立方根教案
立方根教案人教版
立方根教案人教版章节一:立方根的概念引入教学目标:1. 让学生理解立方根的定义。
2. 让学生能够运用立方根的概念解决实际问题。
教学内容:1. 引出立方根的概念,通过实际例子让学生感受立方根的存在。
2. 讲解立方根的性质,如正数的立方根是正数,负数的立方根是负数等。
教学步骤:1. 引入立方根的概念,让学生举例说明。
2. 通过实际问题,让学生运用立方根的概念解决。
章节二:立方根的计算方法教学目标:1. 让学生掌握计算立方根的方法。
2. 让学生能够运用立方根的计算方法解决实际问题。
教学内容:1. 讲解立方根的计算方法,如分数的立方根、小数的立方根等。
2. 通过实际问题,让学生运用立方根的计算方法解决。
教学步骤:1. 讲解立方根的计算方法,让学生进行实际操作。
2. 通过实际问题,让学生运用立方根的计算方法解决。
章节三:立方根的应用教学目标:1. 让学生了解立方根在实际问题中的应用。
2. 让学生能够运用立方根解决实际问题。
教学内容:1. 通过实际问题,让学生了解立方根的应用,如计算物体的体积、计算立方体的表面积等。
2. 讲解立方根在实际问题中的应用方法。
教学步骤:1. 通过实际问题,让学生了解立方根的应用。
2. 讲解立方根在实际问题中的应用方法,让学生进行实际操作。
章节四:立方根的综合训练教学目标:1. 让学生巩固立方根的概念和计算方法。
2. 让学生能够运用立方根解决实际问题。
教学内容:1. 通过练习题,让学生巩固立方根的概念和计算方法。
2. 通过实际问题,让学生运用立方根解决实际问题。
教学步骤:1. 让学生进行立方根的概念和计算方法的练习。
2. 通过实际问题,让学生运用立方根解决实际问题。
章节五:立方根的拓展学习教学目标:1. 让学生了解立方根的拓展知识。
2. 让学生能够运用立方根的拓展知识解决实际问题。
教学内容:1. 讲解立方根的拓展知识,如立方根的运算规律、立方根与平方根的关系等。
2. 通过实际问题,让学生运用立方根的拓展知识解决实际问题。
立方根数学教案
立方根数学教案标题:立方根数学教案一、教学目标:1. 理解立方根的定义,掌握立方根的基本性质。
2. 能够正确计算一个数的立方根,解决与立方根有关的实际问题。
3. 培养学生的逻辑思维能力和空间想象能力。
二、教学重点和难点:重点:理解立方根的定义,掌握立方根的基本性质。
难点:理解和运用立方根的概念解决实际问题。
三、教学过程:1. 引入新课教师可以通过生活中的实例引入新课,比如“一个正方体的体积为27立方米,求其边长是多少?”这样的问题可以引导学生思考并引出立方根的概念。
2. 新课讲解(1)定义:如果一个数的立方等于a,那么这个数就叫做a的立方根,记作$\sqrt[3]{a}$。
(2)基本性质:①正数有一个正的立方根;②负数有一个负的立方根;③零的立方根是零。
3. 练习巩固通过一系列的练习题,让学生熟悉立方根的计算方法,并掌握如何用立方根解决问题。
例如:“求-8的立方根”,“已知一个正方体的体积为64立方米,求其边长”。
4. 课堂小结回顾本节课学习的主要内容,强调立方根的定义和基本性质,以及如何计算立方根。
5. 作业布置设计一些与立方根相关的题目作为课后作业,以便学生进一步理解和掌握所学知识。
四、教学反思:在教学过程中,要注意引导学生主动思考,提高他们的逻辑思维能力和空间想象能力。
同时,要注重理论联系实际,让学生在解决实际问题的过程中加深对立方根的理解。
五、拓展阅读:对于有兴趣的学生,可以推荐他们阅读一些关于立方根的扩展知识,如立方根的历史、应用等,以拓宽他们的视野。
六、教学评估:通过课堂练习、课后作业和测验等方式,对学生的学习情况进行评估,了解他们对立方根的理解程度和应用能力。
《立方根》优质教案
《立方根》优质教案教案内容:一、教学内容本节课的教学内容选自人教版初中数学八年级上册第6章第3节《立方根》。
本节课主要内容包括:立方根的定义,立方根的性质,立方根的运算方法,以及立方根在实际问题中的应用。
二、教学目标1. 理解立方根的概念,掌握立方根的性质和运算方法。
2. 能够运用立方根解决实际问题。
3. 培养学生的逻辑思维能力和创新精神。
三、教学难点与重点1. 立方根的概念和性质。
2. 立方根的运算方法。
3. 立方根在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规、三角板、计算器。
五、教学过程1. 实践情景引入:教师展示一个正方体模型,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,可以得出正方体的体积是边长的三次方。
2. 立方根的定义:教师引导学生思考:“如果我们知道一个数的立方是另一个数,那么我们如何求出这个数呢?”学生通过讨论和思考,可以得出这个数就是原数的立方根。
教师给出立方根的定义,并解释立方根的性质。
3. 立方根的运算方法:4. 立方根在实际问题中的应用:教师提出一个实际问题:“一个正方体的体积是27立方米,求这个正方体的边长。
”学生运用立方根的知识,解决问题并得出答案。
六、板书设计1. 立方根的定义。
2. 立方根的性质。
3. 立方根的运算方法。
4. 立方根在实际问题中的应用。
七、作业设计1. 题目:已知一个数的立方是27,求这个数。
答案:3。
2. 题目:已知一个正方体的体积是64立方米,求这个正方体的边长。
答案:4米。
八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否达成了教学目标,学生是否掌握了立方根的知识,哪些学生需要进一步辅导。
2. 拓展延伸:教师提出一个拓展问题:“立方根在实际生活中有哪些应用?”引导学生思考和讨论,进一步巩固立方根的知识。
重点和难点解析一、立方根的概念和性质1. 立方根的定义:教师在讲解立方根的定义时,应强调“立方根”就是一个数乘以自身两次后得到的结果。
2024年《立方根》优质教案
2024年《立方根》优质教案一、教学内容本节课选自2024年教材《数学》七年级下册第十章第一节“立方根”。
具体内容包括:1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用。
二、教学目标1. 知识与技能:理解立方根的定义,掌握立方根的计算方法,能解决实际问题;2. 过程与方法:通过实例分析,培养学生运用立方根解决实际问题的能力;3. 情感、态度与价值观:培养学生对数学的兴趣,提高数学素养。
三、教学难点与重点教学难点:立方根的计算方法,特别是非整数的立方根;教学重点:立方根的定义,计算方法及其应用。
四、教具与学具准备教具:立方体模型,多媒体教学设备;学具:计算器,草稿纸,笔。
五、教学过程1. 实践情景引入(1)展示立方体模型,引导学生观察其特征,提出问题:如何计算立方体的体积?(2)通过计算立方体的体积,引出立方根的概念。
2. 例题讲解(1)讲解立方根的定义及性质;(2)举例讲解立方根的计算方法,如:2的立方根,8的立方根等;(3)讲解立方根在实际问题中的应用。
3. 随堂练习(2)解决实际问题,如:一个立方体的体积是64立方厘米,求它的棱长。
4. 知识拓展(1)介绍立方根在科学、生活中的应用;(2)探讨立方根与平方根的关系。
六、板书设计1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用;4. 立方根与平方根的关系。
七、作业设计1. 作业题目:(2)一个立方体的体积是216立方厘米,求它的棱长;(3)比较两个数的大小:2的立方根与3的立方根。
2. 答案:(1)3,2,5;(2)6厘米;(3)2的立方根小于3的立方根。
八、课后反思及拓展延伸1. 反思:本节课学生对立方根的概念及计算方法掌握情况,对实际问题的解决能力;2. 拓展延伸:探讨立方根的估算方法,如:牛顿迭代法等。
重点和难点解析1. 教学难点:立方根的计算方法,特别是非整数的立方根;2. 例题讲解:立方根在实际问题中的应用;3. 知识拓展:立方根与平方根的关系;4. 作业设计:比较两个数的大小,如2的立方根与3的立方根。
数学《立方根》教案
数学《立方根》教案一、教学内容本节课的教学内容选自人教版小学数学五年级下册第117页“立方根”。
学生将通过本节课的学习,掌握立方根的概念,学会用立方根解决实际问题。
二、教学目标1. 学生能够理解立方根的概念,掌握求一个数的立方根的方法。
2. 学生能够运用立方根解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神。
三、教学难点与重点重点:立方根的概念和求一个数的立方根的方法。
难点:运用立方根解决实际问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:练习本、尺子、圆规。
五、教学过程1. 实践情景引入:教师通过多媒体课件展示一个正方体,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,得出正方体的体积是边长的三次方。
2. 例题讲解:教师通过讲解正方体的体积,引导学生思考:“如何求一个数的立方根?”学生通过讨论和思考,得出求一个数的立方根的方法:将这个数分解成三个相同的因数,即为这个数的立方根。
3. 随堂练习:教师出示一些练习题,让学生独立完成,检查学生对立方根的理解和掌握程度。
4. 应用拓展:教师通过出示一些实际问题,让学生运用立方根解决,如:“一个正方体的体积是64立方米,求这个正方体的边长。
”学生通过运用立方根解决问题,提高解决问题的能力。
六、板书设计立方根:正方体的体积 = 边长× 边长× 边长求一个数的立方根:将这个数分解成三个相同的因数七、作业设计1. 请用立方根的知识,解释一下为什么冰激凌在冷冻过程中会膨胀。
答案:冰激凌在冷冻过程中会膨胀,是因为冰激凌的体积是冰激凌温度三次方的函数,当温度降低时,体积增大。
2. 一个正方体的体积是27立方米,求这个正方体的边长。
答案:这个正方体的边长是3米。
八、课后反思及拓展延伸本节课通过正方体的体积引入立方根的概念,通过讲解和练习,让学生掌握立方根的知识。
在教学过程中,要注意引导学生观察和思考,培养学生的逻辑思维能力。
八年级数学下册《立方根》教案、教学设计
(一)教学重难点
1.重点:立方根的概念、性质和计算方法,以及立方根在实际问题中的应用。
2.难点:立方根的估算方法,以及如何运用立方根解决实际问题。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过观察、类比、归纳等方法,发现立方根的性质和计算方法。
(2)运用实际问题,激发学生的学习兴趣,培养学生的应用意识。
(三)学生小组讨论
1.教学活动设计:教师组织学生进行小组讨论,让学生在合作交流中掌握立方根的计算方法。
-教师给出计算立方根的例子,如计算∛8。
-学生分组讨论,尝试不同的计算方法,如直接开方、估算等。
-每个小组派代表分享计算方法,其他小组进行评价、补充。
2.教学目标:通过学生小组讨论,培养学生合作交流的能力,提高学生计算立方根的技能。
-教师提问:“同学们,我们之前学习了平方根,那么你们知道立方根吗?它有什么作用呢?”
-学生回答,教师总结。
2.教学目标:通过导入新课,使学生认识到立方根在实际生活中的应用,激发学生学习立方根的兴趣。
(二)讲授新知
1.教学活动设计:教师通过讲解立方根的定义、表示方法和性质,引导学生理解立方根的含义,并学会运用立方根进行计算。
-探究:立方根在生活中的应用,例如在建筑、制造等领域。
4.小组合作题:
-小组讨论:比较平方根和立方根的性质、计算方法等,总结它们的异同点。
-小组分享:每个小组整理讨论成果,并向全班同学分享。
作业要求:
1.学生独立完成基础巩固题和实际应用题,巩固立方根的计算方法和性质。
2.学生在完成拓展思考题时,要注重思考过程,可查阅资料或与同学讨论,培养解决问题的能力。
二、学情分析
部编人教版数学七年级下册《立方根》省优质课一等奖教案
部编⼈教版数学七年级下册《⽴⽅根》省优质课⼀等奖教案《⽴⽅根》教案⼀、教学⽬标1.知识⽬标:掌握⽴⽅根、开⽴⽅的概念,⽴⽅根的表⽰⽅法,⽴⽅根的特征。
2.能⼒⽬标:会运⽤⽴⽅根概念求⼀个完全⽴⽅数的⽴⽅根.能⽤⽴⽅根解决⼀些实际问题。
3.情感、态度与价值观⽬标:探索⽴⽅根的变化规律,提⾼学⽣学习数学的兴趣。
⼆、教学重点与难点教学重点:⽴⽅根的概念.,求某些数的⽴⽅根教学难点:了解⽴⽅根的性质,区分⽴⽅根与平⽅根的不同。
三、学情分析(1)教学对象是新丰县第三中学七(8)班学⽣,这个班采取⼩组合作学习的⽅式,从整体看,学⽣基础参差不齐,但思维活跃,课堂参与意识较强,有良好的学习习惯,学⽣间相互评价,相互提问的互动活动氛围初步形成。
(2)学习⼩组内互背1-20的平⽅,互背1-10的⽴⽅,学会⼈与⼈合作,并能与他⼈交流思维,建⽴⾃信⼼,提⾼学习热情。
四、教学过程12=34.0 ; 351;2.正⽅体的边长为a ,它的体积是 . 3.要制作⼀个容积为273m 的正⽅体形状的包装箱,这种包装箱的边长应该是多少?设这种集装箱的边长为x m ,依题意,得:,⽅程的意义就是:要求⼀个数,使它的⽴⽅等于27. ∵ 2733=∴ 3=x即这种包装箱的边长为3m .活动⼆:阅读课本P49内容,理解、掌握⽴⽅根概念和开⽴⽅概念⼀般地,如果,那么 .这就是说:如果,那么. 求的运算,叫开⽴⽅. ⽴⽅与开⽴⽅运算是运算.1.完成下列填空:∵ 823=,∴ 8的⽴⽅根是;∵()125.03=,∴ 125.0的⽴⽅根是;∵()03=,∴ 0的⽴⽅根是;∵()83-=,∴ 8-的⽴⽅根是;∵()2783-=,∴ 278-的⽴⽅根是;2.观察上⾯各数及其⽴⽅根,归纳数的⽴⽅根的特征:正数的⽴⽅根是数;负数的⽴⽅根是数;0的⽴⽅根是 . 3.数的平⽅根与数的⽴⽅根有什么不同?活动三:阅读课本P50内容,掌握⼀个数的⽴⽅根的表⽰⽅法4.完成下列填空:∵ =-38 , =-38 ,∴ 38- 38-;∵ =-327 , =-327 ,∴327- 327-;5.观察上⾯的填空,归纳3a -与3a -的关系: 3a - 3a -6.阅读课本P50例,掌握⼀个数的⽴⽅根式⼦表⽰的意义.活动四:1.判断下列说法是否正确:(1)5是125的⽴⽅根;()(2)4±是64的⽴⽅根;()(3)5.2-是625.15-的⽴⽅根;()(4)3)4(-的⽴⽅根是4-. () 2.填表:43.求下列各式的值:(1)31-;(2)3008.0-;(3)3271;(4)312564-. 4.求下列各式中x 的值:(1)8333=-x ;(2)8)1(3=-x5、计算下表中各式的值,并填⼊相应表中:(2)你能归纳出被开⽅数与它的⽴⽅根之间⼩数点的变化关系吗?x4 6 9 3x1253435121 000(3)000001.03001.0 31 31000 31000000 ………5五、板书设计【知识回顾】板书 113= =328 2733= 6443= 12553= 21663= 34373= 51283= 72993= 1000103= 1.计算下列各式的值:2 ; =33 ; =34.0 ; 351??;2.正⽅体的边长为a ,它的体积是 .3.要制作⼀个容积为273m 的正⽅体形状的包装箱,这种包装箱的边长应该是多少?设这种集装箱的边长为x m ,依题意,得:,⽅程的意义就是:要求⼀个数,使它的⽴⽅等于27. ∵ 2733=∴ 3=x即这种包装箱的边长为3m .【⾃主学习】阅读课本P49内容,理解、掌握⽴⽅根概念和开⽴⽅概念6⼀般地,如果,那么 . 这就是说:如果,那么 . 求的运算,叫开⽴⽅. ⽴⽅与开⽴⽅运算是运算. 【⾃主探究】6.完成下列填空:∵ 823=,∴ 8的⽴⽅根是;∵()125.03=,∴ 125.0的⽴⽅根是;∵()03=,∴ 0的⽴⽅根是;∵()83-=,∴ 8-的⽴⽅根是;∵()2783-=,∴ 278-的⽴⽅根是;7.观察上⾯各数及其⽴⽅根,归纳数的⽴⽅根的特征:正数的⽴⽅根是数;负数的⽴⽅根是数;0的⽴⽅根是 . 8.数的平⽅根与数的⽴⽅根有什么不同?阅读课本P 50内容,掌握⼀个数的⽴⽅根的表⽰⽅法9.完成下列填空:∵ =-38 , =-38 ,∴ 38- 38-;∵=-327 , =-327 ,∴ 327- 327-;10.观察上⾯的填空,归纳3a -与3a -的关系: 3a - 3a -11.阅读课本P50例,掌握⼀个数的⽴⽅根式⼦表⽰的意义. 【基本训练】2.判断下列说法是否正确:(1)5是125的⽴⽅根;()(2)4±是64的⽴⽅根;()(3)5.2-是625.15-的⽴⽅根;()(4)3)4(-的⽴⽅根是4-. ()2.填表:【能⼒提升】 3.求下列各式的值:(1)31-;(2)3008.0-;(3)3271;(4)3125 64-.4.求下列各式中x 的值:(1)8333=-x ;(2)8)1(3=-x5.(1) 计算下表中各式的值,并填⼊相应表中:x4 6 9 3x1253435121 0000000013001.08。
立方根教案(3)
《 立方根 》【教学目标】1. 了解立方根的概念,会用根号表示一个数的立方根2.掌握用立方运算求某些数的立方根,感受开立方与立方互为逆运算的思想【教学重点】了解立方根的概念,能应用立方运算求某些数的立方根【教学难点】明确平方根与立方根的区别,并熟练地求立方根【教学过程】一.提出问题:要制作一种容积为27立方米的正方体形状的包装箱,这种包装箱的边长应该是多少? (引导学生用方程解决问题)解:设这种包装箱的边长为x 米,则3273==x x 所以这种包装箱的边长应为3米。
二. 讲授新课定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
即如果a x =3,那么x 叫做a 的 立方根a 叫做x 的 立方数口答:64,-27,1,0,-1的立方根各是多少?求一个数的立方根的运算,叫做开立方,开立方与立方运算互为逆运算。
探究1:(1)完成课本P77的探究(2)思考:正数、0、负数的立方根各有什么特点?归纳:(1)正数的立方根是正数(2)0的立方根是0(3)负数的立方根是负数(4)任何数都有立方根 ,且只有一个比较:你能说说数的立方根与数的平方根有什么不同吗?想一想:10有立方根吗?是多少?数a 的立方根的符号表示:3a ,读作三次根号a ,其中a 是被开方数,3是根指数. 比较:正数a 的算术平方根与立方根的符号表示有什么不同?探究2:完成课本P78的探究,你能从中得到什么结论?归纳: 33a a -=-例1:求下列各式的值: (1) 364 (2) 3125- (3)36427-2.(书79页练习1)求下列各式的值:(1)31000 (2)3001.0- (3)31- (4)-312564 (5) (6)例2:比较三次根号28 和3的大小 练习:比较3,4,350的大小例3:(1)x 3=8,(2) x 3-2=-29练习:解方程 (1)008.03=x (2)8333=-x (4)016)1(23=--x 探究3:完成课本P79的探究归 纳:三次根号下的被开方数的小数点每向左(右)移动3位,其结果的小数点就向左(右)移动1位。
《立方根》教案
《立方根》教案教案:《立方根》(一)一、教学目标:1.理解什么是立方根。
2.能够找出给定数的立方根。
3.掌握立方根的计算方法。
二、教学重点:1.立方根的定义和性质。
2.理解立方根的求解方法。
三、教学难点:1.立方根的计算方法。
2.难题解析与策略。
四、教学准备:1.教师准备:教学课件、教具、课堂练习题。
2.学生准备:课本、笔记。
五、教学过程:Step 1. 导入新知1.以一个实际问题引入:“小明有一块长为8米、宽为8米、高为8米的立方体,求立方体的体积。
”2.引导学生思考立方体和立方根之间的关系。
3.提出问题:“如果已知一个数的体积,如何求这个数的边长呢?”Step 2. 讲解立方根的定义和性质1.定义:立方根是指一个数的立方等于给定数的运算。
2.性质:a)任何正整数的立方根都是正整数。
b)任何负整数的立方根既可以是正整数也可以是负整数。
Step 3. 计算立方根1.先引导学生通过实验法求解立方根。
2.介绍立方根的计算方法:a)开方法:将一个数的立方根写成开平方的形式,然后用平方根的计算方法求解。
b)近似法:通过近似计算得到一个数的近似立方根。
3.示范计算方法,并进行练习。
Step 4. 难题解析与讨论1.给出一些难题,引导学生进行思考和讨论。
2.解析难题的解题思路和策略。
Step 5. 课堂练习1.出示练习题,让学生独立完成。
2.班级合作,互相讨论和解答。
六、教学反思:本节课主要是讲解立方根的定义和性质,以及立方根的计算方法。
通过实例引入,学生能够理解立方根的概念,并学会通过开方法和近似法求解立方根。
在教学过程中,我注意通过引导让学生主动思考问题,培养他们的数学思维能力。
同时,通过讨论解析难题,学生能够深入理解问题的本质和解题的策略。
在课堂练习环节,我采用了合作学习的方式,让学生在小组内共同解答问题,提高了课堂练习的效果。
总体来说,本节课教学效果较好,学生对立方根的理解和计算能力都有了一定的提高。
《立方根》参考教案
2.3 立方根教学目标:(一)教学知识点1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.(二)能力训练要求1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.(三)情感与价值观要求当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.教学重点:立方根的概念.教学难点:1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法:类比学习法.教学过程:Ⅰ.新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±a.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?Ⅱ.新课讲解1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?.若x的平方等于a,则x叫a的平方根,记作x=±2a,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=±3a,读作x等于正、负三次根号a,简称x等于正、负根号a.[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.[生甲]我认为这位同学回答得不对.如果x2=a,则x=±a,x3=a时,x=±a也成立的话,那如何区分平方根与立方根呢?[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.[师]大家的分析非常有道理,请认真看书第44页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x=3a,读作x等于三次根号a.开立方的定义[师]大家先回忆开平方的定义,再类推开立方的定义.[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.(2)立方根的性质[师]2的立方等于多少?是否有其他的数,它的立方也是8?[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.[师]0的立方等于多少?0有几个立方根?[生]0的立方等于0,0有1个立方根是0.[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.(3)平方根与立方根的区别与联系.[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.[生]从定义来看,若一个数x 的平方等于a ,即x 2=a ,则x 叫a 的平方根;若一个数x 的立方等于a ,即x 3=a ,则x 叫a 的立方根,都是一个数x 的乘方等于a ,但一个是平方,另一个是立方.[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.[生]它们的表示方法和读法不同,一个正数a 的平方根表示为±a ,立方根表示为3a .下面我再系统地总结一下:[例1]求下列各数的立方根:(1)-27;(2)1258;(3)0.216;(4)-5. [师]请大家思考下列问题.3a 表示a 的立方根,则(3a )3等于什么?33a 等于什么?大家可以先举例后找规律.: (3a )3=a .又∵a 3是a 的立方,所以a 3的立方根就是a ,所以33a =a .下面就这两个式子进行练习.[例2]求下列各式的值: (1)38-;(2)3064.0;(3)-31258;(4)(39)3 Ⅲ.课堂练习(一)随堂练习1.求下列各式的值:333333)16(;5;64;125.0-.2.一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,这个正方体的棱长是多少?解:设正方体的棱长是x cm ,得x 3=8×33,解得x =6.即改正方体的棱长是6cm.(二)补充练习1.求下列各数的立方根:0,1,-8127,6,-1000125,0.001 2.求下列各式的值:3233333333)278(;)2(;)2(;16463;1251;1;027.0------ 3.下列说法对不对?-4没有立方根;1的立方根是±1;361的立方根是61;-5的立方根是-35;64的算术平方根是±8.Ⅳ.议一议1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?2.一个正方体的体积变为原来的n 倍,它的棱长变为原来的多少倍?解:设原正方体的棱长为a ,后来的正方体的棱长为b ,得na 3=b 3∴3333n a b =33 .∴b=ana3n即后来的棱长变为原来的3n倍.Ⅴ.课时小结1.立方根的定义.2.立方根的性质.3.开立方的定义.4.平方根与立方根的区别与联系.5.会求一个数的立方根.Ⅵ.课后作业习题2.5.Ⅶ.活动与探究1.求下列各式中的x.(1)8x3+27=0;(2)(x-1)3-0.343=0;(3)81(x+1)4=16;(4)32x5-1=0.板书设计:学生用类推的方法得出立方根的相关结论。
立方根教学设计教案
立方根教学设计教案教学目标:1.理解立方根的概念与性质。
2.掌握立方根的求解方法。
3.能够应用立方根进行实际问题的求解。
教学重点:1.立方根的概念与性质。
2.立方根的求解方法。
教学难点:1.理解立方根的概念与性质。
2.立方根的求解方法。
教学准备:1.课件或黑板。
2.尺子、计算器等教学工具。
教学过程:Step 1:导入与概念引入(10分钟)1.引导学生回顾平方根的概念与性质。
2.提出问题:“你知道平方根以外的其他根吗?”,并让学生讨论并回答。
3.引入立方根的概念:“立方根是一个数的立方等于它。
”4.展示相关示例,如8的立方根是2,因为2³=8Step 2:立方根的性质(15分钟)1.教师出示课件或黑板上的立方根性质总结。
2.学生根据相关性质进行讨论,并提问与解答。
Step 3:立方根的求解方法(30分钟)1.通过示例引入立方根的求解方法。
示例1:求解27的立方根。
示例2:求解250的立方根。
2.教师讲解以下两种求解方法:方法一:通过试探法求解立方根。
方法二:通过立方根的计算公式求解立方根。
3.学生通过练习题进行巩固。
4.教师选择几道题进行讲解。
Step 4:应用立方根进行实际问题的求解(25分钟)1.教师提供一些实际问题,并引导学生运用立方根进行求解。
示例1:长方体的体积为343立方米,求边长。
示例2:一个水果箱的体积为512立方厘米,求最长的边长。
示例3:求一个立方体的体积为1000立方厘米,求边长。
2.学生分组进行小组讨论与解答。
3.部分学生上台展示解题过程与答案。
Step 5:归纳总结与作业布置(10分钟)1.教师与学生一起归纳总结立方根的概念与性质,以及求解方法。
2.布置作业:完成教师提供的练习题,并预习下一课时内容。
Step 6:课堂小结与回顾(5分钟)1.教师与学生一起回顾本堂课的重点和难点。
2.教师提问学生对立方根的理解情况,并解答学生的疑问。
教学延伸:1.学生可以自学其他高次方根的概念与求解方法,如四次根、五次根等。
立方根(教案).doc
3.3立方根(教案)一、教学目标:(一)知识目标:1.理解立方根的概念,会用根号表示一个数的立方根。
2.能用开立方运算求数的立方根,体会立方与开立方运算的互逆性。
(二)能力目标:培养学生的理解能力和运算能力.(三)情感目标:体会立方根与平方根的区别与联系.二、教学重点:本节重点是立方根的意义、性质。
三、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别。
四、教学过程:(一)复习1.口答:(1) 平方根的概念?如何用符号表示数a(≥0)的平方根?(2) 正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?2.计算:(二)合作学习:给出一个3×3×3魔方,并提问这是这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长? 你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a ,这个数就叫做a 的立方根(也叫做三次方根)。
即X 3=a ,把X 叫做a 的立方根。
如53=125 则把5叫做125的立方根。
(-5)3=-125 则把-5叫做-125的立方根。
数a 的立方根用符号“表示,读作“三次根号a ” .2.开立方:求一个数的立方根的运算,叫做开立方。
开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求。
(四)例题讲解 例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根。
2、负数有一个负的立方根。
3、0的立方根还是0。
让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?。
(1) 412 (2) ±22)7(81)5(- (3)+-827-练一练:1.判断下列说法是否正确,并说明理由。
(1)827的立方根是±23(2) 25的平方根是5 (3) -64没有立方根(4) -4的平方根是±2 (5)0的平方根和立方根都是0 例2求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测(检查学生掌握情况)计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果。
人教版数学七年级下册6.2《立方根》教案1
人教版数学七年级下册6.2《立方根》教案1一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容。
本节主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节的学习,为学生进一步学习实数及其运算打下基础。
二. 学情分析学生在七年级上册已经学习了乘方,对乘方的概念和性质有一定的了解。
但立方根的概念与乘方有所不同,需要学生能够从中找出规律,理解并掌握。
另外,学生可能对求一个数的立方根运算存在困难,因此在教学过程中,需要引导学生掌握运算方法。
三. 教学目标1.理解立方根的概念,掌握立方根的性质。
2.学会求一个数的立方根,能熟练运用立方根解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.立方根的概念和性质。
2.求一个数的立方根的方法。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中感受立方根的意义。
2.讲授法:讲解立方根的性质和求法,引导学生理解和掌握。
3.实践操作法:让学生动手计算,巩固所学知识。
4.问题驱动法:设置问题,引导学生探究,培养学生的解决问题的能力。
六. 教学准备1.PPT课件:制作与教学内容相关的PPT课件,以便进行直观教学。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实例,如冰雪融化、爆米花等,引导学生思考:这些现象与数学中的哪个概念有关?从而引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,让学生理解立方根的概念。
通过PPT课件展示立方根的性质,让学生掌握立方根的性质。
3.操练(10分钟)让学生动手计算一些立方根的例子,巩固所学知识。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)设置一些有关立方根的问题,让学生独立解答。
教师选取部分学生的答案进行讲评,巩固所学知识。
5.拓展(10分钟)引导学生思考:立方根有哪些应用?让学生举例说明,培养学生的应用意识。
立方根教案(3课时)
立方根(1)教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的惟一性.4、分清一个数的立方根与平方根的区别。
教学重点:立方根的概念和求法。
教学难点:立方根与平方根的区别。
教学过程一、情境导入:问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少? 设这种包装箱的边长为x m,则3x =27这就是求一个数,使它的立方等于27. 因为33=27, 所以x=3. 即这种包装箱的边长应为3 m二、新课:1、归纳 :如果一个数的立方等于a ,这个数叫做a 的立方根(也叫做三次方根),即如果3x a =,那么x 叫做a 的立方根2、探究: 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点? 因为328=,所以8的立方根是( 2 )因为()30.50.125=,所以0.125的立方根是( 0.5 )因为()300=,所以8的立方根是( 0 )因为()328-=-,所以8的立方根是( 2- ) 因为328327⎛⎫-=- ⎪⎝⎭,所以8的立方根是( 23- )一个数a 的立方根,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,273=表示27-的3=-.3、探究: ____,____, =____,____==利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即)0a =>。
4、 例 求下列各式的值:(1)364; (2)27-; (3)327102 (4)310001-; (5)64±; (6)64 三、练习:课本P79练习1、2、3四、小结:1.立方根和开立方的定义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.五、作业: P80习题13.2第1、3、5、6题立方根(2)教学目标:1、使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算.2、能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力。
2.3立方根数学教案
2.3立方根数学教案
标题:2.3 立方根
一、课程目标:
1. 让学生理解立方根的概念
2. 学会求立方根的基本方法
3. 能够运用立方根解决实际问题
二、教学内容:
1. 定义:立方根是使某个数变为另一个数的立方的数。
2. 性质:立方根有三个性质:唯一性、存在性和运算规则。
三、教学过程:
1. 导入新课:通过实例引入立方根的概念,如立方体的体积计算等。
2. 新课讲解:
a) 概念介绍:用通俗易懂的语言解释立方根的概念,让学生明白什么是立方根。
b) 性质介绍:讲解立方根的唯一性、存在性和运算规则,通过实例帮助学生理解和掌握这些性质。
3. 练习与讨论:
a) 提供一些简单的立方根计算题目,让学生进行练习,然后在全班进行讨论和解答。
b) 引导学生尝试自己总结求立方根的方法,鼓励他们提出自己的想法。
4. 课堂小结:对本节课的内容进行总结,强调重点和难点。
四、作业布置:
设计一些立方根的计算题和应用题,让学生在课后进行练习。
五、教学反思:
对本节课的教学效果进行反思,思考哪些地方做得好,哪些地方需要改进。
六、拓展活动:
组织一些与立方根相关的课外活动,如立方体模型制作、立方根游戏等,以增强学生的兴趣和动手能力。
以上只是一个大纲,你可以根据实际情况进行详细编写。
在教学过程中,要注意引导学生积极参与,让他们主动思考和解决问题,这样才能真正提高他们的数学能力。
2.3立方根(教案)
-重点讲解∛8=2,因为2×2×2=8,强调“三次方”的概念。
-通过具体的计算例题,如∛27、∛-64,展示计算方法,强调计算步骤和注意事项。
-通过对比∛8和-∛8,说明正负数的立方根性质,以及立方根的唯一性。
2.教学难点
-立方根的理解:学生可能会对立方根的概念感到抽象,难以理解一个数的立方根实际上是一个数乘以自身两次后的结果。
3.数学建模:运用立方根知识解决实际问题,培养学生建立数学模型,提高数学建模素养。
4.数学运算:熟练进行立方根的计算,培养学生准确、快速的运算能力,提高数学运算素养。
5.数据分析:通过对立方根性质的分析,培养学生对数据的敏感性和分析能力,增强数据分析素养。
本节课的核心素养目标与新教材要求相符,注重培养学生的综合能力和学科素养,为学生的全面发展奠定基础。
本节课旨在帮助学生掌握立方根的基础知识,培养他们的数学运算能力和逻辑思维能力。教学内容紧密结合教材,注重实用性和知识深度,以适应七年级学生的学习需求。
二、核心素养目标
本节课旨在培养学生的以下核心素养:
1.数学抽象:通过立方根的定义和性质,让学生抽象出数学概念,提高数学抽象思维能力。
2.逻辑推理:在学习立方根计算过程中,引导学生运用逻辑推理,掌握正确的计算方法,增强推理能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解立方根的基本概念。立方根是一个数的三次方等于另一个数时,这个数就是另一个数的立方根。它是解决与立方体体积、三次方等数学问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。一个立方体的体积是64立方厘米,如何求出它的边长?通过计算立方根,我们可以得出边长是4厘米。这个案例展示了立方根在实际中的应用,以及它如何帮助我们解决问题。
2024年浙教版初中数学立方根教案3
2024年浙教版初中数学立方根教案3一、教学内容本节课选自2024年浙教版初中数学教材七年级下册第4章第2节,主题为“立方根”。
详细内容包括:1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用。
二、教学目标1. 让学生掌握立方根的定义,理解立方根的性质,能够熟练计算立方根;2. 培养学生运用立方根解决实际问题的能力,提高数学应用意识;三、教学难点与重点教学难点:立方根的计算方法,特别是非整数的立方根。
教学重点:立方根的定义及性质,立方根的计算方法。
四、教具与学具准备1. 教具:立方体模型,多媒体课件;2. 学具:计算器,练习本。
五、教学过程1. 实践情景引入(1)展示立方体模型,让学生观察并说出其特征;(2)提出问题:如果知道一个立方体的体积,如何求其棱长?2. 立方根定义及性质(1)引导学生通过观察、思考,得出立方根的定义;(2)讲解立方根的性质,如:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
3. 立方根的计算方法(1)讲解立方根的计算方法,如:分解因数法、估算法、计算器法;(2)举例说明各种方法的运用。
4. 例题讲解(1)计算立方根的例题;(2)解决实际问题的例题。
5. 随堂练习设计不同难度的练习题,让学生巩固所学知识。
(2)拓展延伸:介绍立方根在其他领域的应用。
六、板书设计1. 立方根的定义;2. 立方根的性质;3. 立方根的计算方法;4. 例题及解答。
七、作业设计1. 作业题目:(2)一个立方体的体积为64立方厘米,求其棱长;(3)运用立方根解决实际问题。
2. 答案:(1)2,3,4;(2)4厘米;(3)答案不唯一,合理即可。
八、课后反思及拓展延伸1. 反思:本节课的教学目标是否达成,学生掌握立方根的情况如何;2. 拓展延伸:引导学生探索立方根与其他数学知识(如平方根、算术平方根等)的联系,提高学生的数学素养。
重点和难点解析1. 教学难点与重点的设定;2. 实践情景引入的设计;3. 立方根计算方法的讲解;4. 例题的选择与讲解;5. 作业设计。
《立方根》优质教案
《立方根》优质教案一、教学目标1.知识与技能a.了解立方根的概念及求解方法;b.掌握求解立方根的基本步骤;c.能够运用立方根求解实际问题。
2.过程与方法培养学生主动思考、合作学习的意识和能力,通过引导与实践,提高学生的学习兴趣和主动参与的积极性。
二、教学重点掌握求解立方根的基本步骤。
三、教学难点能够运用立方根求解实际问题。
四、教学准备多媒体课件、教学资源等。
五、教学过程1.引入新知通过一个生活实例引入立方根的概念。
教师:同学们,你们在生活中是否遇到过需要求立方根的问题呢?学生:暂无回答。
教师:比如,你们在购买物品时,想知道它的体积或边长,就需要求解其立方根。
那么,立方根到底是什么呢?我们来研究一下。
2.概念解释教师出示相关图片或图示,引导学生思考,学生回答问题并进行合作讨论。
教师:根据你们对生活实例的观察和思考,立方根的概念是什么呢?学生:立方根是一个数,它与平方根类似,是指一个数的立方等于给定数字的根。
教师:很好,立方根就是一些数字的立方等于给定数字的根。
那么,我们怎样求解一个数的立方根呢?3.求解立方根的方法教师向学生介绍求解立方根的方法,并进行示范。
教师:求解一个数的立方根,可以通过近似法和进位法两种方法。
我们先来看看近似法。
(1)近似法教师:比如,我们要求解27的立方根,首先,我们要估算它的范围,27大致在什么范围内呢?学生:27大约在3和4之间。
教师:对的。
那么,我们先猜测一个数,比如3,将3的立方计算出来,看看它与原数27的差距有多大。
学生:3的立方是27,恰好等于原数27教师:很好。
我们再尝试另一个数,比如4,将4的立方计算出来,比较它与原数27的大小。
学生:4的立方是64,比原数27要大。
教师:所以,27的立方根应该在3和4之间,可以估算为3.5、我们再计算一下3.5的立方。
学生:3.5的立方是42.875教师:很好。
通过近似法,我们大致求出27的立方根是3.5(2)进位法教师:除了近似法,我们还可以使用进位法来求解立方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版义务教育教科书◎数学七年级下册
6.2 立方根
教学目标
1.了解立方根的概念,会用根号表示数的立方根.
2.了解开方与乘方互为逆运算,会用立方运算求某些数的立方根,会用计算器求立方根.
3.能用有理数估计一个无理数(立方根)的大致范围.
教学重点
立方根的概念与性质及求法.
教学难点
立方根的概念与性质及求法.
课时安排
2课时.
第1课时
教学内容
立方根的概念和求法.
一、复习导入
复习上节内容,导入新课的教学.
二、新课教学
1.问题
要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的棱长应该是多少?
设这种包装箱的边长为x m,则
x3=27.
这就是求一个数,使它的立方等于27.
因为33=27,所以x=3.
因此这种包装箱的棱长应为3 m.
归纳:一般地,如果一个数的立方等于a,这个数叫做a的立方根或三次方根,这就是说,如果x3=a,那么x叫做a的立方根.
2.探究
根据立方根的意义填空,你能发现正数、0、负数的立方根各有什么特点吗?
教师备课系统──多媒体教案
因为23=8,所以8的立方根是( );
因为( )3=0.064,所以0.064的立方根是( );
因为( )3=0,所以0的立方根是( );
因为( )3=-8,所以-8的立方根是( );
因为( )3=-278,所以-27
8的立方根是( ). 归纳:正数的立方根是正数,负数的立方根是负数,0的立方根是0,任何数都有唯一的立方根.
类似与平方根,一个数a 的立方根,用符号“3a ”表示,读作“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方.
3. 探究
因为38= ,-38= ,所以为38;
因为327= ,-327= ,所以为327.
利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,一般地,
3a =-3a .
三、课堂小结
1. 立方根和开立方的定义.
2. 正数、0、负数的立方根的特征.
3. 立方根与平方根的异同.
四、布置作业
教材P51、P52习题6.2第1、2、3、5题.
第2课时
教学内容 用有理数估计一个无理的大致范围.
一、复习引入
复习上节内容,导入新课的教学.
二、新课教学
1.问题:350有多大呢?
人教版义务教育教科书◎数学七年级下册
因为33=27,43=64,所以3<350<4;
因为3.63=46.656,3.73=50.653,所以3.6<350<3.7;
因为3.683=49.836 032,3.693=50.24 349,所以3.68<350<3.69;
……
如此循环下去,可以得到更精确的350的近似值,它是一个无限不循环小数,350=-3.684 031 49……事实上,很多有理数的立方根都是无限不循环小数.我们用有理数近似地表示它们.
2.利用计算器来求一个数的立方根
用计算器求数的立方根的步骤及方法:用计算器求立方根和求平方根的步骤相同,只是根指数不同.
步骤:输入3→ 被开方数→ =→根据显示写出立方根.
-(保留三个有效数字),可以按照下面步骤进行:例:用计算器求35
3→ 被开方数→ =→ 1.709975947.
-≈-1.71.
所以,35
三、练习
教材P51练习2.
四、小结
1.立方根的概念和性质.
2.用计算器来求一个数的立方根.
五、作业
教材P52习题6.2第4、8题.。