机械设计基础课件_第4章_齿轮机构.ppt
合集下载
机械设计基础 第4章齿轮机构(4-56)讲解
(常来加工大模数m>20的齿轮和人字齿轮)。 铣刀轴向剖面形状——与齿轮齿槽的齿廓形状完全相同;
刀具刀号的选择——按被加工齿轮的m、α、z 。
这种切齿方法简单,不需要专用机床,但生产率低、精度差, 故仅适用于单件生产及精度要求不高的场合。
2、拉刀(broaching tool)拉齿
拉刀拉齿主要用来拉削内齿轮,拉刀的形状与齿轮齿 槽形状相同。因拉刀的制造成本高,故它适用于批量生产 的情况。
2、切削过程中的运动(以插齿为例) 1)范成运动
齿条插刀:刀具的节线与被加工齿轮齿坯的分度圆相 切并作纯滚动的运动——刀具移动v =ωr = ωm z / 2。
齿轮插刀:刀具的节圆与齿坯节圆相切并作纯滚动的 运动—— i =ω0 /ω= z /z0)
2)切削运动(↑↓):刀具沿齿轮毛坯轴向的切齿运动。 3)让刀运动(←→):插齿刀具返回时,为避免擦伤已
∵ 分度圆与中线作纯滚动,且刀具分度线上s=e=πm/2;
∴ 切出的齿轮: s=e=πm/2;
ቤተ መጻሕፍቲ ባይዱ
1
ω1
∴ 被切的齿轮
是标准齿轮。 ra1r1'==r1
rb1
h a* m
N1
α '=α
P V2
N 2∞
2 )切制非标准齿轮时,刀具的加工节线与被加工齿轮的 分度圆相切,刀具的加工节线与中线不重合。
∵ 刀具的加工节线上s≠e; ∴ 被切的齿轮是非标准齿轮。
§4—5 渐开线标准齿轮的啮合传动
一、正确啮合条件 如图4-7所示,当前一对齿
在K点接触时,后一对齿在另一 点K′点接触,则点K和K′点应在 啮合线N1N2上,这样才能保证 各对轮齿都能正确地进入啮合。 为此,两齿轮的相邻两齿同侧 齿廓间的法向齿距(即基圆齿 距)应相等。即:
刀具刀号的选择——按被加工齿轮的m、α、z 。
这种切齿方法简单,不需要专用机床,但生产率低、精度差, 故仅适用于单件生产及精度要求不高的场合。
2、拉刀(broaching tool)拉齿
拉刀拉齿主要用来拉削内齿轮,拉刀的形状与齿轮齿 槽形状相同。因拉刀的制造成本高,故它适用于批量生产 的情况。
2、切削过程中的运动(以插齿为例) 1)范成运动
齿条插刀:刀具的节线与被加工齿轮齿坯的分度圆相 切并作纯滚动的运动——刀具移动v =ωr = ωm z / 2。
齿轮插刀:刀具的节圆与齿坯节圆相切并作纯滚动的 运动—— i =ω0 /ω= z /z0)
2)切削运动(↑↓):刀具沿齿轮毛坯轴向的切齿运动。 3)让刀运动(←→):插齿刀具返回时,为避免擦伤已
∵ 分度圆与中线作纯滚动,且刀具分度线上s=e=πm/2;
∴ 切出的齿轮: s=e=πm/2;
ቤተ መጻሕፍቲ ባይዱ
1
ω1
∴ 被切的齿轮
是标准齿轮。 ra1r1'==r1
rb1
h a* m
N1
α '=α
P V2
N 2∞
2 )切制非标准齿轮时,刀具的加工节线与被加工齿轮的 分度圆相切,刀具的加工节线与中线不重合。
∵ 刀具的加工节线上s≠e; ∴ 被切的齿轮是非标准齿轮。
§4—5 渐开线标准齿轮的啮合传动
一、正确啮合条件 如图4-7所示,当前一对齿
在K点接触时,后一对齿在另一 点K′点接触,则点K和K′点应在 啮合线N1N2上,这样才能保证 各对轮齿都能正确地进入啮合。 为此,两齿轮的相邻两齿同侧 齿廓间的法向齿距(即基圆齿 距)应相等。即:
机械设计全套课件 ppt课件
凡具备上述(1)、(2)两个特征的实物组合体称为机构。 机器能实现能量的转换或代替人的劳动去做有用的机械功,而 机构则没有这种功能。
仅从结构和运动的观点看,机器与机构并无区别,它们 都是构件的组合,各构件之间具有确定的相对运动。因此,通 常人们把机器与机构统称为机械。
ppt课件
7
机械设计基础
绪论
如图1-1所示的内燃机,
图1-5(a)闭式运动链
机械设计基础
ppt课件
图1-5(a)开式运动链
16
• 将运动链中的一个构件固定,并且它的一个 或几个构件作给定的独立运动时,其余构件 便随之作确定的运动,此时,运动链便成为 机构。
• 机构的组成:
• 机 架:固定不动的构件
• 原动件:输入运动的构件
• 从动件:其余的活动构件
1)运动副:两构件之间直接接触并能产生一定的相对
运动的连接称为运动副。
运动副元素:两构件上直接参与接触而构成运动副的部分— —点、线或面。
2) 运动副的分类
平面
运 运动副 动 副
空间 运动副
机械设计基础
高副:点、线接触 低副:面接触
球面副 螺旋副
ppt课件
运动副 转动副
13
图1-2 转动副
图1-3 移动副
是由汽缸体1、活塞2、连杆3、曲轴4、 小齿轮5、大齿轮6、凸轮7、推杆8等系列 构件组成,其各构件之间的运动是确定的。
0.1.2 构件与零件
机构是由具有确定运动的单元体组成的,这 些运动单元体称为构件。
组成构件的制造单元体称为零件。 零件则是指机器中不可拆的一个最基本的 制造单元体。构件可以由一个或多个零件组成。
ppt课件
20
机械设计基础
机械设计基础全套教学ppt课件清华大学
• 4.高副 • 两构件组成高副时的相对运动与这两个构件
在接触处的轮廓形状有直接关系,因此,在 表示高副时必须画出两构件在接触处的曲线 轮廓。如图1-8、图1-9所示为齿轮高副和凸 轮高副的表示方法。
机械设计基础
(a)外啮合齿轮;
(b)内啮合齿轮;
(c)齿轮齿条;
(d)锥齿轮;
(e)蜗杆蜗轮
图1-9 齿轮高副的表示方法
小齿轮5、大齿轮6、凸轮7、推杆8等系列 构件组成,其各构件之间的运动是确定的。
0.1.2 构件与零件
机构是由具有确定运动的单元体组成的,这 些运动单元体称为构件。
组成构件的制造单元体称为零件。 零件则是指机器中不可拆的一个最基本的 制造单元体。构件可以由一个或多个零件组成。
如图1-1所示内燃机的曲轴为一个零件;连 杆则为多个零件的组合。因此,构件是相互固 接在一起的零件组合体。
机械设计基础
图1-5(a)开式运动链
• 将运动链中的一个构件固定,并且它的一个 或几个构件作给定的独立运动时,其余构件 便随之作确定的运动,此时,运动链便成为 机构。
• 机构的组成: • 机 架:固定不动的构件 • 原动件:输入运动的构件 • 从动件:其余的活动构件
机械设计基础
§1-2 平面机构的运动简图
机械设计基础
常见虚约束
(1)两构件构成多个导路平行的移动副, 如图1-18所示。
机械设计基础
图1-18 两构件构成多个导路平行的移动副
(2)两构件组成多个轴线互相重合的转动 副,如图1-19所示。
图1-19 两构件组成多个轴线互相重合的转动副
机械设计基础
• (3)机构中存在对传递运动不起独立作用 的对称部分,如图1-20所示。
机械设计基础 第4章 齿轮机构
b. 模数的意义 ◆ 模数的量纲 mm m=
p ,确定模数 m 实际上就是确定周节 p ,也就是确
p
定齿厚和齿槽宽e。模数m越大,周节p越大,齿厚s和齿槽 宽e也越大。 模数越大,轮齿的抗弯强度越大。
c. 确定模数的依据 根据轮齿的抗弯 强度选择齿轮的 模数
一组齿数相同,模数不同的齿轮。
(3)分度圆压力角(齿形角)
p 0.5p 0.5p ha=m m c
上各点具有相同的
压力角,即为其齿 形角,它等于齿轮
F V
分度圆压力角。
b. 与齿顶线平行的任一直线上具有相同的齿距p= p m。
c. 与齿顶线平行且齿厚s等于齿槽宽e的直线称为分度线,
它是计算齿条尺寸的基准线。
三、参数间的关系
表5-5渐开线标准直齿圆柱齿轮几何尺寸公式表 名 称
式
齿根圆直径
周 节 齿 厚 基圆周节 中心距
df
p s pb a
P= p m s= p m/2
Pb= p m cosa
a=m(z1 ±z2)/2
注:上面符号用于外齿轮或外啮合传动,下面符号用于内齿轮或内啮合传动。
一对标准齿轮:
1 1 a ( d 2 d 1 ) m ( z 2 z1 ) 2 2 ①m、z决定了分度圆的大小,而齿轮的大小主要
取决于分度圆,因此m、z是决定齿轮大小的主要
参数 * ha , ②轮齿的尺寸与 m,
c*
有关与z无关
③至于齿形, rb r cos
mz cos ,与m,z, 2
有关
可见,m影响到齿轮的各部分尺寸, ∴又把这种以模数为基础进行尺寸计算的齿轮称m制齿轮。 欧美:径节制 P
《机械设计基础》齿轮传动ppt课件
.
轭
两头牛背上的架子称为轭,轭使两头牛同步行走。 共轭即为按一定规律相配的一对。
.
三、齿廓曲线的选择 1.理论上满足基本定律的共轭齿廓曲线很多; 2.考虑因素:设计、制造、安装和使用; 3.常用齿廓曲线:渐开线,摆线,变态摆线,圆弧 曲线和抛物线等。 本章重点研究渐开线齿廓的齿轮
.
第3节 渐开线齿廓
一、渐开线的形成
直线BK沿半径为rb的圆作 纯滚动时,直线上任意一点K 的轨迹称为该圆的渐开线。 该圆称为渐开线的基圆
rb—基圆半径; BK—渐开线发生线 θK—渐开线上K点的展角
.
二、渐开线的性质 1.渐开线的发生线展直前后长度不变;
弧ABKB
.
K
2. B 是渐开线K点处的曲率中心,BK 是曲率半径; A 处的曲率半径为0 KB 为渐开线在K点的法线,并与基圆相切
.
3.渐开线的形状取决于基圆的大小 rb↑→∞,渐开线→直线;
.
4. 基圆内无渐开线
.
渐开线的性质
(1)发生线沿基圆滚过的长度,等于基圆上被滚过的
圆弧长度
KN AN
(2)NK为渐开线在K点的法线,NK为曲半半径,渐
开线上任一点的法线与基圆相切。
(3)渐开线的形状决定于基圆的大小。 θK相同时,rb越大,曲半半径越大 rb→∞,渐开线→⊥N3K的直线
P=s+e d=mz m为标准值
hf ha
5、齿顶高ha:d与之间
齿顶圆 分度圆
h
齿全高h:h=ha+hf 齿根圆
r rf
6、基节
ra
齿轮轴线 O
基节——基圆上的周节(齿距)Pb
d b zb P d K co K d s co zc s P os
轭
两头牛背上的架子称为轭,轭使两头牛同步行走。 共轭即为按一定规律相配的一对。
.
三、齿廓曲线的选择 1.理论上满足基本定律的共轭齿廓曲线很多; 2.考虑因素:设计、制造、安装和使用; 3.常用齿廓曲线:渐开线,摆线,变态摆线,圆弧 曲线和抛物线等。 本章重点研究渐开线齿廓的齿轮
.
第3节 渐开线齿廓
一、渐开线的形成
直线BK沿半径为rb的圆作 纯滚动时,直线上任意一点K 的轨迹称为该圆的渐开线。 该圆称为渐开线的基圆
rb—基圆半径; BK—渐开线发生线 θK—渐开线上K点的展角
.
二、渐开线的性质 1.渐开线的发生线展直前后长度不变;
弧ABKB
.
K
2. B 是渐开线K点处的曲率中心,BK 是曲率半径; A 处的曲率半径为0 KB 为渐开线在K点的法线,并与基圆相切
.
3.渐开线的形状取决于基圆的大小 rb↑→∞,渐开线→直线;
.
4. 基圆内无渐开线
.
渐开线的性质
(1)发生线沿基圆滚过的长度,等于基圆上被滚过的
圆弧长度
KN AN
(2)NK为渐开线在K点的法线,NK为曲半半径,渐
开线上任一点的法线与基圆相切。
(3)渐开线的形状决定于基圆的大小。 θK相同时,rb越大,曲半半径越大 rb→∞,渐开线→⊥N3K的直线
P=s+e d=mz m为标准值
hf ha
5、齿顶高ha:d与之间
齿顶圆 分度圆
h
齿全高h:h=ha+hf 齿根圆
r rf
6、基节
ra
齿轮轴线 O
基节——基圆上的周节(齿距)Pb
d b zb P d K co K d s co zc s P os
机械设计基础课件——第四章齿轮传动
第二节 渐开线齿廓
▪ 一、渐开线齿廓的形成和性质 ▪ 1.渐开线的形成 ▪ 如图4-2a所示,直线n-n沿一个半径为rb的圆周作无
滑动的纯滚动,该直线上任一点的K的轨迹AK称为 该圆的渐开线。这个圆称为基圆,该直线称为渐开 线的发生线。∠AOK(∠AOK=θK)称为渐开线在K 点的展角。
图 4-2
▪ 2.渐开线齿廓的压力角
▪ 齿轮传动中,齿廓在K点啮合时,作用于K点的法向力Fn与齿轮上K点速 度方向所夹的锐角,称为渐开线上K点处的压力角,用αk表示,由图4-2b 可见,αk=∠NOK,设K点的内径为rk,于是:
▪
cosαk=rb/rk
▪ 3.渐开线的性质
▪ 根据渐开线的形成,可知渐开线具有如下性质:
▪ 齿顶圆与齿根圆之间的径向距离称为齿高,用h表示。
▪ 二、渐开线标准直齿圆柱齿轮的基本参数
▪ 1.齿数
▪ 在齿轮整个圆周上轮齿的数目称为该齿轮的齿数,用z表示。
▪ 2.模数
▪ 分度圆的周长为dπ=pz,于是分度圆的直径d=pz/π,由于式中π是无理 数,故将p/π的比值制定成一个简单的有理数列,以利计算,并把这个 比值称为模数,以m表示。
▪ (4)渐开线的形状取决于基圆的大小。基圆越大渐开线就越平直,当基 圆的半径无穷大时,那么渐开线就是直线了,如图4 3b所示。
▪ (5)基圆内无渐开线。
▪ 二、渐开线齿廓啮合特性 ▪ 1.渐开线齿廓能保证定传动比传动 ▪ 2.渐开线齿廓之间的正压力方向不变 ▪ 3.渐开线齿廓传动具有中心距可分性
第四章 齿轮传动
第一节 齿轮传动的类型、特点和应用
▪ 一、齿轮传动的类型 ▪ 齿轮传动的类型很多,下面介绍几种常用的分类方法。 ▪ (1)按一对齿轮两轴线的相对位置分为平行轴齿轮传动、相交轴
机械设计基础第第4章齿轮传动.ppt
失效形式
轮齿折断 齿面点蚀
点蚀:轮齿啮合过程中,接触面 齿面接触疲劳 间产生接触应力(两物体相互接触时,在表面上产生 的局部压力称为接触应力),该应力是脉动循环变化 的,在此应力的反复作用下,齿面表层就会产生细微 疲劳裂纹,封闭在裂纹中润滑油在压力的作用下,产 生楔挤作用使裂纹扩大,最后导致表层金属小片状剥 落,出现凹坑,形成麻点状剥伤,称为点蚀。
失效形式 齿面胶合
齿面磨损 齿面塑性变形
从动齿
措施:1)提高齿面硬度
2)采用黏度大的润滑油
表面凸出
主动齿 表面凹陷
汽车与交通工程学院 汽车工程系
4.2.2设计准则
设计准则取决于齿轮可能出现的失效形式。 对于软齿面闭式齿轮传动:常因齿面点蚀而失效,故通常先按齿
面接触疲劳强度进行设计,然后校核齿根弯曲疲劳强度。 对于硬齿面闭式齿轮传动:其齿面接触承载能力较高,故通常先
措施: 1)加抗胶合添加剂 3)增加润滑油粘度
2)减小齿面粗糙度 4)降低齿高,减小模数
汽车与交通工程学院 汽车工程系
失效形式
轮齿折断 齿面点蚀 齿面胶合 齿面磨损
跑合磨损 磨粒磨损
措施:1)减小齿面粗糙度 2)改善润滑条件,清洁环境 3)提高齿面硬度
汽车与交通工程学院 汽车工程系
轮齿折断
齿面点蚀
提高轮齿抗折断能力的措施: 1)增大齿根过渡圆角半径,消除加工刀痕,减小齿根应 力集中; 2)增大轴及支承的刚度,使轮齿接触线上受载较为均匀; 3)采用合适的材料和热处理形式使齿面较硬,使轮齿芯 部材料具有足够的韧性; 4)采用喷丸、滚压等工艺,对齿根表层进行强化处理。
汽车与交通工程学院 汽车工程系
汽车与交通工程学院 汽车工程系
机械设计基础!齿轮机构Hppt课件
15
一、渐开线的形成Generation of Involute
当一直线在一圆周上作纯滚动时,此直线上任 一点的轨迹---该圆的渐开线involute
该圆称基圆(rb);该直线称为发生线generating line
vK 压力角
发生线
基圆
基圆
渐开线
F
aK
K
rK 向径
rbaK qK展角
27.03.2020
齿顶圆: c oasa rb/ra
基圆: coasbrb/rb1 B
轮齿上,基圆压力角等于零
齿顶圆上压力角最大
分度圆上压力角为标准值
分度圆(定义): 模数和压力角
均为标准值的圆 27.03.2020
编制:吕亚清
F
ai K
K1
vK
a1
B1
ri
A r1
ai a1
O
rb
30
2. 基本参数(续) 标准齿轮参数:
r
d
a
标准压力角:a=20º(人为规定)
少数场合有14.5º、15º、22.5º、25º
ddco a smczo as b
27.03.2020
••
基本参数 •
编制:吕亚清
O
28
不同模数齿轮尺寸比较(放大)
模数m ,是齿轮 计算的基本参数, 也为轮齿大小的 标志
m=4 z=16
人为地规定一些 特定模数值, 称 标准模数
d
于标准数值, s=e 27.03.2020
编制:吕亚清
O
31
3 . 几何尺寸
分度圆直径d : dmz
齿顶高ha: ha ha*m 齿顶高系数ha*: ha* 1.0 齿根高hf :hf (ha* c*)m 顶隙系数c*: c* 0.25
机械设计基础全套教学ppt课件清华大学
第1章 平面机构的运动简图和自由度
1.1 机构的组成
1.1.1 自由度、运动副与约束
•
构件:机构中
运动的单元体,是组
成机构的基本要素。
•
• 自由度:构件可能出 现的独立运动。
• 对于一个作平面运动 的构件,则只有三个
机械设计基础
图1-1 自由度
1.1.2 运动副及其分类
1)运动副:两构件之间直接接触并能产生一定的相对
根据用途不同,机器可分为:
动力机器:实现能量转换,如内燃机、电动机、蒸汽机、发电机、压气机等。
加工机器:完成有用的机械功或搬运物品,如机床、织布机、汽车、飞机、起重
机、输送机等。
信息机器:完成信息的传递和变换,如复印机、打印机、绘图机、传真机、照相
机等。
绪论
虽然机器的种类繁多,构造、用途和功能也各不相同。 但具有相同的基本特征: (1)人为的实物(构件)组合体。 (2)各个运动实物之间具有确定的相对运动。 (3)代替或减轻人类劳动,完成有用功或实现能量的转换。
在对现有机械进行分析或设计新机器时,都需要绘出其机构 运动简图。
1. 机构运动简图的定义 为了便于分析,人们不考虑机器的复杂外形和结构,仅用规 定的线条和符号按一定的比例表示构件的尺寸和各运动副的位置, 这种将机构中各构件间相互运动关系表示出来并反映机构特征的 简图称为机构运动简图。
机械设计基础
1.2.1 运动副及构件的表示方法 • 1.构件 • 构件均用直线或小方块来表示,如图1-6示。
机械设计基础
机械设计基础
图1-10 凸轮副的表示方法
1.2.2 平面机构运动简图的绘制
• 绘制机构运动简图的步骤:
• (1)分析机构的组成,观察相对运动关系, 了解其工作原理。
机械设计基础》-第4章齿轮机构幻灯片
9
的
一、齿轮基本尺寸的名称和符号(标准直齿圆柱外啮合齿轮)
齿顶圆 :齿顶所在的圆,
称 符
其直径和半径
分别用 和 da ra 表示。
齿根圆 :齿槽底面所在的圆,其直径和半
径分别用 和 d表f 示rf。 分度圆: 具有标准模数和标准压力角的圆。
它介于齿顶圆和齿根圆之间,是
计算齿轮几何尺寸的基准圆,其
直径和半径分别用 和 d表示r。
之,离基圆越近,曲率半径越小。渐开线在基圆上的点的曲率半径为零,基
圆内没有渐开线。
(4)渐开线的形状取决于基圆的大小。
(5)如右上图所示,当渐开线AK 在点K 与
其共轭齿廓啮合时,所受正压力方向(法线方向)
与该点速度方向所夹的锐角称为渐开线在该点的压
力角,用 K 表示。由图中的几何关系可得渐开
线上任意点 K 的向径rK 、压力角 K 及基圆半径
齿
蜗 杆 传 动
交 错 轴 斜
齿
轮
斜 齿 锥 齿 轮
曲
直
齿
齿
锥
锥
齿
齿
轮
轮
3
第二节 齿廓啮合的根本定律
一、齿廓啮合的基本定律
啮合:一对轮齿相互接触并进行相对运动的状态称为啮合。
传动比:两轮角速度之比。
齿廓啮合的基本定律
第一种叙述法: 两齿轮啮合时,其瞬时传动比等于啮合齿廓接触点处公法线分连
心线所成两段线段的反比。 第二种叙述法:
ห้องสมุดไป่ตู้
正常齿 ha* 1 ,c* 0.25 ;短h齿a* 0.8 c*,0.3
。
11
三、渐开线标准直齿圆柱齿轮几何尺寸计算
标准齿轮:具有标准模数、标准压力角、标准齿顶高系数、标准顶隙系数 并且分度圆上的齿厚等于分度圆上的齿槽宽的齿轮。
的
一、齿轮基本尺寸的名称和符号(标准直齿圆柱外啮合齿轮)
齿顶圆 :齿顶所在的圆,
称 符
其直径和半径
分别用 和 da ra 表示。
齿根圆 :齿槽底面所在的圆,其直径和半
径分别用 和 d表f 示rf。 分度圆: 具有标准模数和标准压力角的圆。
它介于齿顶圆和齿根圆之间,是
计算齿轮几何尺寸的基准圆,其
直径和半径分别用 和 d表示r。
之,离基圆越近,曲率半径越小。渐开线在基圆上的点的曲率半径为零,基
圆内没有渐开线。
(4)渐开线的形状取决于基圆的大小。
(5)如右上图所示,当渐开线AK 在点K 与
其共轭齿廓啮合时,所受正压力方向(法线方向)
与该点速度方向所夹的锐角称为渐开线在该点的压
力角,用 K 表示。由图中的几何关系可得渐开
线上任意点 K 的向径rK 、压力角 K 及基圆半径
齿
蜗 杆 传 动
交 错 轴 斜
齿
轮
斜 齿 锥 齿 轮
曲
直
齿
齿
锥
锥
齿
齿
轮
轮
3
第二节 齿廓啮合的根本定律
一、齿廓啮合的基本定律
啮合:一对轮齿相互接触并进行相对运动的状态称为啮合。
传动比:两轮角速度之比。
齿廓啮合的基本定律
第一种叙述法: 两齿轮啮合时,其瞬时传动比等于啮合齿廓接触点处公法线分连
心线所成两段线段的反比。 第二种叙述法:
ห้องสมุดไป่ตู้
正常齿 ha* 1 ,c* 0.25 ;短h齿a* 0.8 c*,0.3
。
11
三、渐开线标准直齿圆柱齿轮几何尺寸计算
标准齿轮:具有标准模数、标准压力角、标准齿顶高系数、标准顶隙系数 并且分度圆上的齿厚等于分度圆上的齿槽宽的齿轮。
机械设计基础_第4章_变位齿轮
s,e,rf,ra,(hf,h a)。
(1)、分度圆齿厚s与齿间e
r
O
ab
xm
sm2xmtg
2
rb
c
em2xmtg
xm
B
xm
N
ab
Pc
ham
2
(2)、齿根高
h
与
f
齿顶高h a
hf (hac*)mxm
在 保 证 齿 全 高 不 变 时 : h a h a m x m
x1x20,且 x1x20
aa(rr),
齿数xx21条xx件12m m:iinnhhaa((Z ZZ Zm mm m iinniinnZ Z12))两 则 式 Z 相 1 加Z , 2设 h2 aZ m 1in
优点:减小机构的尺寸,改善磨损情况; 提高小齿轮强度,提高承载能力。
解: ∵ s'
m 2xmtg
2
s'
19.52162 2x216tg20
x20.482
x 1 x 20 .4 8 2
计算尺寸,校核 sa1 ?
解:1)确定传动类型
m
4 .2 5
a 2 (Z 1 Z 2 )2(1 3 4 4 ) 1 2 1 .1 2 5
∵ a a , 可 采 用 等 移 距 变 位 齿 轮 传 动 。
2)选择变位系数,计算参数
1713
小齿轮正变位: x1x1m in 17 0.235 大齿轮负变位: x 2 x 1 0 .2 3 5
k in(vk)
θ
二、变位齿轮传动
1、正确啮合条件与连续传动条件同 标准齿轮传动。
即 : m 1m 2m ,12; [].
(1)、分度圆齿厚s与齿间e
r
O
ab
xm
sm2xmtg
2
rb
c
em2xmtg
xm
B
xm
N
ab
Pc
ham
2
(2)、齿根高
h
与
f
齿顶高h a
hf (hac*)mxm
在 保 证 齿 全 高 不 变 时 : h a h a m x m
x1x20,且 x1x20
aa(rr),
齿数xx21条xx件12m m:iinnhhaa((Z ZZ Zm mm m iinniinnZ Z12))两 则 式 Z 相 1 加Z , 2设 h2 aZ m 1in
优点:减小机构的尺寸,改善磨损情况; 提高小齿轮强度,提高承载能力。
解: ∵ s'
m 2xmtg
2
s'
19.52162 2x216tg20
x20.482
x 1 x 20 .4 8 2
计算尺寸,校核 sa1 ?
解:1)确定传动类型
m
4 .2 5
a 2 (Z 1 Z 2 )2(1 3 4 4 ) 1 2 1 .1 2 5
∵ a a , 可 采 用 等 移 距 变 位 齿 轮 传 动 。
2)选择变位系数,计算参数
1713
小齿轮正变位: x1x1m in 17 0.235 大齿轮负变位: x 2 x 1 0 .2 3 5
k in(vk)
θ
二、变位齿轮传动
1、正确啮合条件与连续传动条件同 标准齿轮传动。
即 : m 1m 2m ,12; [].
机械设计基础第4章PPT
机械设计基础
1
2
机械设计基础 常用机构 概论
3
带传动和链 传动
4
齿轮传动
5
蜗杆传动
6
轮系及减速 器
7
8
9
螺纹联接与 轴的设计及
螺旋传动
轮毂连接
轴承
10
联轴器和离 合器
11
弹簧
12
机械的平衡 与调速
目录 / CONTENTS
第4章
齿轮传动
第4章 齿轮传动
学习目标
• 知识学习目标 ●了解齿轮机构的类型及功用 ●理解齿廓啮合基本定律、渐开线的性质和齿廓的啮合特性 ●掌握渐开线直齿圆柱齿轮啮合传动需要满足的条件 ●了解范成法切齿的基本原理和根切现象产生的原因,掌握不发
法向力
Fn=
Fn1
=
Fn2
=
Ft cos
18
4.6直齿圆柱齿轮传动的设计
4.6.1 直齿圆柱齿轮传动的受力分析
第4章 齿轮传动
各力方向 判定
(1)在主动轮上的圆周力Ft1 与其回转方向相反;在从动 轮上的圆周力Ft2与其回转方 向相同。
(2) 两轮的径向力Fr1、Fr2的 方向均是由啮合点指向各自 的轮心。
19
4.6直齿圆柱齿轮传动的设计
4.6.2直齿圆柱齿轮承载能力计算
1. 齿面接触疲劳强度计算
1)齿面接触疲劳强度的设计公式
KT1(i 1)
d ≥76.63 d [ H ]2 i
第4章 齿轮传动
2)齿面接触强度校核公式
бH 671
KT1(i 1) bd12 i
≤[бH] (MPa)
2. 齿根弯曲疲劳强度计算
响,将设计出的模数加大10%~30%。
1
2
机械设计基础 常用机构 概论
3
带传动和链 传动
4
齿轮传动
5
蜗杆传动
6
轮系及减速 器
7
8
9
螺纹联接与 轴的设计及
螺旋传动
轮毂连接
轴承
10
联轴器和离 合器
11
弹簧
12
机械的平衡 与调速
目录 / CONTENTS
第4章
齿轮传动
第4章 齿轮传动
学习目标
• 知识学习目标 ●了解齿轮机构的类型及功用 ●理解齿廓啮合基本定律、渐开线的性质和齿廓的啮合特性 ●掌握渐开线直齿圆柱齿轮啮合传动需要满足的条件 ●了解范成法切齿的基本原理和根切现象产生的原因,掌握不发
法向力
Fn=
Fn1
=
Fn2
=
Ft cos
18
4.6直齿圆柱齿轮传动的设计
4.6.1 直齿圆柱齿轮传动的受力分析
第4章 齿轮传动
各力方向 判定
(1)在主动轮上的圆周力Ft1 与其回转方向相反;在从动 轮上的圆周力Ft2与其回转方 向相同。
(2) 两轮的径向力Fr1、Fr2的 方向均是由啮合点指向各自 的轮心。
19
4.6直齿圆柱齿轮传动的设计
4.6.2直齿圆柱齿轮承载能力计算
1. 齿面接触疲劳强度计算
1)齿面接触疲劳强度的设计公式
KT1(i 1)
d ≥76.63 d [ H ]2 i
第4章 齿轮传动
2)齿面接触强度校核公式
бH 671
KT1(i 1) bd12 i
≤[бH] (MPa)
2. 齿根弯曲疲劳强度计算
响,将设计出的模数加大10%~30%。
相关主题