音频前置放大电路制作

合集下载

音频小信号前置放大电路

音频小信号前置放大电路

音频小信号前置放大电路1 选题背景在现在的时代我们的身边有着各种各样对于声音放大的需求,如麦克风,及一些音像设备中是最常见的,随着人们生活质量的提高对于音质的要求也越来越高,简单的音质已经无法满足大家的需求,恶劣的音质也对人们的日常生活有很大的影响,就如同噪音一样,在对音质进行调整中,对其放大是很重要的内容,音频放大电路就是在保持原声的基础上对声音进行放大,对声音中小信号的放大在音频放大电路中也有着很重要的应用,对小信号的放大可以让我们更好的获得对较弱的原声的放大,对较弱的音频进行放大后可以更好的去分析这个音频信号,对于科学研究和电子产品的开发很有帮助,也可以充分的满足人们的需求。

1.1指导思想“放大”的本质是实现能量的控制,即能量的转换:用能量比较小的输入信号来控制另一个能源,使输出端的负载上得到能量比较大的信号。

放大的对象是变化量,放大的前提是传输不失真。

通过NE5532对小信号进行放大,对相应的电阻进行合理的选择以达到对放大倍数的要求,对输出部分串电阻来达到对输出电阻的要求。

1.2 方案论证方案一:采用NE5532两级电路放大方法,用运算放大器作音频前置放大电路。

其优点是体积小、噪音低、功耗小、一致性较好。

利用运算放大器可取得很深的负反馈,同时提高不失真输出,使信号失真度在1%以下。

方案二:采用NE5532一级放大方法,优点是所用资源少,更加的简便,缺点是不稳定,电流过大,故予以否定综合考虑,采用方案一1.3 基本设计任务设计并制作音频小信号前置放大电路。

具体要求如下:≥1000;(40分)(1)放大倍数AV(2)通频带20Hz~20KHz;(40分)≥1MΩ;输出电阻R O=600Ω;(10分)(3)放大电路的输入电阻RI说明:设计方案和器件根据题目要求自行选择,但要求在通用器件范围内。

测试条件:技术指标在输入正弦波信号峰值Vpp=10mv的条件进行测试(输入输出电阻通过设计方案预以保证),设计报告中应有含有详细的测试数据说明设计结果。

音频功率放大器的制作与调试

音频功率放大器的制作与调试

音频功率放大器的制作与调试第一部分自行设计电路---基于声卡的一种声光报警装置的设计摘要本文提出了一种利用计算机声卡,配合继电器控制电路实现声光报警功能的方法,实现了对环境或对象的健康监测。

并讨论了电路设计的具体方案,给出了PSpice模拟仿真结果。

仿真结果表明:该报警电路简单可靠实用,完全可以实现声光报警功能。

1、设计目标设计一个报警电路,该电路与计算机声卡相连,计算机声卡的输出信号为其输入信号。

当计算机声卡有输出时,电路中的继电器线圈导通吸合,继电器的常开触点闭合,反之,其常开触点断开。

将继电器的常开触点串入声光报警器的工作回路中,可以控制声光报警器的工作状态。

电路的原理框图如图1所示。

2、声卡的输出信号声卡的输出信号是极其微弱的信号,音箱的工作原理是将声卡的输出信号先经过功放进行放大,然后驱动扬声器来发声的。

同理,要设计一个报警装置,首先要做的就是对信号进行放大。

声卡的输出信号与电脑播放的音频文件关系密切。

当播放音乐和电影等文件时,声卡的输出为脉动成分很高的电平信号,用示波器观察的波形跳变激烈,其幅值电平大概在50mV~2V左右。

为了保证电路中的固体继电器的正常工作,本电路中采用标准的正弦信号。

考虑到音频文件的频率特性和放大电路的带宽等因素,利用Test Tone Generator软件产生一个频率为1K Hz,振幅为0.5V的正弦信号。

如图2所示。

3、设计方案及Orcad PSpice模拟仿真[1]结果对声卡输出信号的放大,有两种方案。

第一种方案是用二极管、三极管、电阻、电容等元器件直接搭建;第二种方案利用集成运放搭建。

3.1 基于三极管等元器件的放大电路及仿真结果基于三极管等元器件的放大电路[2] [3]如图3所示,其Pspice仿真结果如图4所示。

分别对上图两个探测点进行仿真结果如下:电路的工作原理为:输入信号通过三极管放大电路放大后,再经过整流和滤波,得到一个比较稳定的电平信号(见仿真图上的红色曲线)。

音频功率放大器电路设计

音频功率放大器电路设计

一、设计的题目及其要求(1)设计题目音频功率放大器电路仿真设计(2)课程设计的目标、基本要求及其功能:设计并实现OTL功率放大器,功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出功率。

当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能的小,效率尽可能的高。

用multisim软件对OTL功率放大器进行仿真实现。

根据实例电路图和已经给定的原件参数,使用multisim软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。

二、设计的基本思路及其设计出发点(1)设计的基本思路功率放大器的作用是给负载RL提供一定的输出功率,当RL一定时,希望输出功率尽可能大,输出信号的非线性失真可能小,且效率尽可能高。

由于OTL电路采用直接耦合方式,为了保证电路工作稳定,必须采取有效措施抑制零点漂移。

为了获得足够大的输出功率驱动负载工作,故需要有足够高的电压放大倍数。

因此,性能良好的OTL功率放大器应由输入级、推动级和输出级等部分组成。

(2)芯片的选择TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。

我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。

TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。

根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。

另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。

然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。

模电课程设计报告--带前置放大的音频功放电路

模电课程设计报告--带前置放大的音频功放电路

课程设计报告课程名称:模拟电子技术基础设计名称:带前置放大的音频功率放大器姓名:学号:班级:日期:摘要本电路设计采用前置放大电路和音频功率放大电路相结合的放大模式,前者采用有“运放之皇”的NE5532对电压进行放大,后者采用性能优良的LM386对电压和电流放大,给音响放大器的负载(扬声器)提供一定的输出功率。

当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能的小,效率尽可能的高。

在前置放大和功放之间加上一个滑动变阻,就保证了音量可调,在滑动变阻器之前再加上一足够大电阻,这样保证了信号不失真。

除此之外,加上相应的旁路电容又使得电路具有杂音小,有电源退偶,无自激等优点。

根据实例电路图和已经给定的原件参数,使用multisim10软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。

关键词: NE5532 LM386 性能优良音量可调杂音小目录一、设计的目的及任务1.1设计的目的1.2 设计的任务及要求二、电路设计总方案及原理框图2.1原理框图2.2电路设计方案三、各组成部分的工作原理3.1.1弱信号前置放大级电路图3.1.2前置放大电路图工作原理3.2.1音频功率放大电路图3.2.2音频功率放大电路的工作原理四、电路仿真4.1 设计的总电路图4.2应用Multisim 11进行的仿真结果五、电路的安装及调试六、电路的实验结果七、实验总结八、仪器仪表明细清单参考文献一、设计的目的及任务1.1设计的目的1,了解音频放大电路的形成和用途。

2,掌握音频放大电路的一种实现方法。

3,提高独立设计电路和验证试验的能力。

4,熟悉运用Multisim 11软件进行仿真,学会焊接技术。

1.2 设计的任务及要求前置放大器的放大倍数为10 倍,使用单电源低噪声集成运放NE5534、OP-27A,功率放大采用LA4100、或LM386、或其他型号。

音量可调,杂音小,有电源退耦,无自激。

二、电路设计总方案及原理框图2.1原理框图图1系统原理框图2.2电路设计方案根据推任务要求,设计总电路需要弱信号前置放大级电路和功率放大电路两个基本电路,其中前置级主要完成小信号的电压放大任务;功率放大级则实现对信号的电压和电流放大任务。

12AT7单管前置放大器制作

12AT7单管前置放大器制作
,
,

另外
,
2 AT 1
7
的 内

阻也 很
,
V
C
,
C
l

C
Z
耐 压不小 于
V

其中
,
低 有利 于 输出 阻 抗的
最好选 用 音 频 专 用 电 解 电 容 器
, 。
体 图 具 体制 作 时 可 根 据 实 际 情 况 自 行
。 .
,
为 了 避 免 电 源 对 音 质的 影 响 本 机
I
2
,
其 主 要 参数 为 B
,
V
c E。
一30 0V
Ie
m
整 机 采 用 一 点 接地
故音 量 电 位
级 由 晶体 管 B G
管滤 波器

1
,
从而 使 本 机输 出 阻 抗 基 本 上取 决 于 R
R
6

除 设有 音量 控制 外 一般还 设 有3 一 档 输 人 信号 源 选 择 开 关 有 的 还 有 高
。 ,
5

为 本机 的原 理 图 左 右 声 道 放
7
的阻 值

不 过由 此 也 造 成 了 本 级 交

大 由 一 只 双三 极 管 1 2 A T 路 是 电 源整 流滤 波 部分 别 作 左 右 声道 前 级 放大
良 好 的 阻抗 匹 配
。 , , 、

采用共阴极放
体 以 弥 补增 益 不 足 从 而 使本 机 在 保 持
M P S A4 2 R8 I OK 2 5 w
,
有些发烧友在 听 音实践 中 发 现 胆 石 混 合 放 音 程式 能 取 长 补 短 获 得 较 为满 意 的 音 质

音频功率放大器设计与制作

音频功率放大器设计与制作

引言 (1)第一章课题概况 (3)§1.1 课题设计要求 (3)§1.2 毕业设计目的 (3)第二章音响技术简介 (4)§2.1人耳的听觉特性 (4)§2.2高保真度 (4)第三章高保真音响的原理介绍 (6)§3.1设计思路 (6)§3.2滤波器的介绍 (6)§3.3功率放大器的介绍 (7)§3.4 音频功率放大器 (8)§3.5 电源 (14)第四章焊接与调试 (15)§4.1电路的焊接 (15)§4.2电路的调试 (15)第五章全文总结和展望 (16)§5.1总结 (16)§5.2展望 (16)致谢..................................................................................... 错误!未定义书签。

参考文献................................................................................... 错误!未定义书签。

附录........................................................................................... 错误!未定义书签。

人们总是喜欢用听音乐的方式来放松工作中的疲劳,或者欢聚庆祝,或者陶冶情操。

随着改革开放的深入,经济的快速增长和城市规模的不断扩大,人类的生活水平也都相应的提高了,人们懂得了听音乐来缓解生活中所带来的各种巨大压力,通过解放神经来提高自己的生活水平,如今的市场上有着许许多多,琳琅满目的音响品牌,具体那些好,商家各执一词,消费者也很难选择,因此,通过此次设计,可以解决消费者难以选择的麻烦,直接自己动手制作,了解音响的结构和特点,不光扩大了自己的知识面,从制作到完成作品,最后欣赏自己的作品,简直有种说不出的美妙感觉,连上CD机,放上自己喜欢的音乐,来享受音乐的魅力,从而能缓解压力,使心情放松,能更好的投入工作,从而提高自己的生活水平。

音频放大电路的原理与设计

音频放大电路的原理与设计

音频放大电路的原理与设计音频放大电路是一种用于增加音频信号幅度的电子电路。

在音频设备中,如音响系统、收音机、电视机等中均需要音频放大电路来放大声音,以便更好地听到音频信号的声音。

一、音频放大电路的原理音频放大电路的原理是使用放大器来放大音频信号。

音频放大电路通常由三个主要部分组成:输入电路、放大电路和输出电路。

1. 输入电路:输入电路主要负责接收音频信号,并将其转换成电信号。

通常的输入电路包括电容耦合器和负载电阻。

电容耦合器用于去除输入信号中的直流分量,使得信号保持在交流范围内。

负载电阻用于将音频信号传递到下一级放大电路。

2. 放大电路:放大电路是音频放大电路的核心部分,其作用是将输入的音频信号进行放大。

主要有两种放大电路:电压放大电路和功率放大电路。

电压放大电路通过增加电压来放大信号幅度。

功率放大电路通过增加电流以及控制电流流动方向来放大信号幅度。

不同类型的放大电路有不同的特点和应用场景,常见的有晶体管放大电路、管式放大电路、集成放大电路等。

3. 输出电路:输出电路用于将放大后的音频信号传递到扬声器等输出设备,使得音频信号能够产生声音。

输出电路一般包括输出变压器、扬声器驱动电路等。

二、音频放大电路的设计设计一款音频放大电路需要考虑多个因素,如音频信号的频率范围、信噪比、失真度等。

以下为一般设计思路:1. 确定音频信号的特性:首先,需要了解音频信号的特性。

音频信号的频率范围、输入电平、失真度等都会影响到放大电路的设计。

2. 选择合适的放大电路:根据音频信号的特性选择合适的放大电路。

如果音频信号频率范围广泛,可以选择宽带放大电路。

如果需要低噪声和低功耗,可以选择运放放大电路。

3. 防止失真:音频放大电路设计中一个重要的考虑因素是如何减少失真。

失真会导致音频信号的质量下降。

一种常用的方法是使用负反馈,通过将放大电路的输出与输入进行比较,并对放大电路进行修正,以减少失真。

4. 选择合适的元件:选择合适的元件对于音频放大电路的性能至关重要。

音频功率放大器设计详解

音频功率放大器设计详解

音频功率放大器设计一、设计任务设计一个实用的音频功率放大器。

在输入正弦波幅度≤5mV,负载电阻等于8Ω的条件下,音频功率放大器满足如下要求:1、最大输出不失真功率P OM≥8W。

2、功率放大器的频带宽度BW≥50Hz~15KHz。

3、在最大输出功率下非线性失真系数≤3%。

4、输入阻抗R i≥100kΩ。

5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz处有±12dB的调节范围。

二、设计方案分析根据设计课题的要求,该音频功率放大器可由图所示框图实现。

下面主要介绍各部分电路的特点及要求。

图1 音频功率放大器组成框图1、前置放大器音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。

声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。

一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。

所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。

另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。

对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。

对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。

前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。

音频功率放大器电路图

音频功率放大器电路图

音频功率放大器的组成.1 整体电路原理本立体声功率放大器所用的核心芯片是国际通用高保真音频功率放大集成电路TDA2030A。

本电路由三个部分组成,即电源电路、左右声道的功率放大器及输入信号处理电源(四运放)。

电源变压器将220V交流电降为双12V低压交流电,经桥式整流后变为±18V的直流电,作为功放及运放的供电电源,D5、R29组成电源指示电路,以指示电源是否正常,开关K为电源开关。

2.2 电源部分本设计是由TDA2030构成的双声道功率放大器,左右声道对称,TDA2030是一种单声道集成功率放大器,采用单电源或双电源供电方式,电路中主要构成框架如下:前置放大采用GL324四运放的两路运放的负反馈放大,放大倍数为10倍,后经过RC滤波电路组成的高低音调节,在经过平衡和电量调节输入功放芯片即TDA2030。

电路框图整流电路:桥式整流电路的作用是利用单向导电性的整流元件二极管,将正负交替的正弦交流电压整流成为单向脉动电压。

但是,这种单向电压往往包含着很大的脉动成分,距离理想的直流电压还差得很远。

稳压电路:稳压电路的作用是采取某些措施,使输出的直流电压在电网电压或负载电流发生变化时保持稳定。

设计中是利用变压器将电网上面220V的交流电降为双12V低压交流电,再经过桥式整流把12V的交流成分整流成±18V的直流电,经过滤波滤除直流成分中的交流部分,考虑到芯片电源电压要求比较宽泛本设计中没有采用稳压部分。

2.3 前置放大部分前置放大器是各种音源设备和功率放大器的连接设备,起到信号放大的作用。

音源信号在经过前置放大器的放大后,就可以直接送入功率放大器,使功率放大器能正常工作。

前置放大器还可以对信号的频率进行调节和控制。

本设计的前置放大部分是采用GL324四运算放大芯片的负反馈实行的。

优点在于其在分压偏置电路中利用负反馈的原理以稳定放大电路的工作,此外还可以增加增益的稳定性,减小非线性失真,展开频带及控制输入输出阻抗。

一种增益可控音频前置放大器电路的设计

一种增益可控音频前置放大器电路的设计

图3增益控制结构 Fig.3 Structure of gain control module
外部输入的直流模拟控制信号%的电压范围
为O~‰。比较判决电路在每个时钟周期产生一
组数据,控制逻辑及可逆计数器模块根据该组数据 控制数模转换器(DAC),将相应的模拟电压反馈到 比较判决电路中,准备进行下一次比较。时序电路 为控制逻辑及可逆计数器电路提供时钟信号,由于 要适应人耳的反应时间,频率为60 Hz。 3.1 模拟控制信号输入缓冲级电路
Abstract:
A variable-gain pre-amplifier circuit for audio power amplifier was implemented in 0.5-t_£m CMOS
process.In this circuit,DC volume control operation mode was adopted to control gain of the pre-amplifier,and by
模拟输入缓冲级电路采用单位增益负反馈结构 的运放。由于外界输入信号范丽广(O~Vw),所以 运放的输入输出范围是设计的关键。设计中,采用 全摆幅的输入输出结构,以达到输入输fB的范同要 求。运放的具体结构如图4所示[2],第一级采用全 摆幅输入结构折叠共源共栅结构,提供大增益,第二 级采用共源极结构,达到最大的输出摆幅。为保持 闭环的稳定性,同样加入密勒补偿电容和调零电阻。
adjusting the gain of the pre-amplifier,volume of the whole audio power amplifier could be controlled.The input 13(3
analog voltage signal was convened to digital control signals with an on-chip A/D converter,which was used tO ad—

LM324---自制电脑驻极体话筒麦克风【前置】放大器 ---解决声音小的问题

LM324---自制电脑驻极体话筒麦克风【前置】放大器 ---解决声音小的问题

LM324---自制电脑驻极体话筒麦克风【前置】放大器---解决声音小的问题采用四运放LM324设计的高灵敏度声音探听器左手665收藏时间:2017年3月13日10:03 来源: 互联网关键字:四运放LM324 高灵敏度声音探听器采用四运放LM324设计的高灵敏度声音探听器LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

LM324 pdf 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见下图。

下面介绍一例LM324应用电路:高灵敏度探听器(其实和助听器一个道理) 利用本装置,可以听到远处极微弱的声音,它的极强的指向性和极高的灵敏度,能将运动场上运动员和教练员的低声细语尽收耳底,使用起来十分有趣。

工作原理电路见上图,装在特制筒子里的话筒,将一定方向上的声音接收下来(其他方向的声音被抑制),送入放大器放大。

放大器由两级组成,第一级由LM324四运放中的一运放构成,有110倍增益的放大量,第二级由另一运放构成,有500倍增益的放大量。

这样高的放大能力,足以将极微弱的声音信号放大,由耳机输出。

利用它就能听到很远处人耳无法直接听到的微弱声音。

注意事项1、LM324内集成了四个运放,这里只用了A和D,接线方法可参照上图2、R1=R2,取值范围在10K---100K间3、供电+6V---9V,可将两个(或三个)电池夹串联起来使用,4、本机灵敏度极高,试机时不要靠近MIC讲话!关键字:四运放LM324 高灵敏度声音探左手665收藏时间:2017年3月13日10:03自制电脑驻极体话筒麦克风放大器,解决电脑麦克风声音小的问题。

SRPP电路使用在音频前置放大器里

SRPP电路使用在音频前置放大器里

SRPP电路使用在音频前置放大器里,早已是有口皆碑的了,其典型电路如图1。

当VT1和VT2的参数相同时,Rk1=Rk2=Rk。

图1电路在实用中常去掉VT1的自生偏压电容Ck,这将引入交流电流负反馈,引起电路的放大出阻抗Zo的改变,这时若设负载RL开路,且经过近似简化后的实用公式为:放大倍数Au = -μ/2输出阻抗Z SRPP电路使用两个三极电子管,从节省方便角度想,一般都选用双三级管,这样电参数的性能对称性较好,管子也比较一致的,还能省掉一组灯丝电源。

一般SRPP电路都用于前级电压放大,极少数用于功率放大的,用在前大倍数多为10-20倍,由式:放大倍数Au = -μ/2得出,一般选用中μ的双三级电子管。

中μ管子内阻Ra较小导较大,对降低管子输出阻抗Zo有利。

另外中μ三级管子屏级的特性曲线的线性范围较宽,比较适合放大变化输入信号。

由于SRPP电路的特殊性,对于电子管选型也提出了一些特殊的要求。

由图1可看出,SRPP电路中的两个三回路是串联供电的,当两个三级管参数相同及Rk相同时,每管的屏级电压为供电电压一半,为使管子在正常的工作,那就应该选用低屏压的管子,例如供电直流高压是260V,就选用工作屏压130V左右有良好特性曲线的对于制作SRPP电路放大器尤为重要。

屏压在130V以下有良好特性曲线的中μ国产管子有6N1,6N3,6N6,6N11,6N8P,6N15(共阴极小七脚6N16B(超小型软线引脚管)等,这里的“低屏压下有良好特性”是指在Ua=100V左右的屏栅特性曲线上(例如对图3中Ua=90V那条曲线),除低屏流的曲线转折处(图中a点)左侧外,右侧上升段应尽可能接近直线,且样才能保证不失真的放大输入信号。

直线区在图中b点是6N11最大屏流22ma,这样可以利用的区段就限制在ab直线的中点所对应的栅负压最好不比-2V更正,以该中点作为放大器的静态工作点,才能适应CD机输出信大范围变化。

在图1中,VT2的阴极处于高电位,约为一半的电源电压,此时管子的灯丝和阴极间耐压Ufkmax成了至关手册里给出的接收用小功率电子管的Ufkmax一般都在100V-200V范围内,普遍是100V的,超过这个极限电压子灯丝和阴极间击穿,管子报废,如是一般的国产管子,像是6N1,6N3,6N6之类的坏了也就罢了,要是上机一对德或是英国的6SN7之类的,要是烧坏了管子那损失就大了,这点初烧朋友可要千万注意了!这一问题不仅在SRPP 对于串连放大器,直流放大器也用样存在。

5532前置放大电路

5532前置放大电路

笔者带领学生用LM3886制作了一款功放电路,在用学校DVD机试听时,总感到声音效果不如人意,响度也达不到标称功率效果。

虽经多次调整电路参数(包括提升了电源电压),但收效甚微。

后来看到有关刊物介绍L M3886放大倍数偏小,需要有足够幅度的激励信号,才能收到较好的效果。

为此,笔者选用“运放之星”NE5532制作了一款前置放大电路加在功放输入端,再次试听,音效、响度明显得到了改善。

现将制作的前放电路介绍如下:
图1为前放电路的直流伺服电源电路,给前放电路提供稳定的±12V电源。

稳压电路采用三端集成稳压块,并且使用一片NE5532构成伺服电路,实现对输出电压的实时跟踪与调整。

图2为前置放大电路,电路采用了“运放之星”NE5532构成同相比例运算放大电路,其放大倍数为5倍左右(主要由R9、R7、R10、R8决定),C15、C16在电路中具有提升高音频信号的作用。

J1接环变的双12V输出端,J2为信号输入端,J3为信号输出端(接功放输入端)。

图3为印刷电路板图,图4为元件布置图。

具体安装时,可将此电路板安装在功放箱中靠近背面的附近。

通孔,并经过J2(双信号插座)接音源。

本电路也适用于其他音源幅值较小的组合系统作为功放的前置放大。

驻极体MIC前置放大电路设计

驻极体MIC前置放大电路设计

目录第一章摘要 (2)第二章引言 (2)第三章基本原理 (2)3.1驻极体话筒原理概述 (2)3.2前置放大电路的原理概述 (4)第四章参数设计及运算 (4)4.1结构设计 (4)4.2测量电路的设计与参数计算 (4)4.2.1 放大电路的简化模型 (4)4.2.2中频段通带增益的估算 (6)4.2.4 下限截止频率的估算 (7)4.2.5 具体参数设计 (8)4.3仿真结果 (9)第五章误差分析 (10)5.1理论计算中的误差分析 (11)5.2运算放大器的非理想误差分析 (11)第六章结论 (12)第七章心得体会 (12)参考文献 (14)第一章摘要驻极体前置放大器是基本的低电平音频放大电路,因为可能要处理大动态范围的信号电平、多种类型的驻极体话筒以及各种等级的信号源阻抗,所以它有丰富多样的组成形式。

这些因素都会影响特定应用场合的电路优化。

本课程设计讨论的主要是驻极体话筒的前置放大电路设计。

第二章引言随着我国通讯事业的迅猛发展,对驻极体传声器的需求也越来越大。

目前,一些小型的驻极体传声器虽然可以将场效应管集成于传声器内部,但由于高端产品的售价高昂,低端产品传声器的精度和灵敏度又无法保证,再加上传统的前置放大器体积又过于庞大。

因此,设计一种体积尽可能小,成本低廉而性能优良的前置放大器具有十分重要的意义。

第三章基本原理3.1 驻极体话筒原理概述传声器是一种将声信号转变为相应的电信号的电声换能器。

驻极体传声器是一种用驻极体材料制造的新型传声器。

它具有结构简单、灵敏度高等优点,被广泛应用于语言拾音、声信号检测等方面。

驻极体传声器内部主要包括声电转换和阻抗变换两部分。

声电转换部分包括振膜、极板、空隙三部分。

声电转换的关键元件是振动膜,它是一片极。

6N3前置放大器详细制作教程

6N3前置放大器详细制作教程

6N3前置放大器详细制作教程点评:以下介绍的是一个两级电路直接耦合的前级放大器电路,第一级为电压放大,第二级为阴极缓冲输出。

可以说是一个简单易做的电路,不过要注意的是这个电路输出的信号是反向的,后级电路输出到音箱的线应该对调一下会比较好。

6N3胆前级因自己的哪一部天逸AD-86合并式纯甲类功放音质不佳声音粗糙,竟然比不上自制的LM4766集成功放准备将之解体,大改为纯后级。

一时间未能配齐所需要的材料,利用空闲时间先做一部与之配用的电子管前置。

一、电路的选择这次希望利用手头上现有的零件和较低的成本来制作,名机电路肯定不符合要,因这些名机电路所用的电子管都被爆炒成天价,动不动就要成百上千以上一只,非我辈所能承受。

6N3这只本来设计用于电视广播VHF/UHF放大双三极管,这是一只非常好的电子管,声音介于6N11和12AX7之间既有音乐性也有音响性。

最主要是价格非常低廉,进口同类管5670邮购价亦只8元一只非常超值。

价格低廉并不代表就是垃圾,价格高昂亦不代表音色就顶呱呱,一是物以希为贵,二是商家的炒作。

6N3及同类管至今未炒作主要原因是在引脚排列上不通用和6N3及其同类管产量实在太大。

6N3特性曲线见图1,从6N3特性曲线可以看出这不是一只大动态的电子管,屏极供电电压最好不要超150V,最大栅负压不超过-4V时才有较好的放大线,超过-4V曲线将明弯曲。

工作点宜在-1.5V--2.0V之间选取,并且输入电压最好不要超过0.7V。

本机整机电路见图2,V1用1/2 6N3作共阴放大,V1阳极负载电阻取值较少为18K,以取得较大的阳极电流变动范围,同时失真较少,经计算放大倍数约等于14.5倍。

V2用1/2 6N3作阴极输出,令电路带动不同复杂的负载都有恒定的电压增益。

V1、V2之间采用直接耦合,使整机频响较宽,减少了耦合电容带来的不利影响。

放大电路非常简单,算上电阻电容零件亦只有几只,这样做目的是尽量简化电路降低制作成本。

低噪声前置放大电路设计

低噪声前置放大电路设计

低噪声前置放大器电路的设计方法来源:52RD手机研发作者:国家半导体公司程伟健前置放大器在音频系统中的作用至关重要。

本文首先讲解了在为家庭音响系统或PDA设计前置放大器时,工程师应如何恰当选取元件。

随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。

最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。

前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。

前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。

无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当?元件选择原则由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。

我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。

在设计过程中,系统设计工程师经常会面临以下问题。

是否有必要采用高精度的运算放大器?输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。

若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。

是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。

运算放大器需要什么样的供电电压?这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。

此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。

输出电压是否需要满摆幅?低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。

6N2前置放大电路图

6N2前置放大电路图

6N2前置放大电路图胆前级电路见附图,是常用的两级阻容耦合电压放大。

电路中全部采用普通元器件,电源变压器是电子管收音机拆机品,型号DB-21-169型,性能可靠。

全新的6N22只、6241只,6元左右,阻流圈用淘汰的8W日光灯镇流器代替,电阻用国产大红袍,电容用国产cz型,电解电容用国产天和牌。

由于元件不多,机座的制作非常灵活,可以根据自己的具体情况决定,形状可圆可方,充分展现DIY的乐趣。

笔者是用2只100mm×200mm×55mm的开关电源外壳拼装而成。

特别要注意电源变压器安装,在机座的相对位置,与电子管的距离越远越好,有条件的尽量将变压器屏蔽。

试听、调试电子管放大器的调试有别于晶体管电路,由于电子管放大器有较高电压,初学者特别要注意安全。

整个电路焊接完毕后,不要急于开机,应仔细对照电路图,有无错接、漏接,检查无误后,再插上电源开机。

打开开关后,手不能离开开关钮,要密切关注,各电子管灯丝应该立即点亮。

一旦有异常声音或者打火冒烟现象,立即关机,问题没有查出并处理好之前,禁止再次开机。

电路正常后,可以进行试听,用CD、MP3、收音机做音源,输出端接600Ω~1000Ω的耳机,耳机里应该播放出音乐,可以进行下一步的细调。

将音源断开,耳机中应有轻微的沙沙声,这是电路的热噪声,是正常的。

如果出现较大的交流声,则是电源部分存在问题。

应逐一检查滤波电路、接地线和电源变压器的静电屏蔽是否接地良好、变压器的安装位置是否合适,应找出故障根源予以排除。

调整静态工作点电子管工作在最佳状态,放音质量才最好,这就需要调整电子管的工作点。

前级放大器一般情况都是工作在甲类状态,电子管的工作点取在栅压一屏流特性曲线的中间点,本机使用的电子管是音频专用管6N2,根据《无线电通信用点真空器件手册》中给出的基本数据和屏极特性曲线,将栅负压调整为-1.5V左右,屏极电流第一级为1.5mA左右,第二级为2mA左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目2 音频前置放大电路制作
学习目标
通过本项目的练习,了解三极管的结构特点,掌握 三极管的电流放大作用,掌握共射放大电路的组成、 原理和分析方法,了解共集放大电路的作用;掌握 多级放大电路的安装、调试、测试技巧。
工作任务
制作分立元件组成的音频前置放大电路(输入信号约 为5mV,输出信号不低于0.2V),撰写项目制作报告。
uO
RL 2kΩ
1
2
3
4
图2.1 音频功率放大电路原理图
图2.2 音频功率放大电路印制电路图
技能训练1 三极管检测
×1K

+


1 00 k Ω
NPN管
红黑
×1K

+
(a)基极的判别
(b) 发射极和集电极判别
图2.3 模拟万用表三极管管脚判别
NPN管 黑 红
×1K

+
图2.4 测穿透电流
1.管脚的判别 (1)判别基极 模拟万用表:先假定一个管脚为基极并把红表笔接
参考电路图
音频功率放大电路参考电路和印制电路图如图所示。
u i1 <5mV
u i2 >10 0 mV
R1 330Ω
C1 100uF
C2 10uF
R2 100kΩ R3 2kΩ
R6 2kΩ
R4 300kΩ
VT 1 9011
R7 4. 7kΩ
C4 10uF VT 2 9011
R5 100kΩ
R8 5. 1kΩ
O
UCE(V)
(a)输出特性电路模型
(b)输出特性曲线
图2.9 三极管的输出特性
如果在基极与发射极间加入一个电压UBE,通过输入 特性曲线,就可以得到IB,利用关系式
可以求出IC;已知IC,再利用输出特性曲线,就可以 求出UCE。这样,输入电压UBE和输出电压UCE的关 系也就出来了。
U BE(V)
(2)输出特性
输出特性曲线是指基极电流IB为一定值时,加在三极
管集电极和发射极之间的电压UCE 与集电极电流 IC
的关系
IC (mA)
IC=β IB
IB=250uA
IB
c
30 25
b
NPN
U CE
20
e
15
10
5
IB=200uA IB=150uA IB=100uA IB=50uA IB=0uA
数字万用表:对于PNP管,当黑表笔在基极上,红 表笔去测另两个极时一般为相差不大的较小读数 (一般0.5-0.8),如表笔反过来接则为一个较大的 读数(一般为1)。对于NPN表来说则是红表笔 (连表内电池正极)连在基极上。
(2)判别发射极和集电极
若管子为NPN型管,已知基极后,剩下两个电极, 对于模拟万用表,假定一个管脚为集电极,用黑表 笔接在该管脚上(如图2.3(b)所示),红表笔接另一管 脚,再在所假设的集电极和基极之间加100kΩ的电 阻,万用表测得的电阻阻值将变小,将两个要判别 的管脚对换,用同样的方法再测一次,阻值变小幅 度大的一次,则黑表笔所接的管脚为集电极;若管 子为PNP型,则应调换表笔。
对于数字万用表,用三极管hFE档去测,对于NPN, 将三极管插入NPN的小孔上,对于PNP,将三极 管插入PNP的小孔上,B极对上面的B字母,读数, 再把三极管的另两脚调换位置,再读数。读数较大 的那次极性就对应万用表上所标的字母,这时就对 着字母去认三极管的C,E极。
2.管子性能的判别: (1)PN结的好坏。方法同二极管。 (2)模拟万用表测穿透电流 如图2.4所示,阻值应在几十千欧,若阻值太小,
R 10 3kΩ
R9 100Ω
C3
47uF
RP 1 470kΩ
R 17 5. 1kΩ
R11 100kΩ
C7 0. 1uF
R 21 C 8 200Ω 100uF
C 6 10uF
+1 5V
VT 3 9011
C 15 10uF
R 16 100Ω
R 14 5. 1kΩ
9
R13 51kΩ
R15 2kΩ
C5 47uF
则说明穿透电流大,性能不好;若阻值慢慢变小, 说明管子性能不稳定。 β值的检测。当对β值要求不是很高时,用万用表 进行测量即可。
知识点1 半导体三极管 1.结构和符号 半导体三极管最主要的功能是电流放大和开关作用。 三极管由两个PN结构成,两个PN结把一块半导体分
成三部分,中间共用的部分是基区,两侧部分是发射 区和集电区,从三个区引出相应的电极,分别为基极 b、发射极e和集电极c,根据PN结类型可分为PNP型 和NPN型两种三极管。
3.三极管的特性
(1)输入特性。输入特性是指在三极管集电极和发
射极之间的电压UCE一定时,加在三极管的基极和发
射极之间的电压UBE和它所产生的基极电流IB的关系,
如图2.8(a)所示。
IB(u A)
UCE=0V UCE>1V
IB b
U BE
c NPN e
0
(a)输入特性电路模型
(b)输特性曲线
图2.8 三极管的输入特性
图2.6三极管放大工作条件
在上述条件下,三极管的三个电极电流如图2.7所示, 具有如下关系:
c I C =β I B
e I E = IC+ I B
b
b
IB
I E = IC+ I B
e
IB
c I C =β I B
(a)NPN三极管
(b)PNP三极管
图2.7 三极管电流分配关系
β称为三极管电流放大系数,其值近似为常数
c 集电极
c 集电极
N 集电区
b 基极 P
基区
N 发射区
集电结 发射结
b 基极
P 集电区 N 基区 P 发射区
集电结 发射结
e 发射极
NP N型
三极管结构示意图
e 发射极 PN P型
发射区和基区之间的PN结叫发射结,集电区和基区之 间的PN结叫集电结。
c b
c b
e
e
NPN型
P NP 型
三极管的电气符号
2.电流控制关系
要使三极管具有放大作用,必须满足以下两个条件:
发射结加正向电压(一般小于1V)
集电结加反向电压(一般为几伏至几十伏)
为了满足上述两个条件,需要在基极加电源VBB,在集
电极加电源VCC,如图2.6所示,且VCC应大于VBB。
c
b
VBB
e
e
VBB
b
VCC
VCC
c
(a)NPN三极管
(b)PNP三极管
在该管脚上(如图2.3(a)所示),用黑表笔分别接 另外两个管脚,测得两个阻值,如果阻值一大一小, 则所假设的不是基极,应重新假设另一管脚,直到 所测两个阻值同大(或同小),将表笔对换,再测一 次,阻值将变为同小(或同大),这时,所假设的管 脚即为基极。 在此基础上,还可判定管子是NPN 型还是PNP型:若两阻值同大时,即NPN型(红表 笔接基极);若两阻值同小时,即PNP 型(红表笔接 基极)。
相关文档
最新文档