大学物理-狭义相对论动力学

合集下载

大学物理学-狭义相对论教案

大学物理学-狭义相对论教案

授课章节第4章 狭义相对论教学目的1. 理解爱因斯坦狭义相对论的两条基本原理及洛伦兹坐标、速度变换式;2. 掌握狭义相对论的时空观:即理解同时的相对性、长度的收缩和时间的膨胀,并能进行相关的计算;3. 了解狭义相对论动力学的几个结论及其具体应用。

教学重点、难点1. 正确地理解相对论的时空观;2. 掌握洛伦兹变换的物理意义;3. 理解长度收缩效应只发生在运动方向上;4. 理解“时间膨胀”效应是指运动着的钟比静止的钟慢;5. 在相对论动力学中,动能不能用221mv 进行计算,只能用202c m mc E K -=进行计算;6. 在经典物理中能量守恒律与质量守恒律彼此独立。

而在相对论中通过质能关系式把两个定律统一起来了。

即在相对论中能量守恒与质量守恒总是同时成立的。

教学内容 备注第四章 狭义相对论相对论研究的内容:研究物质的运动与空间、时间的联系。

狭义相对论:研究自然定律在所有惯性系中都表示为相同的形式(数学)问题。

广义相对论:研究自然定律在所有参照系中都表示为相同的形式(数学)问题。

§4.1 伽利略变换和经典力学时空观一、伽利略变换 经典力学时空观1、伽利略坐标变换方程:如图,两个参照系的坐标轴互相平行,参照系S '相对于参照系S 沿x 轴的正方向以速度u 运动,时间0='=t t 时、两坐标系的原点o 和o '重合。

则某一空—时点的坐标变换方程为tt zz y y utx x ='='='-=' 或 t t z z y y t u x x '='='='+'= (1)2、经典力学时空观伽利略坐标变换方程已经对时间、空间性质作了两条假设:(1)t t'=,t t '∆=∆,即时间间隔与参考系的运动状态无关;(2)L L '∆=∆,即空间长度与参考系的运动状态无关。

(同时测量棒两端点的坐标值),总之,时间和空间是彼此独立的,互不相关,并且不受物质和运动的影响,这就是经典力学的时空观,也称绝对时空观。

大学物理上 第4章 狭义相对论基础

大学物理上 第4章 狭义相对论基础
物理规律 力学规律
1. 爱因斯坦的理论是牛顿理论的发展 2.光速不变否定了绝对时空概念。不存在绝对运动或 .光速不变否定了绝对时空概念。 绝对静止。 绝对静止。
10
§4.3
狭义相对论时空观
4.3.1 同时的相对性 由于光速不变, 由于光速不变,在某一个惯性系中同时发生的两 个事件, 个事件,在另一相对它运动的其它惯性系中并不一定 是同时发生的,这个结论称为“同时的相对性” 是同时发生的,这个结论称为“同时的相对性”。
v x = v′ + u x v y = v′y vz = v′ z
y = y′
x
P
x'
ut
o z
o'
x′
u
x
伽利略速度变换 v′ = vx − u x S ' 系 v′ = v y y v' z = v z
z'
S系
r r r v = v '+u
经典时空中速度满足速度叠加原理。 经典时空中速度满足速度叠加原理。
17
.
慢 双生子佯谬
慢 .
.
1971年,美空军用两组Cs(铯)原子钟作实验。 年 美空军用两组 ( 原子钟作实验。 实验值: 实验值:绕地球一周的运动 钟变慢: 钟变慢:203± 10ns ± 理论值:绕地球一周的运动 理论值: 钟变慢: 184 ± 23 ns 钟变慢: 实验值和理论值在误差 范围内是一致的。 范围内是一致的。 实验验证了孪生子效应确实是存在的。 实验验证了孪生子效应确实是存在的。
9
4.2.2 狭义相对论的基本原理 1.狭义相对性原理:一切物理规律在任何惯性系中 1.狭义相对性原理: 狭义相对性原理 都具有相同的形式。 都具有相同的形式。即:物理定律与惯性系的选择无 对物理定律来说,所有惯性系都是等价的。 关,对物理定律来说,所有惯性系都是等价的。 2.光速不变原理:在所有惯性系中, 2.光速不变原理:在所有惯性系中,光在真空中的 光速不变原理 速率相同,与惯性系之间的相对运动无关,也与光源、 速率相同,与惯性系之间的相对运动无关,也与光源、 观察者的运动无关。 观察者的运动无关。 说明: 说明:

大学物理狭义相对论基础全部内容

大学物理狭义相对论基础全部内容

伽利略 变换
洛仑兹 变换
实验检验
绝对时空观
狭义相对论时空观 比 较
相对论动力学基础
广义相对论时空观
学时: 8 (狭义相对论); 自学*广义相对论简介
重点: 狭义相对论的两条基本原理 洛仑兹坐标变换 狭义相对论时空观(“同时”的相对性、钟慢尺缩) 质速关系,质能关系,能量与动量关系
难点: 狭义相对论时空观 *广义相对论的两条基本原理 *时空的几何化,空间弯曲
—— 牛顿
即:时间先于运动存在。没有时间,无法描述运动; 而没有运动,时间照样存在和流逝。
2. 空间:用以表征物质及其运动的广延性
空间测量:刚性尺 国际单位:米
光在真空中 29979241秒58的时间间隔内传播的
距离。
长度的测量:
长度 = 在与长度方向平行的坐标轴上,物体两端 坐标值之差 注意:当物体静止时,两端坐标不一定同时记录;
物理学家感到自豪而满足,两个事例:
在已经基本建成的科学大厦中,后辈物理学家只要 做一些零碎的修补工作就行了。也就是在测量数据的 小数点后面添加几位有效数字而已。
——开尔芬(1899年除夕)
理论物理实际上已经完成了,所有的微分方程都 已经解出,青年人不值得选择一种将来不会有任何 发展的事去做。
——约利致普朗克的信
同学们好!
物理书都充满了复 杂的数学公式。可是 思想及理念,而非公 式,才是每一物理理 论的开端。
--爱因斯坦
《物理学的进化》
阿尔伯特.爱因斯坦(1879 — 1955)
?
第八章 狭义相对论 *广义相对论简介
力学相对性原理 对称性扩展
狭义相对性原理 光速不变原理 对称性扩展 广义相对性原理 等效原理

大学物理-狭义相对论-相对论性动量和能量

大学物理-狭义相对论-相对论性动量和能量

我国于 1958 年建成的首座重水反应堆
我国已 建成的岭澳 核电站
我国在 建的单机容 量最大的田 湾核电站
原子弹核裂变
2 轻核聚变
氘核 氦核 质量亏损
释放能量
轻核聚变条件 温度要达到

的动能,足以克服两
力.
时,使 具 之间的库仑排斥
1967年6 月17日,中国 第一颗氢弹爆 炸成功
五 动量与能量的关系

,所以光速 C 为物体的极限速度 .


相对论动量守恒定律


常矢量

,则相对论动量守恒 经典动量守恒 .
常矢量
三 质量与能量的关系
相对论质能关系
静能
:物体静止时所具有的能量 .
质能关系预言:物质的质量就是能量的一种储藏 .
爱因斯坦认为(1905)
懒惰性
惯性 ( inertia )
活泼性
物理意义
惯性质量的增加和能量的增加相联系,质量的 大小应标志着能量的大小,这是相对论的又一极其 重要的推论 .
相对论的质能关系为开创原子能时代提供了理 论基础 , 这是一个具有划时代的意义的理论公式 .
质能关系预言:物质的质量就是能量的一种储藏.
例:
现有 100 座楼,每楼 200 套房,每套房用电功率
能量 ( energy )
物体的懒惰性就 是物体活泼性的度量 .
相对论能量和质量守恒是一个统一的物理规律.
一些微观粒子和轻核的静能量
粒子
符号
光子
电子(或正电子) e(或 +e
质子
)p
中子
n


氦( 粒子)
静能量 MeV 0 0.510

【大学物理】第一讲 狭义相对论基本原理 洛伦仑兹变换

【大学物理】第一讲   狭义相对论基本原理 洛伦仑兹变换
T
v
G M1 G
ll t1 c v c v
c(1
2l v2
c2)
M2
M1
s G v T
G M2
c
- v
c2 v2
M2
-
v
c
G
c2 v2
(从 s'系看)
GM 2 GM 1 l
G
M2
G
t2 c
2l 1 v2
c2
t1
2l c(1 v2
c2) ,
2l
t2 c
1 v2
c2
两束光到达望远镜的时间差为
cv
1
vc c2
c
光速不变
光速在任何惯性 系中均为同一常量, 利用它可将时间测量 与距离测量联系起来.
§1.2 洛伦兹变换
寻找新的时空变换式来代替经典力学伽利略变换。
必需满足条件: (1)物理学定律都应该保持数学表达式不变。 (2)真空中光速在一切惯性系中保持不变。 (3)在低速运动条件下可转化为伽利略变换。
设 t t 0 时,o, o
重合 ; 同一事件 P 的
时空坐标如图所示。
s y s' y' v
t
t1
t2
2l
v2
c
1
c2
2l
v2
c
1
c2
1
2
=
2l c
1
v2 c2v2源自1 2c2v << c
t l v2 c c2
两束光汇合时的光程差为 ct l v2
c2
整个仪器旋转90度,那么两束光在前后两次测量
中光程差的该变量为
N 2 2l v2

大学物理第6章狭义相对论ppt课件

大学物理第6章狭义相对论ppt课件

既然同时性是相对的,那么早与晚的时间顺序
是否也是相对的呢?即一个参考系早发生的事件,
在另一个参考系看来会晚发生呢?
是可能的。但具有因果关系的事件的时序是不
会颠倒的。
小结
时空与物质的运动是相互联系的; 空间距 离、时间间隔、同时性也是相对的,它们随物 体与观察者的相对运动状态而改变。 这就是狭义相对论的时空观。
x 2,y 2,u0.5c S
2
2
y
S(棒): 棒只在运动方向变长。
x x , y y
1 u2 / c2
o
固有长度:
lo (x)2(y)2=1.08m z
S y u
y
45°
x
o
x
x
z
补充例:π介子静止寿命为2.5×10-8s,实验时测得 其速率为0.99c,在衰变前可运行距离52m 问:实验结果与理论分析是否一致
K :t(tuc2x)0, 解得: u=0.6c
xx1u2/c24106m
或 x( xu t)4106m
例题6.4.3 S系:两事件发生在同一地点, 且第二事件比第一事件晚发生t=2s;而S: 观测到第二事件比第一事件晚发生t =3s。 在S系中测得发生这两事件的地点之间的距离x是多 少?
解:能否用长度收缩公式? 不行。
或者说:运动的时钟走得慢些(钟慢)。 时间膨胀(钟慢)是相对性效应,与钟表的具体运 转无关。
3.同时的相对性
设A、B两事件同时发生在S系的不同地点, 即
S : xx2 x1 0,tt2 t1 0
S:
tt2t1(tuc 2x)
ux c2 0
可见,在S系看来同时发生的事件,在S系看来
就不是同时发生的。所以同时性是相对的。

第四章 狭义相对论

第四章 狭义相对论
第四章 狭义相对论
大学物理学
第四章 狭义相对论
4.1 伽利略变换和经典力学时空观 4.2 狭义相对论的基本原理 洛仑兹变换 4.3 狭义相对论的时空观 4.4 狭义相对论动力学
2
大学物理学
第四章 狭义相对论
4.1 伽利略变换和经典力学时空观
一、伽利略变换
u
1. 伽利略坐标变换
y y'
K' 系相对于 K 系沿 x 轴匀速 运动,当 t = t' = 0 时, O 与
在 S' 系中看来:
事件 1 发生的位置 x1' ( x1 u t1 ) 事件 2 发生的位置 x2' ( x2 u t2 )
所以有 x' (x ut)
由Δt = 0,则有
x'
u2
x
x' 1 c2
18
大学物理学
l l0
1
u2 c2
第四章 狭义相对论
物体在运动方向上的长度收缩 为固有长度的γ分之一。
——长度收缩效应
注意 ① l < l0 长度沿着运动方向收缩了。
② 若把尺子静止放置在 S 系,在 S' 系测量尺 子的长度,同样出现长度收缩效应。
③ 空间长度具有相对意义。
19
大学物理学
第四章 狭义相对论
例4.1 一火箭相对地球以速率 u = 0.6 c 做直线 运动,以火箭为参考系测得火箭长度为 15m, 则以地球为参考系测得的火箭长度是多少?若 火箭相对地球运动的速率为 u = 0.995 c,问在 地球上测得的火箭长度又是多少?
p
ud p
0
pu
u
u
d( pu) pdu pu

大学物理:第三章狭义相对论

大学物理:第三章狭义相对论

考察
S 中的一只钟
x 0
两事件发生在同一地点
x
x ut 1 u2 c 2 t u x 2 c 1 u2 c 2
t
原时
t2
t
t t 2 t1 观测时间
t t 2 t 1 t 2 t1 1 u
2
2
2
E mc 2 爱因斯坦质能关系
物质具有质量,必然同时具有相应的能量;如 果质量发生变化,则能量也伴随发生相应的变
化,反之,如果物体的能量发生变化,来自么它的质量一定会发生相应的变化。
25 首 页 上 页 下 页退 出
质能守恒定律 在一个孤立系统内,所有粒子的相对论动能与 静能之和在相互作用过程中保持不变。 质量守恒定律
棒静止在 S 系, l 0 是固有长度。 棒相对于惯性系S是运动的,静止于S系的观察者测得棒的 长度值是什么呢?
l u t
l u t
t
t
1
u2 c2
l l0 /
即:物体的长度沿运动方向收缩
14 首 页 上 页 下 页退 出
参照系中运动物体的长度比其静止时的长度要短
2.光速不变原理 在一切惯性系中,光在真空中的速率恒为c ,与光源的 运动状态无关。
4 首 页 上 页 下 页退 出
二、洛仑兹变换式
x x ut y y z z u t 2 x t c x x ut y y z z u t t 2 x c
1 首 页 上 页 下 页退 出
3-1
伽利略变换和经典力 学时空观
一、伽利略变换

《大学物理》学习指南

《大学物理》学习指南

《大学物理》学习指南《大学物理》是理工科及医学类学生的一门公共基础课,该课程内容多,课时少,建议学生课前预习,上课认真听讲,理解物理概念、掌握物理定理和定律,学会分析物理过程,课后适当做些习题,以巩固物理知识。

为了学生更好学好《大学物理》,给出了每章的基本要求及学习指导。

第一章 质点力学一、基本要求1.掌握描述质点运动状态的方法,掌握参照系、位移、速度、加速度、角速度和角加速度的概念。

2.掌握牛顿运动定律。

理解惯性系和非惯性系、保守力和非保守力的概念。

3.掌握动量守恒定律、动能定理、角动量守恒定律。

4.理解力、力矩、动量、动能、功、角动量的概念。

二、学习指导1.运动方程: r = r (t )=x (t )i +y (t )j +z (t )k 2.速度:平均速度 v =t ∆∆r 速度 v =t d d r平均速率 v =t ∆∆s 速率 dtdsv =3.加速度:平均加速度 a =t ∆∆v 加速度 a =t d d v =22d d tr4.圆周运动角速度t d d θω==Rv角加速度 t t d d d d 2θωβ== 切向加速度 βτR tva ==d d 法向加速度 a n =22ωR R v = 5.牛顿运动定律 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,直至其他物体所施的力迫使它改变这种运动状态为止.牛顿第二定律:物体受到作用力时所获加速度的大小与物体所受合外力的大小成正比,与物体质量成反比,加速度a 的方向与合外力F 的方向相同。

即dtPd a m F ρρρ==牛顿第三定律:力总是成对出现的。

当物体A 以力F 1作用于物体B 时,物体B 也必定以力F 2作用于物体A ,F 1和F 2总是大小相等,方向相反,作用在一条直线上。

6.惯性系和非惯性系:牛顿运动定律成立的参考系称为惯性系。

牛顿运动定律不成立参考系称为非惯性系。

7.变力的功 )(dz F dy F dx F r d F W z y x ++=⋅=⎰⎰ρρ 保守力的功 pb pa p ab E E E W -=∆-= 8.动能定理 k k k E E E W ∆=-=129.功能原理 W 外+W 非保守内力=E -E 010.机械能守恒定律 ∆E k =-∆E p (条件W 外+W 非保守内力=0)11.冲量 ⎰=21t t dt F I ρρ12.动量定理 p v m v m I ρρρρ∆=-=12质点系的动量定理 p 系统末态-p 系统初态=∆p13.动量守恒定律 p =∑=n i 1p i =恒矢量 (条件 0=∑ii F ρ)14.力矩、角动量 F r M ρρρ⨯= P r L ρρρ⨯=15.角动量定理 1221L L dt M t t ρρρ-=⎰16.角动量守恒 恒矢量=∑i L ρ (条件0=∑ii M ρ第二章 刚体力学一、基本要求1.掌握描述刚体定轴转动运动状态的方法,掌握角速度和角加速度的概念。

大学物理狭义相对论(一)

大学物理狭义相对论(一)
两个事件在同一地点同时发生 ,则它们在其他任何地点也同
时发生。
03
时间间隔的绝对性
任何两个事件之间的时间间隔 ,在不同的惯性参考系中都是
相同的。
狭义相对论产生背景
经典力学无法解释光速不变现象
根据经典力学,光速在不同惯性参考系中应该不同,但实验证明光速在不同惯 性参考系中都是相同的。
经典力学无法解释质能关系
质量和能量之间存在等效性,可以通 过公式E=mc^2进行转换,揭示了物 质和能量之间的内在联系。
05
04
时间膨胀效应
运动的时钟相对于静止的时钟会变慢 ,即时间膨胀现象。
对现代物理学发展影响和意义
奠定了现代物理学基础
狭义相对论是现代物理学的重要基石之一,对后续理论的 发展产生了深远影响。
揭示了物质和能量的本质
06
总结与展望
狭义相对论主要内容和成果回顾
狭义相对性原理
物理定律在所有惯性参照系中形式不 变,即无法通过实验区分不同惯性参 照系。
长度收缩效应
运动物体在其运动方向上会发生长度 收缩。
01
02
光速不变原理
在任何惯性参照系中,光在真空中的 传播速度都是恒定的,与光源和观察 者的运动状态无关。
03
质能关系
05
电磁现象在狭义相对论中 表现
电荷守恒定律在狭义相对论中形式
电荷守恒定律
在狭义相对论中,电荷守恒定律依然 成立,即电荷既不能被创造也不能被 消灭,只能从物体的一部分转移到另 一部分,或者从一个物体转移到另一 个物体。
洛伦兹不变性
电荷守恒定律具有洛伦兹不变性,即 在任何惯性参考系中观察,电荷的总 量保持不变。
物理意义
质能方程揭示了质量和能量之间的等 效性,表明质量可以转化为能量,反 之亦然。这种转化在核反应和粒子物 理过程中尤为重要。

大学物理第6章 狭义相对论

大学物理第6章 狭义相对论

基本物理规律(包括力学规律)的方程,是 洛仑兹变换下的协变式: 在洛仑兹变换下,方
程的形式不变。
20
§2 洛仑兹变换
光速不变原理和爱因斯坦相对性原理所蕴含 的时空观,应该由一个时空变换来表达。早在 1899年,洛仑兹就给出了惯性系间的时空变换 式,即洛仑兹变换。 但洛仑兹导出他的时空变换时却以“以太” 存在为前提,并认为只有t才代表真正的时间, 而t'只是一个辅助的数学量。
第6章 狭义相对论
在上世纪初,发生了三次概念上
的革命,它们深刻地改变了人们对
物理世界的了解,这就是狭义相对 论(1905)、广义相对论(1916)
和量子力学(1925)。
2
Albert Einstein
1879 –1955
3
狭义相对论运动学 §1 光速不变和爱因斯坦相对性原理 §2 洛仑兹变换 §3 同时性的相对性和时间延缓
在讨论时空的性质时,我们总是用事件的时 空坐标,或用事件的时空点来代表事件,而不 去关心事件的具体物理内容,即不去关心到底 发生了什么事情。 22
时空变换:同一事件在两个惯性系中的时空 坐标和之间的变换关系。 y y P ( x, y, z, t ) u ( x , y, z , t )
B
L2
地球公转
u
A
L1
S
P
实验目的:干涉仪转 90° ,观测干涉条纹是 否移动?
实验结果:条纹无移动 (零结果)。以太不存在 ,光速与参考系无关。
8
干涉条纹
B
L2
地球公转
按照伽利略速度变换
u
A
L1
t PAP
S
L1 L1 2 L1 2 2 c u c u c (1 u c )

大学物理相对论复习资料

大学物理相对论复习资料

⼤学物理相对论复习资料狭义相对论基本内容⼀、狭义相对论的基本原理1. 迈克⽿逊实验迈克⽿逊莫雷实验的⽬的是测定地球相对以太的速度,实验结果:地球相对以太的速度为零,当时的物理理论不能解释该实验结果。

2. 爱因斯坦狭义相对论的基本假设相对性原理:物理学定律在所有的惯性系中形势都是相同的,即⼀切惯性系都是等价的。

光速不变原理:在所有的惯性系中,真空中(⾃由空间)光速具有相同的量值c 。

⼆、狭义相对论时空观1. 洛仑兹变换⼀个事件在惯性系S 中的时空坐标为(x, y, z, t),在沿x 轴以速度v 匀速运动的另⼀惯性系S '中的时空坐标为()x ,y ,z ,t ''''(0t t '==时刻两惯性系原点重合且相应轴重合),则该事件的时空坐标的变换关系称为洛仑兹变换:=-===-2'('''(x x vt y y z z v t t x c或?=+=??==+??2('''('x x vt y y z z v t t x c2. 同时是相对的两个事件在⼀个惯性系中同时同地发⽣,在⼀切惯性系中该两事件必同时同地发⽣;两个事件在⼀个惯性系中不同地点同时发⽣,在其它惯性系中该两事件不⼀定同时发⽣。

3. 时钟变慢(时间变缓)在⼀个惯性系中同⼀地点先后发⽣的两事件,在该惯性系静⽌的时钟测得的时间间隔为固有时间0τ,在另⼀相对该惯性系以速度v 匀速运动的时钟测得的时间间隔为t ?,两者的关系为?γττ==0t 。

4. 尺缩短(长度收缩)观测者与尺相对静⽌时测得尺长称固有长度0L ,观测者沿尺长⽅向以速度v 匀速运动时测得尺长为L ,两者关系为=L L 观察者垂直于尺长⽅向以速度v 匀速运动时测得尺长为L ',0L L '=。

5. 狭义相对论时空观与经典时空观的⽐较当v c 时在x ≯ct 的时空范围内洛仑兹变换转化为伽利略变换,经典时空观是上述条件下狭义相对论时空观的极限。

大学物理讲稿(第14章狭义相对论基础)

大学物理讲稿(第14章狭义相对论基础)

第14章狭义相对论基础自从十七世纪,牛顿的经典理论形成以后,直到二十世纪前,它在物理学界一直处于统治地位.历史步入二十世纪时,物理学开始深入扩展到微观高速领域,这时发现牛顿力学在这些领域不再适用.物理学的发展要求对牛顿力学以及某些长期认为是不言自明的基本概念作出根本性的改革.从而出现了相对论和量子理论.本章介绍相对论的基本知识,在下章里将介绍量子理论的基本知识.§14.1 狭义相对论产生的历史背景一、力学相对性原理和经典时空观力学是研究物体运动的.物体的运动就是它的位置随时间的变化.为了定量研究这种变化,必须选择适当的参考系,而力学概念以及力学规律都是对一定的参考系才有意义的.在处理实际问题时,视问题的方便,我们可以选择不同的参考系.相对于任一参考系分析研究物体的运动时,都要应用基本的力学规律,这就要问对于不同的参考系,基本力学定律的形式是完全一样的吗?同时运动既然是物体位置随时间的变化,那么无论是运动的描述或是运动定律的说明,都离不开长度和时间的测量.因此与上述问题紧密联系而又更根本的问题是:相对于不同的参考系,长度和时间的测量结果是一样的吗?物理学对于这些根本性问题的解答,经历了从牛顿力学到相对论的发展.在牛顿的经典理论中,对第一个问题的回答,早在1632年伽利略曾在封闭的船舱里仔细的观察了力学现象,发现在船舱中觉察不到物体的运动规律和地面上有任何不同.他写到:“在这里(只要船的运动是等速的),你在一切现象中观察不出丝毫的改变,你也不能根据任何现象来判断船是在运动还是停止,当你在地板上跳跃的时候,你所通过的距离和你在一条静止的船上跳跃时通过的距离完全相同,”.据此现象伽利略得到如下结论:在彼此作匀速直线运动的所有惯性系中,物体运动所遵循的力学规律是完全相同的,应具有完全相同的数学表达式.也就是说,对于描述力学现象的规律而言,所有惯性系都是等价的,这称为力学相对性原理.对第二个问题的回答,牛顿理论认为,时间和空间都是绝对的,可以脱离物质运动而存在,并且时间和空间也没有任何联系.这就是经典的时空观,也称为绝对时空观.这种观点表现在对时间间隔和空间间隔的测量上,则认为对所有的参考系中的观察者,对于任意两个事件的时间间隔和空间距离的测量结果都应该相同.显然这种观点符合人们日常经验.依据绝对时空观,伽利略得到反映经典力学规律的伽利略变换.并在此基础上,得出不同惯性参考系中物体的加速度是相同的.在经典力学中,物体的质量m又被认为是不变的,据此,牛顿运动定律在这两个惯性系中的形式也就成为相同的了,这表明牛顿第二定律具有伽利略变换下的不变性.可以证明,经典力学的其他规律在伽利略变换下也是不变的.所以说,伽利略变换是力学相对性原理的数学表述,它是经典时空观念的集中体现.二、狭义相对论产生的历史背景和条件19世纪后期,随着电磁学的发展,电磁技术得到了越来越广泛的应用,同时对电磁规律的更加深入的探索成了物理学研究的中心,终于导致了麦克斯韦电磁理论的建立.麦克斯韦方程组是这一理论的概括和总结,它完整的反映了电磁运动的普遍规律,而且预言了电磁波的存在,揭示了光的电磁本质.这是继牛顿之后经典理论的又一伟大成就.光是电磁波,由麦克斯韦方程组可知,光在真空中传播的速率为m/s 1098821800⨯=εμ=.c 它是一个恒量,这说明光在真空中传播的速率与光传播的方向无关.按照伽利略变换关系,不同惯性参考系中的观察者测定同一光束的传播速度时,所得结果应各不相同.由此必将得到一个结论:只有在一个特殊的惯性系中,麦克斯韦方程组才严格成立,即在不同的惯性系中,宏观电磁现象所遵循的规律是不同的.这样以来,对于不可能通过力学实验找到的特殊参考系,现在似乎可以通过电磁学、光学实验找到,例如若能测出地球上各方向光速的差异,就可以确定地球相对于上述特殊惯性系的运动.为了说明不同惯性系中各方向上光速的差异,人们不仅重新研究了早期的一些实验和天文观察,还设计了许多新的实验.迈克耳孙——莫雷实验就是最早设计用来测量地球上各方向光速差异的著名实验.然而在各种不同条件下多次反复进行测量都表明:在所有惯性系中,真空中光沿各个方向上传播的速率都相同,即都等于c.这是个与伽利略变换乃至整个经典力学不相容的实验结果,它曾使当时的物理学界大为震动.为了在绝对时空观的基础上统一的说明这个实验和其他实验结果,一些物理学家,如洛伦兹等,曾提出各种各样的假设,但都未能成功.1905年,26岁的爱因斯坦另辟蹊径.他不固守绝对时空观和经典力学的观念,而是在对实验结果和前人工作进行仔细分析研究的基础上,从全新的角度来考虑所有问题.首先,他认为自然界是对称的,包括电磁现象在内的一切物理现象和力学现象一样,都应满足相对性原理,即在所有的惯性系中物理定律及其数学表达式都是相同的,因而用任何方法都不能确定特殊的参考系;此外,他还指出,许多实验都已表明,在所有的惯性系中测量,真空中的光速都是相同的.于是爱因斯坦提出了两个基本假设,并在此基础上建立了新的理论——狭义相对论.§14.2 狭义相对论的基本原理一、狭义相对论的两个基本假设爱因斯坦在对实验结果和前人工作进行仔细分析研究的基础上,提出了狭义相对论的如下两个基本假设1)相对性原理:基本物理定律在所有惯性系中都保持相同形式的数学表达式,即一切惯性系都是等价的.它是力学相对性原理的推广和发展.2)光速不变原理:在一切惯性系中,光在真空中沿各个方向传播的速率都等于同一个恒量c,且与光源的运动状态无关.狭义相对论的这两个基本假设虽然非常简单,但却与人们已经习以为常的经典时空观及经典力学体系不相容.确认两个基本假设,就必须彻底摒弃绝对时空观念,修改伽利略坐标变换关系和牛顿力学定律等,使之符合狭义相对论两个基本原理的要求.另一方面应注意到,伽利略变换关系和牛顿力学定律是在长期的实践中证明是正确的,因此它们应该是新的坐标变换式和新的力学定律在一定条件下的近似.即狭义相对论应包含牛顿力学理论在内,牛顿的经典力学理论是狭义相对论在一定条件(低速运动情况)下的近似.尽管狭义相对论的某些结论可能会使初学者感到难于理解,但是一百多年来大量实验事实表明,依据上述两个基本假设建立起来的狭义相对论,确实比经典理论更真实、更全面、更深刻地反映了客观世界的规律性.二、洛伦兹变换为简单起见,如图14.1所示,设惯性系S'(O' x'y' z' )以速度υ相对于惯性系S (O xy z )沿x (x') 轴正向作匀速直线运动,x'轴与 x 轴重合,y' 和 z' 轴分别与 y 和 z 轴平行,S 系原点O 与S '系原点O '重合时两惯性坐标系在原点处的时钟都指示零点.设P 为观察的某一事件,在S 系观察者看来,它是在t 时刻发生在(x,y, z )处的,而在S'系观察者看来,它却在t '时刻发生在(x',y', z')处.下面我们就来推导这同一事件在这两惯性系之间的时空坐标变换关系.在y (y')方向和z(z')方向上,S 系和S '系没有相对运动,则有:y' =y ,z'=z,下面仅考察(x 、t)和(x'、t')之间的变换.由于时间和空间的均匀性,变换应是线性的,在考虑 t=t'=0 时两个坐标系的原点重合,则x 和(x' +υt' )只能相)'(x x )',','(),,(z y x z y x P y 'y z 'z 'o o 图14.1 洛伦兹坐标变换差一个常数因子,即)''(t x x υ+γ= (14.1)由相对性原理知,所有惯性系都是等价的,对S'系来说,S 系是以速度υ沿x' 的负方向运动,因此,x' 和(x -υt)也只能相差一个常数因子,且应该是相同的常数,即有)('t x x υ-γ= (14.2)为确定常数γ,考虑在两惯性系原点重合时(t=t'=0),在共同的原点处有一点光源发出一光脉冲,在S 系和S'系都观察到光脉冲以速率c 向各个方向传播.所以有'',ct x ct x == (14.3)将式(14.3)代入式(14.1)和式(14.2)并消去 t 和 t' 后得2211c /υ-=γ (14.5)将上式中的γ代入式(14.2)得221c tx x /'υ-υ-= (14.6)另由式(14.1)和(14.2)求出t' 并代入γ的值得2222111cc x t t //)('υ-υ-=γυγ-+γ= 于是得到如下的坐标变换关系⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧υ-υ-===υ-υ-=2222211c cx t t zz y y c t x x //'''/' 逆变换−−−−−→−υ-→υ↔↔,','t t x x ϖ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧υ-υ+===υ-υ+=2222211c c x t t z z y y c t x x //''''/'' (14.7) 这种新的坐标变换关系称为洛伦兹(H.A.Lorentz,1853—1928)变换.显然,讨论:1)从洛伦兹变换中可以看出,不仅x' 是 x 、t 的函数,而且 t' 也是x 、t 的函数,并且还都与两个惯性系之间的相对运动速度有关,这样洛伦兹变换就集中的反映了相对论关于时间、空间和物体运动三者紧密联系的新观念.这是与牛顿理论的时间、空间与物体运动无关的绝对时空观截然不同的.2)在c <<υ的情况下,洛伦兹变换就过渡到伽利略变换.3)洛伦兹变换中,x'和t'都必须是实数,所以速率υ必须满足c ≤υ.于是我们就得到了一个十分重要的结论:一切物体的运动速度都不能超过真空中的光速c ,或者说真空中的光速c 是物体运动的极限速度.4)时钟和尺子。

大学物理A1 课件 第4章 狭义相对论

大学物理A1 课件   第4章 狭义相对论

x = ax + bt + e t = ct + dx + f
v
o
P x , y , z , t
x x
S系看 x =0点,
设 t = t =0 时,在o=o点 发出一光信号, 在两个参考 代入以上方程组可得 系中测得的光到达某时空 x = a(x vt)(1)点的事件为p和p '
(2) 长度收缩是“测量”结果,不是“视觉”效 应。
例4-2. 静系中子的平均寿命为2.210-6s。 据报导,在一组高能物理实验中,当它 的速度为u=0.9966c时通过的平均距离为 8km。试说明这一现象:(1) 用经典力学 计算与上述结果是否一致;(2) 用时间膨 胀说明;(3) 用尺缩效应说明。

1 v2 c 2
l l0 1 v c
2
2
原长:在相对于观察者静止 l 的参考系中测得的物体长度。 0
长度收缩:运动物体的长度小于原长, l

l0
v c l l0
注意:长度收缩只发生在运动的方向上。
结论:
(1) 相对于观察者运动物体沿运动方向长度缩短了— — 长度收缩 (动尺缩短)
事件 1 A M 发生
B
k
事件 2 发生
K’系:1、2 两事件同时发生
K 系1事件先于2 事件发生
结论:“同时性”具有相对性 ——光速不变原理的直接结果
4.2.2 时间延缓
火车系:
S 系
理想实验:爱因斯坦火车 M y
d
o
A'
, t1 ) I(x1
x1
x
, t2 ) II(x1

0
1 2

大学物理第四章狭义相对论基础描述PPT课件

大学物理第四章狭义相对论基础描述PPT课件
20
②当 u时c,
略变换:
x x ut
y y
z z
t t
1
u c
2 2
洛 1仑兹变换可以简化为伽利
x x ut y y z z t t
即伽利略变换是洛仑兹变换在低速时的近似。
可见洛仑兹变换有更为普遍的意义。
性系都是等价的。
--伽利略相对性原理
2.力学规律在所有惯性系中相同数学表达形式。
3.时间和空间都是绝对的,无关联的。
4
二、伽利略变换 在参考系中发生的一个物理事件要用四个坐标
(x、y、z、t)来描述。
设S系和S'系都是惯性参照系,且:
S'系相对于S系沿x轴以速度u 运动,
开始时t=t' =0坐标原点O和O'重合。
二、爱因斯坦假设 1.1905年爱因斯坦在他的论文中,大胆地提出 两条假设,这就是狭义相对论的基本原理。 2.两条基本假设: (1)相对性原理
在所有惯性系里,一切物理定律都相同。 即:具有相同的数学表达式。
所有惯性系都是等价的。
这是牛顿相对性原理的推广。即在所有惯性系里 ,不但力学定律成立,而且电磁定律、光的定律 、原子物理定律和其它物理定律都同样成立。 13
揭示了时间、空间与引力的关系。
相对论严格地考察了时间、空间、物质和运动 这些物理学的基本概念,给出了科学而系统的时 空观和物质观,从而使物理学在逻辑上成为完美 的科学体系。
3
4-1 力学相对性原理 伽利略变换
一、 力学相对性原理
1.表述:描述力学现象的规律不随观察者所选的
惯性系而改变,或者说,研究力学规律时一切惯
x
1 2
1 2
18
①两坐标间的变换关系:

《大学物理》第十三章 狭义相对论

《大学物理》第十三章 狭义相对论

S
v
往返时间:t0
2l0 c
O x1
l0
x2 x
入射路程:
dv
S
d l vt1
S
l
vt1 x
d ct1
解得
O x1
x2 x
l t1 c v
同理可得光脉冲从反射镜返回到光源的时间:
t2
c
l
v
全程所用时间: t t1 t2

t l l cv cv
2l c 1 v2
c2
因为 t t0 1 v2 c2
“绝对空间就其本质而言,是与任何外 界事物无关、而且是永远相同和不动 的。”——绝对时空观
显然,绝对时空观符合人们日常的经验和习惯。
13-1-3 迈克耳孙-莫雷实验
以太风
M1 l2
G
地球相对于以太速度:v
光在以太速度:c
M2
S
l1
实验原理图
T
光路(1) • 光顺着以太方向传播
cv
S
vc
M1 l2
• 1895-1896
瑞士阿劳中学一年
1900-1902
艰辛求职,四面碰壁
• 1902-1909
伯尔尼发明专利局工作

1905 提出狭义相对论
• 1909-1914
进入大学工作(苏黎士,布拉格等地)
• 1914-1933
柏林大学教授,德国院士

1915 提出广义相对论
• 研究员1933-1955
美国普林斯顿大学高级研究所
• 1955年4月18日 逝世
6
• 希尔伯特: • 没有比专利局对爱因斯坦更适合的工作
单位了
• 空闲、宽容

大学物理第十五章 狭义相对论

大学物理第十五章 狭义相对论

事件 2 (x2 , y2 , z2 ,t2 ) (x'2 , y'2 , z'2 ,t'2 )
同时 不同地
t' t'2 t'1 0 x' x'2 x'1 0
t

t'
v c2
x'

1 2
v c2
x'
0
1 2
30
结论 :沿两个惯性系运动方向,不同地点发生 的两个事件,在其中一个惯性系中是同时的, 在另 一惯性系中观察则不同时,所以同时具有相对意义; 只有在同一地点, 同一时刻发生的两个事件,在其 他惯性系中观察也是同时的 .
正如1900年英国物理学家开尔文在瞻望20世纪物理学的 发展的文章中说到:
“在已经基本建成的科学大厦中, 后辈的物理学家只要做一些零碎的修 补工作就行了。”
2
然而开尔文又说道:“但是,在物理学晴朗天空 的远处,还有两朵令人不安的乌云,----”
热辐射实验
迈克尔逊莫雷实验
后来的事实证明,正是这两朵乌云发展为一埸革命 的风暴,乌云落地化为一埸春雨,浇灌着两朵鲜花。
v y
vz

v z
11
力学相对性原理
1、加速度对伽里略变换不变
因两参考系
彼此作匀速 又
直线运动
t t
ax

d2x dt 2

d 2x dt2

ax

a

a
y

a/ y
a

az

a/zBiblioteka 2、牛顿定律对伽里略变换不变---力学相对性原理

大学物理狭义相对论教案

大学物理狭义相对论教案

课时安排:2课时教学目标:1. 理解狭义相对论的基本原理,包括相对性原理和光速不变原理。

2. 掌握洛伦兹变换的基本公式及其应用。

3. 了解狭义相对论的时空观,包括时间膨胀和长度收缩现象。

4. 通过实例分析,培养学生的逻辑思维能力和应用能力。

教学重点:1. 相对性原理和光速不变原理的理解。

2. 洛伦兹变换的基本公式及其应用。

3. 时间膨胀和长度收缩现象的理解。

教学难点:1. 洛伦兹变换公式的推导和应用。

2. 时间膨胀和长度收缩现象的物理意义。

教学过程:第一课时一、导入1. 回顾伽利略变换和经典力学的时空观。

2. 引出狭义相对论的研究背景和意义。

二、教学内容1. 相对性原理和光速不变原理- 介绍相对性原理和光速不变原理的基本内容。

- 通过实验验证,说明光速在所有惯性系中具有相同的量值。

- 讨论相对性原理和光速不变原理的物理意义。

2. 洛伦兹变换- 介绍洛伦兹变换的基本公式。

- 推导洛伦兹变换公式的推导过程。

- 分析洛伦兹变换在时空变换中的应用。

三、课堂练习1. 给定两个惯性参考系,求出洛伦兹变换关系。

2. 分析一个物体在两个惯性参考系中的时间膨胀和长度收缩现象。

第二课时一、复习1. 回顾上一节课的主要内容,包括相对性原理、光速不变原理和洛伦兹变换。

2. 分析时间膨胀和长度收缩现象的物理意义。

二、教学内容1. 时间膨胀和长度收缩现象- 介绍时间膨胀和长度收缩现象的基本内容。

- 通过实例分析,说明时间膨胀和长度收缩现象的产生原因。

- 讨论时间膨胀和长度收缩现象在物理中的应用。

2. 狭义相对论的动力学- 介绍狭义相对论中的质点动力学。

- 分析狭义相对论中的动量和能量守恒定律。

三、课堂练习1. 给定一个物体的速度和参考系,求出该物体在狭义相对论中的动量和能量。

2. 分析一个物体在狭义相对论中的运动轨迹。

教学评价:1. 课后作业完成情况。

2. 课堂练习的正确率和解题思路。

3. 学生对狭义相对论的理解程度和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
都成立,推出了物体的质量 m 与物体运动速度的大小 v 有关
m m0 1 v2 c2
m0 物体的 静止质量 10
8
m 物体相对于观察者以 6
速率 v 运动时的质量,称 4
为 运动质量 (动质量)
2 1
0 0.2 0.4 0.6 0.8 1.0
关系说明
m m0 1 v2 c2
m m0
10
E0 m0c2
E mc2
E mc2 m0c2 Ek
E0 m0c2
关系式说明
E mc2
E mc2 m0c2 Ek
E0 m0c2
ΔE Δmc2
ΔE m0ic2 m0c02
ΔE 0
能量动量关系
E mc2 m0c2 1 v2 c2
当 v1 0.8c 时,动量
动量 P mv1
m0v1 1 v12 c2
9.11031 0.8 3.0108 1 0.82
3.61022kg m s1
动能 Ek1 mc2 m0c2
m0c2 1 v12
c2
m0c2
5.51014 J 0.34MeV
d

mv


vvdmv
0
v 0 vd
m0v

1 v2 c2
用分部积分法,可得
v0 0 m0
a
r0
m dr F v
b ds
s
F
r
物体的动能等于 物体从静止开始到
Ek
m0v2
vv

1 v2 c2 0 0
m0v dv 1 v2 c2
以速度 运动时合
相对论
授课人:
物理科学与技术学院
牛顿力学的困难
根据牛顿运动定律 F ma
经典理学认为,物体的质量 m 是恒定的,与运动速度无关。
物体在恒力 F 作用下,其加速度 a F m 亦恒定。 再由 v v at 可知,只要物体被加速的时间足够长,
物体的运动速度可以超过光速。
质速关系
在相对论中,为使动量守恒定律在洛伦兹变换下对一切惯性系
m0
dv dt

m0a
在相对论中,物体的质量随速度而变,不是常数
F dP m dv v dm dt dt dt
v c dv 0
dt
相对论动能
b
b
b
b
动能 aEdkA
F dr
a
F cos dr
a

a F ds

b
a
d dt

mv

ds

b
a
ds dt
F

vvdmv
0
v 0 vd
m0v

1 v2 c2
m0 a
r0
r
物体的动能等于
用分部积分法,可得
物体从静止开始到
Ek
m0v2
vv

1 v2 c2 0 0
m0v dv 1 v2 c2
以速度 运动时合
O 外力所做的功。

m0v2 1 v2 c2
v
m0c2 1 v2 c2 0
m0c2 1 v2
c2
m0c2
mc2
m0c2
相对论的动能公式 Ek mc2 m0c2
动能公式
相对论的 动能 Ek mc2 m0c2
m0c2 1 v2
c2
m0c2
当 v c 时,因
1 1 v2
c2

1

1 2

v c
2

1 2
3 4
由动量守恒可知碰撞后复合粒子处于静止状态
由能量守恒可得:
m0c2 1 v2
c2
2

m0c2
m0
2m0 1 v2
c2
2m0
碰撞过程将两粒子在碰撞前的动能转换成粒子的静止能量
若 v c ,则 1 v2 c2 为虚数, m 没有物理意义, 这再次表明:c 为一切物体的极限速度。
力学基本方程
P mv m0v 1 v2 c2
F

dP dt

d dt

m0v 1 v2
c2

当 v c 时,m m0 还原为牛顿第二定律
F

dP dt

m0c2 1 v12
c2
m0c2
0.34MeV
m0c2 1 v22
c2
m0c2
0.66MeV
由质点的动能定理
A Ek2 Ek1
m0c2 1 v22 c2
m0c2 1 v12 c2
0.32MeV
质能关系式
Ek mc2 m0c2
mc2 m0c2
8 6 4
2 1
0 0.2 0.4 0.6 0.8 1.0
物体的动质量随速度的增大而增大。但是只有当 v
接近于 c 时, m 与 m0 才有明显的差别。 当 v c 时,只要 m0 0,必有 m ,a 0 光子的速率为 c ,所以光子的静止质量 m0 0 ; 当 v c 时,m m0
消去式中的 v 时,因
P mv m0v 1 v2 c2
E E0 Ek
E2 P2c2 m02c4 P2c2 E02
E
Pc
E0 m0c2
v m0
v m0
静止质量相同的两粒子
以速度 v 相向运动,发
生完全非弹性碰撞。
碰撞后复合粒子的静止质量
碰撞过程动量守恒、能量守恒
经典动能
Ek1

1 2
m0v12

2.6 1014
J

0.16MeV

16 电子的静止质量 m0 9.11031kg,速率 0.8c
电子的动量和动能; 若将其速率由 0.8c 加速到 0.9c ,需对其作多少功?
当 v1 0.8c 时 Ek1 当 v2 0.9c 时 Ek2
O 外力所做的功。
回忆高数分部积分法则
udv uv vdu
uv

里 v
m0v
1 v2 c2
相对论动能
动能
Ek
r
F dr
r0
b
F cos dr
a
b
a F ds
m dr F v


b
a
d dt

mv

ds

b
a
dห้องสมุดไป่ตู้ dt
d

mv

b ds
v0 0 s

v c
4

1

1 2

v c
2
Ek
m0c2 1 v2
c2
m0c2
1

1 v 2 2 c
1 m0c2


1 2
m0v2

16 电子的静止质量 m0 9.11031kg,速率 0.8c
电子的动量和动能; 若将其速率由 0.8c 加速到 0.9c ,需对其作多少功?
相关文档
最新文档