实验二 粘度法测定高聚物的分子量

合集下载

粘度法测定高聚物分子量实验报告

粘度法测定高聚物分子量实验报告

粘度法测定高聚物分子量实验报告粘度法测定高聚物分子量实验报告引言:高聚物是一种重要的材料,其分子量的确定对于材料的性能和应用具有关键作用。

粘度法是一种常用的测定高聚物分子量的方法,本实验旨在通过粘度法测定高聚物分子量,并探究实验条件对结果的影响。

实验原理:粘度法是通过测量高聚物溶液的粘度来间接推算分子量的方法。

根据伯努利定律和斯托克斯定律,可以得到高聚物溶液的粘度与分子量之间的关系式:η = kM^a其中,η为溶液的粘度,M为高聚物的分子量,k和a为实验所得的常数。

实验步骤:1. 准备不同浓度的高聚物溶液,确保其浓度范围覆盖到所需测定的分子量范围。

2. 使用粘度计测定各高聚物溶液的粘度,并记录下来。

3. 绘制高聚物溶液浓度与粘度的关系曲线。

4. 根据实验数据,利用线性回归等方法计算出k和a的值。

5. 根据计算得到的k和a的值,可以通过粘度法测定其他高聚物溶液的分子量。

实验结果与讨论:通过实验测定得到的高聚物溶液浓度与粘度的关系曲线如图所示。

根据曲线的斜率和截距,可以计算出k和a的值。

根据我们的实验数据,得到k=0.005 Pa·cm^3/g和a=0.8。

通过这些值,我们可以利用粘度法测定其他高聚物溶液的分子量。

然而,需要注意的是,粘度法测定高聚物分子量的结果受到多种因素的影响。

首先,溶液的温度会对粘度值产生影响,因此在实验中需要控制好温度条件。

其次,高聚物溶液的浓度范围也会对结果产生影响,过高或过低的浓度都可能导致不准确的结果。

此外,溶剂的选择也会对实验结果产生影响,不同的溶剂对高聚物的溶解度不同,从而影响了粘度的测定。

结论:通过粘度法测定高聚物分子量是一种简单有效的方法。

通过实验数据的分析,我们可以得到高聚物溶液的粘度与浓度之间的关系,并计算出k和a的值。

然而,需要注意实验条件对结果的影响,以及溶液浓度和溶剂的选择对实验结果的影响。

通过粘度法测定高聚物分子量的结果可以为材料的性能和应用提供重要参考。

实验二--乌氏粘度计测定聚合物的特性粘度

实验二--乌氏粘度计测定聚合物的特性粘度

实验二--乌氏粘度计测定聚合物的特性粘度实验二乌氏粘度计测定聚合物的特性粘度一、实验目的粘度法是测定聚合物分子量的相对方法,此法设备简单,操作方便,且具有较好的精确度,因而在聚合物的生产和研究中得到十分广泛的应用。

通过本实验要求掌握粘度法测定高聚物分子量的基本原理、操作技术和数据处理方法。

二、实验原理分子量是表征化合物特征的基本参数之一。

但高聚物分子量大小不一,参差不齐,一般在103~107之间,所以通常所测高聚物的分子量是平均分子量。

测定高聚分子量的方法很多,本实验采用粘度法测定高聚物分子量。

高聚物在稀溶液中的粘度,主要反映了液体在流动时存在着内摩擦。

在测高聚物溶液粘度求分子量时,常用到下面一些名词。

如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。

特性粘度和分子量之间的经验关系式为:式中,M 为粘均分子量;K为比例常数;alpha是与分子形状有关的经验参数。

K和alpha值与温度、聚合物、溶剂性质有关,也和分子量大小有关。

K 值受温度的影响较明显,而alpha值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解与0.5~1 之间。

K 与alpha 的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。

在无限稀释条件下因此我们获得[η]的方法有二种;一种是以ηsp/C对C 作图,外推到C→0 的截距值;另一种是以lnηr/C对C作图,也外推到C→0 的截距,两根线会合于一点。

方程为:测定粘度的方法主要有毛细管法、转筒法和落球法。

在测定高聚物分子的特性粘度时,以毛细管流出发的粘度计最为方便若液体在毛细管粘度计中,因重力作用流出时,可通过泊肃叶公式计算粘度。

(m=1)。

对于某一只指定的粘度计而言,(4)可以写成下式省略忽略相关值,可写成:式中,t 为溶液的流出时间;t0为纯溶剂的流出时间。

可以通过溶剂和溶液在毛细管中的流出时间,从(6)式求得ηr,再由图求得[η]。

实验二--粘度法测定聚合物的粘均分子量

实验二--粘度法测定聚合物的粘均分子量

实验二 粘度法测定聚合物的粘均分子量线型聚合物溶液的基本特性之一是粘度比较大,并且其粘度值与分子量有关,因此可利用这一特性测定聚合物的分子量。

粘度法尽管是一种相对的方法,但因其仪器设备简单,操作方便,分子量适用范围大,又有相当好的实验精确度,所以成为人们最常用的实验技术,在生产和科研中得到广泛的应用。

一. 实验目的掌握粘度法测定聚合物分子量的原理及实验技术。

二. 基本原理聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。

粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。

表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggins )公式:2[][]spk c cηηη=+ (1)在给定的体系中k 是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。

另一个常用的式子是:2[][]ln r c cηβηη=- (2)式中k 与β均为常数,其中k 称为哈金斯参数。

对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。

如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。

从(1)式和(2)式看出,如果用 spc η 或 ln rcη 对c 作图并外推到c→0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为特性粘度[η],如图2-1所示:00ln lim lim []sprc c c cηηη→→== (3)η=1.2~2.0范围内为直线关系。

当溶液浓度太高通常式(1)和式(2)只是在r或分子量太大均得不到直线,如图2-2所示。

此时只能降低浓度再做一次。

特性粘度[η]的大小受下列因素影响:(1)分子量:线型或轻度交联的聚合物分子量增大,[η]增大。

(2)分子形状:分子量相同时,支化分子的形状趋于球形,[η]较线型分子的小。

(3)溶剂特性:聚合物在良溶剂中,大分子较伸展,[η]较大,而在不良溶剂中,大分子较卷曲,[η]较小。

黏度法测高聚物的相对分子量

黏度法测高聚物的相对分子量

粘度法测高聚物的相对分子量一、实验目的1、测定聚丙烯酰胺的相对分子质量;2、掌握乌贝路德粘度计测定高聚物的基本原理和方法。

二、基本原理高聚物稀溶液的粘度,主要反映了液体在流动时存在着内摩擦。

其中因溶剂分子之间的内摩擦表现出来的粘度叫纯溶剂粘度,记作η0;此外还有高聚物分子相互之间的内摩擦,以及高分子与溶剂分子之间的内摩擦。

三者只和表现为溶液的粘度η。

在统一温度下,一般来说η﹥η0。

相对于溶剂,其溶液的粘度增加的分数,称为增比粘度,记作ηsp ,即00sp ηηηη-=而溶液的粘度与纯溶剂粘度的比值成为相对粘度,记作ηr ,ηr 也是整个溶液的粘度行为,ηsp 则意味着已扣除了溶剂分子之间的内摩擦效应。

二者关系为sp r 011ηηηη=-=- 对于高分子溶液,增比粘度ηsp 往往随溶液的浓度c 增加而增加。

为了便于比较,将单位浓度下所显示出的增比粘度,即ηsp /c 称为比浓黏度;而㏑ηr /c 称为比浓对数粘度。

ηsp 和ηr 都是物因次的量。

为了进一步消除高聚物分子间的内摩擦效应,必须将溶液浓度无限稀释,使得每个高聚物分子彼此相隔极远,其相互干扰可以忽略不计。

这时溶液所呈现出的粘度行为基本上反映了高分子与溶剂分子之间的内摩擦。

这一粘度的极限值即为[]0limspc cηη→=[η]被称为特性粘度,其值与浓度无关。

实验证明,当聚合物、溶剂和温度确定以后,[η]的数值只与高聚物平均相对分子质量M 有关,它们之间的半经验公式可以用Mark Houwink 方程式表示:[]K M αη=式中K 为比例常数,α是与分子形状有关的经验常数。

它们都与温度、聚合物和溶剂性质有关,在一定的相对分子质量范围内与相对分子质量无关。

本实验采用方便快捷的乌贝路德粘度计对溶液粘度进行测定。

根据所得数据,采用外推法以得出溶液粘度。

三、仪器与试剂乌氏粘度计、恒温水浴、移液管(2mL,5mL,10mL)、秒表、真空泵、夹子、铁架台、洗耳球1mol/L NaNO3溶液、聚丙烯酰胺、蒸馏水四、实验步骤1、粘度计的洗涤将蒸馏水注入黏度计中,用真空泵反复抽滤毛细管使蒸馏水反复流过毛细管部分,直至洗净。

粘度法测定高聚物分子量

粘度法测定高聚物分子量

粘度法测定高聚物分子量高聚物分子量是评价高聚物性质的重要指标之一。

粘度法是一种常用的测定高聚物分子量的方法。

本文将介绍粘度法的原理、测量方法及注意事项。

一、粘度法测定高聚物分子量的原理高聚物在溶液中的流动特性与其分子量有关。

分子量较大的高聚物在溶液中会形成较高浓度的聚合体,聚合体之间的热运动会受到阻碍,导致溶液的粘度增加。

因此,溶液的粘度与高聚物分子量成正比。

利用该原理,可以通过测定高聚物在溶液中的粘度来确定其分子量。

常用的粘度测量方法有旋转粘度计法、滴定粘度计法和玻璃密封管法等。

二、旋转粘度计法测定高聚物分子量在旋转粘度计法中,测量高聚物溶液在不同转速下的粘度,并利用氢氧化钠溶液对高聚物分子做标准化处理,从而计算出高聚物的分子量。

具体测量步骤如下:1. 准备高聚物的溶液,其中高聚物的质量浓度应在0.1-1.0g/L之间,一般用异丙醇或二甲基亚砜作为溶剂,同时应注意避免产生泡沫;2. 将旋转粘度计置于稳定的温度下,启动仪器并调整转速至稳定状态;3. 将高聚物溶液倒入粘度计测试杯中,并调整温度至与旋转粘度计相同;4. 测量高聚物在不同转速下的粘度,通常用10rpm和100rpm两种转速测量,每种转速测量三次;5. 将测量数据带入标准化计算公式得到高聚物的相对分子质量(Mw)和粘度平均分子量(Mn)。

四、玻璃密封管法测定高聚物分子量玻璃密封管法是一种直接测定高聚物溶液粘度的方法,需要在室温下严格控制高聚物溶液的密封性。

具体测量步骤如下:1. 准备高聚物的溶液,将溶液倒入玻璃密封管中,同时保证密封严密;2. 将密封管悬置于水槽中,并与相邻秤盘连接,以便测量密度和相对分子质量;3. 测量高聚物溶液的密度,并记录所用的温度;4. 使用标准计算公式计算高聚物的相对分子质量(Mw)和粘度平均分子量(Mn)。

五、注意事项1. 在高聚物的溶液制备过程中要避免产生泡沫,以免干扰粘度测定的准确性;2. 在粘度测定过程中要对仪器有所了解,并遵循测量操作规程,以免造成误差;3. 对于粘度计的使用要注意仪器的清洁,以保证测量精度;4. 不同的粘度测量方法具有不同的适用范围和测量精度,应根据实际需要和条件进行选择。

粘度法测定高聚物的相对分子量

粘度法测定高聚物的相对分子量

粘度法测定高聚物的相对分子量高聚物是指由许多分子单元组成的聚合物,由于其分子量较大,因此需要采用不同的方法来测定其相对分子量。

粘度法是一种比较常用的方法,其原理是通过测定高聚物在溶液中的流动性质,来间接计算高聚物的相对分子量。

一、粘度法原理粘度是液体流动阻力的度量,表示液体分子间相互作用力的大小。

在溶液中,高聚物分子通过溶剂分子间的相互作用形成静电层和水合层,从而增加了流体的阻力。

因此,粘度可以被用来估算高聚物分子量,通过测量高聚物溶液和溶剂的比粘度,计算高聚物的相对分子量。

比粘度定义为:其中,η为溶液的粘度,Ω为摩尔质量,V为体积,c为摩尔浓度。

当固定温度、溶剂和浓度时,高聚物的比粘度随着相对分子量的增加而增加。

在一定浓度下,可以通过测量溶液的粘度和溶剂的粘度来计算比粘度。

因此,根据下式计算高聚物的相对分子量:其中,是比粘度,K为马尔可夫常数,可以计算为:其中,ρ为溶液密度,η0为溶剂的粘度,V为溶液的体积,C为高聚物的浓度,M为高聚物的相对分子量。

二、实验操作1、实验原料和仪器甲基苯、亚甲基蓝、二甲亚砜、甲基纤维素、萘酚指示剂、比色皿、粘度计、pH计、洗涤瓶、加热板等。

2、实验步骤(1)制备高聚物溶液取一定量的甲基纤维素粉末,加入甲基苯中,并加入少量的亚甲基蓝。

将溶液充分搅拌,直到甲基纤维素完全溶解,然后用萘酚指示剂调节pH值在6-8之间。

(2)制备溶剂将二甲亚砜加入甲基苯中,并用萘酚指示剂调节pH值在6-8之间即可制备好溶剂。

(3)测定溶液和溶剂的粘度在两个比色皿中分别加入一定体积的高聚物溶液和甲基苯溶剂,再加入一定量的萘酚指示剂。

用粘度计测量两种溶液的粘度,并记录相关数据。

根据比粘度公式和马尔可夫常数公式,计算高聚物的相对分子量。

三、实验注意事项1、实验操作需要在室温下进行,避免大幅度的温度变化。

2、粘度计的使用需要严格按照说明书进行操作。

3、萘酚指示剂需要加入适量的量才能达到理想的pH值。

《粘度法测定高聚物分子量》实验数据处理方法探讨

《粘度法测定高聚物分子量》实验数据处理方法探讨

《粘度法测定高聚物分子量》实验数据处理方法探讨摘要:一、引言二、粘度法测定高聚物分子量的原理三、实验数据处理方法1.原始数据处理2.计算相对分子量3.数据验证与分析四、案例分析五、结论与展望正文:一、引言在高聚物科学研究中,分子量的测定是一项重要任务。

分子量是衡量高聚物材料性能的基本参数,对于材料的研究设计及应用具有重要意义。

粘度法作为一种常用的测定高聚物分子量的方法,具有操作简便、可靠性高等优点。

本文将探讨粘度法测定高聚物分子量实验的数据处理方法,以提高实验结果的准确性和可靠性。

二、粘度法测定高聚物分子量的原理粘度法测定高聚物分子量是基于溶液粘度与高聚物分子结构的关系。

在实验过程中,通过测量不同浓度的高聚物溶液的粘度,进而推算出高聚物的分子量。

测量原理公式为:η= η0 + (ηsp * η0) /(1 + (ηsp * η0) / η)。

其中,η表示溶液的粘度,η0表示溶剂的粘度,ηsp表示高聚物溶液的特殊粘度,通过特殊粘度可以计算出高聚物的分子量。

三、实验数据处理方法1.原始数据处理:对实验中测得的各种浓度下的溶液粘度进行整理,计算出各浓度下的ηsp值。

2.计算相对分子量:根据公式M = (ηsp * 1000) / (0.52 * η0),计算高聚物的相对分子量。

其中,0.52是高聚物分子量与溶液粘度之间的转换系数。

3.数据验证与分析:对实验数据进行验证,检查实验数据的可靠性。

可采用统计方法对实验数据进行拟合,分析高聚物分子量与溶液浓度之间的关系。

四、案例分析以下是一个实验案例:在某次实验中,测得不同浓度的高聚物溶液的粘度值如下:浓度(g/L):10 20 30 40 50粘度(Pa·s):0.52 0.68 0.85 1.02 1.17根据上述数据,计算得到各浓度下的ηsp值,然后计算高聚物的相对分子量。

结果如下:相对分子量:26292,37111,47989,57839,66758五、结论与展望本文对粘度法测定高聚物分子量实验的数据处理方法进行了探讨,重点介绍了实验数据的处理流程和计算方法。

粘度法测定高聚物分子量实验报告

粘度法测定高聚物分子量实验报告

粘度法测定高聚物分子量实验报告
一、实验目的。

本实验旨在通过粘度法测定高聚物的相对分子质量,掌握高聚物的分子量测定
方法。

二、实验原理。

高聚物在溶液中的粘度与其分子量有密切关系,根据Mark-Houwink方程可得
到高聚物的相对分子质量。

粘度测定是通过测定高聚物溶液在不同剪切速率下的粘度,然后利用Mark-Houwink方程计算出高聚物的相对分子质量。

三、实验步骤。

1. 准备高聚物溶液,取适量高聚物溶解于溶剂中,制备一定浓度的高聚物溶液。

2. 测定溶液粘度,将高聚物溶液倒入粘度计中,分别在不同剪切速率下测定其
粘度。

3. 计算相对分子质量,根据测得的粘度数据,利用Mark-Houwink方程计算出
高聚物的相对分子质量。

四、实验数据。

根据实验测得的数据,我们计算出高聚物的相对分子质量为XXXXX。

五、实验结果分析。

根据实验结果,我们可以得出高聚物的相对分子质量为XXXXX,这与理论值
相符合,说明本次实验结果较为准确。

六、实验总结。

通过本次实验,我们掌握了粘度法测定高聚物分子量的方法,并且成功测定出高聚物的相对分子质量。

同时,我们也发现在实验过程中需要注意控制溶液浓度和粘度计的使用方法,以保证实验结果的准确性。

七、实验心得。

本次实验让我对粘度法测定高聚物分子量有了更深入的了解,同时也提高了我在实验操作和数据处理方面的能力。

八、参考文献。

[1] XXX. 粘度法测定高聚物分子量[M]. 北京,化学工业出版社,2005.
以上是本次实验的实验报告,希望对大家有所帮助。

粘度法测定高聚物分子量

粘度法测定高聚物分子量

粘度法测定高聚物分子量——东华大学一、实验目的高聚物的分子量是高分子材料最基本的结构参数之一。

在科学研究和生产实践中,高聚物分子量对其加工成型以及产品的物理性能有着极其密切的联系,因此高聚物分子量的测定是鉴定高聚物性能的一个重要项目。

通过本实验应达到以下目的:1、理解稀释粘度法测定高聚物分子量的基本原理;2、掌握本测定的方法;3、学会外推法作图求[η]、K H 、K K 值:4、掌握测定粘度的动能校正方法二、实验原理高聚物的分子量具有多分散性,无论用何种方法所测得的分子量,均为平均分子量。

测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。

由于粘度法的设备简单,操作方便,因此应用最为普遍。

但粘度法并非绝对的测定方法,根据大量的实验证明,马克(Mark)提出更符合于实验结果的非线形方程式:[]αηKM =(1)该式实用性很广,式中K 、α值主要依赖于大分子在溶液中的形态。

无规线团形状的大分子在不良溶剂中呈十分蜷曲的形状,α为0.5~0.8;在良的溶剂中,大分子因溶剂化而较为舒展,α为0.8~l ;而对硬棒状分子,α>1。

关于某一高聚物溶剂系的K 、α值的具体测量,可将(1)式两边取对数,得:[]M K lg lg lg αη+=(2)此为直线方程。

从直线的斜率可求出,从截距可求出K 。

一般采用的方法是将样品经分级,测定其各分级的[η],用直接方法(如渗透压法、光散射法、超速离心法等)测定相应分子量就可作出lg[η]和lgM 的线性关系图,如图1所示。

由直线的截距,斜率lgK 可求出K 和α值。

若干高聚物溶剂体系的K 、α值,文献上发表很多,对涤纶在苯酚/四氯乙烷(1:1)体系中,温度25ºC 时:[]82.04101.2M -⨯=η(3)Mlg[用(3)式计算涤纶分子量中,必需用实验求出溶液的特性粘度[η]。

其定义是当溶液浓度C 趋于零时,比浓粘度C sp /η的极限量,即:[]Cspc ηη0lim→= (4)式中sp η为增比粘度,1-=τηηsp ;τη为相对粘度,)()(0s s 溶剂粘度溶液粘度==ηηητ。

粘度法测定高聚物分子量实验报告

粘度法测定高聚物分子量实验报告

竭诚为您提供优质文档/双击可除粘度法测定高聚物分子量实验报告篇一:粘度法测定聚合物的分子量实验报告实验一粘度法测定聚合物的分子量粘度法是测定聚合物分子量的相对方法。

高聚物分子量对高聚物的力学性能、溶解性、流动性均有极大影响。

由于粘度法具有设备简单、操作方便、分子量适用范围广、实验精度高等优点,在聚合物的生产及科研中得到十分广泛的应用。

本实验是采用乌氏粘度计测定甲苯溶液中聚苯乙烯粘度,进而测定求出ps试样分子量。

一、实验目的要求1、掌握粘度法测定聚合物分子量的实验基本方法。

2、了解粘度法测定聚合物分子量的基本原理。

3、通过测定特性粘度,能够计算ps的分子量。

二、实验原理1、粘性液体的牛顿型流动粘性流体在流动过程中,由于分子间的相互作用,产生了阻碍运动的内摩擦力,粘度就是这种内摩擦力的表现。

即粘度可以表征粘性液体在流动过程中所受阻力的大小。

按照牛顿的粘性流动定律,当两层流动液体间由于粘性液体分子间的内摩擦力在其相邻各流层之间产生流动速度梯度是(dv/dr),液体对流动的粘性阻力是:F/Adv/dr(1-1)该式即为牛顿流体定律。

式中,η—液体粘度,单位(pa·s);A—平行板面积;F—外力。

符合牛顿流体定律的液体称为牛顿型液体。

高分子稀溶液在毛细管中的流动基本属于牛顿型流动。

在测定聚合物的特性粘度[η]时,以毛细管粘度计最为方便。

2、泊肃叶定律高分子溶液在均匀压力p(即重力ρgh)作用下,流经半径为R、长度为L的均匀毛细管,根据牛顿粘性定律,可以导出泊肃叶公式:?ghR4?t(1-2)??8LV式中,g—重力加速度;ρ—流体的密度;V—液出体积;t—流出时间。

由于液体在毛细管内流动存在位能,除克服部分内摩擦力外,还会使其获得动能,结果导致实测值偏低。

因此,须对泊肃叶公式作必要的修正:?ghR4?tm?V(1-3)8LV8?Lt式中,m—毛细管两端液体流动有关常数。

?b?ghR4mV若令A?;b?,式(1-3)可简化为:?At?(1-4)?t8LV8?L3、聚合物溶液粘度的测定采用乌氏粘度计测定聚合物溶液的粘度时,常用到以下两个参数:(1)相对粘度?r??(1-5)?0(2)增比粘度?sp?(1-6)?0式中,η—聚合物溶液粘度;η0—纯溶剂粘度。

粘度法测定高聚物分子量实验报告

粘度法测定高聚物分子量实验报告

粘度法测定高聚物分子量实验报告实验目的,通过粘度法测定高聚物的相对分子质量,掌握粘度法测定高聚物相对分子质量的基本原理和方法。

实验仪器与试剂,Ubbelohde粘度计、甲苯、聚合物样品。

实验原理,粘度是液体内部分子间相互作用力的表现,高聚物在溶剂中的粘度与其相对分子质量有关。

粘度测定高聚物相对分子质量的原理是根据Mark-Houwink方程,通过测定高聚物在溶剂中的粘度,计算相对分子质量。

实验步骤:1. 将Ubbelohde粘度计清洗干净,用甲苯进行预热。

2. 取一定质量的高聚物样品,将其加入预热后的甲苯中,使其充分溶解。

3. 将溶解后的高聚物溶液倒入Ubbelohde粘度计中,测定其流动时间。

4. 重复3次测定,取平均值作为最终结果。

5. 根据测得的流动时间计算高聚物的相对分子质量。

实验数据与结果:根据实验测得的高聚物在甲苯中的流动时间,计算出其相对分子质量为XXX。

实验结论:通过粘度法测定,我们成功得到了高聚物的相对分子质量。

粘度法测定高聚物分子量的方法简单、准确,适用于大多数高聚物的分子量测定。

实验注意事项:1. 粘度计的使用要注意仪器的清洁和预热。

2. 高聚物的溶解应充分,避免出现颗粒或悬浮物影响测定结果。

3. 测定时要准确记录流动时间,避免误差。

实验改进方向:在实际操作中,我们发现XXX,可以通过XXX改进实验方法,提高测定精度。

实验总结:通过本次实验,我们深入了解了粘度法测定高聚物分子量的原理和方法,掌握了相对分子质量的计算步骤,为今后的实验和科研工作奠定了基础。

以上就是本次实验的实验报告,如有不足之处,欢迎批评指正。

粘度法测定高聚物分子量

粘度法测定高聚物分子量

粘度法测定高聚物分子量一、粘度法原理粘度法是通过测量高聚物溶液的粘度来确定其分子量的一种方法。

高聚物在溶液中的粘度与其分子间的相互作用力有关,而分子量与这些相互作用力有直接关系。

根据斯托克斯公式,高聚物溶液的粘度与聚合物分子量成正比,关系式为:η=kMα其中,η为溶液的粘度,k为比例常数,M为高聚物的分子量,α为斯托克斯常数,与高聚物的几何形状和溶媒性质有关。

二、粘度法测量步骤1.准备样品:将高聚物样品溶解在合适的溶剂中,制备浓度在0.1~1g/dL之间的溶液。

2.定标:使用已知分子量的聚合物标样,测量其溶液的粘度,并计算其分子量。

根据已知标样的分子量和粘度,可以得到α的值。

3.测量样品:使用粘度计测量高聚物溶液的粘度。

将样品注入测量槽中,控制温度和剪切速率,测量样品的粘度。

4.计算分子量:根据已知标样的分子量和粘度,计算出比例常数k。

将样品的粘度代入斯托克斯公式,计算出样品的分子量。

三、数据处理方法1.统计数据:进行多次测量,并计算平均值和标准偏差,以提高测量结果的准确性和可靠性。

2.校正:使用标定曲线校正测量结果,以消除仪器误差和操作误差对测量结果的影响。

3.分析结果:根据测量结果,对高聚物样品的分子量进行分析和评价。

可以比较不同样品的分子量,或者跟踪同一样品在不同处理条件下的分子量变化。

四、粘度法测量的优缺点1.优点:(1)粘度法测量方法简单,操作方便,不需要复杂的仪器设备。

(2)测量结果准确可靠,精度较高。

(3)可以测量大分子量的高聚物,范围广泛。

2.缺点:(1)粘度法的测试精度受到温度、剪切速率、溶液浓度等因素的影响。

(2)测量时需要保持样品的稳定温度和剪切速率,操作过程较为繁琐。

(3)有些高聚物在溶剂中可能发生聚合或降解反应,影响测量结果的准确性。

综上所述,粘度法可以准确测定高聚物的分子量,具有测量简单、准确可靠等优点,但也存在受干扰因素影响较大、操作繁琐等缺点。

在实际应用中,可以根据需求选择合适的测量方法,并结合其他分析手段提高测量结果的准确性和可靠性。

粘度法测定高聚物的相对分子量

粘度法测定高聚物的相对分子量

粘度法测定高聚物的相对分子量粘度法是一种常用的测定高聚物相对分子量的方法之一、它利用高聚物的溶液在流体中的阻力大小与高聚物的分子量成正比的原理,通过测定高聚物溶液的粘度来确定高聚物的相对分子量。

本文将从实验原理、实验步骤和数据处理三个方面进行详细介绍。

实验原理:高聚物的相对分子量可以通过测定其溶液的粘度来确定。

粘度是液体流动时所表现出的黏滞阻力,它的大小与高聚物分子量的大小成正比。

测量粘度时,通常使用粘度计来测量高聚物溶液在流体中的阻力大小。

根据牛顿黏滞定律,流体的黏滞阻力与流体的剪切速率成正比。

实验步骤:1.实验前准备:a.准备一定浓度的高聚物溶液。

b.准备测量粘度所需的仪器和设备,包括粘度计、搅拌器等。

c.温度控制在恒定的数值,一般为25℃或者其他设定的温度。

2.测量粘度:a.将测量粘度所需的高聚物溶液倒入粘度计中,确保液面平稳。

b.开始测量前,先将粘度计调节到恒定的转速,并等待粘度计的读数稳定。

c.记录下粘度计的读数,该读数表示了高聚物溶液的粘度。

3.重复测量:a.为了提高测量结果的精确度,可以进行多次测量,然后取平均值作为最后的粘度值。

数据处理:根据Stokes定律,粘度与溶液中高聚物相对分子量之间的关系可以表示为下面的公式:η=K·Mα其中,η为粘度,K和α为实验常数,M为高聚物的相对分子量。

由于粘度与高聚物相对分子量的关系是非线性的,在实际操作中,经常采用Mark-Houwink方程来描述这种关系:[η]=K'·Mα其中,[η]为粘度平均值,K'和α为常数。

通过测定不同浓度高聚物溶液的粘度,可以绘制出[η]随高聚物浓度的变化曲线。

从该曲线上可以得到α的值,从而计算出高聚物的相对分子量。

总结:粘度法是一种常用的测定高聚物相对分子量的方法,它通过测量高聚物溶液的粘度来确定相对分子量。

在实验中,需要准备高聚物溶液和测量粘度的仪器设备,并控制温度的恒定性。

粘度法测定高聚物的分子量

粘度法测定高聚物的分子量

粘度法测定高聚物的分子量粘度法是一种测定高聚物分子量的常用方法,它基于高聚物溶液的黏度与聚合物分子量之间的关系。

本文将详细介绍粘度法的原理、实验步骤以及一些注意事项。

1.原理:管式粘度法通过测量液体在两个不同的黏度计毛细管中流动所花费的时间来计算黏度。

旋转式粘度法则通过测量旋转式粘度计在聚合物溶液中旋转的速度和所需要的扭矩来计算黏度。

粘度与分子量之间的线性关系通过马尔斯科尔方程来表示:η=K×[η]+B其中,η表示黏度,[η]表示流体的比流速,K和B为实验常数。

2.实验步骤:(1)准备溶液:将精确称量的聚合物样品按需求溶解在适量的溶剂中,制备一系列不同浓度的溶液。

(2)操作黏度计:按照黏度计的说明书进行仪器的安装和调试,并校正黏度计的读数。

(3)测量黏度:将调整好浓度的聚合物溶液注入黏度计中,记录黏度计指针的初始位置。

(4)测量时间:测量溶液在黏度计中流动所需的时间,通常是由液体通过黏度计的两个刻度的时间差。

(5)重复测量:对同一浓度的溶液进行多次测量,计算其平均值。

(6)数据分析:根据测量结果和马尔斯科尔方程,计算出每个溶液的黏度和比流速。

(7)绘制图表:绘制黏度与浓度的图表,根据线性关系确定直线的斜率和截距。

(8)计算聚合物分子量:利用已知浓度和黏度的数据,带入马尔斯科尔方程,根据计算出的斜率和截距,计算聚合物的平均分子量。

3.注意事项:(1)选取适当的溶剂:溶液的黏度受到溶剂类型和浓度的影响,因此应选择适当的溶剂以获得准确的结果。

(2)稳定性:在进行测量之前应确保溶液的稳定性,以免溶液的流动受到影响。

(3)温度控制:粘度与温度密切相关,应控制好实验过程中的温度,保持稳定。

(4)重复测量:重复测量可以减小测量误差,提高结果的可靠性。

(5)仪器校准:在每次实验之前应对仪器进行校准,以确保准确性和可靠性。

总之,粘度法是一种常用的测定高聚物分子量的方法,通过测量聚合物溶液的黏度来推测聚合物的分子量。

粘度法测定高聚物的粘均分子量

粘度法测定高聚物的粘均分子量

粘度法测定高聚物的粘均分子量粘度法是一种常用的测定高聚物粘均分子量的方法,它基于高聚物分子链的流动性和粘度之间的关系。

本文将介绍粘度法的基本原理、实验步骤以及在高聚物领域中的应用。

一、粘度法的基本原理粘度是一种描述流体流动阻力大小的物理量,高聚物分子链的流动性和粘度之间存在着一定的关系。

根据牛顿定律,通过其中一点的液体流体在单位横截面积上的切变速度与单位切变力成正比。

可以用下式表示:η=σ/γ其中,η表示粘度,σ表示切变力,γ表示切变速率。

对于一根长为L、半径为r的柱状体,其受到的切变力可以表示为:F=ηA(∂v/∂z)其中,F表示切变力,A表示横截面积,v表示速度,z表示流体的流动方向。

将公式进行整理后可以得到:η=(F/A)(L/(∂v/∂z))根据流体动力学理论,当高聚物溶液粘度η足够高时,高聚物分子链在流动过程中作用于流体的内摩擦力远大于流体分子的相互作用力,通过一定速度下的流动满足牛顿性质。

根据牛顿定律,可得出以下关系:η=k(Ma/V)其中,η表示粘度,k表示比例常数,M表示高聚物的相对分子质量,a表示高聚物溶液的摩尔浓度,V表示溶液的摩尔体积。

将上述两个公式进行整理和联立,可以得到:M=k(a/η)从上式可以看出,高聚物的相对分子质量与摩尔浓度和粘度之间存在一定的关系。

二、粘度法的实验步骤1.样品的准备:将待测高聚物溶解在适当的溶剂中,制备一系列不同浓度的高聚物溶液。

浓度范围应该足够宽,以便得到精确的分子量测定结果。

2.样品的测定:将所制备的高聚物溶液分别加入粘度计的注射器或测量池中,注意溶液的温度和粘度计的温度应该相同。

粘度计通常有三种类型:玻璃管式粘度计、滚球粘度计和旋转粘度计。

根据粘度计的类型选择合适的实验方法进行测定。

3.数据的处理:根据测得的粘度值和浓度值,可以利用上述原理中的公式计算出高聚物的相对分子质量。

通过绘制浓度与相对分子质量之间的曲线,可以得到线性关系,进而得到高聚物的平均分子量。

实验二 粘度法测定高聚物的分子量

实验二 粘度法测定高聚物的分子量

实验二 粘度法测定高聚物的分子量[适用对象] 化学教育[实验学时] 5学时一、实验目的1、掌握粘度法测定高聚物相对分子质量的原理。

2、用乌氏粘度计测定聚乙烯醇的特性粘度,计算聚乙烯醇的粘均相对分子质量。

二、实验原理单体分子经加聚或缩聚过程便可合成高聚物。

并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。

对于聚合和解聚过程的机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。

高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。

粘性液体在流动过程中,必须克服内摩擦阻力而做功。

其所受阻力的大小可用粘度系数η(简称粘度)来表示(kg ·m -1·s -1)。

高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。

纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η0三者之和。

在相同温度下,通常η>η0,相对于溶剂,溶液粘度增加的分数称为增比粘度,记作ηsp ,即ηsp =(η-η0)/η0而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr ,即ηr =η/η0ηr 反映的也是溶液的粘度行为,而ηsp 则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。

高聚物溶液的增比粘度ηsp 往往随质量浓度C 的增加而增加。

为了便于比较,将单位浓度下所显示的增比粘度ηsp /C 称为比浓粘度,而1n ηr /C 则称为比浓粘度。

当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可忽略,此时有关系式[η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。

由于ηr 和ηsp 均是无因次量,所以[η]的单位是质量浓度C 单位的倒数。

粘度法测定高聚物的相对分子量

粘度法测定高聚物的相对分子量

高分子物理实验报告粘度法测定高聚物的相对分子量一、实验目的1.掌握粘度法测定高聚物相对分子质量的基本原理。

2.学习和掌握用乌式粘度计测定高分子溶液粘度的实验技术以及实验数据的处理方法。

3.用乌式粘度计测定聚乙烯醇溶液的特性粘度,并求出聚乙烯醇试样的粘均相对分子质量。

二、实验原理线型高分子溶液的基本特点之一是粘度比较大,并且其粘度值与平均相对分子质量有关,利用这一点可以测定高聚物的平均相对分子质量。

1.特性粘度与高聚物相对分子质量的关系:式中为高聚物的粘均相对分子质量:K、α为经验常数,它们的值与高聚物-溶剂体系及温度有关,与高聚物相对分子质量的范围也有一定的关系。

2.粘度测定:对于高分子溶液的粘度测定,以毛细管粘度计最为方便。

液体在毛细管中因自身重力作用而向下流动时的关系式为:第二项代表重力的一部分转化成了流出液体的动能,称为"动能修正项"。

式中,ρo、t0分别表示纯溶剂的密度和流出时间。

当毛细管太粗,使溶剂流出时间小于l00s,或者溶剂的比密粘度(η/ρ)太小时,必须考虑动能修正项。

因为所测高分子溶液的浓度通常很稀(c<0.01g/mL),溶液的密度与溶剂的密度近似相等(ρ≈ρo),所以可以简化为:3. "一点法"求特性粘度。

对于一般的线型柔性高分子-良溶剂体系,联立式可得到一个"一点法"计算特性粘度的公式:而对于一些支化或刚性高分子-溶剂体系,偏离较大,此时可令,并假设与相对分子质量无关,可推得另一个"一点法"计算特性粘度的公式:在某一温度下,先用稀释法确定了γ值之后,就可通过式子用"一点法"计算相对分子质量。

三、实验仪器和试剂乌式粘度计1支恒温水浴装置(包括玻璃缸、搅拌器、加热器) 1套分析天平 1台玻璃仪器气流烘干器 1台秒表(最小读数精度至少0.2s) 1块容量瓶(25mL) 2个砂芯漏斗(2号) 1只吸耳球 1个夹子(固定粘度计用) 1个弹簧夹(夹乳胶管用) 2个环己酮若干聚乙烯醇 0.2g左右量筒 1个四、实验步骤1.打开恒温水浴装置的电源,开动搅拌器,使所显示的水浴温度恒定在25℃±0.1℃。

实验二--乌氏粘度计测定聚合物的特性粘度

实验二--乌氏粘度计测定聚合物的特性粘度

实验二--乌氏粘度计测定聚合物的特性粘度实验二乌氏粘度计测定聚合物的特性粘度一、实验目的粘度法是测定聚合物分子量的相对方法,此法设备简单,操作方便,且具有较好的精确度,因而在聚合物的生产和研究中得到十分广泛的应用。

通过本实验要求掌握粘度法测定高聚物分子量的基本原理、操作技术和数据处理方法。

二、实验原理分子量是表征化合物特征的基本参数之一。

但高聚物分子量大小不一,参差不齐,一般在103~107之间,所以通常所测高聚物的分子量是平均分子量。

测定高聚分子量的方法很多,本实验采用粘度法测定高聚物分子量。

高聚物在稀溶液中的粘度,主要反映了液体在流动时存在着内摩擦。

在测高聚物溶液粘度求分子量时,常用到下面一些名词。

如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。

特性粘度和分子量之间的经验关系式为:式中,M 为粘均分子量;K为比例常数;alpha是与分子形状有关的经验参数。

K和alpha值与温度、聚合物、溶剂性质有关,也和分子量大小有关。

K 值受温度的影响较明显,而alpha值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解与0.5~1 之间。

K 与alpha 的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。

在无限稀释条件下因此我们获得[η]的方法有二种;一种是以ηsp/C对C 作图,外推到C→0 的截距值;另一种是以lnηr/C对C作图,也外推到C→0 的截距,两根线会合于一点。

方程为:测定粘度的方法主要有毛细管法、转筒法和落球法。

在测定高聚物分子的特性粘度时,以毛细管流出发的粘度计最为方便若液体在毛细管粘度计中,因重力作用流出时,可通过泊肃叶公式计算粘度。

(m=1)。

对于某一只指定的粘度计而言,(4)可以写成下式省略忽略相关值,可写成:式中,t 为溶液的流出时间;t0为纯溶剂的流出时间。

可以通过溶剂和溶液在毛细管中的流出时间,从(6)式求得ηr,再由图求得[η]。

黏度法测高聚物分子量(版)

黏度法测高聚物分子量(版)

黏度法测高聚物分子量(版)高聚物分子量是描述高聚物某一批次制备品质的重要参数之一,正确地测定高聚物分子量对于研究高聚物的性能和制备工艺的优化具有重要意义。

本文将介绍黏度法测定高聚物分子量的基本原理、方法和注意事项。

1. 原理高聚物分子量的测定方法很多,其中黏度法是一种常用的方法。

黏度法是利用聚合物分子在溶液中的摩擦作用来推算聚合物分子量的方法。

在同样的条件下,分子量大聚合物的分子排列更加致密,分子之间的摩擦力就更大,导致聚合物分子在流体中不能很好地流动,使得溶液的黏度增加。

根据爱因斯坦-斯托克斯公式,可以得到聚合物分子量和溶液黏度之间的关系:η = K × Mα其中,η为溶液的黏度,K为比例系数,M为聚合物的分子量,α为指数。

在实际测试中,比较常用的是萘基苯胺-甲苯-石油醚体系,该体系下的K和α值已经经过实验验证。

因此,通过测量溶液的黏度和知道K和α值,可以计算出聚合物的分子量。

2. 方法(1)测量样品的黏度:将待测溶液注入黏度计量筒,将黏度计装置与法兰盘连接密封,设定温度后记录黏度计读数。

为得到更准确的结果,通常需要重复测量并取平均值。

(2)准备标准样品:准确称取适量聚苯乙烯(PS)等分子量已知的聚合物,溶解在萘基苯胺-甲苯-石油醚混合溶剂中制备标准溶液。

(3)绘制比值图:将不同分子量的标准样品溶液的黏度和分子量取对数,制作比值图。

比值图的横坐标为标准样品的分子量(lgM),纵坐标为标准样品的黏度与溶液浓度之比(η/c),其中η为黏度,c为浓度,比值图上的所有数据都绘制成一条曲线。

(4)测定待测样品的分子量:将待测聚合物溶液的黏度测量值,带入比值图对应位置即可得到该聚合物的分子量。

3. 注意事项(1)为保证测量结果的准确性,需要控制测量时温度和浓度的一致性,通常采用25℃和0.5g/mL的条件。

(2)样品处理应注意去除可能存在的空气泡,以免对测量结果产生干扰。

(3)混合溶剂的选择应根据待测高聚物的性质和溶解度进行调整,以确保测量的准确性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 粘度法测定高聚物的分子量[适用对象] 化学教育[实验学时] 5学时一、实验目的1、掌握粘度法测定高聚物相对分子质量的原理。

2、用乌氏粘度计测定聚乙烯醇的特性粘度,计算聚乙烯醇的粘均相对分子质量。

二、实验原理单体分子经加聚或缩聚过程便可合成高聚物。

并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。

对于聚合和解聚过程的机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。

高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。

粘性液体在流动过程中,必须克服内摩擦阻力而做功。

其所受阻力的大小可用粘度系数η(简称粘度)来表示(kg ·m -1·s -1)。

高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。

纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η0三者之和。

在相同温度下,通常η>η0,相对于溶剂,溶液粘度增加的分数称为增比粘度,记作ηsp ,即ηsp =(η-η0)/η0而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr ,即ηr =η/η0ηr 反映的也是溶液的粘度行为,而ηsp 则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。

高聚物溶液的增比粘度ηsp 往往随质量浓度C 的增加而增加。

为了便于比较,将单位浓度下所显示的增比粘度ηsp /C 称为比浓粘度,而1n ηr /C 则称为比浓粘度。

当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可忽略,此时有关系式[η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。

由于ηr 和ηsp 均是无因次量,所以[η]的单位是质量浓度C 单位的倒数。

[]ηηη==→→c c r c sp c ln lim lim 00在足够稀的高聚物溶液里,ηsp /C 与C 和ln ηr /C 与C 之间分别符合下述经验关系式: ηsp /C=[η]+κ[η]2Cln ηr /C=[η]-β[η]2C上两式中κ和β分别称为Huggins 和Kramer 常数。

这是两直线方程,通过ηsp /C 对C 或ln ηr /C 对C 作图,外推至C=0时所得截距即为[η]。

显然,对于同一高聚物,由两线性方程作图外推所得截距交于同一点,如右图所示。

高聚物溶液的特性粘度[η]与高聚物摩尔质量之间的关系,通常用带有两个参数的Mark-Houwink 经验方程式来表示: []—αηηM K ⋅= 式中ηM 是粘均摩尔质量,K 、α是与温度、高聚物及溶剂的性质有关的常数,只能通过一些绝对实验方法(如膜渗透压法、光散射法等)确定,聚乙烯醇水溶液在25℃时K=2×10-2,α=0.76;在30℃时K=6.66×10-2,α=0.64。

三、仪器设备恒温槽 1套乌贝路德粘度计(如图) 1只移液管(10mL 、20mL 、5mL) 各1只秒表 1块容量瓶(100mL ) 2个洗耳球 1只聚乙烯醇四、相关知识点本课程知识点综合:(一)乌氏粘度计的使用原理本实验采用毛细管法测定粘度,通过测定一定体积的液体流经一定长度和半径的毛细管所需时间而获得。

本实验使用的乌氏粘度计如下图所示。

当液体在重力作用下流经毛细管时,其遵守Poiseuille 定律: lV tgr h lV tpr 8844ρππη==ηsp /C 或ln ηr /C式中η(kg ·m -1·s -1)为液体的粘度;p (kg ·m -1·s -2)为当液体流动时在毛细管两端间的压力差(即是液体密度ρ,重力加速度g 和流经毛细管液体的平均液柱高度h 这三者的乘积);r (m )为毛细管的半径;V (m 3)为流经毛细管的液体体积;t (s )为V 体积液体的流出时间;l (m )为毛细管的长度。

用同一粘度计在相同条件下测定两个液体的粘度时,它们的粘度之比就等于密度与流出时间之比 2211221121t t t p t p ρρηη== 如果用已知粘度η1的液体作为参考液体,则待测液体的粘度η2可通过上式求得。

在测定溶剂和溶液的相对粘度时,如溶液的浓度不大(C<10kg ·m -3),溶液的密度与溶剂的密度可近似地看作相同,故,00t t r ==ηηη 所以只需测定溶液和溶剂在毛细管中的流出时间就可得到ηr 。

多课程知识点综合:(二 )高分子分子量的其它测定方法高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。

它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。

也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。

(1)小角激光光散射法测重均分子量(M w )当入射光电磁波通过介质时,使介质中的小粒子(如高分子)中的电子产生强迫振动,从而产生二次波源向各方向发射与振荡电场(入射光电磁波)同样频率的散射光波。

这种散射波的强弱和小粒子(高分子)中的偶极子数量相关,即和该高分子的质量或摩尔质量有关。

根据上述原理,使用激光光散射仪对高分子稀溶液测定和入射光呈小角度(2℃-7℃)时的散射光强度,从而计算出稀溶液中高分子的绝对重均分子量(M W ) 值。

采用动态光散射的测定可以测定粒子(高分子)的流体力学半径的分布,进而计算得到高分子分子量的分布曲线。

(2)体积排除色谱法(SES )(也称凝胶渗透色谱法(GPC ))当高分子溶液通过填充有特种多孔性填料的柱子时,溶液中高分子因其分子量的不同,而呈现不同大小的流体力学体积。

柱子的填充料表面和内部存在着各种大小不同的孔洞和通道,当被检测的高分子溶液随着淋洗液引入柱子后,高分子溶质即向填料内部孔洞渗透,渗透的程度和高分子体积的大小有关。

大于填料孔洞直径的高分子只能穿行于填料的颗粒之间,因此将首先被淋洗液带出柱子,而其他分子体积小于填料孔洞的高分子,则可以在填料孔洞内滞留,分子体积越小,则在填料内可滞留的孔洞越多,因此被淋洗出来的时间越长。

按此原理,用相关凝胶渗透色谱仪,可以得到聚合物中分子量分布曲线。

配合不同组分高分子的质谱分析,可得到不同组分高分子的绝对分子量。

用已知分子量的高分子对上述分子量分布曲线进行分子量标定,可得到各组分的相对分子量。

由于不同高分子在溶剂中的溶解温度不同,有时需在较高温度下才能制成高分子溶液,这时GPC柱子需在较高温度下工作。

(3)质谱法质谱法是精确测定物质分子量的一种方法,质谱测定的分子量给出的是分子质量m对电荷数Z之比,即质荷比(m/Z)过去的质谱难于测定高分子的分子量,但近20余年由于我的离子化技术的发展,使得质谱可用于测定分子量高达百万的高分子化合物。

这些新的离子化技术包括场解吸技术(FD),快离子或原子轰击技术(FIB或FAB),基质辅助激光解吸技术(MALDI-TOF MS)和电喷雾离子化技术(ESI-MS)。

由激光解吸电离技术和离子化飞行时间质谱相结合而构成的仪器称为“基质辅助激光解吸-离子化飞行时间质谱”(MALDI-TOF MS 激光质谱)可测量分子量分布比较窄的高分子的重均分子量(M w)。

由电喷雾电离技术和离子阱质谱相结合而构成的仪器称为“电喷雾离子阱质谱”(ESI-ITMS 电喷雾质谱)。

可测量高分子的重均分子量(M w)。

(4)其他方法测定高分子分子量的其他方法还有:端基测定法,沸点升高法,冰点降低法,膜渗透压法,蒸汽压渗透法,小角X-光散射法,小角中子散射法,超速离心沉降法等。

五、实验步骤1.将恒温水槽调至25℃±0.3℃。

2.溶液配制准确称取聚乙烯醇0.5g(称准至0.001g)于100ml有塞三角瓶中,加入约60ml蒸馏水溶解,因不易溶解,可在60℃水浴中加热数小时,待其颗粒膨胀后,放在电磁搅拌器上加热搅拌,加速其溶解,溶解后,小心转移至100ml容量瓶中,将容量瓶置入恒温水槽内,加蒸馏水稀释至刻度(或由教师准备)。

3.测定溶剂流出时间t0将粘度计垂直夹在恒温槽内,用吊锤检查是否垂直。

将20ml 纯溶剂自A管注入粘度计内,恒温数分钟,夹紧C管上连结的乳胶管,同时在连接B管的乳胶管上接洗耳球慢慢抽气,待液体升至G球的1/2左右即停止抽气,打开C管乳胶管上夹子使毛细管内液体同D球分开,用停表测定液面在a、b两线间移动所需时间。

重复测定3次,每次相差不超过0.3s,取平均值。

4.测定溶液流出时间t 取出粘度计,倒出溶剂,吹干。

用移液管吸取15ml已恒温的高聚物溶液,同上法测定流经时间。

再用移液管加入5ml已恒温的溶剂,用洗耳球从C管鼓气搅拌并将溶液慢慢地抽上流下数次使之混合均匀,再如上法测定流经时间。

同样,依次再加入5ml、10ml、20ml溶剂,逐一测定溶液的流经时间。

实验结束后,将溶液倒入回收瓶内,用溶剂仔细冲洗粘度计3次,最后用溶剂浸泡,备下次用。

六、实验报告要求实验完毕,应尽快写出实验报告,及时交上。

实验报告一般包括以下内容:实验(编号)实验名称专业班级姓名合作者实验日期实验报告应写出如下内容:(一)实验目的(二)实验原理用文字、化学反应式及计算公式等说明,既要表述正确、条理清楚,又要尽可能的简捷明了。

(对于本实验,应画出实验装置图。

)(三)主要试剂和仪器列出本实验中所要使用的主要试剂仪器。

(四)实验步骤应简明扼要地写出本实验步骤流程和操作要点。

(五)实验数据及其处理1.将数据与处理结果列表2.以(1nηr)/C及(ηsp)/C分别对C作图,作线性外推至C→0求[η]。

M。

3.取常数κ、a值,计算出聚乙烯醇的粘均摩尔质量(六)问题讨论结合物理化学中有关理论对实验中的现象、产生的差错和实验误差等进行讨论和分析,以提高自己分析问题、解决问题的能力,也为以后的科学研究打下一定的基础。

七、思考题1.乌氏粘度计中的支管C的作用是什么?能否去除C管改为双管粘度计使用?为什么?在测定流出时间时,C管的夹子忘记打开了,所测的流出时间正确吗?为什么?2.粘度计为何必须垂直,为什么总体积对粘度测定没有影响?八、实验成绩评定办法本实验成绩按如下五级标准进行考核评定。

参考标准如下:(一)优秀(很好)能正确理解实验的目的要求;能独立、顺利而正确地完成各项实验操作;会分析和处理实验中遇到的问题;能掌握所学的各项实验技能;能较好地完成实验报告及其它各项实验作业;有一定创造精神和能力;有良好的实验室工作作风和习惯。

相关文档
最新文档