广东省揭阳市普宁市2019-2020学年九年级(上)期末数学试卷 解析版
2019-2020学年度第一学期九年级数学期末试卷试题(含答案)
2019~2020学年度第一学期期末检测九年级数学评分标准(其他解法参照给分)一、选择题(本大题共8小题,每小题3分,共24分.)二、填空题(本大题共10小题,每小题3分,共30分)9.12; 10.1:4; 11.2; 12.>; 13.110;14.不具有; 15. 16.4; 17.16; 18.2+三、解答题(本大题共10小题,共86分.)19.(本题共2小题,每题5分,共10分)(1)(1)计算:1032sin302020-+︒-解:原式11=2132+⨯-…………………………………………………3分 1113=+-……………………………………………………4分 13=…………………………………………………………5分 (2)解方程:2340x x +-=(解法不唯一)解:()()410x x +-=,……………………………………………………7分40x +=,10x -=…………………………………………………9分 1241x x =-=,………………………………………………………10分20.(本小题7分)解:………………………………………………………………………………………5分 P (两次取球得分的总分不小于5分)=13…………………………………………7分21.(本小题7分)(1)816%=50÷,5010148612m =----=;…………………………2分(2)本次抽查的学生文章阅读篇数的中位数为5,众数为4;………………4分(3)14120033650⨯=,………………………………………………………6分 答:估计该校学生在这一周内文章阅读的篇数为4篇的人数为336人.………7分22.(本小题8分)(1)△ABC 的面积是 12 ;…2分(2)如图所示………6分(3)若P (a ,b )为线段BC 上的任一 点,则变换后点P 的对应点'P 的坐标为 (,)22a b .………8分23.(本小题8分)解:设市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x .…1分 根据题意得,28(1)11.52x +=.…………………………………………………4分解这个方程,得 1220% 2.2x x ==-,(不合题意,舍去)……………………7分答:市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%…8分24.(本小题8分)解:(1)分别过点E 作EF ⊥AC ,EG ⊥AO,垂足为F 、G.∵至DE 处,测得顶点A 的仰角为75°, ∴∠AEG=75°……………1分∵在BC 处测得直立于地面的AO 顶点A 的仰角为30°,∴∠ACE=30°, ……2分 ∴∠CAE=∠AEG -∠ACE=45°……………………………………………3分(2)在Rt △CFE 中,CE=40,∴1sin 3040202EF CE =︒=⨯=………4分 在Rt △AFE 中,∠CAE =45°,AF=FE=20………5分∴sin 452EF AE ===︒…………………………………………6分(第24题)(3)20AC AF CF =+=在Rt △AFE 中,1sin 3020272AG AC =︒=⨯≈()……7分 ∴27 1.529AO AG OG =+=+≈……………………………8分25.(本小题9分)26.(本小题9分)m.…1分解:(1)设矩形生物园的长为xm,则宽为(8-x)m,小兔的活动范围的面积为y227.(本小题10分)(1)证明:如图1中,AE AD ⊥ ,90DAE ∴∠=︒,90E ADE ∠=︒-∠,…………1分AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠,…………………2分 ADE BAD DBA ∠=∠+∠ ,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠,(2)延长AD 交BC 于点F .AB AE = ,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,………………………4分E CBE ∴∠=∠,//AE BC ∴,……………………………………5分90AFB EAD ∴∠=∠=︒,BF BD AF DE=, :2:3BD DE = ,(3)ABC 与ADE 相似,90DAE ∠=︒,ABC ∴∠中必有一个内角为90︒ABC ∠ 是锐角,90ABC ∴∠≠︒.………………………………………………………7分 ①当90BAC DAE ∠=∠=︒时,12E C ∠=∠ , 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒ ,30ABC ∴∠=︒,此时2ABC ADES S =V V .………………………………………8分 ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC 与ADE 相似,45ABC ∴∠=︒,此时ABC ADE S S =V V .………………………………………9分28.(本小题10分) 解:(1)由抛物线2y ax bx c =++交x 轴于A 、B 两点,OA =1,OB =3,得点A 坐标为(1,0)-,点B 的坐标为(3,0);…………………………………2分 Q。
2023年广东省揭阳市普宁市九年级(上)期末数学试卷+答案解析
2023年广东省揭阳市普宁市九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程的解是()A. B.C.,D.,2.如图所示的几何体的左视图()A.B.C.D.3.如图,在中,,,点D为斜边AB上的中点,则CD为()A.10B.3C.5D.44.如图,菱形ABCD的两条对角线相交于点O,若,,则菱形ABCD的面积是()A.24B.48C.D.125.已知方程有两个相等的实数根,则a的值是()A. B. C. D.不存在6.某市初中学业水平实验操作考试要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到生物学科的概率是()A. B. C. D.7.如图,已知,请你再添加一个条件________使得∽则下列选项不成立的是()A.B.C.D.8.已知四边形ABCD是平行四边形,下列说法正确的是()A.当时,四边形ABCD是矩形B.时,四边形ABCD是菱形C.当时,四边形ABCD是菱形D.当时,四边形ABCD是正方形9.如图,等边三角形OAB,点B在x轴正半轴上,,若反比例函数图象的一支经过点A,则k的值是()A.B.C.D.10.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示栏杆宽度忽略不计,其中,,,米,那么适合该地下车库的车辆限高标志牌为参考数据:,,()A. B. C. D.二、填空题:本题共5小题,每小题3分,共15分。
11.______.12.鹦鹉螺曲线的每个半径和后一个半径的比都是黄金比例,是自然界最美的鬼斧神工.如图,点P是AB的黄金分割点,若线段AB的长为6cm,则AP的长为______结果保留根号13.如图,AB和DE是直立在地面上的两根立柱,,AB在阳光下的影长,在同一时刻阳光下DE的影长,则DE的长为______米.14.某型号电动汽车,第一年充满电可行驶500km,第三年充满电可行驶405km,则该型号电动汽车续航里程平均每年衰减的百分比为______.15.如图,正方形ABCD中,E在BC延长线上,AE,BD交于点F,连结FC,若,那么的度数是______.三、解答题:本题共8小题,共75分。
2020年揭阳市初三数学上期末试题含答案
2020年揭阳市初三数学上期末试题含答案一、选择题1.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2 B .1 C .0 D .﹣12.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 4.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( ) A .16(1+2x)=25 B .25(1-2x)=16 C .25(1-x)²=16 D .16(1+x)²=255.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等6.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°7.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 8.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( )A .4B .5C .6D .79.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m 10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下:x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 12.如图,AB 为⊙O 的直径,四边形ABCD 为⊙O 的内接四边形,点P 在BA 的延长线上,PD 与⊙O 相切,D 为切点,若∠BCD =125°,则∠ADP 的大小为( )A .25°B .40°C .35°D .30°二、填空题13.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.14.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.15.三角形两边长分别是4和2,第三边长是2x 2﹣9x +4=0的一个根,则三角形的周长是_____.16.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.17.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.18.若二次函数y =x 2﹣3x +3﹣m 的图象经过原点,则m =_____.19.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.20.若1x 、2x 是方程22x 2mx m m 10-+--=的两个实数根,且x 1+x 2=1-x 1⋅x 2,则 m 的值为________.三、解答题21.如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)22.如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,AC=FC .(1)求证:AC 是⊙O 的切线;(2)已知圆的半径R=5,EF=3,求DF 的长.23.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y (吨)与销售价x (万元)之间的函数关系为y =-x +2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?24.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x 交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.2.A解析:A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm ,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.4.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x),第二次降价后的价格为:25×(1﹣x)2.∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.5.A解析:A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.6.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.B解析:B【解析】A. y=3x−1是一次函数,故A错误;B. y=3x2−1是二次函数,故B正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.8.B解析:B【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤193且a≠6,然后找出此范围内的最大整数即可.【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤193且a≠6,所以整数a的最大值为5.故选B.【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.9.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.12.C解析:C【解析】【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.二、填空题13.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 14.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.15.【解析】【分析】先利用因式分解法求出方程的解再由三角形的三边关系确定出第三边最后求周长即可【详解】解:方程2x2﹣9x+4=0分解因式得:(2x﹣1)(x﹣4)=0解得:x=或x=4当x=时+2<4解析:【解析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=12或x=4,当x=12时,12+2<4,不能构成三角形,舍去;则三角形周长为4+4+2=10.故答案为:10.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键. 16.π﹣2【解析】【分析】连接CD作DM⊥BCDN⊥AC证明△DMG≌△DNH 则S四边形DGCH=S四边形DMCN求得扇形FDE的面积则阴影部分的面积即可求得【详解】连接CD作DM⊥BCDN⊥AC∵CA解析:π﹣2.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=2,四边形DMCN是正方形,DM.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=2.则阴影部分的面积是:π﹣2.故答案为π﹣2.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.17.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2 =﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣=﹣=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.18.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m求得m的值即可【详解】由于二次函数y=x2-3x+3-m的图象经过原点把(00)代入y=x2-3x+3-m得:3-m=0解得:m=解析:【解析】【分析】此题可以将原点坐标(0,0)代入y=x2-3x+3-m,求得m的值即可.【详解】由于二次函数y=x2-3x+3-m的图象经过原点,把(0,0)代入y=x2-3x+3-m,得:3-m=0,解得:m=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.19.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20【解析】【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2b a=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10, 圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.20.1【解析】【分析】【详解】若x1x2是方程x2-2mx+m2-m-1=0的两个实数根;∴x1+x2=2m ;x1·x2=m2−m−1∵x1+x2=1-x1x2∴2m=1-(m2−m−1)解得:m1=-解析:1【解析】【分析】【详解】若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个实数根;∴x 1+x 2=2m ;x 1·x 2= m 2−m−1, ∵x 1+x 2=1-x 1x 2,∴2m=1-(m 2−m−1),解得:m 1=-2,m 2=1.又∵一元二次方程有实数根时,△ 0≥,∴22(2)4(1)0m m m ----≥,解得m≥-1,∴m=1.故答案为1.【点睛】(1)若方程()20?0ax bx c a ++=≠的两根是12x x 、,则1212b c x x x x a a+=-⋅=,,这一关系叫做一元二次方程根与系数的关系;(2)使用一元二次方程根与系数关系解题的前提条件是方程要有实数根,即各项系数的取值必须满足根的判别式△=24b ac -0≥.三、解答题21.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形【详解】解:如图:22.(1)证明见解析;(229【解析】【分析】(1)连结OA 、OD ,如图,根据垂径定理的推理,由D 为BE 的下半圆弧的中点得到OD ⊥BE ,则∠D+∠DFO=90°,再由AC=FC 得到∠CAF=∠CFA ,根据对顶角相等得∠CFA=∠DFO ,所以∠CAF=∠DFO ,加上∠OAD=∠ODF ,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC 是⊙O 的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt △ODF 中利用勾股定理计算DF 的长.【详解】解:(1)连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴225+2=29【点睛】本题考查切线的判定.23.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.24.(1)y=﹣(x﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0)【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得MN ONAB BC=或MN ONBC AB=,可求得N点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得22-2y x x y x⎧=+⎨=⎩﹣,解得2xy=⎧⎨=⎩或13xy=-⎧⎨=-⎩,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A(1,1),C(﹣1,﹣3)的坐标代入得13k bk b =+⎧⎨-=-+⎩,解得:21 kb=⎧⎨=-⎩,∴y=2x﹣1,当y=0,即2x﹣1=0,解得:x=12,∴D(12,0),∴BD=2﹣12=32,∴△ABC的面积=S△ABD+S△BCD=12×32×1+12×32×3=3;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)知,AB=2,BC=32,∵MN⊥x轴于点N,∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时,有MN ONAB BC=或MN ONBC AB=,①当MN ONAB BC=时,∴22232x x x-+=,即|x||﹣x+2|=13|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N点坐标为(53,0)或(73,0);②当或MN ONBC AB=时,∴22322x x x-+=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.25.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用。
【期末试卷】2019-2020学年度第一学期期末九年级质量检测数学试卷及答案
2019-2020学年度第一学期期末九年级质量检测数 学 试 题(满分:150分;考试时间:120分钟)友情提示:1.所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效.2.参考公式:抛物线2y ax bx c =++(0a ≠)的顶点是(2b a-,244ac b a -).一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.若∠A 为锐角,cos A =22,则∠A 的度数为( ) A .75°B .60°C .45°D .30°2.如图所示几何体的左视图是( )A B C D 3.由下列光源产生的投影,是平行投影的是( )A .太阳B .路灯C .手电筒D .台灯4.已知Rt △ABC 中,∠ACB=90º,∠B=54º,CD 是斜边AB上的中线,则∠ACD 的度数是( ) A .18 º B .36 º C .54 ºD .72 º5.二次函数2(1)2y x =--图象的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =D .直线2x =-6.下列方程中,没有实数根的是( )A .2690x x -+=B .2230x x -+=C .20x x -=D .(2)(1)0x x +-=C BAD第2题图第4题图7.如图,以点O为位似中心,将△ABC缩小后得到△DEF,已知OD=1,OA=3.若△DEF的面积为S,则△ABC的面积为()A.2S B.3SC.4S D.9S8.口袋中有若干个形状大小完全相同的白球,为估计袋中白球的个数,现往口袋中放入10个形状大小与白球相同的红球.混匀后从口袋中随机摸出40个球,发现其中有3个红球.设袋中有白球x个,则可用于估计袋中白球个数的方程是()A.10340x=B.10140x=C.1013x=D.1031040x=+9.如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上,则sin∠ACB的值为()A.24B.13C.1010D.3101010.如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数6(0)y xx=>图象上,P A⊥x轴,△P AB是以P A为底边的等腰三角形.当点A的横坐标逐渐增大时,△P AB的面积将会()A.越来越小B.越来越大C.不变D.先变大后变小二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.已知C是线段AB上一点,若23ACBC=,则ABBC=.12.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则当0x<时,y随x的增大而.(填“增大”或“减小”)AFEDOCB第7题图第9题图第10题图CAB第12题图xyOA xyOPB13.如图一组平行线,每相邻两条平行线间的距离都相等,△ABC 的三个顶点都在平行线上,则图中一定等于14BC的线段是 .14.如图是某超市楼梯示意图,若BA 与CA 的夹角为α,∠C=90︒,AC =6米,则楼梯高度BC 为 米.15.二次函数2y ax bx c =++(a ,b ,c 为常数且a ≠0)中的x 与y 的部分对应值如下表:已知表中有且只有一组数据错误,则这组错误数据中的x 值是 . 16.如图,1ABB △,112A B B △,…,221n n n A B B ---△,11n n n A B B --△是n 个全等的等腰三角形,其中2AB =,11BB =,底边1BB ,12B B ,…,21n n B B --,1n n B B -在同一条直线上,连接n AB 交21n n A B --于点P ,则1n PB -的值为 .三、解答题(本大题有9小题,共86分.请在答题卡的相应位置作答) 17.(本题满分8分)已知点P (-2,3)在反比例函数ky x=(k 为常数,且0k ≠)的图象上. (1)求这个函数的解析式;(2)判断该反比例函数图象是否经过点A (-1,-3),并说明理由.18.(本题满分8分)小明同学解一元二次方程2410x x --=的过程如图所示, (1)小明解方程的方法是 ,他的求解过程从第 步开始出现错误,这一步的运算依据应该是 ;(2)解这个方程.x … -1 0 1 2 3 … y…-3-41…解:241x x -=……① 2441x x -+= ……② 2(2)1x -=……③ 21x -=± ……④ 123,1x x ==……⑤A BCD E FG HI 第13题图 ABA 1A n-1B 1B 2B n -2 B n-1B nP A n-2第16题图第14题图BC Aα19.(本题满分8分)如图,将矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为E ,BE 交AD 于点F .求证:△ABF ≌△EDF .20.(本题满分8分)如图,四边形ABCD 是平行四边形,E 为边CD 延长线上一点,连接BE 交边AD 于点F .请找出一对相似三角形,并加以证明.21.(本题满分8分)如图所示,有4张除了正面图案不同,其余都相同的图片.(1)以上四张图片所示的立体图形中,主视图是矩形的有 ;(填字母序号) (2)将这四张图片背面朝上混匀,从中随机抽出一张后放回,混匀后再随机抽出一张.求两次抽出的图片所示的立体图形中,主视图都是矩形的概率. 22.(本题满分10分)某商城将每件成本为50元的工艺品,以60元的单价出售时,每天的销售量是400件.已知在每件涨价幅度不超过15元的情况下,若每件涨价1元,则每天就会少售出10件.设每件工艺品涨了x 元.(1)小明根据题中的数量关系列出代数式(6050)x -+和(40010)x -,其中代数式(6050)x -+表示 ,代数式(40010)x -错误!未找到引用源。
2019-2020学年度第一学期九年级数学期末试题附答案答案
我爱美丽靓湖2019-2020学年度第一学期九年级数学期末试题答案一、选择题(本大题10小题,共30分)1. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,“爱”字一面的相对面上的字是( )A. 美B. 丽C. 靓D. 湖【答案】C【解析】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴有“爱”字一面的相对面上的字是靓.故选C .正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.当0<x <-1时,x ,1x,x 2的大小顺序是( ) A.1x <x <x 2 B .x <x 2<1x C .x 2<x <1x D.1x<x 2<x 【答案】A3.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为( )A .1.28×1014B .1.28×10﹣14C .128×1012D .0.128×1011【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将128 000 000 000 000用科学记数法表示为:1.28×1014. 故选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=60°,则∠2的度数是( )A .120°B .60°C .45°D .30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a 、b 被直线c 所截,且a ∥b ,∠1=60°∴∠2=∠1=60°.故选:B .【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.5.若a +b =1,则a 2−b 2+2b 的值为( )A. 4B. 3C. 1D. 0【答案】C【解析】解:∵a +b =1,∴a 2−b 2+2b =(a +b)(a −b)+2b =a −b +2b =a +b =1.故选:C .首先利用平方差公式,求得a 2−b 2+2b =(a +b)(a −b)+2b ,继而求得答案. 此题考查了平方差公式的应用.注意利用平方差公式将原式变形是关键.6.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为( )A. 1250条B. 1750条C. 2500条D. 5000条【答案】A【解析】解:由题意可得:50÷250=1250(条).故选:A .首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.7.若不等式组{x >a x −3≤0,只有三个正整数解,则a 的取值范围为( ) A. 0≤a <1B. 0<a <1C. 0<a ≤1D. 0≤a ≤1 【答案】A【解析】解:{x >a ①x −3≤0 ②∵解不等式①得:x ≤3,又∵不等式组{x >a x −3≤0只有三个正整数解, ∴0≤a <1,故选:A .先确定不等式组的整数解,再求出a 的范围即可.本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a 的取值范围是解此题的关键.8.方程(x+1)2=9的根是( )A .x =2B .x =-4C .x 1=2 x 2=-4D .x 1=4 x 2=-2解析: 把x=2、-2、4、-4分别代入方程(x+1)2=9中发现只有x =2和x =-4能使方程左右两边相等,所以选择答案C9.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A. DE =12BCB. AD AB =AE ACC. △ADE∽△ABCD. S △ADE :S △ABC =1:2【答案】D【解析】解:∵D 、E 分别是AB 、AC 的中点,∴DE//BC ,DE =12BC ,∴ADAB =AEAC =DEBC =12,△ADE∽△ABC , ∴S △ADE :S △ABC =(AD AB )2=14, ∴A ,B ,C 正确,D 错误;故选:D .根据中位线的性质定理得到DE//BC ,DE =12BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定.该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.10.如图,抛物线y =ax 2+bx +c(a ≠0)过点(1,0)和点(0,−2),且顶点在第三象限,设P =a −b +c ,则P 的取值范围是( )A. −4<P <0B. −4<P <−2C. −2<P <0D. −1<P <0【答案】A【解析】解:经过点(1,0)和(0,−2)的直线解析式为y =2x −2,当x =−1时,y =2x −2=−4,而x =−1时,y =ax 2+bx +c =a −b +c ,∴−4<a −b +c <0,即−4<P <0,故选:A .先利用待定系数法求出经过点(1,0)和(0,−2)的直线解析式为y =2x −2,则当x =−1时,y =2x −2=−4,再利用抛物线的顶点在第三象限,从而得到所以−4<a −b +c <0,根据顶点的纵坐标和与y 轴的交点坐标即可得出答案.本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c).抛物线与x 轴交点个数由判别式确定:△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点二.填空题(本题共8小题,共计24分)11.函数y =√x+3x−1中自变量x 的取值范围是答案: x ≥−3且x ≠1【解析】【分析】本题考查了函数自变量的取值范围,要注意几点:①被开方数为非负数;②分母不为0;③a 0中a ≠0.根据被开方数为非负数和分母不为0列不等式计算.【解答】解:根据题意得:{x +3≥0x −1≠0, 解得:x ≥−3且x ≠1.12.因式分解:16a 2−16a +4= ______ .【答案】4(2a −1)2【解析】解:原式=4(4a 2−4a +1)=4(2a −1)2,故答案为:4(2a −1)2.首先提取公因式4,再利用完全平方公式进行二次分解即可.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.一组数据2,4,a ,7,7的平均数x =5,则方差S 2=________.【答案】3.6【解析】解:∵数据2,4,a ,7,7的平均数x =5,∴2+4+a +7+7=25,解得a =5,∴方差s 2=15[(2−5)2+(4−5)2+(5−5)2+(7−5)2+(7−5)2]=3.6;故答案为:3.6.根据平均数的计算公式:x=x1+x2+⋯+x nn ,先求出a的值,再代入方差公式S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2]进行计算即可.本题主要考查的是平均数和方差的求法,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2].14.若x1,x2是一元二次方程x2+3x−5=0的两个根,则x12x2+x1x22的值是______.【答案】15【解析】解:∵x1,x2是一元二次方程x2+3x−5=0的两个根,∴x1+x2=−3,x1x2=−5,∴x12x2+x1x22=x1x2(x1+x2)=−5×(−3)=15,故答案为:15.由根与系数的关系可求得(x1+x2)与x1x2的值,代入计算即可.本题主要考查根与系数的关系,由根与系数的关系求得(x1+x2)与x1x2的值是解题的关键.15.如图,在⊙O中,C是弦AB上一点,AC=2,CB=4.连接OC,过点C作DC⊥OC,与⊙O交于点D,DC的长为______.【答案】2√2【解析】解:延长DC交⊙O于点E.∵OC⊥DE,∴DC=CE,∵AC⋅CB=DC⋅EC(相交弦定理,可以证明△ADC∽△EBC得到),∴DC2=2×4=8,∵DC>0,∴DC=2√2,故答案为2√2.延长DC交⊙O于点E.由相交弦定理构建方程即可解决问题.本题考查垂径定理,相交弦定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.16.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为______米.(精确到1米,参考数据:√3≈1.73)【答案】208【解析】解:由题意可得:tan30°=BDAD =BD90=√33,解得:BD=30√3,tan60°=DCAD =DC90=√3,解得:DC=90√3,故该建筑物的高度为:BC=BD+DC=120√3≈208(m),故答案为:208.分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.17.如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为.考点:扇形面积的计算;等边三角形的性质.分析:设与相交于点O,连OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及逆时针方向绕点O旋转120°后,阴影部分便合并成△OBC,得到它的面积等于△ABC面积的三分之一,利用等边三角形的面积公式:×边长2,即可求得阴影部分的面积.解答:解:如图,设与相交于点O,连接OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O旋转120°后,阴影部分便合并成△OBC,它的面积等于△ABC面积的三分之一,∴S阴影部分=××12=.故答案为:.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等边三角形的面积公式:×边长2.x2−4与x轴交于A、B两点,P是以点C(0,3)18.如图,抛物线y=14为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是【答案】72【解析】解:连接BP,如图,x2−4=0,解得x1=4,x2=−4,则A(−4,0),当y=0时,14B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,BP,∴OQ=12当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC=√32+42=5,∴BP′=5+2=7,∴线段OQ的最大值是7.2x2−4=0得A(−4,0),B(4,0),再判断OQ为△ABP的中位线连接BP,如图,先解方程14BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到得到OQ=12P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.三、解答题(本题共计10个小题,共计66分)19.(本题满分4分)计算:+(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(本题满分4分)解不等式<x+1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.依次计算可得.【解答】解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(本题满分5分)关于x的分式方程﹣=总无解,求a的值.【分析】分式方程去分母转化为整式方程,分类讨论a的值,使分式方程无解即可.【解答】解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1,2.【点评】本题考查了分式方程无解的条件,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.22.(本题满分8分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中两名学生性别相同的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.23.(本题满分6分)如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.24.(本题满分7分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?【答案】解:(1)设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意得{x +2y =142x +3y =24解这个方程组得:{x =6y =4答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a 台,乙型机器人(8−a)台,根据题意得{6a +4(8−a)≤411200a +1000(8−a)≥8300解这个不等式组得32≤a ≤92∵a 为正整数∴a 的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台购买甲型机器人4台,乙型机器人4台26.(本题满分7分)如图,已知一次函数与反比例函数的图象相交于点A (4,n ),与x 轴相交于点B .(1)填空:n 的值为 ,k 的值为 ; (2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标;(3)考察反比函数的图象,当时,请直接写出自变量x 的取值范围.(1)3,1226.(本题满分7分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【解答】解:(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm;故答案为:10;(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,10),B(28,20),∴,解得:,∴线段AB对应的解析式为:y=x+(12≤x≤28);(3)∵28﹣12=16(s),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.27.(本题满分9分)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ//AB 分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC⋅BQ;(3)若AC、BQ的长是关于x的方程x+4x =m的两实根,且tan∠PCD=13,求⊙O的半径.(x−ℎ)2−2与x轴交于A,B两点(点A在点28.(本题满分9分)如图,抛物线l:y=12B的左侧),将抛物线l在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数f的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数f的值y随x的增大而增大;②如图2,若过A点的直线交函数f的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P 的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.4.【答案】解:(1)①把A(1,0)代入抛物线y=12(x−ℎ)2−2中得:12(x−ℎ)2−2=0,解得:ℎ=3或ℎ=−1,∵点A在点B的左侧,∴ℎ>0,∴ℎ=3,∴抛物线l的表达式为:y=12(x−3)2−2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数f的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD//QE,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴12AB⋅QE=2×12AB⋅PD,∴QE=2PD,∵PD//QE,∴△PAD∽△QAE,∴AEAD =QEPD,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,−[12(1+ a−3)2−2]),∵点F、Q在抛物线l上,∴PD=DF=−[12(1+a−3)2−2],QE =12(1+2a −3)2−2, ∴12(1+2a −3)2−2=−2[12(1+a −3)2−2], 解得:a =83或a =0(舍),∴P(113,169); (2)当y =0时,12(x −ℎ)2−2=0,解得:x =ℎ+2或ℎ−2,∵点A 在点B 的左侧,∴A(ℎ−2,0),B(ℎ+2,0),如图3,作抛物线的对称轴交抛物线于点C ,分两种情况:①由图象可知:图象f 在AC 段时,函数f 的值随x 的增大而增大,则{ℎ−2≤2ℎ≥3, ∴3≤ℎ≤4,②由图象可知:图象f 点B 的右侧时,函数f 的值随x 的增大而增大,即:ℎ+2≤2,ℎ≤0,综上所述,当3≤ℎ≤4或ℎ≤0时,函数f 的值随x 的增大而增大.【解析】(1)①利用待定系数法求抛物线的解析式,由对称性求点B 的坐标,根据图象写出函数f 的值y 随x 的增大而增大(即呈上升趋势)的x 的取值;②如图2,作辅助线,构建对称点F 和直角角三角形AQE ,根据S △ABQ =2S △ABP ,得QE =2PD ,证明△PAD∽△QAE ,则AE AD =QE PD ,得AE =2AD ,设AD =a ,根据QE =2FD 列方程可求得a的值,并计算P 的坐标;(2)先令y =0求抛物线与x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h 的取值.本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、二次函数的增减性问题、三角形相似的性质和判定,与方程相结合,找等量关系,第二问还运用了数形结合的思想解决问题.。
【人教版】2019—2020学年九年级上数学期末试卷及答案解析
【人教版】2019—【人教版】2019—2020学年九年级上数学期末试卷及答案解析姓名:_______________班级:_______________考号:_______________一、选择题二、1、方程的左边配成完全平方后;得到的方程为().A. B. C.D.以上都不对2、在一幅长80cm;宽50cm的矩形风景画的四周镶一条金色纸边;制成一幅矩形挂图;如果要使整个挂图的面积是5400cm2;设金色纸边的宽为;则满足的方程是()A. B.C. D.3、如图;在Rt△ABC中;∠BAC=90°;∠B=60°;△ADE可以由△ABC绕点 A顺时针旋转900得到;点D 与点B是对应点;点E与点C是对应点);连接CE;则∠CED的度数是( )(A)45°(B)30°(C)25°(D)15°4、下列图形中;是中心对称图形的是()5、如图;A;B;C是⊙O上三个点;∠AOB=2∠BOC;则下列说法中正确的是A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6、在平面直角坐标系中;以点(3;2)为圆心;2为半径的圆与坐标轴的位置关系为()A.与x轴相离、与y轴相切 B.与x轴、y轴都相离C.与x轴相切、与y轴相离 D.与x轴、y轴都相切7、某口袋中有20个球;其中白球x个;绿球2x个;其余为黑球.甲从袋中任意摸出一个球;若为绿球则甲获胜;甲摸出的球放回袋中;乙从袋中摸出一个球;若为黑球则乙获胜.则当x=________时;游戏对甲、乙双方公平( )A.3 B.4 C.5 D.68、.已知二次函数y=ax2+bx+c(a≠0)的图象如图;有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个9、如图;已知AB=12;点C;D在AB上;且AC=DB=2;点P从点C沿线段CD向点D运动(运动到点D停止);以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF;连接EF;取EF的中点G;下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个 B.2个 C.3个 D.4个10、如图所示;二次函数的图像经过点(-1;2);且与轴交点的横坐标分别为;;其中;;下列结论:①;②;③;④其中正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题11、方程有两个不等的实数根;则a的取值范围是________。
广东省揭阳市普宁市2020-2021学年第一学期九年级上册期末数学试卷 (解析版)
2020-2021学年广东省揭阳市普宁市九年级第一学期期末数学试卷一、选择题(共10小题).1.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A.B.C.D.2.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.3.已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关4.在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()A.B.C.D.5.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.sin A=B.a=sin B×c C.cos A=D.tan A=6.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣257.下列说法正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形8.已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.9.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.D.610.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=在同一平面直角坐标系中的图象大致是()A.B.C.D.二、填空题(共7小题).11.计算:tan260°+4sin30°﹣2cos45°=.12.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则x1x2﹣x1﹣x2的值为.13.如图,在△ABC中,D是AB中点,DE∥BC,若DE=6,则BC=.14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.抛物线y=(k﹣1)x2﹣x+1与x轴有交点,则k的取值范围是.16.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是.17.如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2=.三、解答题(3个小题,每小题6分,共18分)18.用配方法解方程:2x2﹣4x﹣16=0.19.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗,李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗,请用列表法或画树状图法,求李老师和王老师被分配到一个监督岗的概率.20.已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,3),(﹣1,0).(1)则b=,c=;(2)该二次函数图象的顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当﹣1<x<0时,y的取值范围是.四、解答题(二)(本大题3个小题,每小题8分,共24分)21.B,D两地间有一段笔直的高速铁路,长度为100km,某时发生的地震对地面上以点A 为圆心,30km为半径的圆形区域内的建筑物有影响,分别从B,D两地处测得点A的方位角如图所示,高速铁路是否会受到地震的影响?请通过计算说明理由.(结果精确到0.1km,参考数据:)22.某商店销售一种成本为40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件;(1)商店要使月销售利润达到8000元,销售价应定为每件多少元?(2)当销售价定为每件多少元时会获得最大利润?23.如图,正方形ABCD中,点E,F分别在边,AD,CD上,且BE=BF,BD和EF交于点O,延长BD至点H,使得BO=HO,并连接HE,HF.(1)求证:AE=CF;(2)试判断四边形BEHF是什么特殊的四边形,并说明理由.五、解答题(三)(本大题2个小题,每小题10分,共20分)24.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.25.如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M,点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s,过点P作GH⊥AB于点H,交CD于点G,设运动时间为t(s)(0<t≤5);(1)当t为何值时,CM=QM?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式.参考答案一、选择题(共10小题).1.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看,是一个矩形,矩形的中间是一个圆.故选:C.2.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.【分析】利用求根公式求出解即可.解:这里a=3,b=5,c=1,∵△=25﹣12=13,∴x=,故选:A.3.已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.解:∵△=b2﹣4×(﹣1)=b2+4>0,∴方程有两个不相等的实数根.故选:A.4.在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()A.B.C.D.【分析】用列表法表示所有可能出现的结果,从中找出两次和为5的结果数,进而求出相应的概率.解:用列表法表示所有可能出现的结果情况如下:共有12种可能出现的结果,其中“和为5”的有4种,∴P(和为5)==.故选:C.5.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.sin A=B.a=sin B×c C.cos A=D.tan A=【分析】根据锐角三角函数的定义逐项进行判断即可.解:在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,因此有:sin A=,sin B=,cos A=,tan A=,故A不符合题意;故C符合题意;故D不符合题意;由sin B=可得b=sin B×c,故B不符合题意;故选:C.6.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.7.下列说法正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形【分析】根据平行四边形的判定,菱形的判定,矩形的判定,正方形的判定依次判断可求解.解:A、一组对边平行另一组对边相等的四边形可以是等腰梯形,可以是平行四边形,故选项A不合题意;B、对角线互相垂直平分的四边形是菱形,故选项B符合题意;C、对角线相等的平行四边形是矩形,故选项C不合题意;D、对角线互相垂直平分且相等的四边形是正方形,故选项D不合题意;故选:B.8.已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.【分析】△ABC是等腰三角形,底角是75°,则顶角是30°,看各个选项是否符合相似的条件.解:∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A、三角形各角的度数分别为75°,52.5°,52.5°,B、三角形各角的度数都是60°,C、三角形各角的度数分别为75°,30°,75°,D、三角形各角的度数分别为40°,70°,70°,∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.9.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.D.6【分析】由菱形的性质得出OA=OC=6,OB=OD,AC⊥BD,则AC=12,由直角三角形斜边上的中线性质得出OH=BD,再由菱形的面积求出BD=8,即可得出答案.解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=BD,∵菱形ABCD的面积=×AC×BD=×12×BD=48,∴BD=8,∴OH=BD=4;故选:A.10.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧可知b<0,再由函数图象交y轴的正坐标可知c>0,利用排除法即可得出正确答案.解:∵由函数图象交于y轴的正半轴可知c>0,∴反比例函数y=的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.故选:B.二、填空题(本大题7个小题,每小题4分,共28分)11.计算:tan260°+4sin30°﹣2cos45°=5﹣.【分析】直接利用特殊角的三角函数值得出答案.解:原式=()2+4×﹣2×=3+2﹣=5﹣.故答案为:5﹣.12.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则x1x2﹣x1﹣x2的值为.【分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,然后利用整体代入的方法计算.解:根据题意得x1+x2=﹣,x1x2=﹣2,所以x1x2﹣x1﹣x2=x1x2﹣(x1+x2)=﹣2+=﹣.故答案为﹣.13.如图,在△ABC中,D是AB中点,DE∥BC,若DE=6,则BC=12.【分析】根据平行线分线段成比例定理得到AE=EC,根据三角形中位线定理计算即可.解:∵DE∥BC,D是AB中点,∴==1,∴AE=EC,∵AD=DB,∴BC=2DE=2×6=12,故答案为:12.14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为6.【分析】利用等腰三角形的性质求出点A的坐标即可解决问题.解:∵AO=AB,AC⊥OB,∴OC=BC=2,∵AC=3,∴A(2,3),把A(2,3)代入y=,可得k=6,故答案为6.15.抛物线y=(k﹣1)x2﹣x+1与x轴有交点,则k的取值范围是k≤且k≠1.【分析】直接利用根的判别式得到△=(﹣1)2﹣4×(k﹣1)×1≥0,再利用二次函数的意义得到k﹣1≠0,然后解两不等式得到k的范围.解:∵抛物线y=(k﹣1)x2﹣x+1与x轴有交点,∴△=(﹣1)2﹣4×(k﹣1)×1≥0,解得k≤,又∵k﹣1≠0,∴k≠1,∴k的取值范围是k≤且k≠1;故答案为:k≤且k≠1.16.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是10.【分析】根据直角三角形的边角间关系,先计算AC,再在直角三角形ACD中,利用勾股定理求出AD.解:在Rt△ABC中,∵AB=2,sin∠ACB==,∴AC=2÷=6.在Rt△ADC中,AD===10.故答案为:10.17.如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2=18.【分析】利用相似三角形的性质求出△PAD的面积即可解决问题.解:∵PA=3PE,PD=3PF,∴==,∴EF∥AD,∴△PEF∽△PAD,∴=()2,∵S△PEF=2,∴S△PAD=18,∵四边形ABCD是平行四边形,∴S△PAD=S平行四边形ABCD,∴S1+S2=S△PAD=18,故答案为18.三、解答题(本大题3个小题,每小题6分,共18分)18.用配方法解方程:2x2﹣4x﹣16=0.【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.解:x2﹣2x﹣8=0,x2﹣2x=8,x2﹣2x+1=8+1,即(x﹣1)2=9,∴x﹣1=±3,∴x﹣1=3或x﹣1=﹣3,∴x1=4,x2=﹣2.19.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗,李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗,请用列表法或画树状图法,求李老师和王老师被分配到一个监督岗的概率.【分析】列表得出所有等可能结果,从中找到李老师和王老师被分配到一个监督岗的结果,再利用概率公式求解即可.解:所有可能出现的结果如下:①②③④①(①,①)(②,①)(③,①)(④,①)②(①,②)(②,②)(③,②)(④,②)③(①,③)(②,③)(③,③)(④,③)④(①,④)(②,④)(③,④)(④,④)共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,所以李老师和王老师被分配到同一个监督岗的概率==.20.已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,3),(﹣1,0).(1)则b=2,c=3;(2)该二次函数图象的顶点坐标为(1,4);(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当﹣1<x<0时,y的取值范围是0<y<3.【分析】(1)把已知点的坐标代入函数解析式,即可求出答案;(2)化成顶点式即可求得;(3)根据函数的解析式画出抛物线即可;(4)根据图形得出y的取值范围即可.解:(1)将(0,3)、(﹣1,0)代入y=﹣x2+bx+c得:,解得,故答案为2,3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4),故答案为(1,4);(3)如图:;(3)由图象可知,当x满足﹣1<x<0时,0<y<3,故答案为0<y<3.四、解答题(二)(本大题3个小题,每小题8分,共24分)21.B,D两地间有一段笔直的高速铁路,长度为100km,某时发生的地震对地面上以点A 为圆心,30km为半径的圆形区域内的建筑物有影响,分别从B,D两地处测得点A的方位角如图所示,高速铁路是否会受到地震的影响?请通过计算说明理由.(结果精确到0.1km,参考数据:)【分析】过点A作AC⊥BD于点C,然后根据特殊角三角函数即可求出AC,进而进行比较即可判断.解:如图,过点A作AC⊥BD于点C,∴∠ACB=∠ACD=90°,根据题意可知:∠ABC=45°,∠ADC=30°,∴∠BAC=45°,∴BC=AC,在Rt△ACD中,tan∠ADC=,∴CD==AC,∵BD=BC+CD,∴AC+AC=100,解得AC=50(﹣1)≈36.6>30,∴高速铁路不会受到地震的影响.22.某商店销售一种成本为40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件;(1)商店要使月销售利润达到8000元,销售价应定为每件多少元?(2)当销售价定为每件多少元时会获得最大利润?【分析】(1)设销售价应定为每件x元,由利润8000元等于每件的利润乘以销售量得出关于x的一元二次方程,求解即可;(2)设销售价应定为每件x元,获得利润y元,由利润等于每件的利润乘以销售量得出y关于x的二次函数,将其写成顶点式,按照二次函数的性质及x的取值范围可得答案.解:(1)设销售价应定为每件x元,由题意得:(x﹣40)[500﹣10(x﹣50)]=8000,化简得x2﹣140x+4800=0,解得:x1=60,x2=80,∴销售价应定为每件60元或80元;(2)设销售价应定为每件x元,获得利润y元,依题意得:y=(x﹣40)[500﹣10(x﹣50)]=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵x≥50,且500﹣10(x﹣50)>0,∴50≤x<100,当x=70时,y取最大值9000,∴销售价定为每件70元时会获得最大利润9000元.23.如图,正方形ABCD中,点E,F分别在边,AD,CD上,且BE=BF,BD和EF交于点O,延长BD至点H,使得BO=HO,并连接HE,HF.(1)求证:AE=CF;(2)试判断四边形BEHF是什么特殊的四边形,并说明理由.【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证Rt△ABE≌Rt△BCF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.解:(1)∵四边形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在Rt△ABE和Rt△BCF中,ADAB=BCBC,BE=BF,∴Rt△ABE≌Rt△BCF(HL)∴AE=FC;(2)四边形BEHF是菱形.理由:∵四边形ABCD是正方形,∴∠BDF=45°,∵ABCD为正方形,∴∠D=90°,AD=DC.又∵AE=FC,∴DE=DF,∴△DEF为等腰直角三角形,∴∠DFE=45°,∴∠DOF=90°,即OB⊥EF,又∵EB=BF,∴OE=OF.∵OE=OF,OB=OH,OB⊥EF,∴四边形BEHF是菱形.五、解答题(三)(本大题2个小题,每小题10分,共20分)24.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.【分析】(1)由A(0,﹣4)、B(2,0)的坐标可求出一次函数的关系式,进而求出点C的坐标,确定反比例函数的关系式;(2)根据题意,要使三角形PDQ的面积最大,可用点P的横坐标n,表示三角形PDQ 的面积,依据二次函数的最大值的计算方法求出结果即可.解:(1)把A(0,﹣4)、B(2,0)代入一次函数y=kx+b得,,解得,,∴一次函数的关系式为y=2x﹣4,当x=3时,y=2×3﹣4=2,∴点C(3,2),∵点C在反比例函数的图象上,∴k=3×2=6,∴反比例函数的关系式为y=,答:一次函数的关系式为y=2x﹣4,反比例函数的关系式为y=;(2)点P在反比例函数的图象上,点Q在一次函数的图象上,∴点P(n,),点Q(n,2n﹣4),∴PQ=﹣(2n﹣4),∴S△PDQ=n[﹣(2n﹣4)]=﹣n2+2n+3=﹣(n﹣1)2+4,∵﹣1<0,∴当n=1时,S最大=4,答:△DPQ面积的最大值是4.25.如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M,点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s,过点P作GH⊥AB于点H,交CD于点G,设运动时间为t(s)(0<t≤5);(1)当t为何值时,CM=QM?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式.【分析】(1)证明△ECM∽△EBF,由相似三角形的性质可得出,求出CM的长,则可求出答案;(2)由勾股定理求出AC=EF=10cm,根据相似三角形的性质求出EM的长,由矩形的性质得出,解方程可得出答案;(3)过Q作QI⊥CD于点I,交DM的延长线于点I,证明△GCP∽△BAC,得出,可求出GC=,同理△MIQ∽△FBE,由相似三角形的性质得出,则MI=,IQ=,由梯形的面积公式可得出答案.解:(1)∵AB∥CD,∴∠ECM=∠EBF,∵∠E=∠E,∴△ECM∽△EBF,∴,∵AB=BE=8cm,BC=BF=6cm,∴,∴CM=(cm),依题意得QM=t,∴t=QM=CM=,∴当t=时,CM=QM;(2)如图1所示,∵∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,∴由勾股定理可得AC=EF==10(cm),由(1)得△ECM∽△EBF,∴,即,解得(cm),同理可得,,∴,,∴,.∵四边形PQNH为矩形,∴PH=QN,即,∴t=3;(3)如图2所示,过Q作QI⊥CD,交DM的延长线于点I,∵GH⊥AB于点H,∠ABC=90°,AB∥CD,∴GH=BC=6,∠GCP=∠CAB,∠CGP=∠ABC=90°,∴△GCP∽△BAC,∴,即,∴GC=,同理△MIQ∽△FBE,∴,即,∴MI=,IQ=,∴GI=GC+CM+MI==t,CI=CM+MI=,∴S=S梯形QIGC﹣S△CQI=(IQ+GH)×GI﹣=(+6)×()﹣=.。
【解析版】广东省揭阳市揭西县2019届九年级上期末数学试卷
广东省揭阳市揭西县2019届九年级上学期期末数学试卷一、选择题(每小题3分,共30分)1.点(2,﹣2)是反比例函数y=的图象上的一点,则k=()A.﹣1 B.C.﹣4 D.﹣2.一元二次方程x(x﹣2)=2﹣x的根是()A.x=﹣1 B.x=2 C.x1=1,x2=2 D.x1=﹣1,x2=23.掷两枚质地均匀的骰子,两枚的点数都是6的概率为()A.B.C.D.4.x=1是关于x的一元二次方程x2+mx﹣5=0的一个根,则此方程的另一个根是()A.5B.﹣5 C.4D.﹣45.下列几何体中,主视图相同的是()A.①②B.①③C.①④D.②④6.已知点A(1,﹣1)在反比例函数y=的图象上,过点A作AM⊥x轴于点M,则△OAM 的面积为()A.B.2C.1D.7.下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=08.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是()A.B.C.D.9.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=()A.0.9cm B.1cm C.3.6cm D.0.2cm10.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3B.4C.5D.6二.填空题(每小题4分,共24分)11.方程(x﹣2)(x+3)=0的解是.12.一次函数y=kx+1经过点(﹣1,2),则反比例函数y=的图象经过点(2,).13.某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是.14.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为m.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.16.如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,则OC=.三.解答题(每小题6分,共18分)17.解方程:x2+7x+12=0.18.如图,直线y=x﹣3与反比例函数y=(x>0)的图象交于点A(4,1),与x轴交于点B.求k的值及点B的坐标.19.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.求证:四边形CEDF是平行四边形.四.解答题(每小题7分,共21分)20.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣1,0),与反比例函数y=在第一象限内的图象交于点B(,n).连结OB,若S△AOB=1.求反比例函数及一次函数的关系式.21.一个盒子中装有两个红球和三个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次都摸到白球的概率.22.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.五.解答题(每小题9分,共27分)23.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.25.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.当线段BP的长为何值时,△PQR与△BOC相似?广东省揭阳市揭西县2019届九年级上学期期末数学试卷一、选择题(每小题3分,共30分)1.点(2,﹣2)是反比例函数y=的图象上的一点,则k=()A.﹣1 B.C.﹣4 D.﹣考点:反比例函数图象上点的坐标特征.分析:直接把点(2,﹣2)代入反比例函数y=,求出k的值即可.解答:解:∵点(2,﹣2)是反比例函数y=的图象上的一点,∴﹣2=,解得k=﹣4.故选C.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.一元二次方程x(x﹣2)=2﹣x的根是()A.x=﹣1 B.x=2 C.x1=1,x2=2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.专题:计算题;转化思想.分析:先移项得到x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.解答:解:x(x﹣2)+(x﹣2)=0,(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选D.点评: 本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.掷两枚质地均匀的骰子,两枚的点数都是6的概率为()A .B .C .D .考点: 列表法与树状图法.分析: 首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两枚的点数都是6的情况,再利用概率公式即可求得答案.解答: 解:列表得:1 2 3 4 5 61 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) ∵共有36种等可能的结果,两枚的点数都是6的只有1种情况,∴两枚的点数都是6的概率为:.故选B .点评: 此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.x=1是关于x 的一元二次方程x 2+mx ﹣5=0的一个根,则此方程的另一个根是()A . 5B . ﹣5C . 4D .﹣4考点: 根与系数的关系.分析: 由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.解答: 解:设方程的另一根为x 1,由根据根与系数的关系可得:x 1•1=﹣5,∴x 1=﹣5.故选:B . 点评: 本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.5.下列几何体中,主视图相同的是()A.①②B.①③C.①④D.②④考点:简单几何体的三视图.分析:主视图是从物体上面看,所得到的图形.解答:解:圆柱的主视图是长方形,圆锥的主视图是三角形,长方体的主视图是长方形,球的主视图是圆,故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.已知点A(1,﹣1)在反比例函数y=的图象上,过点A作AM⊥x轴于点M,则△OAM的面积为()A.B.2C.1D.考点:反比例函数系数k的几何意义.分析:直接根据反比例函数y=(k≠0)系数k的几何意义求解.解答:解:∵AC⊥x轴于点B,∴△MAO的面积=|k|=×1=.故选D.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.7.下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0考点:根的判别式.专题:计算题.分析:计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.解答:解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.8.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是()A.B.C.D.考点:概率公式.分析:由一个口袋中有2个红球,3个白球,这些球除色外都相同,直接利用概率公式求解即可求得答案.解答:解:∵一个口袋中有2个红球,3个白球,这些球除色外都相同,∴从口袋中随机摸出一个球,这个球是红球的概率是:=.故选A.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=()A.0.9cm B.1cm C.3.6cm D.0.2cm考点:平行线分线段成比例.专题:计算题.分析:根据平行线分线段成比例定理得到=,然后利用比例性质求EC的长.解答:解:∵DE∥BC,∴=,即=,∴EC=0.9(cm).故选A.点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.10.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3B.4C.5D.6考点:菱形的性质;相似三角形的判定与性质.分析:根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.解答:解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故选B.点评:本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.二.填空题(每小题4分,共24分)11.方程(x﹣2)(x+3)=0的解是x1=2,x2=﹣3.考点:解一元二次方程-因式分解法.专题:计算题.分析:方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(x﹣2)(x+3)=0,可得x﹣2=0或x+3=0,解得:x1=2,x2=﹣3.故答案为:x1=2,x2=﹣3点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.一次函数y=kx+1经过点(﹣1,2),则反比例函数y=的图象经过点(2,﹣).考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.分析:先把点(﹣1,2)代入一次函数y=kx+1求出k的值,故可得出反比例函数y=的解析式,再把x=2代入反比例函数的解析式求出y的值即可.解答:解:∵一次函数y=kx+1经过点(﹣1,2),∴2=﹣k+1,解得k=﹣1,∴反比例函数y=的解析式为y=﹣,∴当x=2时,y=﹣.故答案为:﹣.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是.考点:概率公式.分析:让习惯用左手写字的学生数除以学生总数即为所求的概率.解答:解:根据题意,某班共有50名同学,其中有2名同学习惯用左写字手,则老师随机抽1名同学,共50种情况,而习惯用左手字手的同学被选中的有2种;故其概率为=.故答案为:.点评:本题考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.14.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为7m.考点:相似三角形的应用.分析:此题中,竹竿、树以及经过竹竿顶端和树顶端的太阳光构成了一组相似三角形,利用相似三角形的对应边成比例即可求得树的高度.解答:解:如图;AD=6m,AB=21m,DE=2m;由于DE∥BC,所以△ADE∽△ABC,得:,即,解得:BC=7m,故答案为:7.点评:此题考查了相似三角形在测量高度时的应用;解题的关键是找出题中的相似三角形,并建立适当的数学模型来解决问题.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=9cm.考点:三角形中位线定理;矩形的性质.分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.解答:解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=cm,AF=AD=BC=4cm,AE=AO=AC=cm,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.点评:本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.16.如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,则OC=.考点:全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.分析:首先证明△BEC≌△CFD,即可证明OC⊥DF,然后利用直角三角新的面积公式即可求得OC的长.解答:解:∵正方形ABCD中,AB=BC=CD=4,∠B=∠DCF,又∵AE=BF,∴BE=CF=4﹣1=3,DF===5,则在直角△BEC和直角△CFD中,,∴△BEC≌△CFD,∴∠BEC=∠CFD,又∵直角△BCE中,∠BEC+∠BCE=90°,∴∠CFD+∠BCE=90°,∴∠FOC=90°,即OC⊥DF,∴S△CDF=CD•CF=OC•DF,∴OC===.故答案是:.点评:本题考查了正方形的性质,以及全等三角形的判定与性质,证明△BEC≌△CFD 是解题的关键.三.解答题(每小题6分,共18分)17.解方程:x2+7x+12=0.考点:解一元二次方程-因式分解法.分析:利用因式分解得到(x+3)(x+4)=0,推出x+3=0,x+4=0,求出方程的解即可.解答:解:x2+7x+12=0,(x+3)(x+4)=0,∴x+3=0,x+4=0,x1=﹣3,x2=﹣4.点评:此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.18.如图,直线y=x﹣3与反比例函数y=(x>0)的图象交于点A(4,1),与x轴交于点B.求k的值及点B的坐标.考点:反比例函数与一次函数的交点问题.分析:把(4,1)代入y=即可求得k的值,在y=x﹣3中,令y=0,即可求得B的横坐标,则B的左边即可求得.解答:解:把(4,1)代入y=得:k=4.在y=x﹣3中,令y=0,则x﹣3=0,解得:x=3,则B的坐标是(3,0).点评:本题考查了待定系数法求函数解析式以及函数与x轴的交点坐标的求法,待定系数法求解析式是一种基本的方法.19.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.求证:四边形CEDF是平行四边形.考点:平行四边形的判定与性质.专题:证明题.分析:由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形.解答:证明:如图,在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=.又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形.点评:本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.四.解答题(每小题7分,共21分)20.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣1,0),与反比例函数y=在第一象限内的图象交于点B(,n).连结OB,若S△AOB=1.求反比例函数及一次函数的关系式.考点:反比例函数与一次函数的交点问题.分析:把B的坐标代入反比例函数的解析式,然后根据三角形的面积公式求得m、n的值,然后利用待定系数法求得一次函数解析式.解答:解:由反比例函数过点B(,n)得:n=m,由S△AOB=1得:×1×n=1,即n=2,则m=1,则反比例函数的关系式为:y=.设一次函数的解析式是y=kx+b,根据过点A(﹣1,0),B(,2),得:,解得:.则一次函数的关系式为:y=.点评:本题考查了待定系数法求函数解析式以及三角形的面积公式,正确求得m的值是本题的关键.21.一个盒子中装有两个红球和三个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次都摸到白球的概率.考点:列表法与树状图法.分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.解答:解:列表得:第二次第一次红球1 红球2 白球1 白球2 白球3红球1 (红1,红1)(红1,红2)(红1,白1)(红1,白2)(红1,白3)红球2 (红2,红1)(红2,红2)(红2,白1)(红2,白2)(红2,白3)白球1 (白1,红1)(白1,红2)(白1,白1)(白1,白2)(白1,白3)白球2 (白2,红1)(白2,红2)(白2,白1)(白2,白2)(白2,白3)白球3 (白3,红1)(白3,红1)(白3,白1)(白3,白2)(白3,白3)∵共有25种等可能的结果,两次都摸到白球的有9种情况,∴两次都摸到红球的概率为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在Rt△ADE中,利用勾股定理求出线段AE的长度.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.点评:本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错.五.解答题(每小题9分,共27分)23.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?考点:一元二次方程的应用.专题:销售问题.分析:利用每件利润×销量=3750,进而求出答案即可.解答:解:设该玩具的销售单价为x元,则依题意有:[300﹣10(x﹣30)](x﹣20)=3750 化简得x2﹣80x+1575=0解这个方程得:x1=35,x2=45因为利润不得超过原价的100%,所以x2=45应舍去.答:该玩具应定价为35元.点评:考查了一元二次方程的应用,解题的关键是了解总利润等于单件利润乘以销量,难度不大.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.考点:全等三角形的判定;等边三角形的性质.专题:几何综合题.分析:(1)根据SAS判定△AGE和△DAB全等;(2)证明四边形DEFB是平行四边形,△AEF是个等边三角形.解答:(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∴在△AGE与△DAB中,,∴△AGE≌△DAB(SAS);(2)解:由(1)知AE=BD,∠AB D=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.点评:本题考查了全等三角形的判定和性质,本题中利用全等三角形实现线段的相等和角的转换是解题的关键.25.如图1,在△ABC中,A B=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.当线段BP的长为何值时,△PQR与△BOC相似?考点:相似形综合题.分析:(1)利用平移的知识可得四边形ABCE是平行四边形,进而根据AB=BC可得该四边形为菱形;(2)如图2,当点P在BC上运动,使△PQR与△COB相似时,由∠2是△OBP的外角,得到∠2>∠3,由于∠2不与∠3对应,于是得到∠2与∠1对应,即∠2=∠1,于是得到OP=OC=3,过O作OG⊥BC于G,则G为PC的中点,△OGC∽△BOC,根据相似三角形的对应线段成比例可以求出CG,而PB=BC﹣PC=BC﹣2CG,根据这个等式就可以求出BP 的长.解答:解:(1)四边形ABCE是菱形,证明如下:∵△ECD是由△ABC沿BC平移得到的,∴EC∥AB,且EC=AB,∴四边形ABCE是平行四边形,又∵AB=BC,∴四边形ABCE是菱形;(2)如图2,当点P在BC上运动,使△PQR与△COB相似时,∵∠2是△OBP的外角,∴∠2>∠3,∴∠2不与∠3对应,∴∠2与∠1对应,即∠2=∠1,∴OP=OC=3过O作OG⊥BC于G,则G为PC的中点,∴△OGC∽△BOC,∴CG:CO=CO:BC,即:CG:3=3:5,∴CG=,∴PB=BC﹣PC=BC﹣2CG=5﹣2×=.点评:此题主要考查了相似三角形的判定与性质以及菱形的判定、全等三角形的判定以及梯形面积求法等知识,根据相似三角形的判定得出△PQR∽△CBO,进而得出△OGC∽△BOC是解题关键.。
广东省揭阳市普宁市2019-2020学年九年级上学期期末数学试题
广东省揭阳市普宁市2019-2020学年九年级上学期期末数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 如图所示几何体的俯视图是()A.B.C.D.2. 下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等3. 已知(a≠0,b≠0),下列变形错误的是()A.B.2a=3bC.D.3a=2b4. 已知关于的一元二次方程有两个相等的实数根,则()A.4 B.2 C.1 D.﹣45. 若点,,在反比例函数的图象上,则y1,y2,y3的大小关系是()A.B.C.D.6. 抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2D.m<﹣27. 如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?ACD.8. 关于抛物线,下列结论中正确的是()A.对称轴为直线B.当时,随的增大而减小C.与轴没有交点D.与轴交于点9. 如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )D.1A.3 B.2C.10. 如图,在正方形中,点是对角线的交点,过点作射线分别交于点,且,交于点.给出下列结论:;C;四边形的面积为正方形面积的;.其中正确的是()A.B.C.D.二、填空题11. 计算:__________.12. 若一元二次方程的两根为,,则__________.13. 如图,在中,,,,则的长为__________.14. 在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,,那么与的相似比为__________.15. 如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).16. 某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.17. 如图,菱形的边长为1,,以对角线为一边,在如图所示的一侧作相同形状的菱形,再依次作菱形,菱形,……,则菱形的边长为_______.三、解答题18. 解方程19. 如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.20. 已知是的反比例函数,下表给出了与的一些值.…-4 -2 -1 1 3 4 ……-2 6 3 …(1)求出这个反比例函数的表达式;(2)根据函数表达式完成上表;(3)根据上表,在下图的平面直角坐标系中作出这个反比例函数的图象.21. 一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.22. 随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.23. 如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连接OE.过点C作CF//BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.24. 如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.(1)求此抛物线的解析式;(2)求的面积;(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.25. 如图1,在矩形中,,,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点.(1)求线段的长;(2)如图2,,分别是线段,上的动点(与端点不重合),且.①求证:∽;②是否存在这样的点,使是等腰三角形?若存在,请求出的长;若不存在,请说明理由.。
广东省揭阳市九年级上学期数学期末试卷附答案
九年级上学期数学期末试卷一、单选题(共10题;共20分)1.-4的相反数是()A. B. C. 4 D. -42.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )A. 0.845×104亿元B. 8.45×103亿元C. 8.45×104亿元D. 84.5×102亿元3.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是( )A. B. C. D.4.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( ).A. 6B. 7C. 8D. 95.在数轴上表示不等式﹣2≤x<4,正确的是()A. B.C. D.6.下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.7.如图,下列条件不能判定△ADB∽△ABC的是( )A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD.8.一元二次方程的两根之和为()A. B. 2 C. -3 D. 39.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A. 6B. 12C. 24D. 不能确定10.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A. ﹣3<x<2B. x<﹣3或x>2C. ﹣3<x<0或x>2D. 0<x<2二、填空题(共7题;共8分)11.分解因式:x3﹣16x=________.12.若正多边形的每一个内角为,则这个正多边形的边数是________.13.若,则________.14.如图,直线l1∥l2,直线l3与l1、l2分别交于点A、B.若∠1=69°,则∠2的度数为________.15.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M.若△POM 的面积等于2,则k的值等于________16.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=________.17.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形A n B n∁n C n+1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B₃的坐标是________,点B n的坐标是________.三、解答题(共8题;共56分)18.计算:|1﹣|+(2019﹣50 )0﹣()﹣219.解方程组:.20.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=________ .21.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?22.如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.23.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡” 某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为,,,,现对,,,统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出所在扇形的圆心角的度数;(3)现从,中各选出一人进行座谈,若中有一名女生,中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.24.如图,直线y=﹣x+2与反比例函数(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.25.如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C .点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动,运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.(1)用含t的代数式分别表示点E和点F的坐标;(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值;(3)当t=2时,求O′点在坐标.答案解析部分一、单选题1.【解析】【解答】-4的相反数是4,故答案为:C.【分析】根据相反数的定义即可求解.2.【解析】【解答】解:将8450亿元用科学记数法表示为8.45×103亿元.故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.3.【解析】【解答】从左边看一个正方形被分成三部分,两条分式是虚线,故C不符合题意;故答案为:C.【分析】观察此几何体,可知从左边看一个正方形被分成三部分,两条分式是虚线,就可得出正确的选项。
广东省揭阳市九年级上学期数学期末考试试卷
广东省揭阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·东台模拟) 如图,由5个完全相同的小正方体组合成的几何体,它的俯视图为()A .B .C .D .2. (2分) (2020九上·来宾期末) 已知反比例函数y= ,则其图象在平面直角坐标系中可能是()A .B .C .D .3. (2分) (2018九上·西安月考) 如图,直线l1∥l2∥l3 ,另两条直线分别交l1 , l2 , l3于点A,B,C及点D,E,F,且AB=3,DE=4,EF=2,则()A . BC∶DE=1∶2B . BC∶DE=2∶3C . BC·DE=8D . BC·DE=64. (2分)如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是()A . △ABE≌△DCFB . △ABE和△DCF都是等腰直角三角形C . 四边形BCFE是等腰梯形D . E、F是AD的三等分点5. (2分)根据下列表格的对应值:x0.000.250.500.75 1.00x2+5x﹣3﹣3.00﹣1.69﹣0.25 1.31 3.00可得方程x2+5x﹣3=0一个解x的范围是()A . 0<x<25B . 0.25<x<0.50C . 0.50<x<0.75D . 0.75<x<16. (2分)下列命题中正确的是()A . 对角线相等的四边形是菱形B . 对角线互相垂直的四边形是菱形C . 对角线相等的平行四边形是菱形D . 对角线互相垂直的平行四边形是菱形7. (2分)(2019·武汉模拟) 如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A . 0.33B . 0.34C . 0.20D . 0.358. (2分)如图,ΔABC中,∠C=90°,CD⊥AB,DE⊥AC,则图中与ΔABC相似的三角形有()A . 4个B . 3个C . 2个D . 1个9. (2分)一等腰三角形的两边长是方程x2-5x+6=0的两根,则这等腰三角形的周长为()A . 7B . 8C . 7或8D . 不能确定10. (2分)(2017·成武模拟) 如图,四边形EFGH与四边形ABCD均为矩形,点E,F,G,H分别在边AB,BC,CD,DA上,且EF=3HE,AB=2BC,则tan∠AHE=()A .B .C .D .11. (2分) (2018九上·和平期末) 某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为()A . 25(1+x)2=64B . 25(1﹣x)2=64C . 64(1+x)2=25D . 64(1﹣x)2=2512. (2分) (2016八上·重庆期中) 已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A . ∠A与∠D互为余角B . ∠A=∠2C . △ABC≌△CEDD . ∠1=∠2二、填空题 (共4题;共4分)13. (1分) (2016八下·江汉期中) 矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为________ cm.14. (1分)(2017·眉山) 已知反比例函数y= ,当x<﹣1时,y的取值范围为________.15. (1分)如图,在梯形ABCD中,DC∥AB,AC与BD相交于O点,且,S△COD=12,则△ABC 的面积是________ .16. (1分) (2016八下·云梦期中) 如图,以菱形AOBC的顶点O为原点,对角线OC所在直线为x轴建立平面直角坐标系,若OB=5,点C的坐标为(8,0),则点A的坐标为________三、解答题 (共7题;共53分)17. (10分)用公式法解方程:(1);(2)(3)(4)18. (10分)(2016九上·仙游期末) 在平面直角坐标系中,的三个顶点坐标分别为A(2,-4),B(3,-2), C(6,-3).①画出△ABC关于轴对称的△A1B1C1;②以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2 ,使△A2B2C2与△A1B1C1的相似比为2︰1.19. (10分) (2018九上·北京月考) 已知关于x的方程x2-(m+2)x+(2m-1)=0。
广东省2019-2020学年九年级数学上学期期末教学质量监测试卷
广东省汕头市2019-2020学年九年级数学上学期期末教学质量监测试卷注意事项:1.试卷分为试题和答题卡两部分,所有试题均在答题卡上......作答. 2.答题前,在答题卡上考生务必将学校、班级、准考证号、姓名填写清楚. 3.把选择题的所选选项填涂在答题卡上;作图题用2B 铅笔.4.修改时,用塑料橡皮擦干净,不得使用涂改液.请保持卡面清洁,不要折叠.说明:全卷共4页 满分120分 考试时间100分钟 一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中既是中心对称图形又是轴对称图形的是( )2.在平面直角坐标系中,点P(-3,4)关于原点对称的点的坐标是( )A. (3,4)B. (3,-4)C. (4,-3)D. (-3.已知关于x 的一元二次方程082=-+mx x 的一个根为1,则m 的值为( )A .1B .-8C .-7D .74.将抛物线2x y =向左平移2单位,再向上平移3个单位,则所得的抛物线解析式为( )A .()322++=x yB .()322+-=x yC .()322-+=x y D .()322--=x y5.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有( )A .12个B .14个C .18个D .28个6.若反比例函数ny x=的图象经过点(2,-1),则该反比例函数的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是( ) A .4B .5C .6D .78.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .1000(1+x)2=1000+440B .1000(1+x)2=440C .440(1+x)2=1000D .1000(1+2x)=1000+4409.如图,在⊙O 中,若点C 是AB 的中点,∠A=50°, 则∠BOC=( )A .40°B .45°C .50°D .60°10.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )9题图A .41->k B .41->k 且0k ≠ C .41-<k D .41-≥k 且0k ≠二、填空题(本大题6小题,每题4分,共24分)11.二次函数y=4(x ﹣3)2+7的图象的顶点坐标是 . 12.已知:25(m 2)my x -=-是反比例函数,则m= .13.三角形两边长分别为3和6,第三边的长是方程x 2﹣13x+36=0的根,则该三角形的周长为 .14.设O 为△ABC 的内心,若∠A=48°,则∠BOC= . 15.如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP ′重合,若AP=1,那么线段PP ′的长等于 . 15题图 16.从甲、乙、丙、丁4名学生中随机抽取2名学生担任数学小组长,则抽取到甲和乙概率为 .三、解答题(本大题3小题,每题6分,共18分)17.如图,已知AB 是O ⊙的直径,过点O 作弦BC 交过点A 的切线AP 于点P ,连结AC .求证:ABC POA △∽△.17题图18.为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式为 “双人组”.小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.19.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C . (1)画出△A 1B 1C ,;(2)求在旋转过程中,CA 所扫过的面积.19题图四、解答题:(本题包括3小题,每小题7分,共21分)20.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元. (1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?21.如图,直线y =x +2与y 轴交于点A ,与反比例函数(0)ky k x=≠的图象交于点C ,过点C作CB ⊥x 轴于点B ,AO=2BO ,求反比例函数的解析式.22.如图,△ABC中,∠BAC=120o,以BC为边向外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60o后到△ECD的位置。
广东省揭阳市普宁市九年级(上)期末数学试卷
九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图所示的工件,其俯视图是()A.B.C.D.2.反比例函数y=kx的图象经过点(3,-2),下列各点在图象上的是()A. (−3,−2)B. (3,2)C. (−2,−3)D. (−2,3)3.两三角形的相似比是2:3,则其面积之比是()A. 2:3B. 2:3C. 4:9D. 8:274.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A. 8B. 7C. 4D. 35.下列说法中正确的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是正方形C. 平行四边形的对角线平分一组对角D. 矩形的对角线相等且互相平分6.已知2x=3y,则下列比例式成立的是()A. x2=3yB. x2=y3C. x3=y2D. xy=237.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是()A. AC:BC=AD:BDB. AC:BC=AB:ADC. AB2=CD⋅BCD. AB2=BD⋅BC8.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A. y=(x+2)2−5B. y=(x+2)2+5C. y=(x−2)2−5D. y=(x−2)2+59.已知关于x的一元二次方程mx2-(m+2)x+m4=0有两个不相等的实数根x1,x2.若1x1+1x2=4m,则m的值是()A. 2B. −1C. 2或−1D. 不存在10.已知二次函数y=(x+m)2-n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A.B.C.D.二、填空题(本大题共6小题,共24.0分)11.计算:18-20180+(13)-1-2cos45°=______.12.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是______m.13.如图,点P在函数y=kx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于______.14.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是______.15.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售,则平均每次下调的百分率是______.16.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为______.三、计算题(本大题共1小题,共6.0分)17.有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).四、解答题(本大题共8小题,共60.0分)18.解方程:2x2-7x+6=0.19.如图,点D为△ABC边AB上一点.(1)请用尺规作∠ADE,使点E在边AC上,且∠ADE=∠C;(保留作图痕迹,不写作法)(2)△ADE与△ACB相似吗?为什么?20.已知二次函数y=x2-4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.21.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.22.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB于点O,若BC=8,AO=52,求cos∠AED的值.23.如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=kx的图象交于点A(1,2)和B(-2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1≥y2时x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若∠DAC=30°,求点C的坐标.24.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.M在AB上,且∠APM=∠APD,过点B作BN∥MP交DC于点N.(1)求证:四边形PMBN是菱形;(2)求证:AD•BC=DP•PC;(3)如图2,连接AC,分别交PM,PB于点E,F,若DP=1,AD=2,求EFAE 的值.25.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P、Q、R分别在AB、BC、CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,用t(秒)(0≤t≤2)表示运动时间,在运动过程中:(1)当t为何值时,△APR的面积为4;(2)求出△CRQ的最大面积;(3)是否存在t,使∠PQR=90°?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.2.【答案】D【解析】解:∵反比例函数y=的图象经过点(3,-2),∴xy=k=-6,A、(-3,-2),此时xy=-3×(-2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(-2,-3),此时xy=-3×(-2)=6,不合题意;D、(-2,3),此时xy=-2×3=-6,符合题意;故选:D.直接利用反比例函数图象上点的坐标特点进而得出答案.此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.3.【答案】C【解析】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.根据相似三角形的面积比等于相似比的平方计算即可.本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.4.【答案】A【解析】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.5.【答案】D【解析】解:∵对角线相等的平行四边形是矩形,∴A不正确;∵对角线互相垂直的矩形是正方形,∴B不正确;∵平行四边形的对角线互相平分,菱形的对角线平分一组对角,∴C不正确;∵矩形的对角线互相平分且相等,∴D正确;故选:D.由矩形和正方形的判定方法容易得出A、B不正确;由平行四边形的性质和矩形的性质容易得出C不正确,D正确.本题考查了矩形的判定与性质、平行四边形的性质、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定与性质是解决问题的关键.6.【答案】C【解析】解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选:C.把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.本题主要考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.7.【答案】D【解析】解:∵∠B=∠B,∴当=时,△ABC∽△DBA,当AB2=BD•BC时,△ABC∽△DBA,故选:D.根据相似三角形的对应边比例且夹角相等进行判断,要注意相似三角形的对应边和对应角.此题主要考查的是相似三角形的性质,正确地判断出相似三角形的对应边和对应角是解答此题的关键.8.【答案】A【解析】解:抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(-2,-5),所以,平移后的抛物线的解析式为y=(x+2)2-5.故选:A.先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并根据规律利用点的变化确定函数解析式.9.【答案】A【解析】解:∵关于x的一元二次方程mx2-(m+2)x+=0有两个不相等的实数根x1、x2,∴,解得:m>-1且m≠0.∵x1、x2是方程mx2-(m+2)x+=0的两个实数根,∴x1+x2=,x1x2=,∵+==4m,∴=4m,∴m=2或-1,∵m>-1,∴m=2.故选:A.先由二次项系数非零及根的判别式△>0,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出x1+x2=,x1x2=,结合+=4m,即可求出m的值.本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式△>0,找出关于m的不等式组;(2)牢记两根之和等于-、两根之积等于.10.【答案】C【解析】解:观察二次函数图象可知:m>0,n<0,∴一次函数y=mx+n的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限.故选:C.观察二次函数图象可得出m>0、n<0,再根据一次函数图象与系数的关系结合反比例函数的图象即可得出结论.本题考查了二次函数图象与系数的关系、一次函数图象与系数的关系以及反比例函数的图象,观察二次函数图象找出m>0、n<0是解题的关键.11.【答案】22+2【解析】解:原式=3-1+3-2×=3-1+3-=2+2.故答案为:2+2.直接利用特殊角的三角函数值以及二次根式的性质和零指数幂的性质、负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.【答案】14【解析】解:设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻,平行投影中物体与影长成正比.13.【答案】-8【解析】解:∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S△APB=|k|=4,∴k=±8.又∵反比例函数在第二象限有图象,∴k=-8.故答案为:-8.由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±8,再根据反比例函数在第二象限有图象即可得出k=-8,此题得解.本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|”是解题的关键.14.【答案】13【解析】【分析】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.【解答】由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故答案为:.15.【答案】10%【解析】解:设平均每次降价的百分率是x,根据题意列方程得,6000(1-x)2=4860,解得:x1=10%,x2=(不合题意,舍去);答:平均每次降价的百分率为10%.故答案是:10%设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.此题主要考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.16.【答案】(2)n-1.【解析】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=同理可得:AE=()2,AG=()3…,∴第n个正方形的边长a n=()n-1.故答案为()n-1.首先求出AC、AE、AG的长度,然后猜测命题中隐含的数学规律,即可解决问题;此题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.17.【答案】解:(1)甲选择A部电影的概率=12;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率=28=14.【解析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出甲、乙、丙3人选择同1部电影的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.【答案】解:2x2-7x+6=0,(2x-3)(x-2)=0,∴2x-3=0,x-2=0,x1=32,x2=2,【解析】利用十字相乘法因式分解得到(2x-3)(x-2)=0,推出2x-3=0,x-2=0,求出方程的解即可.此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.【答案】解:(1)如图,∠ADE即为所求作;(2)△ADE与△ACB相似.理由如下:∵∠A=∠A,∠ADE=∠C∴△ADE∽△ACB.【解析】(1)利用基本作图(作一个角等于已知角)作∠ADE=∠C;(2)根据有两组角对应相等的两个三角形相似可判定△ADE与△ACB相似.本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.20.【答案】解:(1)当y=0时,x2-4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2-4x+3=x2-4x+4-1=(x-2)2-1,所以抛物线的顶点坐标为(2,-1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.【解析】(1)通过解方程x2-4x+3=0得该二次函数与x轴的交点坐标;把y=x2-4x+3通过配方得到y=(x-2)2-1,从而得到抛物线的顶点坐标;(2)利用描点法画出二次函数图形,然后利用函数图形,写出图象在x轴下方所对应的自变量的范围即可.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【答案】解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×32=23(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=23(千米),∴BC=2BD=26(千米).答:B,C两地的距离是26千米.【解析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.22.【答案】证明:(1)∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形.∵AB=AC,AD是BC边的中线,∴AD⊥BC.即∠ADB=90°.∴四边形ADCE为矩形.(2)∵在矩形ADCE中,AO=52,∴DE=AB=5.∵D是BC的中点,∴AE=DB=4∴在Rt△ADE中,cos∠AED=AEDE=45.【解析】(1)只要证明四边形ADBE是平行四边形,且∠ADB=90°即可;(2)求出BD、AB,在Rt△ADE中,根据cos∠AED=计算即可;本题考查矩形的判定和性质、等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握矩形的判定方法,属于中考常考题型.23.【答案】解:(1)∵点A(1,2)在反比例函数y2=kx的图象上,∴2=k1,∴k=1×2=2,∴反比例函数的解析式为y2=2x.∵点B(-2,m)在反比例函数y2=2x的图象上,∴m=2−2=-1,∴点B的坐标为(-2,-1).把A(1,2),B(-2,-1)代入y1=ax+b得:2=a+b−1=−2a+b,解得:a=1b=1,∴一次函数解析式为y1=x+1.(2)由函数图象可知:当-2≤x<0或x≥1时,y1≥y2.(3)由题意得:AD=2-(-1)=3,点D的坐标为(1,-1).在Rt△ADC中,tan∠DAC=CDAD,即CD3=33,解得:CD=3.当点C在点D的左侧时,点C的坐标为(1-3,-1);当点C在点D的右侧时,点C的坐标为(1+3,-1).∴当点C的坐标为(1-3,-1)或(1+3,-1).【解析】(1)由点A的坐标,利用反比例函数图象上点的坐标特征可求出k值,由点B 的横坐标利用反比例函数图象上点的坐标特征可求出m值,进而可得出点B 的坐标,根据点A,B的坐标,利用待定系数法即可求出一次函数解析式;(2)观察函数图象,由两函数图象的上下位置关系结合两交点的坐标,即可找出y1≥y2时x的取值范围;(3)由点A,B的纵坐标可得出AD的长度及点D的坐标,在Rt△ADC中,由∠DAC=30°可得出CD的长度,再结合点D的坐标即可求出点C的坐标.本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、函数图象以及特殊角的三角函数值,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)由两函数图象的上下位置关系,找出结论;(3)在Rt△ADC中,由特殊角的三角函数值求出CD的长.24.【答案】(1)证明:在矩形ABCD中,DC∥AB,∵BN∥MP,∴四边形PMBN是平行四边形,∵∠APB=90°,∴∠APM+∠BPM=90°,∠APD+∠BPC=90°,∵∠APM=∠APD,∴∠BPM=∠BPC,∵DC∥AB,∴∠BPC=∠PBM,∵∠BPM=∠PBM∴MP=MB,∴平行四边形PMBN是菱形;(2)证明:在矩形ABCD中,∠D=∠C=90°,∴∠APD+∠DAP=90°,∵∠APD+∠BPC=90°,∴∠DAP=∠BPC,∴△ADP∽△PCB,∴ADDP=PCCB,∴AD•BC=DP•PC;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,由(2)得AD•BC=DP•PC∴PC=4,∴AB=CD=5,在矩形ABCD中,DC∥AB,∴∠APD=∠PAM,∵∠APM=∠APD,∴∠PAM=∠APM,∴AM=MP,由(1)得MP=MB,∴AM=MB=52,∴∠PCA=∠CAB,∵∠PFC=∠BFA,∴△PCF∽△BAF,∴CFAF=PCAB=45,∴CF=49AC,同理可得△PCE∽△MAE,∴CEAE=PCAM=452=85,∴AE=513AC,∴EF=AC-CF-AE=20117AC,∴EFAE=20117AC513AC=49.【解析】(1)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB-∠PAM=∠APB-∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;(2)根据余角的性质得到∠DAP=∠BPC,根据相似三角形的性质即可得到结论;(3)根据矩形的性质得到BC=AD=2,求得AB=CD=5,根据平行线的性质得到∠APD=∠PAM,推出AM=MP,得到AM=MB=,根据相似三角形的性质得到==,求得CF=AC,根据相似三角形的性质得到== =,得到AE=AC,于是得到结论.本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.25.【答案】解:(1)由运动知,AP=3t,CR=4t,∴AR=8-4t,∴S△APR=12AP•AR=12×3t×(8-4t)=12t-6t2=4,解得t=3−33或t=3+33∴当t为3−33或3+33秒时,△APR的面积为4;(2)如图1,过点Q作QD⊥AC于D,在Rt△ABC中,AB=6,AC=8,根据勾股定理得,BC=10,∴sin C=ABBC=35,由运动知,BQ=5t,CR=4t,∴CQ=BC-BQ=10-5t,∴在Rt△CDQ中,QD=CQ•sin C=35(10-5t)=6-3t,∴S△CQR=12CR•QD=12×4t×(6-3t)=12t-6t2=-6(t-1)2+6,∴当t=1时,S△CQR最大=6;(3)存在,如图2,过点R作RE⊥BC于E,过点P作PF⊥BC于F,由运动知,CR=4t,BQ=5t,AP=3t,∴BP=6-3t,∵∠BFP=∠A=90°,∠B=∠B,∴△BFP∽△BAC,∴FPAC=BFAB=BPBC,∴FP8=BF6=6−3t10,∴FP=45(6-3t),BF=35(6-3t),∴FQ=BQ-BF=5t-35(6-3t)=34t−185同理:EQ=50−41t5,RE=12t5,∵∠REQ=∠QFP=90°,∴∠ERQ+∠EQR=90°,∵∠PQR=90°,∴∠EQR+∠PQF=90°,∴∠ERQ=∠PQF,∴△REQ∽△QFP.∴REQF=EQFP,∴RE×FP=QF×EQ,∴12t5×45(6-3t)=34t−185×50−41t5,解得,t=1或t=1825∴t的值为1秒或1825秒.【解析】(1)由运动得出AP=3t,AR=8-4t,最后用三角形面积公式建立方程求解即可得出结论;(2)先构造出直角三角形表示出QD,最后用三角形面积公式即可得出结论;(3)先判断出△BFP∽△BAC,得出FP=(6-3t),BF=(6-3t),进而FQ=BQ-BF=5t-(6-3t)=同理:EQ=,RE=,再判断出△REQ∽△QFP.得出,用RE×FP=QF×EQ建立方程求解即可得出结论.此题是三角形综合题,主要考查了勾股定理,相似三角形的判定和性质,三角形的面积公式,解(1)的关键是求出QD,QE,解(2)的关键是建立函数关系式.。
2018-2019学年广东省揭阳市普宁市九年级(上)期末数学试卷(解析版)
2018-2019学年广东省揭阳市普宁市九年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑1.如图所示的工件,其俯视图是()A.B.C.D.2.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)3.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:274.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8B.7C.4D.35.下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是正方形C.平行四边形的对角线平分一组对角D.矩形的对角线相等且互相平分6.已知2x=3y,则下列比例式成立的是()A.=B.=C.=D.=7.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是()A.AC:BC=AD:BD B.AC:BC=AB:ADC.AB2=CD•BC D.AB2=BD•BC8.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+59.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2B.﹣1C.2或﹣1D.不存在10.已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C.D.二、填空题(本大题6小题,每小題4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上11.计算:﹣20180+()﹣1﹣2cos45°=.12.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是m.13.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于.14.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是.15.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售,则平均每次下调的百分率是.16.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为.三、解答题(一)(本大题3小题,每小题6分,共18分).17.解方程:2x2﹣7x+6=0.18.如图,点D为△ABC边AB上一点.(1)请用尺规作∠ADE,使点E在边AC上,且∠ADE=∠C;(保留作图痕迹,不写作法)(2)△ADE与△ACB相似吗?为什么?19.有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).20.已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.21.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.22.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB于点O,若BC=8,AO=,求cos∠AED的值.23.如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A(1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1≥y2时x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若∠DAC=30°,求点C的坐标.24.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.M在AB上,且∠APM=∠APD,过点B作BN∥MP交DC于点N.(1)求证:四边形PMBN是菱形;(2)求证:AD•BC=DP•PC;(3)如图2,连接AC,分别交PM,PB于点E,F,若DP=1,AD=2,求的值.25.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P、Q、R分别在AB、BC、CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B 运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,用t(秒)(0≤t≤2)表示运动时间,在运动过程中:(1)当t为何值时,△APR的面积为4;(2)求出△CRQ的最大面积;(3)是否存在t,使∠PQR=90°?若存在,请求出t的值;若不存在,请说明理由.2018-2019学年广东省揭阳市普宁市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑1.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.2.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)【分析】直接利用反比例函数图象上点的坐标特点进而得出答案.【解答】解:∵反比例函数y=的图象经过点(3,﹣2),∴xy=k=﹣6,A、(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D、(﹣2,3),此时xy=﹣2×3=﹣6,符合题意;故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.3.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.4.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8B.7C.4D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.5.下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是正方形C.平行四边形的对角线平分一组对角D.矩形的对角线相等且互相平分【分析】由矩形和正方形的判定方法容易得出A、B不正确;由平行四边形的性质和矩形的性质容易得出C不正确,D正确.【解答】解:∵对角线相等的平行四边形是矩形,∴A不正确;∵对角线互相垂直的矩形是正方形,∴B不正确;∵平行四边形的对角线互相平分,菱形的对角线平分一组对角,∴C不正确;∵矩形的对角线互相平分且相等,∴D正确;故选:D.【点评】本题考查了矩形的判定与性质、平行四边形的性质、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定与性质是解决问题的关键.6.已知2x=3y,则下列比例式成立的是()A.=B.=C.=D.=【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【解答】解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选:C.【点评】本题主要考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.7.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是()A.AC:BC=AD:BD B.AC:BC=AB:ADC.AB2=CD•BC D.AB2=BD•BC【分析】根据相似三角形的对应边比例且夹角相等进行判断,要注意相似三角形的对应边和对应角.【解答】解:∵∠B=∠B,∴当=时,△ABC∽△DBA,当AB2=BD•BC时,△ABC∽△DBA,故选:D.【点评】此题主要考查的是相似三角形的性质,正确地判断出相似三角形的对应边和对应角是解答此题的关键.8.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+5【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【解答】解:抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并根据规律利用点的变化确定函数解析式.9.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2B.﹣1C.2或﹣1D.不存在【分析】先由二次项系数非零及根的判别式△>0,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出x1+x2=,x1x2=,结合+=4m,即可求出m的值.【解答】解:∵关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1、x2,∴,解得:m>﹣1且m≠0.∵x1、x2是方程mx2﹣(m+2)x+=0的两个实数根,∴x1+x2=,x1x2=,∵+=4m,∴=4m,∴m=2或﹣1,∵m>﹣1,∴m=2.故选:A.【点评】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式△>0,找出关于m的不等式组;(2)牢记两根之和等于﹣、两根之积等于.10.已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C.D.【分析】观察二次函数图象可得出m>0、n<0,再根据一次函数图象与系数的关系结合反比例函数的图象即可得出结论.【解答】解:观察二次函数图象可知:m>0,n<0,∴一次函数y=mx+n的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限.故选:C.【点评】本题考查了二次函数图象与系数的关系、一次函数图象与系数的关系以及反比例函数的图象,观察二次函数图象找出m>0、n<0是解题的关键.二、填空题(本大题6小题,每小題4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上11.计算:﹣20180+()﹣1﹣2cos45°=2.【分析】直接利用特殊角的三角函数值以及二次根式的性质和零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=3﹣1+3﹣2×=3﹣1+3﹣=2+2.故答案为:2+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是14m.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【解答】解:设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻,平行投影中物体与影长成正比.13.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于﹣8.【分析】由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±8,再根据反比例函数在第二象限有图象即可得出k=﹣8,此题得解.【解答】解:∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S=|k|=4,△APB∴k=±8.又∵反比例函数在第二象限有图象,∴k=﹣8.故答案为:﹣8.【点评】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|”是解题的关键.14.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售,则平均每次下调的百分率是10%.【分析】设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1﹣每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.【解答】解:设平均每次降价的百分率是x,根据题意列方程得,6000(1﹣x)2=4860,解得:x1=10%,x2=(不合题意,舍去);答:平均每次降价的百分率为10%.故答案是:10%【点评】此题主要考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.16.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为()n﹣1..【分析】首先求出AC、AE、AG的长度,然后猜测命题中隐含的数学规律,即可解决问题;【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=同理可得:AE=()2,AG=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.【点评】此题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.三、解答题(一)(本大题3小题,每小题6分,共18分).17.解方程:2x2﹣7x+6=0.【分析】利用十字相乘法因式分解得到(2x﹣3)(x﹣2)=0,推出2x﹣3=0,x﹣2=0,求出方程的解即可.【解答】解:2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x1=,x2=2,【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.18.如图,点D为△ABC边AB上一点.(1)请用尺规作∠ADE,使点E在边AC上,且∠ADE=∠C;(保留作图痕迹,不写作法)(2)△ADE与△ACB相似吗?为什么?【分析】(1)利用基本作图(作一个角等于已知角)作∠ADE=∠C;(2)根据有两组角对应相等的两个三角形相似可判定△ADE与△ACB相似.【解答】解:(1)如图,∠ADE即为所求作;(2)△ADE与△ACB相似.理由如下:∵∠A=∠A,∠ADE=∠C∴△ADE∽△ACB.【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.19.有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出甲、乙、丙3人选择同1部电影的结果数,然后利用概率公式求解.【解答】解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.四、解答题(二)(本大题3小题,每小题7分,共21分)20.已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.【分析】(1)通过解方程x2﹣4x+3=0得该二次函数与x轴的交点坐标;把y=x2﹣4x+3通过配方得到y=(x﹣2)2﹣1,从而得到抛物线的顶点坐标;(2)利用描点法画出二次函数图形,然后利用函数图形,写出图象在x轴下方所对应的自变量的范围即可.【解答】解:(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD 中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.22.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB于点O,若BC=8,AO=,求cos∠AED的值.【分析】(1)只要证明四边形ADBE是平行四边形,且∠ADB=90°即可;(2)求出BD、AB,在Rt△ADE中,根据cos∠AED=计算即可;【解答】证明:(1)∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形.∵AB=AC,AD是BC边的中线,∴AD⊥BC.即∠ADB=90°.∴四边形ADCE为矩形.(2)∵在矩形ADCE中,AO=,∴DE=AB=5.∵D是BC的中点,∴AE=DB=4∴在Rt△ADE中,cos∠AED==.【点评】本题考查矩形的判定和性质、等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握矩形的判定方法,属于中考常考题型.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A(1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1≥y2时x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若∠DAC=30°,求点C的坐标.【分析】(1)由点A的坐标,利用反比例函数图象上点的坐标特征可求出k值,由点B的横坐标利用反比例函数图象上点的坐标特征可求出m值,进而可得出点B的坐标,根据点A,B的坐标,利用待定系数法即可求出一次函数解析式;(2)观察函数图象,由两函数图象的上下位置关系结合两交点的坐标,即可找出y1≥y2时x的取值范围;(3)由点A,B的纵坐标可得出AD的长度及点D的坐标,在Rt△ADC中,由∠DAC=30°可得出CD的长度,再结合点D的坐标即可求出点C的坐标.【解答】解:(1)∵点A(1,2)在反比例函数y2=的图象上,∴2=,∴k=1×2=2,∴反比例函数的解析式为y2=.∵点B(﹣2,m)在反比例函数y2=的图象上,∴m==﹣1,∴点B的坐标为(﹣2,﹣1).把A(1,2),B(﹣2,﹣1)代入y1=ax+b得:,解得:,∴一次函数解析式为y1=x+1.(2)由函数图象可知:当﹣2≤x<0或x≥1时,y1≥y2.(3)由题意得:AD=2﹣(﹣1)=3,点D的坐标为(1,﹣1).在Rt△ADC中,tan∠DAC=,即=,解得:CD=.当点C在点D的左侧时,点C的坐标为(1﹣,﹣1);当点C在点D的右侧时,点C的坐标为(1+,﹣1).∴当点C的坐标为(1﹣,﹣1)或(1+,﹣1).【点评】本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、函数图象以及特殊角的三角函数值,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)由两函数图象的上下位置关系,找出结论;(3)在Rt△ADC中,由特殊角的三角函数值求出CD的长.24.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.M在AB上,且∠APM=∠APD,过点B作BN∥MP交DC于点N.(1)求证:四边形PMBN是菱形;(2)求证:AD•BC=DP•PC;(3)如图2,连接AC,分别交PM,PB于点E,F,若DP=1,AD=2,求的值.【分析】(1)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;(2)根据余角的性质得到∠DAP=∠BPC,根据相似三角形的性质即可得到结论;(3)根据矩形的性质得到BC=AD=2,求得AB=CD=5,根据平行线的性质得到∠APD=∠PAM,推出AM=MP,得到AM=MB=,根据相似三角形的性质得到==,求得CF=AC,根据相似三角形的性质得到===,得到AE=AC,于是得到结论.【解答】(1)证明:在矩形ABCD中,DC∥AB,∵BN∥MP,∴四边形PMBN是平行四边形,∵∠APB=90°,∴∠APM+∠BPM=90°,∠APD+∠BPC=90°,∵∠APM=∠APD,∴∠BPM=∠BPC,∵DC∥AB,∴∠BPC=∠PBM,∵∠BPM=∠PBM∴MP=MB,∴平行四边形PMBN是菱形;(2)证明:在矩形ABCD中,∠D=∠C=90°,∴∠APD+∠DAP=90°,∵∠APD+∠BPC=90°,∴∠DAP=∠BPC,∴△ADP∽△PCB,∴=,∴AD•BC=DP•PC;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,由(2)得AD•BC=DP•PC∴PC=4,∴AB=CD=5,在矩形ABCD中,DC∥AB,∴∠APD=∠PAM,∵∠APM=∠APD,∴∠PAM=∠APM,∴AM=MP,由(1)得MP=MB,∴AM=MB=,∵DC∥AB,∴∠PCA=∠CAB,∵∠PFC=∠BFA,∴△PCF∽△BAF,∴==,∴CF=AC,同理可得△PCE∽△MAE,∴===,∴AE=AC,∴EF=AC﹣CF﹣AE=AC,∴==.【点评】本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.25.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P、Q、R分别在AB、BC、CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B 运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,用t(秒)(0≤t≤2)表示运动时间,在运动过程中:(1)当t为何值时,△APR的面积为4;(2)求出△CRQ 的最大面积;(3)是否存在t ,使∠PQR =90°?若存在,请求出t 的值;若不存在,请说明理由.【分析】(1)由运动得出AP =3t ,AR =8﹣4t ,最后用三角形面积公式建立方程求解即可得出结论;(2)先构造出直角三角形表示出QD ,最后用三角形面积公式即可得出结论;(3)先判断出△BFP ∽△BAC ,得出FP =(6﹣3t ),BF =(6﹣3t ),进而FQ =BQ ﹣BF =5t﹣(6﹣3t )=同理:EQ =,RE =,再判断出△REQ ∽△QFP .得出,用RE ×FP =QF ×EQ 建立方程求解即可得出结论.【解答】解:(1)由运动知,AP =3t ,CR =4t ,∴AR =8﹣4t ,∴S △APR =AP •AR =×3t ×(8﹣4t )=12t ﹣6t 2=4,解得t =或t =∴当t 为或秒时,△APR 的面积为4;(2)如图1,过点Q 作QD ⊥AC 于D ,在Rt △ABC 中,AB =6,AC =8,根据勾股定理得,BC =10,∴sin C =, 由运动知,BQ =5t ,CR =4t ,∴CQ =BC ﹣BQ =10﹣5t ,∴在Rt △CDQ 中,QD =CQ •sin C =(10﹣5t )=6﹣3t ,∴S △CQR =CR •QD =×4t ×(6﹣3t )=12t ﹣6t 2=﹣6(t ﹣1)2+6,∵0≤t ≤2,∴当t =1时,S △CQR 最大=6;(3)存在,如图2,过点R 作RE ⊥BC 于E ,过点P 作PF ⊥BC 于F ,由运动知,CR =4t ,BQ =5t ,AP =3t ,∴BP =6﹣3t ,∵∠BFP =∠A =90°,∠B =∠B ,∴△BFP ∽△BAC ,∴,∴,∴FP =(6﹣3t ),BF =(6﹣3t ),∴FQ =BQ ﹣BF =5t ﹣(6﹣3t )=同理:EQ =,RE =, ∵∠REQ =∠QFP =90°,∴∠ERQ +∠EQR =90°,∵∠PQR =90°,∴∠EQR +∠PQF =90°,∴∠ERQ =∠PQF ,∴△REQ ∽△QFP .∴,∴RE ×FP =QF ×EQ ,∴×(6﹣3t )=×,解得,t =1或t =∴t 的值为1秒或秒.【点评】此题是三角形综合题,主要考查了勾股定理,相似三角形的判定和性质,三角形的面积公式,解(1)的关键是求出QD,QE,解(2)的关键是建立函数关系式.。
揭阳市揭西县2020年新人教版九年级上期末考试数学试题含答案解析
2020-2021学年广东省揭阳市揭西县九年级(上)期末数学试卷一、选择题1.如图的几何体是由六个同样大小的正方体搭成的,其左视图是()A.B.C.D.2.关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为()A.1 B.2 C.3 D.73.点(4,﹣3)是反比例函数y=的图象上的一点,则k=()A.﹣12 B.12 C.﹣1 D.14.下列关于x的一元二次方程有实数根的是()A.x2+2=0 B.2x2+x+1=0 C.x2﹣x+3=0 D.x2﹣2x﹣1=05.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是白球的概率是()A.B.C.D.6.顺次连结下列四边形的四边中点所得图形一定是菱形的是()A.平行四边形B.菱形C.矩形D.梯形7.反比例函数y=与一次函数y=kx+k,其中k≠0,则他们的图象可能是() A.B.C.D.8.下列命题中,假命题的是()A.分别有一个角是110°的两个等腰三角形相似B.如果两个三角形相似,则他们的面积比等于相似比C.若5x=8y,则=D.有一个角相等的两个菱形相似9.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,()A.小刚的影子比小红的长B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长D.不能够确定谁的影子长10.如图,在▱ABCD中,BE平分∠ABC,CF平分∠BCD,E、F在AD上,BE与CF相交于点G,若AB=7,BC=10,则△EFG与△BCG的面积之比为()A.4:25 B.49:100 C.7:10 D.2:5二.填空题:11.如果x:y=2:3,那么=.12.由于某型病毒的影响,某地区猪肉价格连续两个月大幅下降.由原来每斤2020调到每斤13元,设平均每个月下调的百分率为x,则根据题意可列方程为.13.某养殖户在池塘中放养了鲤鱼1000条,鲢鱼若干,在一次随机捕捞中,共抓到鲤鱼2020,鲢鱼500条,估计池塘中原来放养了鲢鱼条.14.函数y=(m+1)x是y关于x的反比例函数,则m=.15.在矩形ABCD中,AB=6,BC=8,△ABD绕B点顺时针旋转90°到△BEF,连接DF,则DF=.16.如图,菱形ABCD中,AB=4,∠ABC=60°,点E、F、G分别为线段BC,CD,BD上的任意一点,则EG+FG的最小值为.三、解答题(一)17.(6分)解方程:x2+8x﹣9=0.18.(6分)如图,在△ABC中,D、E分别在AB与AC上,且AD=5,DB=7,AE=6,EC=4,△ADE与△ACB相似吗?请说明理由.19.(6分)在一次朋友聚餐中,有A、B、C、D四种素菜可供选择,小明从中选择一种,小莉也从中选择一种(与小明选择的不相同),请利用列表或树状图的方法求出A与B两种素菜被选中的概率.四、解答题(二)20207分)如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.21.(7分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE ∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.22.(7分)某服装店销售一种服装,每件进货价为40元,当以每件80元销售的时候,每天可以售出50件,为了增加利润,减少库存,服装店准备适当降价.据测算,该服装每降价1元,每天可多售出2件.如果要使每天销售该服装获利2020元,每件应降价多少元?五、解答题(三)23.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)交于点A(4,1)与点B(﹣1,n).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.24.(9分)如图,在直角△ABC中,∠ACB=90°,BC的垂直平分线MN交BC于点D,交AB于点E,CF∥AB交MN于点F,连接CE、BF.(1)求证:△BED≌△CFD;(2)求证:四边形BECF是菱形.(3)当∠A满足什么条件时,四边形BECF是正方形,请说明理由.25.(9分)如图,在▱ABCD中,点E在BC上,连接AE,点F在AE上,BF的延长线交射线CD于点G.(1)若点E是BC边上的中点,且=4,求的值.(2)若点E是BC边上的中点,且=m(m>0),求的值.(用含m的代数式表示),试写出解答过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年九年级(上)期末数学试卷一.选择题(共10小题)1.如图所示几何体的俯视图是()A.B.C.D.2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等3.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b4.已知关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则c=()A.4 B.2 C.1 D.﹣45.若点A(﹣1,y1),B(﹣2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y16.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣27.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=8.关于抛物线y=(x+1)2﹣2,下列结论中正确的是()A.对称轴为直线x=1B.当x<﹣3时,y随x的增大而减小C.与x轴没有交点D.与y轴交于点(0,﹣2)9.如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为()A.3 B.2 C.D.110.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④二.填空题(共7小题)11.计算:﹣()﹣1+4sin30°=.12.若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)=.13.如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.14.在平面直角坐标系中,△ABO与△A1B1O位似,位似中心为原点O,点A与点A1是对应顶点,且点A,点A1的坐标分别是A(4,2),A1(﹣2,﹣1),那么△ABO与△A1B1O的相似比为.15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高米.(结果保留根号)16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为元.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为.三.解答题(共8小题)18.解方程:2x2+1=3x.19.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sin C的值.20.已知y是x的反比例函数,下表给出了x与y的一些值.x…﹣4 ﹣2 ﹣1 1 3 4 …y…﹣2 6 3 …(1)求出这个反比例函数的表达式;(2)根据函数表达式完成上表;(3)根据上,在如图的平面直角坐标系中作出这个反比例函数的图象.21.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数﹣1,2,﹣3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.22.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.23.如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.24.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的顶点为D,对称轴与x轴交于点E.(1)求此抛物线的解析式;(2)求△DAC的面积;(3)在抛物线上是否存在一点P,使它到x轴的距离为4,若存在,请求出点P的坐标,若不存在,则说明理由.25.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD 沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.如图所示几何体的俯视图是()A.B.C.D.【分析】注意几何体的特征,主视图与左视图的高相同,主视图与俯视图的长相等,左视图与俯视图的宽相同.【解答】解:根据俯视图的特征,应选B.故选:B.2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等【分析】由菱形的判定与性质即可得出A、B、D正确,C不正确.【解答】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.3.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.已知关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则c=()A.4 B.2 C.1 D.﹣4【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2﹣4x+c=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×c=16﹣4c=0,解得:c=4.故选:A.5.若点A(﹣1,y1),B(﹣2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y1【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)在反比例函数y=﹣的图象上,∴y1=﹣=8,y2=﹣=4,y3=﹣,又∵﹣<4<8,∴y3<y2<y1.故选:D.6.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣2【分析】由抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.【解答】解:∵抛物线y=x2+2x+m﹣1与x轴有两个交点,∴△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故选:A.7.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.8.关于抛物线y=(x+1)2﹣2,下列结论中正确的是()A.对称轴为直线x=1B.当x<﹣3时,y随x的增大而减小C.与x轴没有交点D.与y轴交于点(0,﹣2)【分析】直接利用二次函数的性质分别分析得出答案.【解答】解:抛物线y=(x+1)2﹣2,对称轴为直线x=﹣1,故此选项A错误;当x<﹣1时,y随x的增大而减小,故选项B正确;∵抛物线y=(x+1)2﹣2,开口向上,顶点坐标为:(﹣1,﹣2),∴与x轴有2个交点,故选项C错误;当x=0时,y=﹣1,故图象与y轴交于点(0,﹣1),故选项D错误.故选:B.9.如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为()A.3 B.2 C.D.1【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S△OAB=|k|,便可求得结果.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.10.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【分析】①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②证明点O、E、C、F四点共圆,得∠EOG=∠CFG,∠OEG=∠FCG,进而得OGE∽△FGC 便可;③先证明S△COE=S△DOF,∴便可;④证明△OEG∽△OCE,得OG•OC=OE2,再证明OG•AC=EF2,再证明BE2+DF2=EF2,得OG•AC=BE2+DF2便可.【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.二.填空题(共7小题)11.计算:﹣()﹣1+4sin30°=2.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣()﹣1+4sin30°=2﹣2+4×=2故答案为:2.12.若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)= 4 .【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:x1+x2=1,x1x2=﹣2,∴原式=1+x1+x2﹣x1x2=1+1﹣(﹣2)=4,故答案为:413.如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是 6 .【分析】由平行可得对应线段成比例,即AD:AB=DE:BC,再把数值代入可求得BC.【解答】解:∵DE∥BC,∴,∵AD:DB=1:2,DE=2,∴,解得BC=6.故答案为:6.14.在平面直角坐标系中,△ABO与△A1B1O位似,位似中心为原点O,点A与点A1是对应顶点,且点A,点A1的坐标分别是A(4,2),A1(﹣2,﹣1),那么△ABO与△A1B1O的相似比为 2 .【分析】直接利用对应点坐标变化规律得出位似比即可.【解答】解:∵△ABO与△A1B1O位似,位似中心为原点O,点A与点A1是对应顶点,且点A,点A1的坐标分别是A(4,2),A1(﹣2,﹣1),∴△ABO与△A1B1O的相似比为:2.故答案为:2.15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高4米.(结果保留根号)【分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.【解答】解:如图,在Rt△ABC中,tan∠ACB=,∴BC==,同理:BD=,∵两次测量的影长相差8米,∴﹣=8,∴x=4故答案为4.16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为25 元.【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【解答】解:设利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为()2019..【分析】根据图形的变化发现规律即可求解.【解答】解:∵菱形OAA1B的边长为1,∠AOB=60°,对角线OA1为:2cos30°•OA=;∴菱形OA1A2B2的边长为:菱形OA2A3B3的边长为()2菱形OA3A4B4的边长为()3……,发现规律:则菱形OA2019A2020B2020的边长为()2019.故答案为:()2019.三.解答题(共8小题)18.解方程:2x2+1=3x.【分析】先进行移项,然后系数化1,再进行配方,即可求出答案.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方x2﹣x+()2=﹣+()2,(x﹣)2=,由此可得x﹣=,x1=1,x2=.19.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sin C的值.【分析】先利用三角函数求出BD,进而求出CD,最后用勾股定理即可得出结论.【解答】解:∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,tan∠BAD ==,∴BD=AD tan∠BAD=9,∵BC=14,∴CD=BC﹣BD=5,∴AC ==13,∴sin C ==.20.已知y是x的反比例函数,下表给出了x与y的一些值.x…﹣4 ﹣3 ﹣2 ﹣1 1 2 3 4 …y…﹣﹣2 ﹣3 ﹣6 6 3 2 1.5 …1.5(1)求出这个反比例函数的表达式;(2)根据函数表达式完成上表;(3)根据上,在如图的平面直角坐标系中作出这个反比例函数的图象.【分析】(1)首先设反比例函数解析式为y =,再代入x=1时,y=6可得k的值,进而可得函数解析式;(2)根据函数解析式可填空;(3)利用(2)中的数据画图象即可.【解答】解:(1)∵y是x的反比例函数,∴设y =,∵当x=1时,y=6,∴6=k,∴k=6∴这个反比例函数的表达式为y =;(2)完成表格如下:x…﹣4 ﹣3 ﹣2 ﹣1 1 2 3 4 …y…﹣﹣2 ﹣3 ﹣6 6 3 2 1.5 …1.5(3)这个反比例函数的图象如图:.21.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数﹣1,2,﹣3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的乒乓球球面上的数之和是正数的结果数,然后根据公式求解.【解答】解:(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率==;故答案为;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率==.22.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.23.如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.【分析】(1)根据两直线平行,内错角相等可得∠ODE=∠FCE,根据线段中点的定义可得CE=DE,然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据菱形的对角线互相垂直得出∠COD=90°,即可得出结论.【解答】证明:(1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形OCFD是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴四边形OCFD是矩形.24.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的顶点为D,对称轴与x轴交于点E.(1)求此抛物线的解析式;(2)求△DAC的面积;(3)在抛物线上是否存在一点P,使它到x轴的距离为4,若存在,请求出点P的坐标,若不存在,则说明理由.【分析】(1)直线y=﹣x+2中,当x=0时,y=2;当y=0时,0=﹣x+2,解得x =4,点A、C的坐标分别为(0,2)、(4,0),即可求解;(2)△DAC的面积为=DM×OC=(﹣)×4=;(3)当P到x轴的距离为4时,即|y|=4,即可求解.【解答】解:(1)直线y=﹣x+2中,当x=0时,y=2;当y=0时,0=﹣x+2,解得x=4∴点A、C的坐标分别为(0,2)、(4,0),把A(0,2)、C(4,0)代入抛物线表达式并解得:故抛物线的表达式为:y=﹣x2+x+2;(2)抛物线的顶点D的坐标为(,);如图1,设直线AC与抛物线的对称轴交于点M,直线y=﹣x+2中,当x=时,y=,∴△DAC的面积为=DM×OC=(﹣)×4=;(3)当P到x轴的距离为4时,①当y=4时,﹣x2+x+2=4,而,方程没有实数根;②当y=﹣4时,﹣x2+x+2=﹣4,解得:x=,则点P的坐标为(,﹣4)或(,﹣4).25.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD 沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.【分析】(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.(2)①证明△ADM∽△GMN,可得=,由此即可解决问题.②存在.有两种情形:如图3﹣1中,当MN=MD时.如图3﹣2中,当MN=DN时,作MH⊥DG于H.分别求解即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF==6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=3,∴EC=3.(2)①如图2中,∵AD∥CG,∴=,∴=,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,AG==8,在Rt△DCG中,DG==10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,∴∠ADM=∠NMG,∴△ADM∽△GMN,∴=,∴=,∴y=x2﹣x+10.当x=4时,y有最小值,最小值=2.②存在.由题意:∠DMN=∠DGM.可以推出∠DNM=∠DMG,推出∠DNM≠∠DMN,所以有两种情形:如图3﹣1中,当MN=MD时,∵∠MDN=∠GDM,∠DMN=∠DGM,∴△DMN∽△DGM,∴=,∵MN=DM,∴DG=GM=10,∴x=AM=8﹣10.如图3﹣2中,当MN=DN时,作MH⊥DG于H.∵MN=DN,∴∠MDN=∠DMN,∵∠DMN=∠DGM,∴∠MDG=∠MGD,∴MD=MG,∵MH⊥DG,∴DH=GH=5,由△GHM∽△GBA,可得=,∴=,∴MG=,∴x=AM=8﹣=.综上所述,满足条件的x的值为8﹣10或.。