核反应堆物理分析教学大纲
核反应堆物理分析(第一讲)
21
• 我国核电发展的昨天、今天和明天是怎样 一幅图景?
22
• 认真学习过本课程之后,同学们应当能对 这些问题给予原理上的回答。
23
1 核能技术发展简史 2 世界核电历史、现状及前景 3 我国核电历史、现状及前景
24
1. 核能技术发展简史
• • • • • • 铀的天然放射性(1896,贝克勒尔) 钋、镭的发现(1902,居里夫妇) 质能转换关系(1905,爱因斯坦) 发现中子(1932,查德威克) 人工诱导核反应(1934,费米) 铀核裂变反应(1938,哈恩&斯特拉斯曼)
八五:3台机组(秦山一期,310MWe;大亚湾 2×984MWe), 2.26GWe; 九五:8台机组(秦山二期2x650MWe;秦山三 期2x728MWe;岭澳2x990MWe;田湾 2x1060MWe), 6.6GW。 十五:浙江三门、岭澳二期,广东阳江、秦山 二期扩建,山东海阳 、辽宁红沿河、湖南桃 花江、福建福清、宁德核电站、方家山核电 站.
• 亚洲的核电发展迅速。亚洲地区正在运行的 核电机组有82套,总装机容量为62GW,其 2/3集中在日本。正在建造或计划建造的核电 容量达49GW。据国际能源机构预测,从目前 到2020年,亚洲地区的电力消耗将增加2倍。 • 最新建成的31个已联网发电的核电站中,有 22个建在亚洲。在正在建造的27个核电站当 中,有18个位于亚洲。_IAEA (2004.6)
60
VVER-1000
2×1060
61
3.2 近景规划
• 已通过初步可行性研究的厂址:广东阳江 (600),江苏江阴,辽宁温坨子(400),浙江 三门(600)、壳塘山(600),福建惠安 (600)、长乐,山东烟台海阳(600)、威海乳 山(600),江西彭泽,浙江秦山(500),广东 大亚湾(600),江苏田湾(800),括号内数字 为“万千瓦”,总计5900万千瓦。 • 有意初步可行性研究的省份:吉林,黑龙江,湖 南,甘肃,海南,安徽,湖北,广西,四川。
核反应堆物理分析第1章
中子也具有波粒二重性.其波长为 4.551012 meter
E
对于能量为0.01电子伏的中子其波长为4.55×10-11 meter. 与氢原子的半径同量级.比中子的平均自由程小许多量级. 在反应堆中讨论中子时和与原子核相互作用时,中子被看 成是粒子.
❖玻尔半径 ❖经典电子半径 ❖原子核半径
AzX + 01n → [A+1ZX]* → A-3Z-2X + 42He 例如: 105B + 01n → 73Li + 42He
在低能区,这个反应截面很大,所以105B被用作热中子反应 堆的反应性控制材料。
核反应堆物理分析第1章
❖ 核裂变
核裂变是反应堆中最重要的核反应,235U,233U, 239Pu, 241Pu 在低能中子的作用下发生裂变反应可能性较大,称为 易裂变同位素,232Th, 238U, 240Pu只有能量高于某一阈值 的中子的作用下才发生裂变反应,称为可裂变同位素。 目前堆中最常用的核燃料是235U。
核反应堆物理分析第1章
1.1.3 中子的散射
散射是使中子慢化的主要核反应过程。有弹性散射和 非弹性散射。
非弹性散射:中子被靶核吸收形成处于激发态的复合核, 然后靶核通过放出中子并发射γ射线而返回基态。
只有当入射中子的动能高于靶核第一激发态的能量时 才能使靶核激发。非弹性散射具有阈值的特点。看表1。
对于不同的核反应过程: Ra nva Rf nvf
多种元素组成的均匀混合物质:
m
Rn v 1n v2nvi n v
i1
核反应堆物理分析第1章
❖ 中子通量密度(Neutron Flux)
nv
单位是 中子∕m2s, 等于该点的中子密度与相应的中子速 度的乘积,它表示单位体积内所有中子在单位时间内穿行 距离总和。是标量不是矢量。与磁通量,光通量概念不同。
核反应堆物理分析_前言.
其中最核心、最有特色的是反应堆的物理原 理,核反应堆物理是其下各门课程的基础。
核反应堆物理
• 核反应堆物理揭示核反应堆的特有的性质
与核物理的区别
核反应堆
核反应堆就是一个能实现可控自持链式反 应的装置。
其功能是提供能量(核能)和中子。
核能可用于如下领域:
核电厂 核供热 核能海水淡化 舰船核动力 空间核动力(卫星、宇宙飞船) 核能制氢 。。。
中子用途:
放射性同位素生产 材料改性 核孔膜生产 优质单晶硅生产 中子照相 中子治疗癌 科学研究 。。。
第8章讲中子和伽玛的辐射效应,
第9章讲屏蔽,
第10章讲反应堆堆芯传热,
第11章讲反应堆的安全审评和如何取得许可执照。
本课程主要介绍反应堆物理相关内容,注意强 调物理与工程问题的关系,力图使学生对核能 工程中的种种问题有深刻的认识。
这些知识不仅对从事核事业的人有用,对当代 任何一位高素质人士了解国际政治、国家安全 和发展战略都有莫大的好处。
放射性核素的衰变规律
单位时间内发生衰变的放射性核的数目与 该时刻存有的该种放射性核的数目成正 比。
dN
N
dt
称为衰变常数,它与时间无关,
与核素的化学状态、温度、压力等
因素都无关。
dN (t)
N (t)
dt
N (0) N 0 (初 始 条 件 )
N (t) N 0 e t
放射性核的平均寿命
平均寿命是衰变常数的倒数 t1 例如 =0.02/s 则 t = 50s
核反应堆物理分析 第2章
2.1.5 慢化剂的选择
反应堆中要求慢化剂具有较大宏观散射截面Σs和平均对 数能降ξ 。通常把乘积ξΣs叫做慢化剂的慢化能力。 我们还要求慢化剂有较小的吸收截面,定义ξΣs / Σa 叫做慢化比。
慢化剂
H2O D2O Be 石墨
慢化能力 ξΣs /m-1
1.53×10-2 1.77×10-3 1.6×10-3 6.3×10-4
umax
ln 1
在研究中子的慢化过程时,有一个常用的量,就是每次 碰撞中子能量的自然对数的平均变化值,叫做平均对数能降
ln E ln E ln E u
E
在质心系内各向同性的情况下:
E
(ln E ln E) f (E E)dE
EE ln
dE
E
E E (1 )E
积分后可得:
1
1
ln
1
( A 1)2 2A
ln
A 1 A1
当 A > 10
2
A 2 3
如用Nc 表示中子从能量E1 慢化到能量E2平均碰撞次数,则
E
ln
Nc
ln E1
ln E2
E2
使中子能量由2 MeV慢化到0.0253 eV时分别所需要的与H核、 石墨核以及235U核的平均碰撞次数为:
H 1
因此
C 0.158
U 0.0084
Nc,H 18 Nc,C 115 Nc,U 2164
2.1.4 平均散射角余弦
在质心系中中子每次碰撞平均散射角余弦为:
这是预期c 结 果0 c,os因c f为(在c )d质c心 系12 0中 co中s子c s散in射cd是c 各 0向同性。
在实验室系中中子每次碰撞平均散射角余弦为:
核反应堆物理分析课程设计
核反应堆物理分析课程设计课程设计目标:1. 理解核反应堆的基本物理原理和工作原理;2. 学习核反应堆中的热传导、中子传输以及反应堆动力学等物理过程;3. 掌握核反应堆参数的计算和分析方法;4. 了解核反应堆的安全与控制措施。
课程设计内容:1. 核反应堆的基本物理原理介绍- 核反应堆的发展历史及应用领域- 核反应堆的组成和工作原理- 核反应堆中的物理过程- 核燃料材料和反应堆材料2. 核反应堆中的热传导分析- 热传导基本理论及方程- 核反应堆中的热传导问题- 热工能量平衡方程的建立和求解- 核反应堆热工过程的优化分析3. 核反应堆中的中子传输分析- 中子传输基本理论及方程- 核反应堆中的中子传输问题- 中子输运方程的建立和求解- 反应堆中子传输过程的优化分析4. 反应堆动力学及稳态分析- 反应堆动力学的基本概念和方程- 反应堆的稳态分析方法- 反应堆动态过程分析- 反应堆动力学稳定性评估5. 反应堆参数计算与分析- 反应堆重要参数的计算方法- 反应堆参数与性能的关系分析- 反应堆参数计算与调整方法- 反应堆性能分析与优化6. 反应堆安全与控制措施- 反应堆事故及事故防范- 反应堆安全控制措施和安全设备- 反应堆安全分析方法和评估指标- 反应堆安全与环境保护关系课程设计要求:1. 学生要通过课程设计,掌握核反应堆物理分析的基本方法和工具;2. 学生要能够使用计算机模拟工具进行核反应堆物理分析;3. 学生要能够分析和评估核反应堆参数对反应堆性能的影响;4. 学生要了解核反应堆的安全与控制措施,能够进行反应堆事故的分析和预防。
核反应堆物理分析课程设计资料
一 题目设计一个带有反射层的球形堆,芯部半径为 R ,带有厚度为 T (包括外推距离)的反射层,根据含有反射层的单群扩散理论,解出在 T 取特定值时 R 的值,并定性说明 T 与 R 的关系。
反应堆材料 及参数如下堆芯材料:二氧化铀和水,水铀比为 3.5 ,热中子年龄为 40 ×10-4m 2 反射层材料:水二 设计内容1,带有反设层均匀裸堆的临界方程 )]coth(1[)]cot(1[rr r c C c L T L R D R B R B D +=- 2.参数的选择堆芯材料为二氧化铀和水,水铀比为 3.5,其中UO 2的富集度为3.5%,二氧化铀密度为10.42×103 kg/m 3,反射层中成分为水。
热中子年龄为th τ= 40 ×10-4m 2。
3.计算步骤已知UO 2的富集度为3.5%,密度为10.42×103 kg/m 3中,设以C 5表示富集铀内235U 的核子数与铀(235U+238U )的核子数之比,则ε=-⨯+⨯⨯))1(238235/(235555C C C代入ε=3.5%,可得C 5=,求得UO 2的分子量为892.269999.152)1(238235552=⨯+-+=C C M UO因而单位体积内UO 2的分子数为32823330103242.2892.26910022.6101042.10222-⨯=⨯⨯⨯⨯==m M N N UO UO UO ρ单位体积内235U ,238U 和氧的原子核密度为32855103242.203543.02-⨯⨯==m N C N UO3282858102419.2103242.2)03543.01()1(2-⨯=⨯⨯-=-=m N C N UO328280106484.4102342.2222-⨯=⨯⨯==m N N UO又在0.0253ev 时相关微观截面为bb b bUs U s O s H s 9.84.147.338238235,,,,====σσσσbb b bbUU U O H 07.25.5839.6801027332.0238235235,a ,f ,a 5-,a ,a ===⨯==σσσσσ则可得到1,12842828282828,a 33711.38092.6210107.2106484.4107.2102419.2109.680100823.022------=∑=⨯⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=∑m m UO s UO 同理1,s 1,a 34522.222--=∑=∑mm O H O H 1,02.48235-=∑m U f已知水铀比为3.5,即V H20/V UO2=3.5,416.2=ν 则662.12.2)]15.3/(5.3[092.62)]15.3/(1[02.48)]15.3/(1[416.2af=⨯++⨯+⨯+⨯=∑∑=∞νK(1)在芯部中2741.0)(0=∑⨯∑=i i i N M N μ散射平均自由程m O H s uo s s s 003612.0)5.45.35.41/(1/122,,=∑⨯+∑⨯=∑=λ吸收平均自由程m O H a uo a 06441.0)5.45.35.41/(1/122,,a a =∑⨯+∑⨯=∑=λ而输运平均自由程m s tr 04976.02741.01003612.010=-=-=μλλ 芯部的热扩散系数m D trC 01658.03==λ扩散长度2tra 20001068.001658.006441.03m L =⨯==λλ徙动长度244221007.4110400001068.0m L M th --⨯=⨯+=+=τ对于修正单群理论,当临界时即K=1,则 244221001612.01007.4111/662.11/--∞⨯=⨯-=-=m M K K B c 即11270.0-=m B c(2)在反射层中,即水中散射平均自由程m OH s 3,a a 10899.2345/1/1/12-⨯==∑=∑=λ输运平均自由程m str 3102879.41-⨯=-=μλλ 吸收平均自由程m O H a 4505.0)/(1/12,a a =∑=∑=λ热扩散系数m D trr 310429.13-⨯==λ扩散长度23-tra 210×0.64963m L r ==λλ则=r L cm 549.2将以上需要用到的系数进行单位换算,并统一后得cmL cm D cm B cmD r r C C 549.21429.01270.01658.01====-将其代入带有反设层均匀裸堆的临界方程得)]549.2coth(549.21[1429.0)]1270.0cot(1270.01[1658.0TR R R +=-⨯4. 编程求解编写C 语言程序来求解上述超越方程在特定T 值下,R 的值。
华北电力大学 核反应堆物理分析 第1章-核反应堆的核物理基础教材
扩散考虑的新一代核系统,6种潜在堆型:超高温堆、 超临界水冷堆、熔盐堆、气冷快堆、钠冷快堆、铅冷 快堆
5
➢核素,同位素
• 一般把具有相同质子数Z、中子数N的一 类原子(或原子核)称为一种核素。
• 具有相同质子数,不同中子数的核素称为 同位素。
41
t 总截面, s 散射截面, a 吸收截面
或c 俘获截面, f 裂变截面
n, p (n, p)反应截面, n, (n,)反应截面
n,2n (n, 2n)反应截面。
t= s+ a
a=
+
f+
n,+
n,
p+
n
+...
,2 n
42
宏观截面
将(1-12)式改写成微分形式 dI=-NIdx, 对x坐标积分, 得靶厚度为x处未经碰撞的平行中子束强度为: I(x) = I0exp(-Nx)
• 铀235的丰度是: 0.72% • 铀235的富集度是: 0.712%
为什么富集度的值小于丰度的值?
23
二、中子与原子核的相互作用
• 1.1.1 中子特性
– 原子核由质子和中子两种核子组成(氢核?) – 静止质量:1.675E-27kg,工程计算取为1u – 中子属性:不带电荷,不产生初级电离 – 自由中子(free neutron):不稳定(T1/2=10.6 min)
• 某种材料的宏观吸收截面Σa=0.25/cm,那么中 子在此材料中飞行1cm,被该材料吸收的概率为 0.25
29
复合核的形成:
第一阶段:复 合核的形成
第二阶段:复合 核的衰变分解
30
复合核的各种衰变方式
核反应堆物理分析修订本教学大纲
核反应堆物理分析修订本教学大纲1. 课程概述本课程是关于核反应堆物理学的基础课程,旨在介绍核反应堆的基本结构、原理和运行方式,并深入探讨核反应堆中的物理过程及其影响因素。
本课程主要包括核反应堆物理分析的基础知识、反应堆动力学、热工水力学、安全与控制等方面的内容。
2. 课程目标本课程的主要目标是让学生掌握以下核反应堆物理分析的基础知识:1.掌握核反应堆的基本结构和原理,并了解核反应堆的不同类型及其特点;2.熟悉核反应堆中的核反应过程及其影响因素;3.掌握核反应堆反应动力学的基本理论;4.熟悉核反应堆热工水力学的基本理论;5.掌握核反应堆的安全与控制原理。
3. 授课方式本课程采用讲授与实践相结合的方式进行教学。
其中,讲授部分主要以讲解核反应堆物理分析的基础理论为主,实践部分则以实验等形式进行,通过实践来深化学生的理解与应用。
4. 课程内容4.1 核反应堆的基本结构和原理1.核反应堆的基本组成2.核反应堆的原理与分类3.核燃料的选用和制备4.2 核反应过程与影响因素1.核反应过程2.反应堆中的中子3.反应堆中的反应性4.反应堆中的吸收和散射5.反应堆中的截面4.3 核反应堆反应动力学1.反应堆动力学的基本概念2.反应堆动力学的数学模型3.反应堆反应率与反应性系数4.4 核反应堆热工水力学1.核反应堆中的热传递2.核反应堆的冷却剂3.核反应堆的热工水力学参数4.5 核反应堆的安全与控制1.核反应堆的安全控制原理2.核反应堆的事故防范3.核反应堆的紧急停堆措施5. 考核方式本课程的考核方式采用闭卷考试和实验报告两种方式。
其中,闭卷考试主要对学生对核反应堆物理分析的理论掌握程度进行考核,实验报告则主要考核学生在实践中的能力。
6. 参考资料1.K. O. Ott, W. A. Bezella, and J. J. Duderstadt,。
828核反应堆物理分析.
课程编号:828 课程名称:核反应堆物理分析一、考试的总体要求了解中子与原子核相互作用的机理、中子截面和核反应率的定义;非增殖介质内中子扩散方程的解;中子的弹性散射过程、扩散-年龄近似;双群扩散理论、多群扩散理论;栅格的非均匀效应;核燃料中重同位素成分随时间的变化;核燃料的转换与循环;可燃毒物控制、化学补偿控制。
掌握核裂变过程;单速中子扩散方程;无限均匀介质内中子的慢化能谱、均匀介质中的共振吸收;裂变产物中毒、反应性随时间的变化与燃耗深度;反应性温度系数;反应性控制的任务和方式。
熟练掌握多普勒效应;扩散长度;均匀裸堆的单群扩散方程及其解、热中子反应堆的临界条件、各种几何形状的裸堆的几何曲率和中子通量密度分布、反应堆曲率和临界计算、有反射层反应堆的单群扩散理论及计算;单根中心控制棒价值的计算;点堆动态方程、反应堆周期。
二、考试的内容及比例第一章核反应堆的核物理基础中子与原子核的相互作用,中子截面和核反应率,共振吸收(共振截面—单能级布勒特-魏格纳公式、多普勒效应),核裂变过程(裂变能量的释放、反应堆功率和中子通量密度的关系、裂变产物与裂变中子的发射),链式裂变反应。
第二章中子慢化和慢化能谱中子的弹性散射过程(弹性散射时能量的变化、弹性散射中子能量的分布、对数能降和平均对数能降增量、平均散射角余弦、慢化剂的选择、弹性慢化时间),无限均匀介质内中子的慢化能谱(无限均匀介质内中子的慢化方程、在含氢介质内的慢化、在A>1的无限介质内的慢化),均匀介质中的共振吸收(共振峰间距很大时的逃脱共振吸收几率、有效共振积分的近似计算、温度对共振吸收的影响),热中子能谱和热中子平均截面。
第三章中子扩散理论单能中子扩散方程(斐克定律、单能扩散方程的建立、扩散方程的边界条件、斐克定律和扩散理论的适用范围),非增殖介质内中子扩散方程的解,扩散长度、化慢长度、动长度。
第四章均匀反应堆的临界理论均匀裸堆的单群理论(均匀裸堆的单群扩散方程及其解、热中子反应堆的临界条件、各种几何形状的裸堆的几何曲率和中子通量密度分布、反应堆曲率和临界计算任务、单群理论的修正),有反射层反应堆的单群扩散理论(反射层的作用、一侧带有反射层的反应堆、反射层节省),中子通量密度分布不均匀系数和中子通量密度分布展平的概念。
核反应堆物理复习纲要
微观截面:一个中子和一个靶核发生反应的几率。
宏观截面:一个中子和单位体积靶核发生反应的几率。
停堆周期:全部无控制毒物都投入反应堆内时所具有的反应性。
堆芯寿期:一个新装料堆芯从开始运行到有效增殖因数降到1时,反应堆满功率运行的时间。
反应堆周期:反应堆内平均中子密度变化e倍所需的时间。
剩余反应性:堆芯没有任何控制毒物时的反应性。
瞬发临界:反应堆仅依靠瞬发中子就能达到临界的状态。
瞬发超临界:反应堆仅依靠瞬发中子就能达到超临界的状态。
多普勒效应(展宽):共振吸收截面随温度展宽的现象。
菲克定律:中子流密度J与通量密度成正比。
控制棒微分价值:控制棒移动一步或单位距离所引起的反应性变化。
控制棒积分价值:控制棒从一参考位置移动到某一高度时,所引入的反应性。
控制棒的(反应性)价值:堆芯在有控制棒和没有控制棒时的反应性之差。
1、在热中子反应堆中为什么要使用慢化剂?慢化剂的工作原理是什么?并举出几种常用的慢化剂。
①反应堆内产生的中子能量相当高,其平均值约为2MeV;而微观裂变截面在热能区较大,热中子反应堆内的裂变反应基本上都是发生在这一能区,所以在热中子反应堆中使用慢化剂。
②在热中子反应堆中,慢化过程中弹性散射起主要作用,因为裂变中子经过与慢化剂和其他材料核的几次碰撞,中子能量便很快降低到非弹性散射的阈能一下,这是中子的慢化主要靠中子与慢化剂核的弹性散射进行。
③水、重水、石墨等。
2、缓发中子是如何产生的?在反应堆动力学分析计算中,份额不足1%的缓发中子与份额超过99%的瞬发中子相比是否可以忽略不计?为什么?①缓发中子是在裂变碎片衰变过程中发射出来的,占裂变中子的不到1%②缓发中子不可以忽略不计③缓发中子份额虽然很少,但它的发射时间较长,缓发效应大大增加了两代中子之间的平均时间间隔,从而滞缓了中子密度的变化率。
反应堆的控制实际上正是利用了缓发中子的作用才得以实现的。
3、解释碘坑现象和强迫停堆时间。
船用反应堆要求不能出现强迫停堆现象,请问在设计上应如何考虑。
核反应堆物理课设
课程设计(综合实验)报告名称:核反应堆物理分析题目:利用双群理论求解堆芯参数院系:1111111111111班级:111111*********学号:111111111111学生姓名:11111111111指导教师:111111111设计周数:11111111成绩:一、课程设计(综合实验)的目的与要求1 课程设计的要求课程设计是重要的实践教学环节。
它是根据教学计划的要求,在教师指导下对学生进行的阶段基础或专业技术训练,该实践环节着重培养学生综合分析和解决实际问题的方法与能力,实现由知识向智能的初步转化;是对前期理论与实践教学效果的检验,也是对学生综合分析能力与独立工作能力的核反应堆物理分析课程设计的目的是对理论课上学过的理论知识进行践应用,进而加深对前期理论知识的学习,是对学生综合运用核反应堆物理分析知识和思想方法的综合检验过程。
2 课程设计要求核反应堆物理分析课程设计的要求有如下几点:(1)学生必须修完课程设计的先修课程,才有资格做课程设计。
(2)明确课程设计的目的和重要性,认真领会课程设计的题目,读懂课程设计指导书的要求,学会设计的基本方法与步骤,积极认真地做好准备工作。
(3)在课程设计中,学会如何运用前修知识与收集、归纳相关资料解决具体问题的方法。
(4)学生必须在指导教师指导下独立完成设计任务,严禁抄袭、找人代做等,一经发现成绩记零分,按考试作弊处理。
(5)课程设计报告学校有统一格式,学生必须按照此格式填写,说明书、计算书要求简洁、通顺、计算正确,图纸表达内容完整、清楚、规范。
二、设计(实验)正文1.课程设计题目:二维XY几何模型,中间是堆芯(裂变区):-50cm<x<+50cm, -55cm<y<+55cm,四周是15cm厚反射层,堆芯及反射层的群常数见下表:表1 堆芯各种参数利用数值求解下面问题,计算其快群和热群中子通量密度空间分布及有效增殖因子。
提示:(1)采用内外迭代方法求解;(2)给出源迭代过程;(3)给出内迭代过程并给出堆芯双群方程、反射层双群方程以及边界条件,详见课本第五章;(4)建立数学模型,由于问题具有对称性,因此,只计算1/4堆芯即可。
第一章:核反应堆物理分析
一.中子的产生 分为三大类:同位素中子源,反应堆中子源,加速 器中子源。 1、同位素中子源:利用核素衰变放出的射线,经 ( ,n ) 或 ( ,n ) 核反应产生中子。优点是体积小,方便。 缺点是强度低,能谱复杂。而且,必须注意其活度 随时间指数减小:
I I0e t
241
10 5 10 5 10 5 10 4 108
源尺度:几cm
Am-Be
239
Am
Pu-Be
244
Pu Cm
106
Cm-Be
1.06×
常用的 -Be 源结构
双层钢壳防泄漏
不锈钢
放射性反应芯
发射体+靶物质
典型 Be(,n) 源的双层壳结构
2)
-中子源
基于两个反应:
中子的散射
中子与原子核发生散射反应时,中子改变了飞行方向和飞行 速度。 能量比较高的中子经过与原子核的多次散射反应,其能量会 逐步减少,这种过程称为中子的慢化。 散射反应有两种不同的机制。 一种称为弹性散射。在弹性散射前后,中子——原子核体系 的能量和动量都是守恒的。任何能量的中子都可以与原子核发生 弹性散射。 另一种称为非弹性散射。中子与原子核发生非弹性散射,实 际上包括两个过程。 ①中子被原子核吸收,形成一个复合核。 ②但这个复合核处于不稳定激发态,很快它就会又放出一个中 子,并且放出射线,回到稳定的基态。
计算单位体积内原子核数N
2.2.2
平均自由程 λ(mean free path):
如把中子在介质中运动时,与原子核连续两次相互作 用之间穿行的平均距离叫做平均自由程λ。
显然:平均自由程表示的是中子在介质中运动时,平
技术类《核反应堆物理》第1部分-核反应堆物理基础
知识点
1)
了解原子质量单位的定义,了解原子的组成、中子和质子的特点。
2)
能够说出原子结构的基本特点:整个原子核是电中性的;原子的 质量主要集中在原子核上。
3)
能够说出核素和同位素的定义,同位素有什么特性。
4)
理解在原子核中存在核力,核力的特点。
物质的组成
原子核的组成
原子核的组成
1u= (1.6605655±0.00000 86)×10-27kg。因而以 kg为单位的 Mp=1.672648×1027kg, Mn=1.674954×1027kg。由此可见,中子 稍稍重于质子。
提供大量的能量以及新的核素。
反应堆是
一个强大的各种粒子(中子、α粒子、β粒子和γ粒子)辐照场。
反应堆堆芯中有燃料、慢化剂、结构材料和控制材料等。 反应堆一旦运行后,堆内中子要与这些材料的原子核发生 各种类型的相互作用,产生新核,发生一系列的放射性衰 变现象。
反应堆运行是建立在中子与堆内物质相互作用的基础上。
N0e1
该式表明,平均寿命是原子核数量降为 所需要的时间。
N0 /e
放射性活度
➢ 放射性同位素样品在单位时间内衰变的次数,即 为该同位素样品的活度(A)。
A(t) N(t)
➢单位:贝可勒尔,简称贝可(Bq) ➢(1居里)1Ci=3.7x1010/s=3.7x1010Bq ➢因此,半衰期也可以定义为某同位素活度(A)降为一半 所需要的时间。
热中子轰击235U,原子核分裂成两个碎片;而238U不能产生 裂变反应,它俘获中子后生成239U,经过两次β-衰变而转化为 239Pu; 235U和238U具有不同的核特性,但化学性质却很相似
质量数 铀234 铀235 铀238
核反应堆物理分析概况课件
秦山核电站
大亚湾核电站
核反应堆物理分析概况
田湾核电站
核反应堆系统
核反应堆物理分析概况
核反应堆系统: 一回路系统
核反应堆物理分析概况
核反应堆堆本体
核反应堆物理分析概况
核电站会不会像原子弹那样爆炸?
• 核燃料的有效成分为235U或239Pu,而235U或 239Pu同样是原子弹的核炸药
??那核电站会不会像原子弹那样爆炸??
核反应堆物理分析概况
课程主要内容
第六章 栅格的非均匀效应与均匀化群常数 计算 (扩散方程空间变量处理) 第七章 反应性随时间的变化 (扩散方程时 间变量处理:缓慢变化) 第八章 温度效应和反应性控制(基本概念)
第九章 核反应堆动力学(扩散方程时间变 量处理:快速变化)
核反应堆物理分析概况
• 核心内容:
世界核电站一览表
核反应堆物理分析概况
中国核电站一览表
核电站名称
广东大亚湾核电站 广东岭澳核电站 广东岭澳核电站 广东阳江核电站 辽宁红沿河核电站 福建宁德核电站 浙江秦山一期核电站
• 核反应堆物理的基础:扩散理论/扩散方程(输运理论/输 运方程) + 临界理论
• 能量变量:分群理论 • 空间变量:栅格的非均匀效应与均匀化群常数计算 • 时间变量
• 反应堆动态学(反应性/功率随时间缓慢变化) :燃耗、裂变产物 中毒
• 反应堆中子动力学(反应性/功率随时间快速变化):反应堆动力 学模型(考虑缓发中子效应)
核反应堆物理分析概况
Nuclear reactors under construction and about to start construction
Plant
Lingao-2 (units 3 & 4) Qinshan 4 (units 6 & 7) Hongyanhe 1
_核反应堆控制_实验教学大纲
“核反应堆控制核反应堆控制””实验教学大纲课程中文名称:核反应堆控制课程英文名称:Nuclear Reactor Control课程编码:NUCL0007课程学分:2.5实验学时:4适用专业:核工程与核技术专业先修课程:积分变换、复变函数、核反应堆工程基础、电工与电子技术开课学院:能源与动力工程学院开课学期:第6学期教材及实验指导书:[1]张建民主编,《核反应堆控制》,西安交通大学出版社,2002年[2]周学智主编,《核反应堆控制实验指导书》,西安交通大学讲义,2002年一、实验课程简介该实验课程是结合《核反应堆控制》教学课程开设,对实验所用基本的反应堆控制工作原理、实现方法进行讲解和实际操作,完成反应堆功率调节实验和反应堆反应性扰动实验让同学扎实掌握实验技能和操作水平,较好地把核反应堆与核电厂控制的理论和实践相结合。
二、实验课性质、目的和任务性质:《核反应堆控制》教学实验,是核工程与技术专业学生为了更好的掌握“核反应堆控制”及有关计算机知识而设置的一门综合性专业实验课,属课程内实验。
目的:学生通过核电厂仿真系统对反应堆功率的调节、控制等实际操作,能增强学生对反应堆控制课程理论与实践的联系,加强感性认识,训练学生的动手能力,加深计算机在核电厂应用的重要性认识。
任务:学生掌握核电厂仿真系统的操作以及核反应堆的功率和反应性调节的方法,记录实验数据和曲线,完成数据和曲线的处理,写出实验报告。
三、实验课教学基本要求1.掌握反应堆功率计算机控制系统原理。
2.实验前做好预习准备,掌握各部件工作原理和功能,学习操作步骤和数据处理方法。
3.严格遵守操作规程,实验中如有意外,应立即停止实验,报告实验老师及时处理。
4.详细撰写各实验报告,按时交实验报告、不允许虚写实验数据和照抄实验数据,一经发现不计实验成绩。
5.鼓励同学们人人动手,动脑,实验中多看,多思考多提问,相互讨论,加深理论和实验的联系,不断提高实验教学的质量。
核反应堆物理复习提纲
PF:快中子慢化不泄漏概率;PT:热中子扩散不泄漏概率;keff:有效增殖 因数。令 P=PFPT,则 P 表示中子在慢化、扩散过程中不泄漏概率。 keff 两种定义式:keff=堆堆内内上一一代代裂裂变变中中子子数总数,keff=中子的消中失子率的(产吸生收率+泄漏)。 六因子公式:keff=εpfηPFPT,将 P=PFPT 代入得五因子公式:keff=εpfηP,如
裂变放出的能量 Ef=200MeV。 24.停堆后的衰变热功率表如下表所示。
表中数据表明,停堆后 1s 由裂变产物衰变而释放的衰变热稍大于反应 堆运行功率的 6%。对于短的冷却时间,只要运行时间长于 30d 左右,则 Pd/P 基本上与运行时间无关。其原因是半衰期较短的裂变产物很快地达到 了它们的饱和值,当然也首先衰变。往后的衰变热由半衰期较长的裂变产 物产生,它们在停堆时的数量取决于反应堆的运行时间。
3∑s
9.费米年龄τ:τ在数值上等于中子由产生地点(该处年龄为 0)到年龄为τ
的地点所穿行(净矢量)距离均方值的1,即
6
τ=1
6
rs2。
慢化长度 Ll是中子在慢化过程中飞行的净矢量(或直飞)距离的一种量度,
数值等于费米年龄τ的平方根。单位时间单位体积内快中子与原子核发生散
射的次数为∑sΦl,一个源中子从初始能量 E0 慢化到 Eth 以下需要的平均碰 撞次数为1ξ lnEEt0h,定义移出截面∑l:快中子变成热中子的概率,那么单位时 间单位体积内慢化为热中子的数量为∑lΦl=1ξ∑lnsEΦEt0lh,∑l=lnξ∑EEts0h,则 Ll=√D∑ll , Ll 影响反应堆中快中子的泄漏,Ll 越大,快中子泄漏到反应堆外几率越大。
v
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“核反应堆物理分析”课程教学大纲
英文名称:Analysis of Nuclear Reactor Physics
课程编码:NUCL0006
学时:64学分:4
适用对象:核能专业本科
先修课程:核辐射物理基础
使用教材及参考书:
谢仲生主编,《核反应堆物理分析》,西安交大出版社,2004年
一、课程性质、目的和任务
“核反应堆物理分析”是核能专业区别于常规能源动力类专业的核心课程,是核工程与核技术专业的专业基础理论课程。
讲述的是中子核反应的基础理论和分析计算方法,讲述的内容主要包括中子与原子核的作用、中子慢化与扩散、核反应堆临界理论、反应性控制、核燃料循环与管理等。
“核反应堆物理分析”课程主要讲授核反应堆的基础理论知识,目的是培养学生具备从事核反应堆工程领域或相关工作的基础知识。
任务是让学生掌握核反应堆基础理论知识和基本原理。
二、教学基本要求
1.注重讲解物理概念,帮助学生正确理解抽象的知识。
2.培养学生的分析问题理解问题的能力,切实掌握所学知识。
3.达到全部理解并接受基本知识的目的。
三、教学内容及要求
第一章核反应堆的核物理基础
本章主要介绍学习本课程所必须具备的基础知识和基本概念,主要包括:中子与原子核的相互作用,中子截面和核反应率,共振吸收,核裂变过程,热中子能谱和链式裂变反应等。
第二章中子慢化和慢化能谱
本章主要讲述中子在慢化过程中的规律和相关知识,主要有:中子的弹性散射过程,无限均匀介质中子的慢化能谱,均匀介质中的共振吸收,热中子反应堆内能谱的近似分布与热中子的平均截面等。
第三章中子扩散理论
本章主要讲述中子在扩散过程中的规律和相关知识,具体包括:单能中子扩散方程,非增殖介质内中子扩散方程的解,扩散长度,与能量相关的中子扩散方程和分群扩散理论,扩散-年龄近似等。
第四章均匀反应堆的临近理论
本章主要介绍均匀反应堆的临界理论,具体包括:均匀裸堆的单群理论,有反射层的反应堆的单群扩散理论,双群扩散理论,多群扩散方程的数值解法等。
第五章栅格的非均匀效应与均匀化群常数的计算
本章主要介绍非均匀反应堆的非均匀效应和均匀化方法,具体包括:栅格的非均匀效应,栅格的均匀化处理,栅元均匀化群常数的计算,燃料组件内中子通量密度分布及少群常数的计算,非均匀栅格的共振吸收,栅格几何参数的选择等。
第六章反应性随时间的变化
本章主要讲述反应堆的反应性随时间的变化规律,主要内容为:燃料中重同位素成分随时间的变化,裂变产物中毒,反应性随时间的变化与燃耗深度,核燃料的转换与增殖等。
第七章温度效应与反应性控制
本章主要讲反应堆的温度效应和反应性,主要包括:反应性温度系数,反应性控制的任务和方式,控制棒控制,可燃毒物控制,化学补偿控制。
第八章核反应堆动力学
本章主要介绍核反应堆的点堆动力学知识,主要包括:不考虑缓发中子的核反应堆动力学,考虑缓发中子的核反应堆动力学,阶跃扰动时点堆模型动态方程的解,反应堆周期等。
第九章核燃料管理简介
本章简介核电厂反应堆燃料管理基本知识,具体有:多循环燃料管理,单循环燃料管理,堆芯换料设计的优化等。
四、实践环节
无
五、课内学时分配(按此表填写)
章内容参考学时1核反应堆的核物理基础6 2中子慢化和慢化能谱6 3中子扩散理论8 4均匀反应堆的临界理论10 5栅格的非均匀效应与均匀化群常数的计算6 6反应性随时间的变化6 7温度效应与反应性控制10 8核反应堆动力学4 9核燃料管理简介4
习题课5-9章习题讲解2
总复习2
大纲制定者:吴宏春执笔
大纲审定者:张斌
大纲批准者:
大纲校对者:。