 的轨迹方程;(2)若直线l 过点(),0(0)M m m >且与的轨迹交于A B 、两点,则是否存在常数使得5OA OB ⋅=恒成立?若存在,求出常数,不存在,说明理由.16.如图所示,抛物线C :x 2=2py (p >0),其焦点为F ,C 上的一点M (4,m )满足|MF|=4.(1)求抛物线C 的标准方程;(2)过点E (﹣1,0)作不经过原点的两条直线EA ,EB 分别与抛物线C 和圆F :x 2+(y ﹣2)2=4相切于点A ,B ,试判断直线AB 是否经过焦点F .17.已知过抛物线2:2(0)C y px p =>的焦点F ,斜率为2的直线交抛物线于()()112212,,,()A x y B x y x x <两点,且6AB =.(1)求该抛物线C 的方程;(2)已知抛物线上一点(),4M t ,过点M 作抛物线的两条弦MD 和ME ,且MD ME ⊥,判断直线DE 是否过定点?并说明理由. 18.如图,已知抛物线1:C 22(0)y px p =>,直线l 与抛物线C 相交于,A B 两点,且当倾斜角为60的直线l 经过抛物线1C 的焦点F 时,有13AB =.(1)求抛物线C 的方程;(2)已知圆()2221:116C x y -+=,是否存在倾斜角不为90的直线l ,使得线段AB 被圆2C 截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.19.已知抛物线C : 24y x =,定点(),0D m (常数0m >)的直线l 与曲线C 相交于A 、B 两点. (1)若点E 的坐标为(),0m -,求证: AED BED ∠∠=(2)若4m =,以AB 为直径的圆的位置是否恒过一定点?若存在,求出这个定点,若不存在,请说明理由.20.已知椭圆E :22221x y a b += (0a b >>)的离心率为23, 1F , 2F 分别是它的左、右焦点,且存在直线l ,使1F , 2F 关于l 的对称点恰好是圆C : 22242540x y mx my m +--+-=(m R ∈, 0m ≠)的一条直径的两个端点.(1)求椭圆E 的方程;(2)设直线l 与抛物线22(0)y px p =>相交于A 、B 两点,射线1F A 、1F B 与椭圆E 分别相交于M 、N .试探究:是否存在数集D ,当且仅当p D ∈时,总存在m ,使点1F 在以线段MN 为直径的圆内?若存在,求出数集D ;若不存在,请说明理由.21.已知直线()y k x a =-与抛物线2:2C y px =切于点()2,2A ,直线l '经过点(),0B a 且垂直于x 轴. (1)求a 值;(2)设不经过点,A B 的动直线:l x my b =+交抛物线C 于点,M N ,交直线l '于点P ,若直线,,AM AP AN 的斜率依次成等差数列,试问:直线l 是否过定点?若是请求出该定点坐标,若不是,请说明理由.22.已知过点的直线与抛物线相交于、两点.(Ⅰ)求直线倾斜角的取值范围;(Ⅱ)是否存在直线,使、两点都在以为圆心的圆上,若存在,求出此时直线及圆的方程,若不存在,请说明理由.23.已知抛物线的方程为C : 24x y =,过点()0,2Q 的一条直线与抛物线C 交于,A B 两点,若抛物线在,A B 两点的切线交于点P .(1)求点P 的轨迹方程;(2)设直线PQ 的斜率存在,取为PQ k ,取直线AB 的斜率为AB k ,请验证PQ AB k k 是否为定值?若是,计算出该值;若不是,请说明理由.24.已知抛物线2:4C x y =的焦点为F ,直线():0l y kx a a =+>与抛物线C 交于A , B 两点. (1)若直线l 过焦点F ,且与圆()2211x y +-=交于D , E (其中A , D 在y 轴同侧)两点,求证: AD BE ⋅是定值;(2)设抛物线C 在点A 和点B 处的切线交于点P ,试问在y 轴上是否存在点Q ,使得四边形APBQ 为菱形?若存在,求出此时直线l 的斜率和点Q 的坐标;若不存在,请说明理由.25.已知抛物线E 的顶点为原点O ,焦点为圆22430F x y x +-+=:的圆心F .经过点F 的直线l 交抛物线E 于,A D 两点,交圆F 于,B C 两点, ,A B 在第一象限, ,C D 在第四象限.(1)求抛物线E 的方程;(2)是否存在直线l ,使2BC 是AB 与CD 的等差中项?若存在,求直线l 的方程;若不存在,请说明理由.【总结】(1)在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.(2)定点的探索与证明问题:①探索直线过定点时,需考虑斜率存在不存在,斜率存在可设出直线方程,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点;②从特殊情况入手,先探求定点再证明与变量无关.。

例析圆锥曲线中的证明与探索性问题

例析圆锥曲线中的证明与探索性问题

解题篇经典题突破方法高考数学2021年4月■浙江省吴兴高级中学刘晓东■浙江省湖州市菱湖中学吴凯圆锥曲线中的证明和探索性问题是高考中解答题的常考题型,难度比较大,这类问题往往是以解析几何知识为载体,在函数、不等式、向量等知识交汇处设计问题,涉及的知识点较多,对考生处理综合问题能力的要求也较高,是近几年高考中的热点和难点。

证明题的设计通常与位置、角度、长度、面积等相关,在高考题中,证明的方法通常以直接证明为主,即从题目已知条件出发来验证结论的正确性,题型也主要包括三点共线问题、长度问题、角度问题、直线过定点问题等。

而探索性问题则是在同等条件下,开放式设问,通常以存在或不存在来提问,而非直接给出需要证明的结论,以问题的不确定性来制造悬念,要求考生能独立判断其结论,并给出相应的证明过程。

一、圆锥曲线中的证明问题侧/(2020年北京市西城区二模)已知椭圆E:£+£=l(a>6>0)经过点a b/3C(0,l),离心率为分,o为坐标原点。

(1)求椭圆E的标准方程;(2)设分别为椭圆E的左顶点和右顶点,D为椭圆E上一点(不在坐标轴上),直线CD交工轴于点P,Q为直线AD 上一点,且3?•OQ=4,求证:C,B,Q三点共线。

分析:(1)将点C的坐标代入椭圆E的方程,可求出b的值,再根据椭圆E的离心率可列出方程组解得a和c的值,进一步写出椭圆E的标准方程;(2)设D(工。

,久)(工2。

工0),得4—云=4样,写出直线CD的方程,解得点P 的坐标,再由OP•OQ=4,可得点Q的横坐标,代入直线AD的方程可求得点Q的坐标,最后验证k BQ=k BC,即可证得结论成立。

解将点c的坐标代入椭圆E的方程可得b=1,由题意可得ya=2,c=◎,故椭圆(2)如图1,易知椭圆E的左顶点和右顶点分别为A(—2,0),B(2,0),设D(s,y0)Ec/T221解得a——c=1,上>0,2的标准方程为脊+图1■JC匸二L5%工0),则亍'+3^=1,即4—Xo=4^0o 直线CD的斜率为k CD乎则直线Vn—1CD的方程为丿=二厂’+1,令)=。

高中数学圆锥曲线的探索性问题归纳

高中数学圆锥曲线的探索性问题归纳

高中数学圆锥曲线的探索性问题归纳
一、基本思路
(1)探究性问题,一般先对结论作肯定存在的假设,然后由此肯定的假设出发,结合已知条件进行推理论证.
(2)若导出矛盾,则否定先前假设(否定型);若推出合理的结论,则说明假设正确(肯定型),由此得出问题的结论.
(3)“假设——推证——定论”是解答此类问题的三个步骤.
二、常用方法
(1)解决是否存在常数的问题时,应首先假设存在,看是否能求出符合条件的参数值,如果推出矛盾就不存在,否则就存在.
(2)解决是否存在点的问题时,可依据条件,直接探究其结果;也可以举特例,然后再证明.
(3)解决是否存在直线的问题时,可依据条件寻找适合条件的直线方程,联立方程消元得出一-元二次方程,利用判别式得出是否有解(存在). (4)解决是否存在最值问题时,可依据条件,得出函数解析式,依据解析式判定其最值是否存在,然后得出结论.
高考真题
例题精选
参考答案。

高考数学专题复习-圆锥曲线中的探究性问题

高考数学专题复习-圆锥曲线中的探究性问题

专题九 圆锥曲线中的探究性问题近年来,在圆锥曲线考查的题型中经常会出现探究性问题.探究性问题是一种开放性问题,是指命题中缺少一定条件或无明确结论,需要经过猜测、归纳并加以证明的题型.圆锥曲线的考题主要是结论探究的开放性问题,有探究位置关系的,有探究点是否存在直线是否存在圆是否存在的,有探究圆是否过定点直线是否过定点的,等等,有结论存在和结论不存在两种情形.这类题型在考查圆锥曲线基础知识和几何性质的同时,能很好地考查学生的运算求解、推理论证等数学能力,对学生的综合能力要求较高.模块1 整理方法 提升能力圆锥曲线中的探究性问题的常用解题策略有2种:一是先假设存在或结论成立,然后引进未知数、参数并建立有关未知数、参数的等量关系,若能求出相应的量,则表示存在或结论成立,否则表示不存在或结论不成立;另一种方法是在假设存在或结论成立的前提下,利用特殊情况作出猜想,然后加以验证.例1椭圆E :22221x y a b +=(0a b >>)的左焦点为1F ,右焦点为2F ,离心率12e =.过1F 的直线交椭圆于A 、B 两点,且△2ABF 的周长为8.(1)求椭圆E 的方程;(2)设动直线l :y kx m =+与椭圆E 有且只有一个公共点P ,且与直线4x =相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.【解析】(1)因为228AB AF BF ++=,即11228AF BF AF BF +++=,而12122AF AF BF BF a +=+=,所以48a =,2a =.又因为12c e a ==,所以1c =,2223b a c =-=,所以椭圆E 的方程为22143x y +=.(2)法1:假设平面内存在定点M 满足条件,由对称性可知点M 必在x 轴上,设(),0M t .由22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 可得()2224384120k x kmx m +++-=,因为直线l 与椭圆有且只有一个公共点,所以()()2222644434120k m k m ∆=-+-=,即22430k m -+=.设()00,P x y ,则024443km k x k m =-=-+,003y kx m m =+=,所以43,k P m m ⎛⎫- ⎪⎝⎭.联立4y kx m x =+⎧⎨=⎩,可得()4,4Q k m +.因为43,kMP t mm ⎛⎫=-- ⎪⎝⎭,()4,4MQ t k m =-+,由0MP MQ ⋅=可得()()43440k t t k m m m ⎛⎫---+⋅+= ⎪⎝⎭,整理可得()244430k t t t m -+-+=,由2440430t t t -=⎧⎨-+=⎩解得1t =,所以存在定点()1,0M ,使得以PQ 为直径的圆恒过点M .法2:假设平面内存在定点M 满足条件,由对称性可知点M 必在x 轴上.若直线l为y =(P,(Q ,以PQ 为直径的圆为()(40x x y y -+-=,与x轴交于点()11,0M 和()23,0M .下面进行验证.由22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 可得()2224384120k x kmx m +++-=,因为直线l 与椭圆有且只有一个公共点,所以()()2222644434120k m k m ∆=-+-=,即22430k m -+=.设()00,P x y ,则024443km k x k m =-=-+,003y kx m m =+=,所以43,k P m m ⎛⎫- ⎪⎝⎭.联立4y kx m x =+⎧⎨=⎩,可得()4,4Q k m +.因为1431,k M P m m ⎛⎫=-- ⎪⎝⎭,()13,4M Q k m =+,所以()433140k k m m m ⎛⎫--+⋅+= ⎪⎝⎭.因为2433,k M P m m ⎛⎫=-- ⎪⎝⎭,()11,4M Q k m =+,所以()431340k k m m m⎛⎫⋅--+⋅+≠ ⎪⎝⎭.综上所述,存在定点()1,0M ,使得以PQ 为直径的圆恒过点M .【点评】由对称性得到:如果存在定点M ,则M 一定在x 轴上,由此可减少未知数的引点:()11,0M 和()23,0M ,此时只需对这两个点进行检验,如果有满足条件的,则表示点M 存在,如果都不满足,则表示点M 不存在.椭圆22221x y a b +=(0a b >>)经过点31,2P ⎛⎫⎪⎝⎭,离心率12e =,直线l 的方程为4x =.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA 、PB 、PM 的斜率分别为1k 、2k 、3k .问:是否存在常数λ,使得123k k k λ+=?若存在,求λ的值;若不存在,说明理由.【解析】(1)由31,2P ⎛⎫ ⎪⎝⎭在椭圆上,所以221914a b +=.又因为12c e a ==,解得24a =,23b =,所以椭圆C 的方程为22143x y +=.(2)显然直线AB 的斜率存在,设为k ,则直线AB 的方程为()1y k x =-.联立()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y 可得()()2222438430k x k x k +-+-=,设()11,A x y ,()22,B x y ,则有2122843k x x k +=+,()21224343k x x k -=+.点M 的坐标为()4,3k ,所以111321y k x -=-,222321y k x -=-,33312412k k k -==--.于是1212121212333322221111y y kx k kx k k k x x x x ------+=+=+---- ()()()()2212122222121222433338322222222432432143814343k k kx x k x x k k k k k k x x x x k kk k -⎛⎫⎛⎫⎛⎫⎛⎫-++++⋅-+⋅++ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭==-++--+++ 21k =-,又因为312k k =-,所以1232k k k +=.所以存在常数2λ=符合题意.【点评】引进直线AB 的斜率k ,然后用k 去表示1k 、2k 、3k ,将123k k k λ+=转化为k 的方程,该方程有解,则说明实数λ存在,否则λ不存在.我们也可以考虑特殊情况,让直线AB 的斜率0k =,则有()2,0A -,()2,0B ,()4,0M ,112k =,232k =-,312k =-,此时2λ=.也就是说,要么常数λ不存在,要么常数2λ=.该猜测能使解题方向更为清晰明确.椭圆1C :22221x y a b+=(0a b >>)的离心率为32,x 轴被曲线2C :2y x b =-截得的线段长等于1C 的长半轴长.(1)求1C 、2C 的方程;(2)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点A 、B ,直线MA 、MB 分别与1C 相交于D 、E .(i )证明:MD ME ⊥;(ii )记△MAB 、△MDE 的面积分别是1S 、2S .问:是否存在直线l ,使得121732S S =?请说明理由.【解析】(1)由题意知32c e a ==,又因为2b a =,222a b c =+,解得2a =,1b =,所以1C 、2C 的方程分别为2214x y +=,21y x =-.【证明】(2)(i )由题意知,直线l 的斜率存在,设直线l 的方程为y kx =,()11,A x y ,()22,B x y ,由21y kx y x =⎧⎨=-⎩得210x kx --=,于是12x x k +=,121x x =-.又点M 的坐标为()0,1-,所以()()()21212121212121211111MA MBkx kx k x x k x x y y k k x x x x x x +++++++⋅=⋅===22111k k -++=--,所以MA MB ⊥,即MD ME ⊥.【解析】(ii )设直线MA 的斜率为1k ,则直线MA 的方程为11y k x =-,由1211y k x y x =-⎧⎨=-⎩可得0x =或1x k =,所以点A 的横坐标为1k .设直线MB 的斜率为11k -,同理可得点B 的横坐标为11k -,于是22111121111111111222k S MA MB k k k k k +=⋅=++⋅=.由1221440y k x x y =-⎧⎨+-=⎩可得()22111480k x k x +-=,解得0x =或121814k x k =+,所以点D 的横坐标为121814k k +.同理可得点E 的横坐标为12184k k -+,于是11222118812144k k S MD ME k k =⋅=++ ()()()2112211321144k k k k +⋅=++,因此42111221417464S k k S k ++=.由题意知,4211214174176432k k k ++=,解得214k =或2114k =.于是直线l 的斜率为2111111k k k k k -==-,解得32k =±,所以满足条件的直线l 存在,且有两条,其方程分别为32y x =和32y x =-. 【点评】引入直线MA 的斜率1k ,则A 、B 、D 、E 的坐标都能用1k 去表示,进而用1k 表不存在,直线l 也不存在.模块2 练习巩固 整合提升练习1:在直角坐标系xOy 中,曲线C :24x y =与直线y kx a =+(0a >)交于M 、N两点.(1)当0k =时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【解析】(1)不妨设()Ma ,()N a -.因为12y x '=,所以24x y =在x=C 在()Ma处的切线方程为y a x -=-,即0y a --=.24x y =在x=-C 在()N a-处的切线方程为y a x -=+0y a ++=.所以C 在点M 和N 处的切线方程为0y a--=0y a ++=.(2)存在符合题意的点.设点()0,P b 为符合题意得点,()11,M x y ,()22,N x y ,直线PM 、PN 的斜率分别为1k 、2k ,则()()1212121212122kx x a b x x y b y b k k x x x x +-+--+=+=.联立24y kx ax y =+⎧⎪⎨=⎪⎩,消去y ,可得2440x kx a --=,所以124x x k +=,124x x a =-,于是()()()()()122444k a a b k k a b k k a a-+-++==-.当b a =-时,有120k k +=,则直线PM 的倾斜角与直线PN 的倾斜角互补,所以OPM OPN ∠=∠,所以()0,P a -符合题意.练习2:如图,C :22221x y a b+=(0a b >>)的顶点为1A 、2A 、1B 、2B ,焦点为1F 、2F ,117A B =112211222A B A B B F B F S S =.(1)求椭圆C 的方程;(2)设n 是过原点的直线,l 是与n 垂直相交于P 点、与椭圆相交于A 、B 两点的直线,1OP =,是否存在上述直线l ,使1AP PB ⋅=成立?若存在,求出直线l 的方程;若不存在,请说明理由.【解析】(1)由117A B =227a b +=,由112211222A B A B B F B F S S =可得2a c =,又因为222a b c =+,解得24a =,23b =,所以椭圆C 的方程为22143x y +=.(2)设()11,A x y 、()22,B x y .当l 垂直于x 轴时,P 点就是右焦点()1,0,此时94AP PB ⋅=,直线l 不满足条件.当l 不垂直于x 轴时,设l 的方程为y kx m =+.由l 与n 垂直相交于P 点且1OP =可得211m k =+,即221m k =+.因为1AP PB ⋅=且1OP =,所以OA OB ⊥,于是12120x x y y +=.由22143x y y kx m⎧+=⎪⎨⎪=+⎩消去y 可得()2223484120k x kmx m +++-=,于是122834km x x k +=-+,212241234m x x k -=+,于是()()()()221212*********x x y y x x kx m kx m k x x km x x m +=+++=++++ ()222224128103434m km k km m k k -⎛⎫=+⋅+⋅-+= ⎪++⎝⎭,即22712120m k --=.因为方程组22227121201m k m k ⎧--=⎪⎨=+⎪⎩无解,所以不存在满足条件的直线l . 综上所述,不存在直线l ,使1AP PB ⋅=成立.练习3:已知定点()1,0A -,()2,0F ,定直线l :12x =,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交l 于点M 、N .(1)求E 的方程;(2)试判断以线段MN 为直径的圆是否过定点,若过定点,求出定点的坐标;若不存在,说明理由.【解析】(1)设(),P x y ,122x -,化简可得2213y x -=(0y ≠). (2)法1:假设以线段MN 为直径的圆过定点,由对称性可知该定点必在x 轴上,设(),0D t .设直线BC 的方程为2x my =+,由22213x my y x =+⎧⎪⎨-=⎪⎩,消去x 可得()22311290my my -++=,由题意知2310m -≠.设()11,B x y ,()22,C x y ,则1221231m y y m +=--,122931y y m =-.因为直线AB 的方程为()1111y y x x =++,所以点M 的坐标为()1131,221y x ⎛⎫ ⎪ ⎪+⎝⎭,同理()2231,221y N x ⎛⎫ ⎪ ⎪+⎝⎭,于是()1131,221y DM t x ⎛⎫=- ⎪ ⎪+⎝⎭,()2231,221y DN t x ⎛⎫=- ⎪ ⎪+⎝⎭.由0DM DN ⋅=可得()()212129102411y y t x x ⎛⎫-+= ⎪++⎝⎭,即()212212129102439y y t m y y m y y ⎛⎫-+= ⎪⎡⎤+++⎝⎭⎣⎦,即2222228113102936493131m t m m m m ⎛⎫--+= ⎪⎛⎫⎝⎭-+ ⎪--⎝⎭,即219024t ⎛⎫--= ⎪⎝⎭,解得2t =或1t =-,所以以线段MN 为直径的圆过定点()2,0和()1,0-. 法2:假设以线段MN 为直径的圆过定点,由对称性可知该定点必在x 轴上.若BC 垂直于x 轴,则()2,3B ,直线AB 方程为1y x =+,所以点M 坐标为13,22⎛⎫⎪⎝⎭,此时以MN 为直径的圆的方程为21330222x y y ⎛⎫⎛⎫⎛⎫-+-+= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,该圆与x 轴交于点()12,0D 和()21,0D -.下面进行验证.设直线BC 的方程为2x my =+,由22213x my y x =+⎧⎪⎨-=⎪⎩,消去x 可得()22311290m y my -++=,由题意知2310m -≠.设()11,B x y ,()22,C x y ,则1221231m y y m +=--,122931y y m =-.因为直线AB 的方程为()1111y y x x =++,所以点M 的坐标为()1131,221y x ⎛⎫ ⎪ ⎪+⎝⎭,同理()2231,221y N x ⎛⎫ ⎪ ⎪+⎝⎭. 因为()11133,221y D M x ⎛⎫=- ⎪ ⎪+⎝⎭,()21233,221y D N x ⎛⎫=- ⎪ ⎪+⎝⎭,所以()()()1212112121212999944114439y y y y D M D N x x m y y m y y ⋅=+=+=++⎡⎤+++⎣⎦222228193104936493131m m mm m -=+=⎛⎫-+ ⎪--⎝⎭.同理220D M D N ⋅=.所以以线段MN 为直径的圆过定点()2,0和()1,0-.。

2025届高中数学高考复习学案:圆锥曲线中的证明与探索性问题

2025届高中数学高考复习学案:圆锥曲线中的证明与探索性问题

圆锥曲线中的证明与探索性问题会用直线与圆锥曲线中有关知识解决证明与探索性问题,提高学生分析问题、解决问题的能力.关键能力·题型剖析题型一证明问题例1(12分)[2023·新课标Ⅱ卷]已知双曲线C的中心为坐标原点,左焦点为(-25,0),离心率为5.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.思路导引(1)由题意求出a,b→C的方程(2)设直线方程→与C联立→消去y→韦达定理→写出直线MA1,NA2的方程→联立消去y→解得x,即交点的横坐标为定值→点P在定直线上.[满分答卷·评分细则]解析:(1)设双曲线方程为x2a2−y2b2=1(a>0,b>0),由焦点坐标得c=25,由e=c a=5得a=2,b=c2−a2=4,→正确求出a,b,c得2分∴双曲线方程为x24−y216=1.→正确写出双曲线方程得1分2由1可得A1−2,0,A22,0,→正确写出左、右顶点A1,A2的坐标得1分设M(x1,y1),N(x2,y2),显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12.→正确设出直线MN的方程得1分my−4−y216=1得(4m2-1)y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2−1,y1y2=484m2−1,→正确消去x得到关于y的一元二次方程,写出Δ及y1+y2、y1y2的表达式得2分直线MA1的方程为y=y1x1+2(x+2),直线NA2的方程为y=y2x2−2(x-2)→正确写出直线MA1,NA2的方程得1分联立直线方程y=+2,y2消去y得x+2x−2=121=m·484m2−1−2·32m4m2−1+2y1m×484m2−1−6y1=−16m4m2−1+2y148m4m2−1−6y1=-13,→正确得出x+2x−2=-13得3分可得x=−1,即x p=−1,@所以点P在定直线x=−1上.→正确解出x=-1,下结论得1分题后师说圆锥曲线证明问题的类型及求解策略(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何要素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直;二是证明直线与圆锥曲线中的一些数量关系相等或不等.(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.巩固训练1[2023·北京卷]已知椭圆E:x2a2+y2b2=1(a>b>0)A、C分别是E的上、下顶点,B,D分别是E的左、右顶点,|AC|=4.(1)求E的方程;(2)设P为第一象限内E上的动点,直线PD与直线BC交于点M,直线PA与直线y=-2交于点N.求证:MN∥CD.题型二探索性问题例2[2024·河南郑州模拟]已知椭圆x2a2+y2b2=1(a>b>0)的离心率为12,F为椭圆的右焦点,A 为椭圆的下顶点,A与圆x2+(y-2)2=1上任意点距离的最大值为3+3.(1)求椭圆的方程;(2)设点D在直线x=1上,过D的两条直线分别交椭圆于M,N两点和P,Q两点,点F到直线MN和PQ的距离相等,是否存在实数λ,使得|DM|·|DN|=λ|DP|·|DQ|?若存在,求出λ的值,若不存在,请说明理由.题后师说存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.巩固训练2[2024·江西南昌模拟]已知抛物线C:y2=2px(p>0)的焦点为F,A,B分别为C上两个不同的动点,O为坐标原点,当△OAB为等边三角形时,|AB|=83.(1)求C的标准方程;(2)抛物线C在第一象限的部分是否存在点P,使得点P满足PA +PB =4PF ,且点P到直线AB的距离为2?若存在,求出点P的坐标及直线AB的方程;若不存在,请说明理由.高考大题研究课十圆锥曲线中的证明与探索性问题关键能力·题型剖析巩固训练1解析:依题意,得e =ca=53,则c =53a ,又A ,C 分别为椭圆上、下顶点,|AC |=4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.解析:因为椭圆E 的方程为x 29+y 24=1,所以A (0,2),C (0,-2),B (-3,0),D (3,0),因为P 为第一象限E 上的动点,设P (m ,n )(0<m <3,0<n <2),则m 29+n 24=1,易得k BC =0+2−3−0=-23,则直线BC 的方程为y =-23x -2,k PD =n−0m−3=nm−3,则直线PD 的方程为y =n(x -3),联立y 23−2,y 3解得x =3n+2m−6y =−12n 3n+2m−6,即而k P A =n−2m−0=n−2m,则直线PA 的方程为y =n−2mx +2,令y =-2,则-2=n−2mx +2,解得x =−4m n−2,即−2,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN −12n3n+2m−6+2=−6n 2+4mn−8m+249n 2+8m 2+6mn−12m−36=−6n 2+4mn−8m+249n 2+72−18n 2+6mn−12m−36=−6n2+4mn−8m+242=23,又k CD=0+23−0=23,即k MN=k CD,显然,MN与CD不重合,所以MN∥CD.例2解析:由题意可知e=c a=12,A(0,-b),又A到圆上距离最大值为2-(-b)+1=3+b=3+3,∴b=3.又a2=b2+c2,c a=12,解得a2=4,b2=3.故椭圆方程为x24+y23=1.解析:若D点与F点重合,则λ不存在,若D点与F点不重合,∵点F到直线MN和PQ的距离相等,且F在直线x=1上,∴k MN+k PQ=0,设D(1,m),由题意可知直线MN,PQ的斜率均存在且不为0,设直线MN的方程为y-m=k1(x-1),(k1≠0),由y−m=k1x−1,3x2+4y2=12,得412+3x2+(8k1m-8k2)x+412+4m2-8k1m-12=0,设M(x M,y M),N(x N,y N),则x M+x N=812−812,x M·x N=412+42-81-12412+3,又|DM|-1,D=1+12|x N-1|,|DM|·|DN|=(1+k12)|(x M-1)(x N-1)|=(1+k12)|x M x N-(x M+x N)+1|=1+12设直线PQ的方程为y-m=k2(x-1)(k2≠0),同理可得|DP|·|DQ|=1+22又k1=-k2,∴|DM|·|DN|=|DP|·|DQ|,故λ=1.所以存在这样的λ=1,使得|DM |·|DN |=λ|DP |·|DQ |.巩固训练2解析:由对称性可知当△OAB 为等边三角形时,A ,B 两点关于x 轴对称,当△OAB 为等边三角形时,△OAB |=12,由题意知点(12,43)在C 上,代入y 2=2px ,得(43)2=24p ,解得p =2,所以C 的标准方程为y 2=4x .解析:由(1)知F (1,0),根据题意可知直线AB 的斜率不为0,设直线AB 的方程为x =ky +m ,A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),联立x =ky +m ,y 2=4x ,得y 2-4ky -4m =0,所以Δ=16k 2+16m >0,即k 2+m >0,且y 1+y 2=4k ,y 1y 2=-4m ,所以x 1+x 2=k (y 1+y 2)+2m =4k 2+2m ,由PA +PB =4PF ,得(x 1-x 0,y 1-y 0)+(x 2-x 0,y 2-y 0)=4(1-x 0,-y 0),所以x 1+x 2−4=−2x 0,y 1+y 2=−2y 0,所以x 0=2−m −2k 2,y 0=−2k ,即P (2-m -2k 2,-2k ),又点P 在C 上,所以4k 2=4(2-m -2k 2),即3k 2+m =2,①所以k 2+m =k 2+2-3k 2=2(1-k 2)>0,解得-1<k <1,又点P 在第一象限,所以-2k >0,所以-1<k <0.又点P 到直线AB 的距离d 1+k 2,化简得m 2-2m =k 2,②联立①②解得m 13,k 或m 13k =(舍去),或m =2k =0(舍去).此时点P (79,直线AB 的方程为3x +7y +1=0.。

高考数学圆锥曲线中的探索性问题与不良结构问题含答案解析

高考数学圆锥曲线中的探索性问题与不良结构问题含答案解析

圆锥曲线中的探索性问题与不良结构问题考情分析圆锥曲线中的探索性问题与不良结构问题是近年高考的热点,探索性问题通常为探索是否存在符合的点、直线或结果是否为定值,求解时一般是先假设结论存在,再进行推导,有时也会出现探索曲线位置关系的试题,结构不良问题时,兼顾开放性与公平性,形式不固化,问题条件或数据缺失或冗余、问题目标界定不明确、具有多种评价解决方法的标准等特征,选择不同的条件,解题的难度是有所不同的,能较好地考查学生分析问题解决问题的能力.解题秘籍(一)解决探索性问题与不良结构问题的注意事项及方法1.解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.2.存在性问题的求解方法(1)存在性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解存在性问题常用的方法.3.结构不良问题的主要特征有:①问题条件或数据部分缺失或冗余;②问题目标界定不明确;③具有多种解决方法、途径;④具有多种评价解决方法的标准;⑤所涉及的概念、规则和原理等不确定.1(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C:x2a2-y2b2=1经过点2,-3,两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程.(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M m,0,使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.2(2023届云南省师范大学附属中学高三上学期月考)已知双曲线C :x 2a 2-y 2b2=1(b >a >0)的右焦点为F c ,0 ,从①虚轴长为23;②离心率为2;③双曲线C 的两条渐近线夹角为60°中选取两个作为条件,求解下面的问题.(1)求C 的方程;(2)过点F 的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,O 为坐标原点,记△AOB ,△FOB 面积分别为S 1,S 2,若S1S 2=3+1,求直线l 的方程.(注:若选择不同的组合分别解答,则按第一个解答计分.)(二)是否存在型探索性问题求解此类问题一般是先假设存在,再根据假设看看能否推导出符合条件的结论.3(2022届天津市南开中学2高三上学期检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,且F 2也是抛物线E :y 2=4x 的焦点,P 为椭圆C 与抛物线E 在第一象限的交点,且PF 2 =53.(1)求椭圆C 的方程;(2)若直线y =k x -1 与椭圆C 交于R ,S 两点,问是否在x 轴上存在一点T ,使得当k 变动时,总有∠OTS =∠OTR ?说明理由.(三)探索直线是否过定点求出此类问题一般是设出直线的斜截式方程y =kx +t ,然后根据已知条件确定k ,t 的关系式,再判断直线是否过定点.4(2022届北京市房山区高三上学期期末)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为32,A ,B 分别为椭圆E 的上、下顶点,且AB =2.(1)求椭圆E 的标准方程;(2)设直线l 与椭圆E 交于M ,N (不与点A ,B 重合)两点,若直线AM 与直线AN 的斜率之和为2,判断直线l 是否经过定点?若是,求出定点的坐标;若不是,说明理由.(四)探索结果是否为定值此类问题一般是把所给式子用点的坐标或其他参数表示,再结合韦达定理或已知条件进行化简,判断化简的结果是否为定值.5(2022届云南省三校高三联考)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)过点A a 3,a 3 ,B 2,32 .(1)求椭圆E 的方程;(2)点Q x 0,y 0 是单位圆x 2+y 2=1上的任意一点,设P ,M ,N 是椭圆E 上异于顶点的三点且满足OP=x 0OM +y 0ON .探讨OM 2+ON2是否为定值?若是定值,求出该定值,若不是定值,请说明理由.6(2022届天津市耀华中学高三上学期月考)已知O 为坐标原点,双曲线C 1:y 2a 21-x 2b 21=1a 1>0,b 1>0 和椭圆C 2:x 2a 22+y 2b 22=1a 2>b 2>0 均过点T 1,233 且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA +OB |=|AB|?证明你的结论;(3)椭圆C 2的右顶点为Q ,过椭圆C 2右焦点的直线l 1与C 2交于M 、N 两点,M 关于x 轴的对称点为S ,直线SN 与x 轴交于点P ,△MOQ ,△MPQ 的面积分别为S 1,S 2,问S1S 2是否为定值?若是,求出该定值;若不是,请说明理由.(六)探索直线与圆锥曲线的位置关系探索直线与圆的位置关系一般根据圆心到直线距离与圆的半径的大小进行判断,探索直线与椭圆、双曲线、抛物线的位置关系一般根据判别式.7已知定理:如果二次曲线Ax 2+Cy 2+Dx +Ey +F =0与直线mx +ny +q =0(q ≠0)有两个公共点P 、Q ,O 是坐标原点,则OP ⊥OQ 的充要条件是(A +C )q 2-(mD +nE )q +(m 2+n 2)F =0.(1)试根据上述定理,写出直线l :x +2y -3=0与圆C :x 2+y 2+x -6y +c =0相交于P ,Q ,坐标原点为O ,且OP ⊥OQ 的充要条件,并求c 的值;(2)若椭圆x 2a 2+y 2b 2=1与直线mx +ny +q =0相交两点P 、Q ,而且OP ⊥QQ ,试判断直线PQ 与圆x 2+y 2=11a2+1b2的位置关系,并说明理由.(七)探索类比问题此类问题多是椭圆与双曲线的类比8设F1、F2分别为椭圆C:x2a2+y2b2=1(a>0,b>0)的左、右两个焦点.(1)若椭圆C上的点A1,32到F1、F2两点的距离之和等于4,写出椭圆C的方程;(2)设K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为k PM、k PN时,那么k PM与k PN之积是与点P位置无关的定值.试对双曲线x2a2-y2b2=1写出具有类似特性的性质,并加以证明.(八)不良结构问题近年不良结构问题,通常是要求学生从备选条件中选择部分条件解题,选择不同的条件,所用知识可能不同,难易程度也可能不同.9在①PF=x0+1,②y0=2x0=2,③PF⊥x轴时,PF=2这三个条件中任选一个,补充在下面的横线上,并解答.问题:已知抛物线C:y2=2px p>0在抛物线C上,且.的焦点为F,点P x0,y0(1)求抛物线C的标准方程;(2)若直线l:x-y-2=0与抛物线C交于A,B两点,求△ABF的面积.跟踪检测1(2023届广东省佛山市顺德区高三上学期教学质量检测)已知动圆C 经过点F 1,0 ,且与直线x =-1相切,记动圆C 圆心的轨迹为E .(1)求E 的方程;(2)已知P 4,y 0 y 0>0 是曲线E 上一点,A ,B 是曲线E 上异于点P 的两个动点,设直线PA 、PB 的倾斜角分别为α、β,且α+β=3π4,请问:直线AB 是否经过定点?若是,请求出该定点,若不是,请说明理由.2(2023届江苏省泰州市泰兴市高三上学期期中)已知圆O :x 2+y 2=16,点A (6,0),点B 为圆O 上的动点,线段AB 的中点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设T (2,0),过点T 作与x 轴不重合的直线l 交曲线C 于E 、F 两点.(i )过点T 作与直线l 垂直的直线m 交曲线C 于G 、H 两点,求四边形EGFH 面积的最大值;(ii )设曲线C 与x 轴交于P 、Q 两点,直线PE 与直线QF 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.3(2023届上海师范大学附属嘉定高级中学高三上学期期中)己知双曲线C :x 2-y 2=1,过点T (t ,0)作直线l 和曲线C 交于A ,B 两点.(1)求双曲线C 的焦点和它的渐近线;(2)若t =0,点A 在第一象限,AH ⊥x 轴,垂足为H ,连结BH ,求直线BH 斜率的取值范围;(3)过点T 作另一条直线m ,m 和曲线C 交于E ,F 两点.问是否存在实数t ,使得AB ⋅EF =0和AB=EF同时成立.如果存在,求出满足条件的实数t 的取值集合;如果不存在,请说明理由.4(2023届湖北省鄂东南省级示范高中教育教学改革联盟学校高三上学期期中联考)设点P 为圆C :x 2+y 2=4上的动点,过点P 作x 轴垂线,垂足为点Q ,动点M 满足2MQ =3PQ(点P 、Q 不重合)(1)求动点M 的轨迹方程E ;(2)若过点T 4,0 的动直线与轨迹E 交于A 、B 两点,定点N 为1,32,直线NA 的斜率为k 1,直线NB 的斜率为k 2,试判断k 1+k 2是否为定值.若是,求出该定值;若不是,请说明理由.5(2023届湖南省郴州市高三上学期教学质量监测)已知椭圆E:x2a2+y2b2=1a>b>0的离心率为22,过坐标原点O的直线交椭圆E于P,A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC.当C为椭圆的右焦点时,△PAC的面积为2.(1)求椭圆E的方程;(2)若B为AC的延长线与椭圆E的交点,试问:∠APB是否为定值,若是,求出这个定值;若不是,说明理由.6(2023届云南省部分重点中学高三上学期10月份月考)已知抛物线C:y2=2px p>0的焦点为F,点D x0,2在抛物线C上,且DF=2.(1)求抛物线C的标准方程.(2)直线l:x=my+t与抛物线C交于A,B两点,点P-4,0,若∠APO=∠BPO(O为坐标原点),直线l 是否恒过点M?若是,求出定点M的坐标;若不是,请说明理由.7(2023届上海市高桥中学高三上学期9月月考)在平面直角坐标系中,O 为坐标原点,动点G 到F 1-3,0 ,F 23,0 的两点的距离之和为4.(1)试判断动点G 的轨迹是什么曲线,并求其轨迹方程C .(2)已知直线y =k x -3 k >0 与圆F 2:x -3 2+y 2=14交于M 、N 两点,与曲线C 交于P 、Q 两点,其中M 、P 在第一象限,d 为原点O 到直线l 的距离,是否存在实数k ,使得T =NQ -MP ⋅2d 2取得最大值,若存在,求出k 和最大值;若不存在,说明理由.8(2022届广东省潮州市高三上学期期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为63,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线2x -2y +6=0相切.(1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线y =k (x -2)(k ≠0)与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得EA 2 +EA ⋅AB为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.9(2022届河北省深州市高三上学期期末)已知抛物线C :y 2=4x ,点F 为C 的焦点,过F 的直线l 交C 于A ,B 两点.(1)设A ,B 在C 的准线上的射影分别为P ,Q ,线段PQ 的中点为R ,证明:AR ∥FQ ;(2)在x 轴上是否存在一点T ,使得直线AT ,BT 的斜率之和为定值?若存在,求出点T 的坐标;若不存在,请说明理由.10已知椭圆E :y 2a2+x 2=1a >1 的离心率为32,圆A :x 2+y -a 2=r 2r >0 与椭圆E 相交于B ,C 两点.(1)求AB ⋅AC的最小值;(2)若F 1,F 2分别是椭圆E 的上、下焦点,经过点F 1的直线l 与椭圆E 交于M ,N 两点,O 为坐标原点,则△OF 2N 与△OF 2M 的面积之和是否存在最大值?若存在,求出这个最大值及此时直线l 的方程;若不存在,请说明理由.11(2022届北京一六一中学高三12月测试)已知椭圆C :x 2m +y 22=1(m >2)上一点与椭圆C 的两个焦点构成的三角形周长为42+26.(1)求椭圆C 的方程;(2)过点P (2,1)作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ,直线A P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由.12(2023届海交通大学附属中学2023届高三上学期10月月考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F 2,0 ,渐近线方程为y =±3x ,过F 的直线与C 的两条渐近线分别交于A ,B 两点.(1)求C 的方程;(2)若直线AB 的斜率为1,求线段AB 的中点坐标;(3)点P x 1,y 1 、Q x 2,y 2 在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立.①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.13已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率为12,点1,32 在椭圆C 上.(1)求椭圆C 的方程;(2)若椭圆C 的两条切线交于点M (4,t ),其中t ∈R ,切点分别是A 、B ,试利用结论:在椭圆x 2a 2+y 2b2=1上的点x 0,y 0 处的椭圆切线方程是x 0xa 2+y 0y b2=1,证明直线AB 恒过椭圆的右焦点F 2;(3)试探究1AF 2 +1BF 2的值是否恒为常数,若是,求出此常数;若不是,请说明理由.14(2023届四川省成都市高三上学期月考)如图所示, 已知A ,B 两点的坐标分别为(-2,0),(2,0),直线AP ,BP 的交点为P ,且它们的斜率之积-14.(1)求点P 的轨迹E 的方程;(2)设点C 为x 轴上(不同于A ,B )一定点, 若过点P 的动直线与E 的交点为Q , 直线PQ 与直线x =-2和直线x =2分别交于M ,N 两点,当∠ACM =∠ACN 时,请比较∠ACP 与∠ACQ 大小并说明理由.15(2023届广东省佛山市南海区三水区高三上学期8月摸底)在平面直角坐标系中,O为坐标原点,抛物线Γ:x2=2py(p>0)的焦点为F,抛物线Γ上不同两点M,N同时满足下列三个条件中的两个:①|FM|+|FN|=|MN|;②|OM|=|ON|=|MN|=86;③直线MN的方程为y=6p.(1)请分析说明两点M,N满足的是哪两个条件?并求抛物线Γ的标准方程;(2)过抛物线Γ的焦点F的两条倾斜角互补的直线AB和CD交抛物线Γ于A,B,C,D,且A,C两点在直线BD的下方,求证:直线AD,BC的倾斜角互补并求直线AD,BC的交点坐标.圆锥曲线中的探索性问题与不良结构问题考情分析圆锥曲线中的探索性问题与不良结构问题是近年高考的热点,探索性问题通常为探索是否存在符合的点、直线或结果是否为定值,求解时一般是先假设结论存在,再进行推导,有时也会出现探索曲线位置关系的试题,结构不良问题时,兼顾开放性与公平性,形式不固化,问题条件或数据缺失或冗余、问题目标界定不明确、具有多种评价解决方法的标准等特征,选择不同的条件,解题的难度是有所不同的,能较好地考查学生分析问题解决问题的能力.解题秘籍(一)解决探索性问题与不良结构问题的注意事项及方法1.解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.2.存在性问题的求解方法(1)存在性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解存在性问题常用的方法.3.结构不良问题的主要特征有:①问题条件或数据部分缺失或冗余;②问题目标界定不明确;③具有多种解决方法、途径;④具有多种评价解决方法的标准;⑤所涉及的概念、规则和原理等不确定.1(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C :x 2a 2-y 2b2=1经过点2,-3 ,两条渐近线的夹角为60°,直线l 交双曲线于A ,B 两点.(1)求双曲线C 的方程.(2)若动直线l 经过双曲线的右焦点F 2,是否存在x 轴上的定点M m ,0 ,使得以线段AB 为直径的圆恒过M 点?若存在,求实数m 的值;若不存在,请说明理由.【解析】(1)∵两条渐近线的夹角为60°,∴渐近线的斜率±b a =±3或±33,即b =3a 或b =33a ;当b =3a 时,由4a 2-9b2=1得:a 2=1,b 2=3,∴双曲线C 的方程为:x 2-y 23=1;当b =33a 时,方程4a 2-9b2=1无解;综上所述:∴双曲线C 的方程为:x 2-y 23=1.(2)由题意得:F 22,0 ,假设存在定点M m ,0 满足题意,则MA ⋅MB=0恒成立;方法一:①当直线l 斜率存在时,设l :y =k x -2 ,A x 1,y 1 ,B x 2,y 2 ,由y =k x -2x 2-y 23=1得:3-k 2x 2+4k 2x -4k 2+3 =0,∴3-k 2≠0Δ=361+k 2 >0 ,∴x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+k 2x 1x 2-2x 1+x 2 +4 =1+k 2 x 1x 2-2k 2+m x 1+x 2 +m 2+4k 2=4k 2+3 1+k 2k 2-3-4k 22k 2+mk 2-3+m 2+4k 2=0,∴4k 2+3 1+k 2 -4k 22k 2+m +m 2+4k 2 k 2-3 =0,整理可得:k 2m 2-4m -5 +3-3m 2 =0,由m 2-4m -5=03-3m 2=0得:m =-1;∴当m =-1时,MA ⋅MB=0恒成立;②当直线l 斜率不存在时,l :x =2,则A 2,3 ,B 2,-3 ,当M -1,0 时,MA =3,3 ,MB =3,-3 ,∴MA ⋅MB=0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.方法二:①当直线l 斜率为0时,l :y =0,则A -1,0 ,B 1,0 ,∵M m ,0 ,∴MA =-1-m ,0 ,MB=1-m ,0 ,∴MA ⋅MB=m 2-1=0,解得:m =±1;②当直线l 斜率不为0时,设l :x =ty +2,A x 1,y 1 ,B x 2,y 2 ,由x =ty +2x 2-y 23=1得:3t 2-1 y 2+12ty +9=0,∴3t 2-1≠0Δ=123t 2+3 >0 ,∴y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+y 1y 2=ty 1+2 ty 2+2 -m ty 1+2+ty 2+2 +m 2+y 1y 2=t 2+1 y 1y 2+2t -mt y 1+y 2 +4-4m +m 2=9t 2+1 3t 2-1-12t 2t -mt 3t 2-1+4-4m +m 2=12m -15 t 2+93t 2-1+2-m 2=0;当12m -153=9-1,即m =-1时,MA ⋅MB =0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.2(2023届云南省师范大学附属中学高三上学期月考)已知双曲线C :x 2a 2-y 2b2=1(b >a >0)的右焦点为F c ,0 ,从①虚轴长为23;②离心率为2;③双曲线C 的两条渐近线夹角为60°中选取两个作为条件,求解下面的问题.(1)求C 的方程;(2)过点F 的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,O 为坐标原点,记△AOB ,△FOB 面积分别为S 1,S 2,若S1S 2=3+1,求直线l 的方程.(注:若选择不同的组合分别解答,则按第一个解答计分.)【解析】(1)若选①②,可知c 2=a 2+b 2,ca =2,2b =23,解得a =1,b =3,c =2,∴C 的方程为x 2-y 23=1.若选①③,因为b >a ,∴b a=3,2b =23, ∴a =1,b =3,∴C 的方程为x 2-y 23=1.若选②③,设递增的渐近线的倾斜角为θ,可知c a =2,θ=60°,a 2+b 2=c 2 则c a =2,ba =tan θ=tan60°,a 2+b 2=c 2此时无法确定a ,b ,c(2)F (2,0),由题意知,直线l 斜率不为0,∴设直线l :x =ty +2.由x =ty +2,x 2-y23=1, 得(3t 2-1)y 2+12ty +9=0,设A (x 1,y 1),B (x 2,y 2),|y 1|>|y 2|,则可知3t 2-1≠0且Δ>0恒成立,y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,∵y 1y 2>0,∴t <-33或t >33.∵S △AOB S △BOF =S △AOF -S △BOF S △BOF =S △AOF S △BOF -1=|y 1||y 2|-1=3+1,∴y 1y 2=2+3.由(y 1+y 2)2-2y 1y 2y 1y 2=10t 2+23t 2-1,得y 1y 2+y 2y 1=10t 2+23t 2-1,∴10t 2+23t 2-1=4,∴t =±3,满足t <-33或t >33.∴直线l 的方程为y =33x -233或y =-33x +233.(二)是否存在型探索性问题求解此类问题一般是先假设存在,再根据假设看看能否推导出符合条件的结论.3(2022届天津市南开中学2高三上学期检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,且F 2也是抛物线E :y 2=4x 的焦点,P 为椭圆C 与抛物线E 在第一象限的交点,且PF 2 =53.(1)求椭圆C 的方程;(2)若直线y =k x -1 与椭圆C 交于R ,S 两点,问是否在x 轴上存在一点T ,使得当k 变动时,总有∠OTS =∠OTR ?说明理由.【解析】(1)∵F 2也是抛物线E :y 2=4x 的焦点,∴F 21,0 ,∴c =1,且抛物线的准线方程为x =-1,设点P x 0,y 0 ,∵PF 2 =53,∴x 0+1=53,∴x 0=23,∴y 0=223=263,∴49a 2+83b2=1,∵a 2-b 2=c 2=1,解得a 2=4,b 2=3,∴椭圆方程为x 24+y 23=1;(2)假设存在T t ,0 满足∠OTS =∠OTR .设R x 1,y 1 ,S x 2,y 2 ,联立y =k x -13x 2+4y 2=12,消y 整理得3+4k 2 x 2-8k 2x +4k 2-12=0,由韦达定理有x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2①,其中△>0恒成立,由∠OTS =∠OTR (显然TS ,TR 的斜率存在),故k TS +k TR =0,即y 1x 1-t +y 2x 2-t =0②,由R ,S 两点在直线y =k x -1 上,故y 1=k x 1-1 ,y 2=k x 2-1 ,代入②整理有2x 1x 2-t +1 x 1+x 2 +2t =0③,将①代入③即有:6t -243+4k 2=0④,要使得④与k 的取值无关,当且仅当“t =4“时成立,综上所述存在T 4,0 ,使得当k 变化时,总有∠OTS =∠OTR .(三)探索直线是否过定点求出此类问题一般是设出直线的斜截式方程y =kx +t ,然后根据已知条件确定k ,t 的关系式,再判断直线是否过定点.4(2022届北京市房山区高三上学期期末)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为32,A ,B 分别为椭圆E 的上、下顶点,且AB =2.(1)求椭圆E 的标准方程;(2)设直线l 与椭圆E 交于M ,N (不与点A ,B 重合)两点,若直线AM 与直线AN 的斜率之和为2,判断直线l 是否经过定点?若是,求出定点的坐标;若不是,说明理由.【解析】(1)由离心率为32,可得c a =32因为A ,B 为椭圆的上、下顶点,且AB =2,所以2b =2即b =1 , 又a 2=b 2+c 2解得:a =2所以椭圆E 的标准方程为x 24+y 2=1(2)直线l 经过定点-1,-1 ,证明如下:①当直线l 的斜率存在时,设l :y =kx +t ,(t ≠±1),由y =kx +t x 24+y 2=1,得(1+4k 2)x 2+8ktx +4t 2-4=0, 则Δ=(8kt )2-4(1+4k 2)(4t 2-4)>0得:t 2<4k 2+1设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2, 则k AM +k AN =y 1-1x 1+y 2-1x 2=2kx 1x 2+(t -1)(x 1+x 2)x 1x 2=8k (t -1)4(t +1)(t -1)=2所以t =k -1,经检验,可满足t 2<4k 2+1,所以直线l 的方程为y =kx +k -1,即y =k x +1 -1所以直线l 经过定点-1,-1 .②当直线l 的斜率不存在时,设l :x =m ,M (m ,y M ),N (m ,-y M ),则k AM +k AN =y M -1m +-y M -1m=2解得m =-1,此时直线l 也经过定点-1,-1 综上直线l 经过定点(-1,-1).(四)探索结果是否为定值此类问题一般是把所给式子用点的坐标或其他参数表示,再结合韦达定理或已知条件进行化简,判断化简的结果是否为定值.5(2022届云南省三校高三联考)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)过点A a 3,a 3 ,B 2,32 .(1)求椭圆E 的方程;(2)点Q x 0,y 0 是单位圆x 2+y 2=1上的任意一点,设P ,M ,N 是椭圆E 上异于顶点的三点且满足OP=x 0OM +y 0ON .探讨OM 2+ON 2是否为定值?若是定值,求出该定值,若不是定值,请说明理由.【解析】(1)因为点A a 3,a 3,B 2,32在椭圆上,所以2a 2+34b 2=1a 29a 2+a 29b2=1,解得b 2=1,a 2=8,所以椭圆方程为x 28+y 2=1.(2)令M x 1,y 1 ,N x 2,y 2 ,则P x 0x 1+y 0x 2,x 0y 1+y 0y 2 ,所以x 0x 1+y 0x 228+x 0y 1+y 0y 2 2=1,即x 218+y 21 x 20+x 228+y 22y 20+2x 0y 0x 1x 28+2x 0y 0y 1y 2 =1.又x 218+y 21=1,x 228+y 22=1,x 20+y 20=1,所以2x 0y 0x 1x 28+2x 0y 0y 1y 2=0,即y 1y 2x 1x 2=-18,所以y 1y 2 2=-18x 1x 2 2=18x 21⋅18x 22=1-y 21 1-y 22 =1-y 21+y 22 +y 21⋅y 22,即y 21+y 22=1,又x 218+y 21=1,x 228+y 22=1,所以x 12+x 22=8,所以OM 2+ON 2=x 21+x 22+y 21+y 22=9,故OM 2+ON2为定值9.6(2022届天津市耀华中学高三上学期月考)已知O 为坐标原点,双曲线C 1:y 2a 21-x 2b 21=1a 1>0,b 1>0 和椭圆C 2:x 2a 22+y 2b 22=1a 2>b 2>0 均过点T 1,233 且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA +OB |=|AB|?证明你的结论;(3)椭圆C 2的右顶点为Q ,过椭圆C 2右焦点的直线l 1与C 2交于M 、N 两点,M 关于x 轴的对称点为S ,直线SN 与x 轴交于点P ,△MOQ ,△MPQ 的面积分别为S 1,S 2,问S1S 2是否为定值?若是,求出该定值;若不是,请说明理由.【解析】(1)根据题意:43a 21-1b 21=1,1a 22+43b 22=1,以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形,边长为2故a 1=1,c 2=1,故a 22=b 22+1,代入计算得到b 1=3,a 2=3,b 2=2,故C 1:y 2-x 23=1,C 2:x 23+y 22=1.(2)假设存在直线方程满足条件,当直线斜率不存在时,x =3或x =-3,代入计算得到y =±2,验证不成立;当直线斜率存在时,设直线方程为y =kx +b ,则y =kx +bx 23+y 22=1,即2+3k 2 x 2+6kbx +3b 2-6=0,Δ=36k 2b 2-43b 2-6 2+3k 2 =0,化简得到b 2=3k 2+2.设A x 1,y 1 ,B x 2,y 2 ,y =kx +by 2-x 23=1 ,故3k 2-1 x 2+6kbx +3b 2-3=0,故x 1+x 2=-6kb3k 2-1x 1x 2=3b 2-33k 2-1,OA +OB =AB =-OA +OB ,故OA ⊥OB ,即x 1x 2+y 1y 2=x 1x 2+kx 1+b kx 2+b =0,即k 2+1 x 1x 2+kb x 1+x 2 +b 2=0,即k 2+1 3b 2-33k 2-1-6k 2b 23k 2-1+b 2=0,化简得到2b 2=3k 2+3,b 2=3k 2+22b 2=3k 2+3 方程组无解,假设不成立.故不存在直线满足条件.(3)焦点坐标为1,0 ,易知直线方程斜率不为零,设直线方程为x =my +1,M x 1,y 1 ,N x 2,y 2 ,则S x 2,-y 2 ,x =my +1x 23+y 22=1 ,化简得到2m 2+3 y 2+4my -4=0,y 1+y 2=-4m 2m 2+3y 1y 2=-42m 2+3 ,直线NS 方程为:y =y 1+y 2x 1-x 2x -x 1 +y 1,取y =0得到x =x 1y 2+x 2y 1y 1+y 2=my 1+1 y 2+my 2+1 y 1y 1+y 2=2my 1y 2y 1+y 2+1=-2m ⋅42m 2+3-4m 2m 2+3+1=3,S 1S 2=OQ PQ =33-3=3+12,故S 1S 2是定值为3+12.(六)探索直线与圆锥曲线的位置关系探索直线与圆的位置关系一般根据圆心到直线距离与圆的半径的大小进行判断,探索直线与椭圆、双曲线、抛物线的位置关系一般根据判别式.7已知定理:如果二次曲线Ax 2+Cy 2+Dx +Ey +F =0与直线mx +ny +q =0(q ≠0)有两个公共点P 、Q ,O 是坐标原点,则OP ⊥OQ 的充要条件是(A +C )q 2-(mD +nE )q +(m 2+n 2)F =0.(1)试根据上述定理,写出直线l :x +2y -3=0与圆C :x 2+y 2+x -6y +c =0相交于P ,Q ,坐标原点为O ,且OP ⊥OQ 的充要条件,并求c 的值;(2)若椭圆x 2a 2+y 2b 2=1与直线mx +ny +q =0相交两点P 、Q ,而且OP ⊥QQ ,试判断直线PQ 与圆x 2+y 2=11a2+1b2的位置关系,并说明理由.【解析】(1)由定理可知OP ⊥OQ 的充要条件为:2×(-3)2-(1-12)×(-3)+(1+4)c =0,即18-33+5c =0,∴c =3.(2)∵椭圆x 2a 2+y 2b 2=1与直线mx +ny +q =0相交两点P 、Q ,∴1a 2+1b 2q 2-(m 2+n 2)=0,即1a 2+1b 2=m 2+n 2q 2.∵圆x 2+y 2=11a 2+1b 2的半径为r =11a2+1b2=q 2m 2+n 2=|q |m 2+n 2,又圆心(0,0)到直线PQ 的距离为d =|q |m 2+n2,∴d =r ,∴直线PQ 与圆x 2+y 2=11a2+1b2相切.(七)探索类比问题此类问题多是椭圆与双曲线的类比8设F 1、F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的左、右两个焦点.(1)若椭圆C 上的点A 1,32到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程;(2)设K 是(1)中所得椭圆上的动点,求线段F 1K 的中点的轨迹方程;(3)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线x 2a 2-y 2b 2=1写出具有类似特性的性质,并加以证明.【解析】(1)点A 1,32 在椭圆C 上,且到F 1、F 2两点的距离之和等于4,则12a2+322b 2=1,2a =4,解得a=2,b 2=3,椭圆C 的方程为x 24+y 23=1;(2)c =a 2-b 2=1,则有F 1-1,0 ,设K m ,n ,线段F 1K 的中点为x ,y ,则有x =m -12y =n2⇒m=2x+1 n=2y,又K是椭圆上的动点,则有m24+n23=1,即2x+124+2y23=1,即x+122+4y23=1.故线段F1K的中点的轨迹方程为x+1 22+4y23=1(3)类似特性的性质为:若M、N是双曲线x2a2-y2b2=1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM、PN的斜率都存在,并记为k PM、k PN时,那么k PM与k PN之积是与点P位置无关的定值.证明:设P x0,y0,M s,t,N-s,-t,则s2a2-t2b2=1,k PM=y0-tx0-s,k PN=y0+tx0+s,k PM⋅k PN=y0-tx0-s⋅y0+tx0+s=y02-t2 x02-s2,又y2=b2a2x2-b2,则k PM⋅k PN=b2a2x02-b2-b2a2s2-b2x02-s2=b2a2x02-s2x02-s2=b2a2(八)不良结构问题近年不良结构问题,通常是要求学生从备选条件中选择部分条件解题,选择不同的条件,所用知识可能不同,难易程度也可能不同.9在①PF=x0+1,②y0=2x0=2,③PF⊥x轴时,PF=2这三个条件中任选一个,补充在下面的横线上,并解答.问题:已知抛物线C:y2=2px p>0的焦点为F,点P x0,y0在抛物线C上,且.(1)求抛物线C的标准方程;(2)若直线l:x-y-2=0与抛物线C交于A,B两点,求△ABF的面积.【解析】(1)解:选择条件①,由抛物线的定义可得PF=x0+p 2,因为PF=x0+1,所以x0+p2=x0+1,解得p=2,故抛物线C的标准方程为y2=4x.选择条件②,因为y0=2x0=2,所以y0=2,x0=1,因为点P(x0,y0)在抛物线C上,所以y20=2px0,即2p=4,解得p=2,所以抛物线C的标准方程为y2=4x.选择条件③.当PF⊥x轴时,PF=p2+p2=2,所以p=2.故抛物线C的标准方程为y2=4x.(2)解:设A x1,y1,B x2,y2,由(1)知F1,0.由x-y-2=0y2=4x,得y2-4y-8=0,则y1+y2=4,y1y2=-8,所以y 1-y 2 =y 1+y 22-4y 1y 2=16+32=43,故AB =1+112y 1-y 2 =2×43=46.因为点F 到直线l 的距离d =1-2 1+1=22,所以△ABF 的面积为12AB ⋅d =12×46×22=23.三、跟踪检测1(2023届广东省佛山市顺德区高三上学期教学质量检测)已知动圆C 经过点F 1,0 ,且与直线x =-1相切,记动圆C 圆心的轨迹为E .(1)求E 的方程;(2)已知P 4,y 0 y 0>0 是曲线E 上一点,A ,B 是曲线E 上异于点P 的两个动点,设直线PA 、PB 的倾斜角分别为α、β,且α+β=3π4,请问:直线AB 是否经过定点?若是,请求出该定点,若不是,请说明理由.【解析】(1)设动圆圆心M x ,y ,∵动圆C 经过点F 1,0 ,且与直线x =-1相切,∴点M 的轨迹是以1,0 为焦点,直线x =-1为准线的抛物线,故其方程为y 2=4x ,∴动圆圆心C 的轨迹方程是y 2=4x ;(2)由(1)可得P 4,4 ,当直线PA 、PB 中其中一条的斜率不存在,不妨设α=π2,β=π4,易得A 4,-4 ,直线PB 的直线为y =x ,与y 2=4x 联立可得B 0,0 ,故直线AB 的方程为x +y =0;当直线PA 、PB 的斜率都存在时,故设直线PA 、PB 的斜率k 1,k 2,设A y 124,y 1 ,B y 224,y2所以k 1=y 1-414y 21-4=4y 1+4,同理可得k 2=4y 2+4,因为α+β=3π4,所以tan (α+β)=-1,所以tan α+tan β1-tan α⋅tan β=-1,即k 1+k 21-k 1⋅k 2=-1,所以k 1+k 2-k 1⋅k 2+1=0,所以4y 1+4+4y 2+4-4y 1+4⋅4y 2+4+1=0,即8y 1+y 2 +y 1⋅y 2+32=0,由题意可设AB 方程为x =ty +n ,联立y 2=4x x =ty +n ,消x 整理得y 2-4ty -4n =0,所以Δ=16t 2+16n >0,y 1+y 2=4t ,y 1⋅y 2=-4n ,所以32t -4n +32=0即n =8t +8,所以x =ty +n =ty +8t +8=t (y +8)+8,令y +8=0得y =-8,x =8,此时有定点8,-8 ,综上所述,直线AB 经过定点8,-82(2023届江苏省泰州市泰兴市高三上学期期中)已知圆O :x 2+y 2=16,点A (6,0),点B 为圆O 上的动点,线段AB 的中点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设T (2,0),过点T 作与x 轴不重合的直线l 交曲线C 于E 、F 两点.(i )过点T 作与直线l 垂直的直线m 交曲线C 于G 、H 两点,求四边形EGFH 面积的最大值;(ii )设曲线C 与x 轴交于P 、Q 两点,直线PE 与直线QF 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.【解析】(1)设M x ,y ,B x 0,y 0 ,因为点B 在圆O 上,所以x 20+y 20=16①,因为M 为AB 中点,所以x =6+x 02y =y 02,整理得x 0=2x -6y 0=2y,代入①式中得2x -6 2+4y 2=16,整理得x -3 2+y 2=4,所以曲线C 的方程为x -3 2+y 2=4.(2)(i )因为直线l 不与x 轴重合,所以设直线l 的方程为x =my +2,即x -my -2=0,则直线GH 为mx +y -2m =0,设曲线C 的圆心到直线l 和直线GH 的距离分别为d 1,d 2,则d 1=11+m 2,d 2=m m 2+1,所以EF =24-11+m 2=24m 2-3m 2+1,GH =24-m 2m 2+1=23m 2+4m 2+1,所以S EGFH =12×24m 2+3m 2+1×23m 2+4m 2+1=212+m 2m 4+2m 2+1,当m =0时,S EGFH =43;当m ≠0时,S EGFH =212+1m 2+2+1m2≤212+12+2m 2⋅1m2=7,当且仅当m 2=1时等号成立,综上所述,四边形EGFH 面积的最大值为7.(ii )设E x 1,y 1 ,F x 2,y 2 ,联立x =my +2x -3 2+y 2=4,得m 2+1 y 2-2my -3=0,则y 1+y 2=2m m 2+1,y 1y 2=-3m 2+1,y 1y 2=-32m y 1+y 2 ,因为曲线C 与x 轴交于P ,Q 两点,所以P 1,0 ,Q 5,0 ,则直线PE 的方程为y =y 1x 1-1x -1 =y 1my 1+1x -1 ,直线QF 的方程为y =y 2x 2-5x -5 =y 2my 2-3x -5 ,联立两直线方程得x =4my 1y 2+3y 1+5y 23y 1+y 2=-6y 1-6y 2+3y 1+5y 23y 1+y 2=-3y 1-y 23y 1+y 2=-1,y =4y 1y 23y 1+y 2,所以N -1,4y 1y 23y 1+y 2,所以N 在定直线x =-1上.3(2023届上海师范大学附属嘉定高级中学高三上学期期中)己知双曲线C :x 2-y 2=1,过点T (t ,0)作直线l 和曲线C 交于A ,B 两点.(1)求双曲线C 的焦点和它的渐近线;(2)若t =0,点A 在第一象限,AH ⊥x 轴,垂足为H ,连结BH ,求直线BH 斜率的取值范围;(3)过点T 作另一条直线m ,m 和曲线C 交于E ,F 两点.问是否存在实数t ,使得AB ⋅EF =0和AB=EF同时成立.如果存在,求出满足条件的实数t 的取值集合;如果不存在,请说明理由.【解析】(1)解:由曲线C :x 2-y 2=1,可得曲线C 的焦点为F 1(-2,0),F 2(2,0),渐近线方程y =±x ;(2)解:设l :y =kx ,A x 1,y 1 ,B -x 1,-y 1 ,H x 1,0 ,因为双曲线的渐近线为y =±x ,且点A 在第一象限,所以0<k <1,。

第27讲 探索性问题(解析版)圆锥曲线综合讲义

第27讲 探索性问题(解析版)圆锥曲线综合讲义

第27讲 探索性问题一、解答题1.已知21,F F 分别为椭圆C :(0>>b a )的左、右焦点, 且离心率为22,点椭圆C 上(1)求椭圆C 的方程;(2)是否存在斜率为k 的直线与椭圆C 交于不同的两点N M ,,使直线与的倾斜角互补,且直线l 是否恒过定点,若存在,求出该定点的坐标;若不存在,说明理由.【答案】(1)2212x y +=;(2)过定点()0,2 【解析】试题分析:(1)设椭圆的方程,用待定系数法求出22,b a 的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式∇:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)由题意得22=a c ,123222222=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-b a ,222c b a +=,联立得1,1,2222===c b a 椭圆方程为2212x y += 6分 (2)由题意,知直线MN 存在斜率,其方程为由消去△=(4km )2—4(2k 2+1)(2m 2—2)>0设则8分22221x y a b +=)23,22(-A l M F 2N F 2又由已知直线M F 2与N F 2的倾斜角互补, 得化简,得整理得10分直线MN 的方程为,因此直线MN 过定点,该定点的坐标为(2,0) 12分 考点:1、椭圆的标准方程;2、直线与椭圆的综合应用.2.椭圆上顶点为M ,O 为椭圆中心,F 为椭圆的右焦点,且焦距为2,离心率为2. (1)求椭圆的标准方程;(2)直线l 交椭圆于P ,Q 两点,判断是否存在直线l ,使点F 恰为PQM ∆的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)2212x y +=(2)存在,43y x =-【分析】(1)根据椭圆的焦距为2,离心率为2,解得:22a =,21b =,故椭圆的标准方程为2212x y +=;(2)设直线PQ 的方程为y x m =+,代入到2212xy +=得2234220x mx m ++-=,设1(P x ,1)y ,2(Q x ,2)y ,由韦达定理得:1243x x m +=-,212223m x x -=,因为PF MQ ⊥,1(1PF x -,1)y -,2(MQ x =,21)y -可得:2121120x x x y y y -+-=代入整理可得2340m m +-=,解得:43m =-,即可求出直线方程.【详解】(1)设椭圆的标准方程为22221x y a b+=,(0)a b >>,焦距为2c ,故221c c =⇒=又2c e a ==,222a b c =+,22a ∴=,21b =. 故椭圆的标准方程为2212x y +=.(2)设1(P x ,1)y ,2(Q x ,2)y ,F 为PQM ∆的垂心,, MF PQ MP FQ ∴⊥⊥. (0,1)M ,(1,0)F ,21212(1)()20m x x x x m m -+-+-=,1MF k ∴=-,1PQ k ∴=,设直线PQ 的方程为y x m =+,代入到2212xy +=得2234220x mx m ++-=,∴22(4)12(22)0m m ∆=-->,解得m <<1m ≠1243x x m ∴+=-,212223m x x -=,PF MQ ⊥,1(1PF x =-,1)y -,2(MQ x =,21)y -2121120x x x y y y ∴-+-=,即21212(1)()20m x x x x m m -+-+-= 由根与系数的关系,得2340m m +-=. 解得43m =-或1m =(舍去). 故存在直线l ,使点F 恰为PQM ∆的垂心,且直线l 的方程为43y x =- 【点睛】本题考查了椭圆的标准方程,考查了直线和椭圆的关系,常用方法为:设而不求利用韦达定理求出根与系数关系,结合条件即可得解.要求较高的计算能力,属于难题. 3.已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (Ⅰ)求椭圆C 的标准方程;(Ⅰ)是否存在与椭圆C 交于,A B 两点的直线l :()y kx m k R =+∈,使得22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.【答案】(Ⅰ)22143x y +=,(Ⅰ)(,)-∞⋃+∞. 【解析】试题分析:(1)由已知条件可推得1,12c e a c a ==-=,由此能求出椭圆的标准方程;(2)存在直线l 使得22OA OB OA OB +=-成立,直线方程与椭圆的方程联立,由此利用根的判别式和韦达定理结合已知条件,得出2271212m k =+,即可求解实数m 的取值范围.试题解析:(1)设椭圆C 的方程为22221x y a b+=(0a b >>),半焦距为c .依题意12c e a ==,由右焦点到右顶点的距离为1,得1a c -=.解得1c =,2a =.所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=.(2)解:存在直线l ,使得22OA OB OA OB +=-成立.理由如下:由22{143y kx mx y =++=得()2223484120k xkmx m +++-=.()()()22284344120km k m ∆=-+->,化简得2234k m +>.设()11,x y A ,()22,x y B ,则122834km x x k +=-+,212241234m x x k-=+. 若22OA OB OA OB +=-成立,即2222OA +OB =OA -OB ,等价于0OA⋅OB =. 所以.()()12120x x kx m kx m +++=,()()22121210k x x km x x m ++++=,()222224128103434m km k km m k k-+⋅-⋅+=++, 化简得,2271212m k =+.将227112k m =-代入2234k m +>中,22734112m m ⎛⎫+-> ⎪⎝⎭,解得,234m >.又由227121212m k =+≥,2127m ≥,从而2127m ≥,m ≥m ≤所以实数m 的取值范围是,⎛⎫-∞⋃+∞ ⎪⎝⎭. 考点:椭圆的标准方程;直线与椭圆的位置的应用.【方法点晴】本题主要考查了椭圆标准方程的求解、直线与椭圆位置关系的应用,其中解答中涉及到椭圆的几何性质、不等式求范围问题,此类问题的解答中,把直线的方程与圆锥曲线方程联立,利用方程的根与系数的关系,以及韦达定理结合题目的条件进行合理运算是解答的关键,着重考查了学生推理与运算能力,同时注意试题中的隐含条件,做到合理加以运用,属于中档试题. 4.已知为椭圆C 的左、右焦点,且点在椭圆C 上.(1)求椭圆C 的方程; (2)过的直线交椭圆C 于A ,B 两点,则的内切圆的面积是否存在最大值?若存在,求其最大值及此时的直线方程;若不存在,请说明理由. 【答案】(1);(2).【解析】试题分析:(1)设椭圆的方程为,由,利用已知条件能求出,由此能求出椭圆的方程;(2)设直线,由,得,利用韦达定理推导出.当不存在时圆面积最大,此时直线方程为.试题解析:(1)由已知,可设椭圆的方程为.因为,所以.所以椭圆的方程为.(2)当直线斜率存在时,设直线的方程为,由得.设,则,所以.设内切圆半径为,因为的周长为(定值),,所以当的面积最大时,内切圆面积最大.又,令,则,所以,又当k不存在时,,此时,故当k不存在时内切圆面积最大,,此时直线方程为.考点:(1)椭圆的标准方程;(2)直线与椭圆的综合.【方法点晴】本题考查椭圆方程的求法,根据椭圆的定义设出椭圆的标准方程,得解;考查三角形内切圆面积是否存在最大值的判断,用到不太常用的三角形内切圆半径公式:,故可得当三角形周长固定时,三角形面积越大内切圆面积越大,解题时要认真审题,注意韦达定理和分类讨论思想的合理运用,计算难度较大,属于难题.5.(本小题共13分)在平面直角坐标系xOy 中,已知圆x 2+y 2−12x +32=0的圆心为Q ,过点P(0,2)且斜率为k 的直线l 与圆Q 相交于不同的两点A ,B . (Ⅰ)求圆Q 的面积; (Ⅰ)求k 的取值范围;(Ⅰ)是否存在常数k ,使得向量OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ 与PQ ⃗⃗⃗⃗⃗ 共线?如果存在,求k 的值;如果不存在,请说 明理由.【答案】(1)4π. (2)(−34,0)(3)没有符合题意的常数k 【解析】解:(Ⅰ)圆的方程可化为(x −6)2+y 2=4,可得圆心为Q(6,0),半径为2, 故圆的面积为4π. ---------------------3分 (Ⅰ)设直线l 的方程为y =kx +2. 法一:将直线方程代入圆方程得x 2+(kx +2)2−12x +32=0, 整理得(1+k 2)x 2+4(k −3)x +36=0. ① ---------------------4分 直线与圆交于两个不同的点A ,B 等价于Δ=[4(k −3)]2−4×36(1+k 2)=42(−8k 2−6k)>0, ---------------------6分 解得−34<k <0,即k 的取值范围为(−34,0). ---------------------8分法二:直线l 与圆(x −6)2+y 2=4交于两个不同的点A ,B 等价于√k 2+1<2---------------------5分化简得(−8k 2−6k)>0,解得−34<k <0,即k 的取值范围为(−34,0). ---------------------8分(Ⅰ)设A(x 1,y 1),B(x 2,y 2),则OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =(x 1+x 2,y 1+y 2),由方程①, x 1+x 2=−4(k−3)1+k ②又y 1+y 2=k(x 1+x 2)+4. ③ ---------------------10分而P(0,2),Q(6,0),PQ ⃗⃗⃗⃗⃗ =(6,−2). 所以OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ 与PQ ⃗⃗⃗⃗⃗ 共线等价于−2(x 1+x 2)=6(y 1+y 2)---------------------11分 将②③代入上式,解得k =−34. ---------------------12分6.已知椭圆的中心在坐标原点,焦点在轴上,长轴长为23,离心率为33,经过其左焦点1F的直线l 交椭圆C于,P Q两点(I)求椭圆C的方程;(II)在x轴上是否存在一点M,使得MP MQ⋅恒为常数?若存在,求出M点的坐标和这个常数;若不存在,说明理由.【答案】(I)22132x y+=;(II)见详解.【分析】(I)根据cea=,222a b c=+和已知即可求解;(II)联立直线与椭圆方程,消去y根据韦达定理代入数量积即可求解.【详解】(I)设椭圆的方程为22221(0)x ya ba b+=>>,由题意,得2aca⎧=⎪⎨=⎪⎩,解得1ac⎧=⎪⎨=⎪⎩22a=所求的椭圆方程为22132x y+=.(II)由(I)知1(1,0)F-. 假设在轴上存在一点(,0)M t,使得MP MQ⋅恒为常数,①当直线l与x轴不垂直时,设其方程为(1)y k x=+,()11,P x y、()22,Q x y.由22(1)132y k xx y=+⎧⎪⎨+=⎪⎩得()()2222236360k x k x k+++-=,所以2122623xx xk+=-+,21223623kx xk-=+()()()()()()21212122211MP MQ x t x t y y x t x t k x x⋅=--+=--+++()()()222222221k x x k txx k t =++-+++()()()222222222221366(61)6232323k k kt k t k k t t k k k+-----=-++=++++()2222211616223441333223323t k r t t t t k t ⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭=+=+--++. 因为MP MQ ⋅是与k 无关的常数,从而有16403t +=,即73t =- 此时119MP MQ ⋅=-②当直线l 与x 轴垂直时,此时点,P Q的坐标分别为,1,⎛⎛-- ⎝⎭⎝⎭,当43t =-时,亦有119MP MQ ⋅=- 综上,在x 轴上存在定点4,03M ⎛⎫- ⎪⎝⎭,使得MP MQ ⋅恒为常数,且这个常数为119-.【点睛】本题考查椭圆方程及椭圆与直线的应用.此题的难点是计算. 7.已知中心在坐标原点O 的椭圆C 经过点A12),且点F0)为其右焦点. (1)求椭圆C 的方程;(2)是否存在直线l 与椭圆C 交于B ,D 两点,满足22·5OB OD =,且原点到直线l 在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)2214x y +=(2)不存在【分析】(1)根据焦点及椭圆定义,即可求得参数c 与a ,从而求得椭圆的方程.(2)根据点到直线距离,可得m 与k 的等量关系式;联立方程,由判别式可得k 的取值范围,进而结合向量的数量积求得斜率,判断是否存在. 【详解】(1)设椭圆C 的方程为()222210x y a b a b+=>>,则左焦点为()F ',在直角三角形AFF '中,可求72AF '=,∴242a AF AF a '=+=⇒=, 故椭圆C 的方程为2214x y +=.(2)假设存在符合题意的直线l ,其方程为y kx m =+,由原点到l()2231m k ==+.联立方程2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得()()222148410k x kmx m +++-=.则122814mk x x k -+=+,()21224114m x x k -=+,()2216202k k ∆=->⇒>. 设()11,B x y ,()22,D x y ,则()()()222121212122111221145k OB OD x x y y k x x mk x x m k +⋅=+=++++==+,解得()212,k =∉+∞.当斜率不存在时,l的方程为x =112245OB OD ⋅=≠. 综上,不存在符合条件的直线. … 【点睛】本题考查了圆锥曲线的综合应用,直线与椭圆的关系,是高考的常考点,属于难题.8.(本小题12分)已知如图,圆8)2(:22=++y x N 和抛物线x y C 2:2=,圆的切线l 与抛物线C 交于不同的点A ,B .(1)当直线l 的斜率为1时,求线段AB 的长;(2)设点M 和点N 关于直线x y =对称,问是否存在圆的切线a my x l +=:使得MA MB ⊥?若存在,求出直线l 的方程;若不存在,请说明理由. 【答案】(1)102=AB ;(2)存在,2+-=x y . 【解析】试题分析:(1)圆N 的圆心坐标为)0,2(-,半径22=r ,设),(11y x A ,),(22y x B ,设l 的方程,利用直线l 是圆N 的切线,求得m 的值,从而可得直线l 的方程,与抛物线方程联立,利用韦达定理,即可计算弦长||AB ;(2)利用直线l 是圆N 的切线,可得a ,m 满足的一个方程,将直线l 的方程与抛物线方程联立,利用MA MB ⊥,可得a ,m 满足的另一个方程,联立方程组可求得a ,m 的值,从而得到满足题设的直线l .试题解析:∵圆N :8)2(:22=++y x N ,∴圆心坐标为)0,2(-,半径22=r ,(1)当直线l 的斜率为1时,设l 的方程为m x y +=,即0=+-m y x ,∵直线l 是圆N 的切线,∴222|2|=+-m ,解得2-=m 或6=m (舍),此时直线l 的方程为2-=x y ,由⎩⎨⎧=-=xy x y 222,消去x 得0422=--y y ,∴0>∆,设),(11y x A ,),(22y x B ,则221=+y y ,421-=y y ,得204)()(21221221=-+=-y y y y y y ,∴弦长102||11||212=-⋅+=y y kAB ;(2)∵直线l 是圆N 的切线,∴221|2|2=+--m a ,得048422=--+m a a ①,由⎩⎨⎧=+=xy amy x 22,消去x 得0222=--a my y ,∴0842>+=∆a m ,即022>+a m ,且m y y 221=+,a y y 221-=,∵点M 和点N 关于直线x y =对称,∴点M 为)2,0(-,∴11(,2)MA x y =+,22(,2)MB x y =+,∵MA MB ⊥,∴1212(2)(2)0MA MB x x y y ⋅=+++=,即04)(2212121=++++y y y y x x ,即04422=++-m a a ②,①+②,得0482222=+-+m m a a , 解得m a 2-=或12-=m a ,当m a 2-=时,代入①解得1-=m ,2=a ,满足条件022>+a m ,当12-=m a 时,代入①得07442=+-m m ,无解,综上所述,存在满足条件的直线l ,其方程为2+-=x y .考点:1.直线与抛物线的位置关系;2.弦长的计算;3.韦达定理的运用. 9.已知曲线22111:()1()44C x y y +-=≥,22:81(1)C x y x =-≥,动直线l 与2C 相交于,A B 两点,曲线2C 在,A B 处的切线相交于点M .(1)当MA MB ⊥时,求证:直线l 恒过定点,并求出定点坐标;(2)若直线l 与1C 相切于点P ,试问:在y 轴上是否存在两个定点12,T T ,当直线12,MT MT 斜率存在时,两直线的斜率之积恒为定值?若存在求出满足条件的点12,T T 的坐标,若不存在,请说明理由. 【答案】(1)17(0,)8;(2)存在两个定点12(0,1),(0,1)T T -恒满足12116MT MT k k =. 【解析】试题分析:(1)设出直线方程:l y kx b =+,联立其与抛物线方程得到,A B 两点坐标的关系,再由导数的几何意义,直线,MA MB 的斜率就是它们分别在,A B 两点处切线的斜率,且1MA MB k k =-,可求得178b =;(2)利用,A B 两点坐标表示出直线MA ,MB 的方程,观察可得直线AB 的方程,利用AB 与圆相切整理即得动点M 的轨迹方程,问题得解.试题解析:(1)依题意,直线l 的斜率存在,设1122:,(,),(,)l y kx b A x y B x y =+,由281y kx b x y =+⎧⎨=-⎩得28810x kx b --+=则1281x x b =-+, 又由218x y +=得1212116444MA MB x x xy k k x x '==⋅=-=-,∴8116b -+=-,∴178b = ∴l 的方程为178y kx =+,恒过定点17(0,)8. (2)设(,)M u v ,直线111:()4x MA y y x x -=-,即111044x x y y --+=又MA 经过(,)M u v ,∴111044x u v y --+=,即∴111044x u y v --+=,同理,∴221044x u y v --+=由此可得切线AB 的方程为∴1044x u y v --+=.由直线AB1=,化简得22116u v -=, 从而动点M 的轨迹方程为22116x y -=,为焦点在y 轴上的双曲线. 取12(0,1),(0,1)T T -,则12222211111616MT MT x y y y k k x x x x +--=⋅===为定值 故存在两个定点12(0,1),(0,1)T T -满足12116MT MT k k =恒为定值.考点:直线与圆、直线与抛物线的位置关系的应用.【方法点晴】本题主要考查了直线与抛物线的位置关系及函数与方程思想的应用,综合性较强,属于难题.解答本题的技巧在于,通过导数的几何意义得到两条切线斜率之间的关系,由直线与抛物线方程构成的方程组得到两切点坐标的关系,二者本质上是统一的,从而得到直线经过的定点;第二问的难点是从第一问出发,写出直线MA ,MB 的方程,观察得到点M 的轨迹,通过双曲线知识得到答案. 10.已知椭圆焦点在x 轴上,下顶点为D(0,-1),且离心率e =√63.经过点M(1,0)的直线L 与椭圆交于A ,B 两点.(Ⅰ)求椭圆的标准方程; (Ⅰ)求|AM|的取值范围.(Ⅰ)在x 轴上是否存在定点P ,使∠MPA=∠MPB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内部资料仅供学习严禁外传违者必究引发成长动力个性化教学辅导教案学生姓名年 级学 科授课老师日 期上课时间课 题圆锥曲线中的探索性问题教学目标1、定值、定点问题;2、定直线问题;3、定圆问题;4、探索性问题复习检查问题定位题型一 定值、定点问题例1 已知椭圆C :经过点(0,),离心率为,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B 两点.(1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,请说明理由.答案解答破题切入点 (1)待定系数法.(2) 通过直线的斜率为参数建立直线方程,代入椭圆方程消y 后可得点A ,B 的横坐标的关系式,然后根据向量关系式.把λ,μ用点A ,B 的横坐标表示出来,只要证明λ+μ的值与直线的斜率k 无关即证明了其为定值,否则就不是定值.1知人善教 激发兴趣 塑造能力题型二 定直线问题2两点.例2 在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x=2py(p>0)相交于A,B Array(1)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;(2)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,请说明理由.答案解答破题切入点 假设符合条件的直线存在,求出弦长;利用变量的系数恒为零求解.解 方法一 (1)依题意,点N的坐标为N(0,-p),可设A(x,y),B(x,y),1122直线AB的方程为y=kx+p,2引发成长动力与x =2py 联立得消去y 得x -2pkx -2p =0.由根与系数的关系得x +x =2pk ,x x =-2p .于是S =S +S=(2)假设满足条件的直线l 存在,其方程为y =a ,AC 的中点为O ′,l 与以AC 为直径的圆相交于点P ,Q ,PQ 的中点为H ,则O ʹH ⊥PQ ,Q ʹ点的坐标为此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为y =,即抛物线的通径所在的直线.方法二 (1)前同方法一,再由弦长公式得22212122△ABN △BCN △ACN 3知人善教 激发兴趣 塑造能力又由点到直线的距离公式得从而S =·d ·|AB|(2)假设满足条件的直线l 存在,其方程为y =a ,则以AC 为直径的圆的方程为(x -0)(x -x )-(y -p )(y -y )=0,将直线方程y =a 代入得x -x x +(a -p )(a -y )=0,则Δ=-4(a -p )(a -y )=4[(a -)y +a (p -a )].设直线l 与以AC 为直径的圆的交点为P (x ,y ),Q (x ,y ),则有|PQ |=|x -x |=令a -=0,得a =,此时|PQ |=p 为定值,故满足条件的直线l 存在,其方程为y =,即抛物线的通径所在的直线.△ABN 1121111334434题型三 定圆问题例3 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为,两个焦点分别为F 和F ,椭圆G 上一点到F 和F 的距离之和为12,圆C :x +y +2kx -4y -21=0(k ∈R )的圆心为点A .(1)求椭圆G 的方程;(2)求△A F F 的面积;(3)问是否存在圆C 包围椭圆G ?请说明理由.1212k 22k k 12k 答案解答破题切入点 (1)根据定义待定系数法求方程.(2)直接求.4引发成长动力总结提高 (1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)由直线方程确定定点,若得到了直线方程的点斜式:y -y =k (x -x ),则直线必过定点(x ,y );若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(3)定直线问题一般都为特殊直线x =x 或y =y 型.(3)关键看长轴两端点.000000原因分析学科分析教学目标教学重点知识类型 ( )陈述性知识 ( )程序性知识 ( )策略性知识必要条件教学起点学习类型( )上位学习 ( )下位学习 ( )并列组合学习学生分析学习动机 ( )内部动机 ( )外部动机感官特点 ( )偏视觉 ( )偏听觉 ( )偏触觉(偏动觉) ( )混合型认知方式( )场依存型 ( )场独立型5知人善教 激发兴趣 塑造能力教学方法 ( )讲授法 ( )练习法 ( )讨论法 ( )演示法 ( )归纳法( )举例法 ( )联系法 ( )实验法 ( )演绎法 ( )_____精准突破步骤教师活动学生活动激活旧知呈现新知指导建构内化新知题型一 定点问题例1 已知椭圆过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足答案解答解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )+(2b )=2(2c ),又a =b +c ,所以a =3.所以椭圆的方程为(2)由题意设P (0,m ),Q (x 0),M (x ,y ),N (x ,y ),设l 方程为x =t (y -m ),∴y -m =-y λ,由题意y ≠0,∴λ=y1(m)-1.同理∵λ+λ=-3,∴y y +m (y +y )=0,①联立得(t +3)y -2mt y +t m -3=0,∴由题意知Δ=4m t -4(t +3)(t m -3)>0,②且有③22222220,11221111112121222222242226引发成长动力思维升华 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.③代入①得t m -3+2m t =0,∴(mt )=1,由题意mt <0,∴mt =-1,满足②,得l 方程为x =ty +1,过定点(1,0),即Q 为定点.22222跟踪训练1、 (2015·四川)如图,椭圆E :的离心率是,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为2.(1)求椭圆E的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.答案解答7知人善教 激发兴趣 塑造能力8题型二 定值问题例2 如图,已知双曲线C :的右焦点为F.点A,B分别在C的两条渐近线上,AF⊥x 轴,AB⊥OB,BF∥OA(O为坐标原点).(1)求双曲线C的方程;(2)过C上一点P(x,y)(y≠0)的直线l :与直线AF相交于点M,与直线x=相交于点N.证000明:当点P在C 上移动时,恒为定值,并求此定值.答案解答思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练2、 如图,在平面直角坐标系xOy中,点F(,0),直线l:x=-,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.(1)求动点Q的轨迹C的方程;(2)设圆M过A(1,0),且圆心M在曲线C上,TS是圆M在y轴上截得的弦,当M运动时,弦长|TS|是否为定值?请说明理由.答案解答解 (1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线.∵点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y =2x (x >0).(2)弦长|TS |为定值.理由如下:取曲线C 上点M (x ,y ),M 到y 轴的距离为d =|x |=x ,圆的半径,则|TS |=,因为点M 在曲线C 上,所以x =,所以|TS |=,是定值.200000题型三 探索性问题例3 (2015·湖北)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1,MN =3,当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C ,以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1) 求曲线C 的方程;(2) 设动直线l 与两定直线l :x -2y =0和l :x +2y =0分别交于P ,Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.12答案解答思维升华 解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.跟踪训练3、已知椭圆E :以抛物线y =8x 的焦点为顶点,且离心率为.(1)求椭圆E 的方程;(2)若直线l :y =kx +m 与椭圆E 相交于A ,B 两点,与直线x =-4相交于Q 点,P 是椭圆E上一点且满足(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得为定值?若存在,求出点T 的坐标及的值;若不存在,请说明理由.2答案解答巩固练习(2014·成都模拟)在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.答案解答已知双曲线方程为,问:是否存在过点M(1,1)的直线l,使得直线与双曲线交于P、Q两点,且M是线段PQ的中点?如果存在,求出直线的方程,如果不存在,请说明理由.答案解答解 显然x=1不满足条件,设l:y-1=k(x-1).联立y-1=k(x-1)和,2222消去y得(2-k)x+(2k-2k)x-k+2k-3=0,由Δ>0,得k<,,由M(1,1)为PQ 的中点,得解得k=2,这与k<矛盾,所以不存在满足条件的直线l.设椭圆E :过M(2,),N(,1)两点,O为坐标原点.(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围;若不存在,请说明理由.答案解答(2014·重庆)如图,设椭圆的左、右焦点分别为F 、F ,点D 在椭圆上,DF ⊥F F ,,△DF F 的面积为.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.1211212答案解答(2014·江西)如图,已知抛物线C :x =4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N ,与(1)中的定直线相交于点N ,证明:|MN |-|MN |为定值,并求此定值.2122212答案解答(2014·福建)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P处的切线l与x轴交于点A,直线y=3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.答案解答总结优化[方法与技巧]1.求定值问题常见的方法有两种(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y=kx+b,然后利用条件建立b、k等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.[失误与防范]1.在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.2.中点弦问题,可以利用“点差法”,但不要忘记验证Δ>0或说明中点在曲线内部.3.解决定值、定点问题,不要忘记特值法.效果验证(2015·四川)如图,椭圆E:的离心率是,点P(0,1)在短轴CD上,且.(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.答案解答已知椭圆C:的两焦点在x轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形.(1)求椭圆的方程;(2)过点S,的动直线l交椭圆C于A,B两点,试问:在坐标平面上是否存在一个定点Q,使得以线段AB为直径的圆恒过点Q?若存在,求出点Q的坐标;若不存在,请说明理由.答案解答已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.答案解答强化提升设椭圆C:的离心率e=,左顶点M到直线的距离d=,O为坐标原点.(1)求椭圆C的方程;(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值.答案解答(2014·福建)已知双曲线E :的两条渐近线分别为l :y =2x ,l :y =-2x.(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l ,l 于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,请说明理由.1212答案解答。

相关文档
最新文档