九年级上册数学概率初步单元重点练习试卷附答案学生版
数学九年级上册《概率初步》单元测试题附答案
100
150
200
500
800
1 000
摸到白球 次数m
28
34
48
130
197
251
摸到白球的频率
0.28
0.23
0.24
0.26
0.246
0.251
(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.01);
(2)试估算口袋中白种颜色的球有多少只?
(3)请根据估算的结果思考从口袋中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?画出树状图(或列表)表示所有可能的结果,并计算概率.
【答案】A
【解析】
试题解析:红红和娜娜玩”石头、剪刀、布”游戏,所有可能出现的结果列表如下:
红红
娜娜
石头
剪刀
布
石头
(石头,石头)
(石头,剪刀)
(石头,布)
剪刀
(剪刀,石头)
(剪刀,剪刀)
(剪刀,布)
布
(布,石头)
(布,剪刀)
(布,布)
由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
16.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件”两次操作过程中,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.
3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号,7号题,第3位选手抽中8号题的概率是( )
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。
数学九年级上册《概率初步》单元测试题(附答案)
二、填空题(每题3分,共24分)
11.从分别标有1,2,3,…,50的50张卡片中抽出2的倍数的卡片的可能性________抽出4的倍数的卡片的可能性(填”大于”“小于”或”等于”).
12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).
(5,4)
(5,5)
(5,6)
6
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
6.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是( )
A. B. C. D.
【答案】C
20.如图所示的转盘,分成三个相同的扇形,指针位置固定转动转到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).
(1)求事件”转动一次,得到的数恰好是0”发生的概率;
(2)写出此情景下一个不可能发生的事件.
(3)用树状图或列表法,求事件”转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.
【详解】设需要在这个口袋中再放入x个绿球,得: ,
解得:x=2.
所以需要在这个口袋中再放入2个绿球.故选C.
【点睛】本题考查了概率的知识点,解题的关键是熟练掌握求概率的公式:概率=所求情况数与总情况是之比.
9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
15.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.
人教版数学九年级上学期《概率初步》单元检测附答案
故选A.
[点睛]本题考查用列表法或画树状图求概率,解此题的关键在于熟练掌握其知识点.
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
[答案]B
[解析]
分析:
详解:根据题意可得共有6种情况:①k=-1,m=1;②k=1,m=-1;③k=-1,m=2;④k=2,m=-1;⑤k=1,m=2;⑥k=2,m=1;符合题意的有①和③,则P(不经过第二象限)= ,故选B.
A. B. C. D.
[答案]D
[解析]
试题分析:好人牌有六张,共有9张牌,所以抽到好人牌的概率是 ,故选D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
A.7B.6C.5D.4
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
4.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取1张,那么小明抽到好人牌的概率是( )
A. B. C. D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
6.如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为( )
九年级数学上册第25章《概率初步》综合复习练习题(含答案)
九年级数学上册第25章《概率初步》综合复习练习题(含答案)一、单选题1.不透明的袋子中装有10个黑球和若干个白球,这些球除颜色外无其他差别.从袋子中随机摸出一球记下其颜色,再把它放回袋子中摇匀,重复上述过程,共试验400次,其中有300次摸到白球,由此估计袋子中的白球大约有()A.6个B.10个C.15个D.30个2.从甲、乙、丙三名同学中随机抽取两名同学去参加义务劳动,则甲与乙恰好被选中的概率是()A.16B.14C.13D.123.某人在做抛掷硬币试验中,抛掷n次,正面朝上有m次,若正面朝上的频率是Pmn =,则下列说法正确的是()A.P一定等于0.5 B.多投一次,P更接近0.5C.P一定不等于0.5 D.投掷次数逐渐增加,P稳定在0.5附近4.分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A.B.C.D.5.如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是()A.38B.12C.58D.16.甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5 B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5 D.游戏公平7.如图,在56⨯的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A .12π B .24πC .1060πD .560π 8.如图是用七巧板拼成的正方形桌面,一个小球在桌面上自由地滚动,它最终停在黑色区域的概率是( )A .14B .18C .316D .239.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A .14B .13C .12D .3410.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B .从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率11.某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=nm,下列说法中正确的是()A.P一定等于12B.抛掷次数逐渐增加,P稳定在12附近C.多抛掷一次,P更接近12D.硬币正面朝上的概率是n m12.如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是()A.1号B.2号C.3号D.4号二、填空题1321-,π,0,3这五个数中随机抽取一个数,恰好是无理数的概率是__.14.乐乐把8个红球,9个白球,a个黑球装在一个不透明布袋中,这些球每个球除颜色外都相同,从中任取一球,取得红球的概率是0.4,则a的值是______.15.不透明的袋子中有两个小球,上面分别写着数字“1”、“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是______.16.学校食堂晚餐有四荤三素,荤菜有红烧肉、酸菜鱼、姜爆鸭和辣子鸡,素菜有干煸四季豆、青椒土豆丝和香干炒蒜苔,小南让食堂阿姨任打一道荤菜一道素菜,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为__.17.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,摸到红球的频率是_____,则估计盒子中大约有红球_____个.三、解决问题18.如图是小丽设计可自由的均匀转盘,将其等分为12个扇形,每个扇形有1个有理数,转得下列各数的概率是多少?(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,转得负整数小丽获胜;若转得的数绝对值大于等于8妈妈获胜,这个游戏公平吗?请说明理由.19.某校计划在下个月第三周的星期一至星期四开展社团活动.(1)若甲同学随机选择其中的一天参加活动,则甲同学选择在星期三的概率为______;(2)若乙同学随机选择其中的两天参加活动,请用画树状图(或列表)的方法求其中一天是星期二的概率.20.某校开展以“奋斗百年路•启航新征程”为主题的活动来庆祝建党百年.活动分为两个阶段:第一阶段是宣讲红色故事,有以党建党史、文化传承、人物传记为素材的3个宣讲项目(分别用A、B、C表示);第二阶段是主题文艺创作,有文学创作、美术创作、舞蹈创作、音乐创作4个项目(分别用D、E、F、G表示).要求参加人员在每个阶段各随机抽取一个项目完成.若小明参加该活动,请用画树状图或列表的方法列出小明参加项目的所有可能的结果,并求小明恰好抽中项目C和E的概率.21.琳琳有4盒外包装完全相同的糖果,其中有2盒巧克力味的,1盒牛奶味的,1盒水果味的,她准备和好朋友分享糖果.(1)若琳琳随机打开1盒糖果,恰巧是牛奶味的概率是______;(2)若琳琳从这4盒中随机挑选两盒打开,请用列表或画树状图法打开的两盒都是巧克力味的概率.22.建国中学有7位学生的生日是10月1日,其中男生分别记为1A,2A,3A,4A,女生分别记为1B,2B,3B.学校准备召开国庆联欢会,计划从这7位学生中抽取学生参与联欢会的访谈活动.(1)若任意抽取1位学生,且抽取的学生为女生的概率是;(2)若先从男生中任意抽取1位,再从女生中任意抽取1位,求抽得的2位学生中至少有1位是1A或1B的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 500 1000 1500 2000 3000 4000 发芽的粒数m 4719461425 1898 28533812 发芽频率mn0.942 0.946x0.949y0.953(1)求表中x ,y 的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.24.概率与统计在我们日常生活中应用非常广泛,请同学们直接填出下列事件中所要求的结果:(1)我们平时娱乐的一副标准扑克去掉大小王后剩下的四种花色(红桃、方块、梅花、黑桃)共有52张,如果从中任抽一张得到红桃的概率为______;(2)盒子里有红黑两种颜色的5个相同的球,如果随机抽取1个球记下颜色,然后放回,再重复这个试验,通过大量重复试验后发现,抽到红球的频率稳定在0.8左右,则盒中红球有______个;(3)形如222a ab b ±+的式子称为完全平方式.若有一多项式为29a ka ++,其中k 的值可以从4张分别写有-3,-6,6,9的卡片中随机抽取,那么正好让这个多项式为完全平方式的概率为______;(4)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是______.25.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共60个.小亮做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n的值越来越大时,摸到白球的频率将会接近______;(精确到0.1)(2)假如你摸球一次,摸到白球的概率P(摸到白球)=______,摸到黑球的概率P(摸到黑球)=______;(3)请估算盒子里黑、白两种颜色的球各有多少个?26.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;③比较两人的得分,谁的得分多谁就获胜.在一次游戏中,同桌连续投掷两次,掷出的点数分别是2、6,同桌决定不再投掷;小董也是连续投掷两次,但是掷出的点数分别了3、4,小董决定再投掷一次.请问:(1)最终小董的得分为0分的概率多大?并说明原因.(2)小董获胜的概率多大?并说明原因.(3)做这个游戏时应该注意什么才能使游戏公平?参考答案1.D2.C3.D4.A5.A6.C7.A8.C9.A10.C11.B12.C13.2,π是无理数,P(恰好是无理数)25 =.故答案为:25.14.解:依题意有:889a++=0.4,解得a=3,经检验,a=3是原方程的解.故答案为:3.15.解:列表如下:12 123 234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为21 42 =.故答案为:12.16.红烧肉、酸菜鱼、姜爆鸭、辣子鸡分别用A、B、C、D表示,干煸四季豆、青椒土豆丝、香干炒蒜苔用a、b、c表示,根据题意画树状图如下:共有12种等可能的情况数,其中她选到红烧肉和青椒土豆丝的有1种,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为12.故答案为:112.17.解:摸到黄球的频率是0.3,摸到红球的频率是0.7,设有红球x个,根据题意得:60.36x=+,解得:x=14,经检验,x=14是原方程的解.故答案是:0.7,14.18.(1)解:由题意可知,转盘中有12个数,其中非负数为:0,15,8,11,6,5,23,这7个,所以转得非负数的概率为712.(2)解∶由题意可知,转盘中有12个数,其中整数为:﹣1,0,15,﹣17,8,11,6,﹣10,5,这9个,所以转得整数的概率为93 124=.(3)解:由题意可知,转盘中有12个数,其中负整数为:﹣1,﹣17,﹣10,这3个,转得负整数的概率为31124=,故小丽获胜的概率为:14;这12个数中转得的数绝对值大于等于8为:15,﹣17,8,11,﹣10,这5个,转得绝对值大于等于8的数的概率为512,故妈妈获胜的概率为:512;因为15 412≠,故这个游戏不公平.19.(1)总的可选日期为4个,则甲随机选择其中某一天的概率为1÷4=14,故答案为:14;(2)用A、B、C、D分别表示星期一、星期二、星期三、星期四,根据题意列表如下:总的可能情况数为12种,含星期二(B)的情况有6种,则乙同学选的两天中含星期二的概率为:6÷12=12,即所求概率为12.20.解:列表如下:D E F GA AD AE AF AGB BD BE BF BGC CD CE CF CG由表可以看出,共有12种等可能结果,其中小明恰好抽中项目C和E的结果只有1种,∴小明恰好抽中项目C和E的概率为112.21.(1)()1 =1?4=4P牛奶味;故答案为:14;(2)用Q1 、Q2表示巧克力味的,N表示牛奶味的,S表示水果味的,列表如下:共12种等可能结果,其中两盒都是巧克力味的结果有2种,随机挑选两盒都是巧克力味的概率为:()21 == 126P两盒巧克力味.22.(1)解:任意抽取1位学生,且抽取的学生为女生的概率是37,故答案为:37.(2)解:列出表格如下:一共有12种情况,其中至少有1位是1A或1B的有6种,∴抽得的2位学生中至少有1位是1A 或1B 的概率为61122=. 23.(1)解:14250.9501500x ==;28530.9513000y ==; (2)解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率;∴这种种子在此条件下发芽的概率约为0.95.(3)解:若该学校劳动基地需要这种植物幼苗7600棵, 需要准备760080000.95=(粒)种子进行发芽培育. 24.(1)解:∵一幅扑克牌中有13张红桃,去掉大小王后剩下52张, ∴P (抽中红桃)=131524=. 故答案为:14.(2)解:∵抽到红球的频率稳定在0.8左右, ∴抽到红球的概率为0.8, ∴红球个数为:5×0.8=4(个). 故答案为:4. (3)解:∵当k =±6时,29a ka ++是完全平方式, ∴P (完全平方式)=24=12.故答案为:12. (4)解:∵图中有9个小正方形,阴影部分有5个,∴随意在图中取点,这个点取在阴影部分的概率P (阴影)=59.故答案为:59.25.(1)解:当n 的值越来越大时,摸到白球的频率将会接近0.6, 故答案为:0.6;(2)根据频率估计概率可得,摸到白球的概率P (摸到白球)=0.6, 摸到黑球的概率P (摸到黑球)=1-0.6=0.4,故答案为:0.6,0.4;(3)60×0.4=24,60-24=36.∴黑球有24只,白球有36只.26.(1)解:1()由题意可知:小董投掷骰子的点数为4、5、6时,得分为0,∴小董得零分的概率为:P(小董得分为零31 62 ==).(2)解:根据题意得:小董再次投掷骰子,点数为2或3时得分为9或10,小董获胜,∴小董获胜的概率为:P(小董获胜21 63 ==).(3)根据游戏规则,前一个人投掷的骰子点数总和大小会影响后一个人是否再次投掷第二次骰子,∴在游戏过程中应注意轮流投掷骰子,先小董或同桌投掷第一次,如需投掷第二次,再同桌或小董投掷第二次,这样即可保证游戏公平.。
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,必然事件是()A.随机抛掷一颗骰子,朝上的点数是6B.今天考试小明能得满分C.明天气温会升高D.早晨的太阳从东方升起2.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是().A.13B.19C.29D.4273.在抛硬币的游戏中,若抛了10000 次,则出现正面的频率恰好是50%,这是() A.很可能的B.必然的C.不可能的D.不太可能的4.甲、乙、丙、丁四位同学去看电影,还剩下如图所示座位,乙正好坐在甲旁边的概率是()A.25B.35C.12D.345.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.156.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是A.1B.12C.13D.147.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.18.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6B.5C.4D.39.如图,湖边建有A,B,C,D共4座凉亭,从入口处进,先经过凉亭A(已经参观过的凉亭,再次经过时不作停留),则最后一次参观的凉亭为凉亭D的概率为()A.14B.13C.12D.2310.某同学想向班主任发短信拜年,可一时记不清班主任手机号码后三位数的顺序,只记得是1,6,9三个数字,则该同学一次发短信成功的概率是()A.16B.13C.19D.12二、填空题11.下列成语描述的事件:①水中捞月①水涨船高①守株待兔①瓮中捉鳖①拔苗助长,属于必然事件的是(填序号).12.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的概率是.13.小明的爸爸妈妈各有两把钥匙,可以分别打开单元门和家门,小明随机从爸爸和妈妈的包里各拿出一把钥匙,恰好能打开单元门和家门的概率 .14.我市某校举行“喜迎二十大、永远跟党走、奋进新征程”主题教育活动,校团委为了让同学们进一步了解中国科技的发展,请同学们从选出的以下五个内容中任选两个内容进行手抄报的制作:“北斗卫星”“5G时代”“智轨快运系统”“东风快递”“神舟十三号”.其中恰好选择“北斗卫星”“5G时代”的概率是.15.现有如图所示“2022·北京冬梦之约”的四枚邮票,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小萱从中随机抽取一枚不放回,再从中随机抽取一枚,则小萱抽到的两枚邮票恰好是冰墩墩和雪容融的概率是.16.下列事件:①打开电视机,它正在播放广告;①从一只装有红球的口袋中,任意摸出一个球,恰是白球;①两次抛掷正方体骰子,掷得的数字之和小于13;①抛掷硬币1000次,第1000次正面向上,其中为随机事件的是.17.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球,那么袋中的红球有个.是黑球的概率为14三、解答题18.为进一步挖掘全国春茶优质产品,2023年第七届中国昆明(国际)春茶周于4月28日如约开启.云南省111个著名山头和125个村寨春茶都在本次活动中展示,其中就包括著名的班章、冰岛、昔归、易武等著名山头品牌,小芸和小楠参加了本次活动,并打算分别从A:班章,B:冰岛,C:昔归,D:易武四个著名山头品牌茶叶中选择一个了解相关山头品牌茶文化知识.(1)小芸选择“冰岛”著名山头品牌茶叶的概率是______;(2)用列表法或画树状图法中的一种方法,求小芸和小楠恰好选择到同一著名山头品牌茶叶了解相关茶文化知识的概率.19.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是1,那么x的值可以取4吗?请用列表法或画树状图法说3明理由;如果x的值不可以取4,请写出一个符合要求的x的值.20.有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数.甲,乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于16,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?21.有五张形状、大小和质地相同的卡片A、B、C、D、E,正面分别写有一个正多边形(所有正多边形的边长相等),把五张卡片洗匀后正面朝下放在桌面上(1)若从中随机抽取一张(不放回),接着再随机抽取一张.请你用画树形图或列表的方法列举出可能出现的所有结果;(2)从这5张卡片中随机抽取2张,利用列表或画树状图计算:与卡片上图形形状相对应的这两种地板砖能进行平面镶嵌的概率是多少?22.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?①丙抢到金额为1元的红包;①乙抢到金额为4元的红包①甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.①求出甲抢到红包A的概率;①若甲没抢到红包A,则乙能抢到红包A的概率又是多少?参考答案1.D2.B3.D 4.A 5.A 6.D 7.A 8.D 9.C 10.A 11.②④ 12.57 13.1214.110 15.16 16.①④ 17.918.(1)14 (2)1419.(1)0.33 (2)不可以取4,x =6 20.(1)P (甲)=716,(2)不公平 21.31022.(1)事件①,①是不确定事件,事件①是确定事件;(2)①13;①12.。
数学九年级上册《概率初步》单元测试卷(带答案)
(1)朝上的点数有哪些结果?他们发生的可能性一样吗?
(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?
(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?
参考答案
一.选择题(共10小题,满分40分,每小题4分)
1.任意掷一枚骰子,下列情况出现的可能性比较大的是( )
A.面朝上的点数是6B.面朝上的点数是偶数
C.面朝上的点数大于2D.面朝上的点数小于2
【答案】C
【解析】
【分析】
根据题意与概率的计算公式,比较四个选项中包含的情况数目,比较可得答案.
【详解】解:A.面朝上的点数为6点的情况为1种;
13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.
14.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m2.
A. 小亮明天 进球率为10%
B. 小亮明天每射球10次必进球1次
C 小亮明天有可能进球
D. 小亮明天肯定进球
【答案】C
人教版九年级上册数学《概率初步》单元测试卷(含答案)
人教版九年级上册数学《概率初步》单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,是二等品的概率等于()A.112 B.16C.14D.7122.学校从5位骨干教师中(含有甲)抽调3人组成,则甲一定抽调到的概率是()A.35 B.25C.45D.153.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。
市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.13B.23C.16D.194.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16 B.13C.12D.235.下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上6.如下图,大厅中铺了3种地砖(除了颜色外无其他差别),一种宠物在地板上自由地走来走去,它最后停留在哪种地砖上的概率较大?()A、砖 B 、砖 C 砖 D 、砖或砖. 7.下列成语所描述的事件是必然发生的是 ( )A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 8.下列事件是必然事件的是( )A .抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA 球赛 C.射击运动员射击一次,命中十环 D.若a 是实数,则0a 9.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定会中奖D .“抛一枚正方体骰子朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数10.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425 B .525 C .625 D .925二 、填空题(本大题共5小题,每小题3分,共15分)11.为迎接2024年奥运会,小甜同学设计了两种乒乓球,一种印有奥运五环图案,另一种印有奥运福娃图案.若将8个印有奥运五环图案和12个印有奥运福娃图案的乒乓球放入一个空袋中,且每个球的大小相同,搅匀后在口袋中随机摸出一个球,则摸到印有奥运五环图案的球的概率是 .987655432112.在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是.13.从1-,1,2三个数中任取一个,作为一次函数3=+的k值,则所得一次函数y kx中y随x的增大而增大的概率是。
数学九年级上学期《概率初步》单元综合检测卷附答案
小明提出下面的改进方案:由第三个人来转动上面的两个转盘,如果两个转盘都转出了红色,则甲赢,否则乙赢,请你帮小明设计一种替代试验的方法,并写出试验的步骤.
答案与解析
一、选择题(共10小题,每小题3分,共30分)
1.以下说法正确的是()
A.在同一年出生的400人中至少有两人的生日相同
B.一个游戏的中奖率是1%,买100张奖券,一定会中奖
4.一个电子元件接在 之间形成通路的概率是 ,至少需要()个这样的电子元件并联接到 之间,才能保证 间成为通路的概率不低于 .
A. B. C. D.
5.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是( )
A. B. C. D.
6.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()
随机地从箱子里取出 个球,则取出红球的概率是多少?
小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出 个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.
22.甲和乙玩一种游戏:从装有大小相同的 个红球和一个黄球的袋子中,任意摸出 球,如果摸到黄球,甲得 分;如果摸到红球,乙得 分.
九年级上册数学《概率初步》单元综合测试卷(附答案)
九年级上册数学《概率初步》单元测试卷(满分120分,考试用时120分钟)一、选择题(每小题3分,共30分)1.下列事件中,必然事件的个数为()①标准大气压下,水加热到100 ℃沸腾;②某种彩票中奖的概率是1%,买100张该种彩票会中奖;③任意投掷一枚质地均匀的硬币,正面朝上;④367人中至少有两人的生日相同.A . 1B . 2C . 3D . 42.从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是( )A .B .C .D .3.一部纪录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:“在未来20年,A 城市发生地震的机会是三分之二.”对这位专家的陈述下面有四个推断:①×20≈13.3,所以今后的13年至14年间,A 城市会发生一次地震;②大于50%,所以未来20年,A 城市一定发生地震;③在未来20年,A 城市发生地震的可能性大于不发生地震的可能性;④不能确定在未来20年,A 城市是否会发生地震.其中合理的是()A . ①③B . ②③C . ②④D . ③④4. 质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A . 点数都是偶数B . 点数的和为奇数C . 点数的和小于13D . 点数的和小于25.已知:四边形A B C D 的对角线A C ,B D 相交于点O,给出下列4个条件:①A B ∥C D ;②O A =OC ;③A B =C D ;④A D ∥B C .从中任取两个条件,能推出四边形A B C D 是平行四边形的概率是()A .B .C .D .6.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以上步骤,下表为实验的一组统计数据:摸球的次数n 1000 1500 2000 5000 8000 10000摸到白球的次数m 582 960 1161 2954 4842 6010摸到白球的频率0.582 0.64 0.5805 0.5908 0.6053 0.601请估算口袋中白球的个数约为()A . 20B . 25C . 30D . 357.三个果盘分别盛有绿茶、五香、奶油三种口味的瓜子,嘉嘉想吃五香瓜子,琪琪想吃奶油瓜子,她们各自从中随机取一个瓜子,则两人正好都吃到想吃的瓜子的概率是()A .B .C .D .8.(2017湖南省张家界市)某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A .B .C .D .9.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A . ①B . ②C . ①②D . ①③10.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为、小明掷B 立方体朝上的数字为来确定点P(),那么它们各掷一次所确定的点P落在已知抛物线上的概率为()A .B .C .D .二、填空题(每小题3分,共24分)11.“任意画一个四边形,其内角和是360°”是_______(填“随机”“必然”或“不可能”中任一个)事件.12.某企业生产纯平彩电10 000台,其中9 000台优等品,另有600台为一等品,还有200台也属合格品,则任抽一台,抽到合格品(非次品)的概率______,抽到次品的概率是________.13.一个密码保险柜的密码由6个数字组成,每个数字都是0~9这十个数字中的一个,王叔叔忘记了其中最后面的两个数字,那么他一次就能打开保险柜的概率是________.14.一个不透明的布袋里装有2个红球,4个白球和A 个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球是黄球的概率为0.4,则A =________.15.如图是有若干个全等的等边三角形拼成的纸板,若某人向纸板上投掷飞镖,(每次飞镖均落在纸板上),则飞镖落在阴影部分的概率是_____.16.小明和小亮用如图所示两个转盘(每个转盘被分成四个面积相等的扇形)做游戏,转动两个转盘各一次,如果两次数字之和为奇数,则小明胜,否则,小亮胜,这个游戏公平吗?答:_________(填“公平”或“不公平”).17.一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球_____个.18.现有五个小球,每个小球上面分别标着1,2,3,4,5这五个数字中的一个,这些小球除标的数字不同以外,其余的全部相同.把分别标有数字4、5的两个小球放入不透明的口袋 A 中,把分别标有数字1、2、3的三个小球放入不透明的口袋 B 中.现随机从 A 和 B 两个口袋中各取出一个小球,把从 A 口袋中取出的小球上标的数字记作m,从 B 口袋中取出的小球上标的数字记作n,且m﹣n=k,则关于x的一元二次方程2x2﹣4x+k=0有解的概率是________.三、解答题(共66分)19.某电视台的娱乐节目《周末大放送》有这样的翻奖牌游戏:如图所示,将一个正方形均分成9等份,数字的背面写有祝福语或奖金数.游戏规则是:每次翻动正面一个数字,看看反面对应的内容,就可知是得奖还是得到温馨祝福.正面:1 2 34 5 67 8 9反面:祝你开心万事如意奖金1 000元身体健康心想事成奖金500元奖金100元生活愉快谢谢参与请你完成下列问题:(1)翻到奖金1 000元的概率是多少?(2)翻不到奖金的概率是多少?(3)一选手准备在奇数中选择一个数字,他获得奖金的概率是多少?20.某超市开展早市促销活动,为早到的顾客准备一份简易早餐.超市约定:随机发放,早餐一人一份,一份两样,一样一个,超市在某天提供的早餐食品为菜包、面包、鸡蛋、油条四样食品.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是________事件(填“随机”“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.21.如图,三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树状图法求能组成分式的概率是多少?22.课题学习:设计概率模拟试验.在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复试验后,正面朝上的概率约是.”小海、小东、小英分别设计了下列三个模拟试验:小海找来一个啤酒瓶盖(如图1),进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上数字1~8(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述试验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.根据以上材料回答问题:小海、小东、小英三人中,哪一位同学的试验设计比较合理,并简要说出其他两位同学试验的不足之处.23.在学习概率的课堂上,老师提出问题:一口袋装有除颜色外均相同的2个红球1个白球和1个篮球,小刚和小明想通过摸球来决定谁去看电影,同学甲设计了如下的方案:第一次随机从口袋中摸出一球(不放回);第二次再任意摸出一球,两人胜负规则如下:摸到“一红一白”,则小刚看电影;摸到“一白一蓝”,则小明看电影.(1)同学甲的方案公平吗?请用列表或画树状图的方法说明;(2)你若认为这个方案不公平,那么请你改变一下规则,设计一个公平的方案.24.某市长途客运站每天6:30—7:30开往某县的三辆班车票价相同,但车的舒适程度不同.小张和小王因事需在这一时段乘车去该县,但不知道三辆车开来的顺序,两人采用不同的乘车方案:小张无论如何决定乘坐开来的第一辆车,而小王则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,请你思考并回答下列问题:(1)三辆车按出现的先后顺序共有哪几种可能?(2)请列表分析哪种方案乘坐优等车的可能性大?为什么?参考答案一、选择题(每小题3分,共30分)1.下列事件中,必然事件的个数为()①标准大气压下,水加热到100 ℃沸腾;②某种彩票中奖的概率是1%,买100张该种彩票会中奖;③任意投掷一枚质地均匀的硬币,正面朝上;④367人中至少有两人的生日相同.A . 1B . 2C . 3D . 4[答案]B[解析][分析]根据随机事件的定义对各选项进行逐一分析即可.[详解]①在标准大气压下,水加热到100℃会沸腾是必然事件,故本选项正确;②某种彩票中奖的概率是1%,买100张该种彩票会中奖是随机事件,故本选项错误;③任意投掷一枚质地均匀的硬币,正面朝上随机事件,故本选项错误;④367人中至少有两人的生日相同是必然事件,故本选项正确;故选:B .[点睛]本题考查的是随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解答此题的关键.2.从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是( )A .B .C .D .[答案]B[解析]试题解析:∵一副扑克牌共54张,其中红桃13张,∴随机抽出一张牌得到红桃的概率是.故选B .3.一部纪录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:“在未来20年,A 城市发生地震的机会是三分之二.”对这位专家的陈述下面有四个推断:①×20≈13.3,所以今后的13年至14年间,A 城市会发生一次地震;②大于50%,所以未来20年,A 城市一定发生地震;③在未来20年,A 城市发生地震的可能性大于不发生地震的可能性;④不能确定在未来20年,A 城市是否会发生地震.其中合理的是()A . ①③B . ②③C . ②④D . ③④[答案]D[解析][分析]根据概率的意义,可知发生地震的概率是三分之二,说明发生地震的可能性大于不发生地政的可能性,从而可以解答本题.[详解]∵一位专家指出:在未来的20年,A 市发生地震的机会是三分之二,∴未来20年内,A 市发生地震的可能性比没有发生地震的可能性大;不能确定在未来20年,A 城市是否会发生地震,故选:D .[点睛]本题考查概率的意义,解题的关键是明确概率的意义,理论联系实际.4. 质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A . 点数都是偶数B . 点数的和为奇数C . 点数的和小于13D . 点数的和小于2[答案]C[解析]试题分析:画树状图为:共有36种等可能的结果数,其中点数都是偶数的结果数为9,点数的和为奇数的结果数为18,点数和小于13的结果数为36,点数和小于2的结果数为0,所以点数都是偶数的概率==,点数的和为奇数的概率==,点数和小于13的概率=1,点数和小于2的概率=0,所以发生可能性最大的是点数的和小于13.故选C .考点:列表法与树状图法;可能性的大小.5.已知:四边形A B C D 的对角线A C ,B D 相交于点O,给出下列4个条件:①A B ∥C D ;②O A =OC ;③A B =C D ;④A D ∥B C .从中任取两个条件,能推出四边形A B C D 是平行四边形的概率是()A .B .C .D .[答案]C[解析][分析]根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.[详解]有①与②,①与③,①与④,②与③,②与④,③与④六种情况,①与④根据两组对边分别平行的四边形是平行四边形,能推出四边形A B C D 为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形A B C D 为平行四边形;①与②,②与④根据对角线互相平分的四边形是平行四边形,能推出四边形A B C D 为平行四边形;所以能推出四边形A B C D 为平行四边形的有4组,所以能推出四边形A B C D 是平行四边形的概率是=.故选:C .[点睛]此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A 的概率P(A )=.6.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以上步骤,下表为实验的一组统计数据:摸球的次数n 1000 1500 2000 5000 8000 10000摸到白球的次数m 582 960 1161 2954 4842 6010摸到白球的频率0.582 0.64 0.5805 0.5908 0.6053 0.601请估算口袋中白球的个数约为()A . 20B . 25C . 30D . 35[答案]C[解析]频率的平均数为:(0.582+0.64+0.5805+0.5908+0.6053+0.601)÷6≈0.6,50×0.6=30,故选C .7.三个果盘分别盛有绿茶、五香、奶油三种口味的瓜子,嘉嘉想吃五香瓜子,琪琪想吃奶油瓜子,她们各自从中随机取一个瓜子,则两人正好都吃到想吃的瓜子的概率是()A .B .C .D .[答案]D[解析][分析]根据题意画出树状图,得出所有等可能的结果数和两人正好都吃到想吃的瓜子的情况数,再根据概率公式即可得出答案.[详解]根据题意画图如下:因为共有9种等可能的结果数,嘉嘉想吃五香瓜子,琪琪想吃奶油瓜子的有1种情况数,所以两人正好都吃到想吃的瓜子的概率是;故选:D .[点睛]此题考查的是用列表法或树状图法求概率,关键是根据题意画出树状图,得出所有等可能的结果数;用到的知识点为:概率=所求情况数与总情况数之比.8.(2017湖南省张家界市)某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A .B .C .D .[答案]A[解析]试题解析:如图:共有16种结果,小明和小红分在同一个班的结果有4种,故小明和小红分在同一个班的机会= =.故选A .9.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A . ①B . ②C . ①②D . ①③[答案]B[解析]①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误,故选B .[点睛]本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.10.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为、小明掷B 立方体朝上的数字为来确定点P(),那么它们各掷一次所确定的点P落在已知抛物线上的概率为()A .B .C .D .[答案]B[解析]试题分析:易知P(x,y)的点总共有36种情况。
九年级上册数学概率初步单元重点练习试卷附答案学生版
九年级上册数学概率初步单元重点练习试卷附答案一、单选题(共23题;共46分)1.在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是()A.他这个队赢的可能性较大B.若这两个队打10场,他这个队会赢6场C.若这两个队打100场,他这个队会赢60场D.他这个队必赢2.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为().A. B. C. D.3.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A. B. C. D.4.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是()A.至少有两名学生生日相同B.不可能有两名学生生日相同C.可能有两名学生生日相同,但可能性不大D.可能有两名学生生日相同,且可能性很大5.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是()A. B. C. D.6.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.157.小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是().A.两次摸到红色球B.两次摸到白色球C.两次摸到不同颜色的球D.先摸到红色球,后摸到白色球8.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. B. C. D.9.一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其余都相同.从袋中任意找出1个球,是黄球的概率为()A. B. C. D.10.下列说法正确的是().A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生11.“上海地区明天降水概率是15%”,下列说法中,正确的是().A.上海地区明天降水的可能性较小B.上海地区明天将有15%的时间降水C.上海地区明天将有15%的地区降水D.上海地区明天肯定不降水12.下面说法正确的是().A.一个袋子里有100个同样质地的球,小华摸了8次球,每次都只摸到黑球,这说明袋子里面只有黑球B.某事件发生的概率为0.5,也就是说,在两次重复的试验中必有一次发生C.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为D.某校九年级有400名学生,一定有2名学生同一天过生日13.某商场举行投资促销活动,对于“抽到一等奖的概率为 ”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽 次也可能没有抽到一等奖C.抽 次奖必有一次抽到一等奖D.抽了 次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖14.小亮做掷质量均匀硬币的试验,掷了10次,发现有8次正面朝上,2次正面朝下,则当他第11次掷这枚硬币时,()A.一定是正面朝上B.一定是正面朝下C.正面朝上的概率为0.8D.正面朝上的概率为0.515.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.必有5次正面向上C.可能有7次正面向上D.不可能有10次正面向上16.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A. B. C. D.17.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A. B. C. D.18.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大19.下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意20.下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得21.从一批电视机中随机抽取10台进行质检,其中一台是次品,下列说法正确的是()A.次品率小于10%B.次品率大于10%C.次品率接近10%D.次品率等于10%22.甲、乙两人用如图所示的两个转盘(每个转盘分别分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是()A. B. C. D.23.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.二、填空题(共4题;共5分)24.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有________件是次品.25.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为()A. B. C. D.26.从1,2,3,4中任取3个数,作为一个一元二次方程的系数,则构作的一元二次方程有实根的概率是________。
初三数学人教版九年级上册第25章概率初步单元训练题含答案
初三数学人教版九年级上册第25章概率初步单元训练题含答案1. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相反.从中恣意摸出一个球,那么是红球的概率为( C )A.16B.13C.12D.232. 以下说法中,正确的为( C )A .不太能够发作的事就一定不发作B .一件事情要么发作,要么不发作,所以它发作的概率为0.5C .买1张彩票的中奖概率为110000,那么买1张彩票中奖的能够性很小D .抛掷一枚硬币的前9次均出现了正面,那么第10次一定会出现反面3. 以下说法中,正确的选项是( A )A .不能够事情发作的概率为0B .随机事情发作的概率为12C .概率很小的事情不能够发作D .投掷一枚质地平均的硬币100次,正面朝上的次数一定为50次4.从区分标有-3,-2,-1,0,1,2,3的七张没有清楚差异的卡片中,随机抽取一张,所抽卡片上的数的相对值不小于2的概率是( D ) A.17 B.27 C.37 D.475.如图,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他能一次选对路的概率是( B )A.12B.13C.14D .0 6.在一个不透明的口袋里,装有仅颜色不同的黑球、白球假定干个.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不时重复.下表是活动中的一组数据,那么摸到白球的概率约是( C )A.0.4 B .0.5 C .0.6 D .0.77.在一个口袋中有4个完全相反的小球,把它们区分标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,那么两次摸出的小球的标号之和等于5的概率是( C )A.12B.13C.14D.158.如图,甲为四等分数字转盘,乙为三等分数字转盘,同时自在转动两个转盘,当转盘中止转动后(假定指针指在边界处那么重转),两个转盘指针指向数字之和不超越4的概率是( D )A.56B.13C.23D.129.小红、小明在玩〝石头、剪刀、布〞游戏,小红给自己一个规则:不时不出〝石头〞.小红、小明获胜的概率区分是P 1,P 2,那么以下结论正确的选项是( A )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .P 1≤P 210.同时抛掷A ,B 两个平均的小立方体(每个面上区分标有数字1,2,3,4,5,6),朝上一面的数字区分为x ,y 并以此确定点P(x ,y),点P 落在抛物线y =-x 2+3x 上的概率为( A )A.118B.112C.19D.1611.有5张看上去无差异的卡片,下面区分写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( A ) A.310 B.320 C.720 D.71012.某同窗期中考试数学考了120分,那么他期末考试数学考120分是__随机__事情.(填〝肯定〞〝不能够〞或〝随机〞)13.在一个不透明的袋子中装有除颜色外其他均相反的7个小球,其中红球2个,黑球5个,假定再放入m 个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于45,那么m 的值为__3__. 14.从〝线段、等边三角形、圆、矩形、正六边形〞这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是__45__. 15.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相反.小明从这个袋子中随机摸出一球,放回.经过屡次摸球实验后发现,摸到黄色球的频率动摇在15%左近,那么袋中黄色球能够有__6__个.16.不透明的布袋里有2个白色小汽车和2个白色小汽车(小汽车除颜色不同外,其他都相反),从布袋中随机摸出2个小汽车,那么摸出的2个小汽车颜色相反的概率是__13__. 17.学校图书馆有甲、乙两名同窗担任志愿者,他俩各自在周六、周日两天中恣意选择一天参与图书馆的公益活动,那么该图书馆恰恰周六、周日都有志愿者参与公益活动的概率是__12__. 18.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,可以使灯泡L 1,L 2同时发光的概率是__15__.19.有反面完全相反的9张卡片,正面区分写有1~9这九个数字,将它们洗匀后反面朝上放置,恣意抽出一张,记卡片上的数字为a ,那么数字a 使不等式组⎩⎪⎨⎪⎧x +12≥3,x<a有解的概率为__49__. 20.掷一个正方体骰子,观察向上一面的点数,求以下事情的概率:(1)点数为6;(2)点数小于3.解:(1)P(点数为6)=16(2)P(点数小于3)=26=1321.如图,某展览馆展厅东面有两个入口A ,B ,南面、西面、北面各有一个出口,小华任选一个入口进入展览大厅,观赏完毕前任选一个出口分开.(1)她从进入到分开共有多少种能够的结果?(要求画出树状图)(2)她从入口A 进入展厅并从北出口或西出口分开的概率是多少? 解:(1)画树状图(略),一切能够的结果有6种(2)她从入口A 进入展厅并从北出口或西出口分开的概率为P =26=1322.甲、乙两个不透明的口袋,甲口袋中装有3个区分标有数字1,2,3的小球,乙口袋中装有2个区分标有数字4,5的小球,它们的外形、大小完全相反,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示出两次所得数字能够出现的一切结果;(2)求出两个数字之和能被3整除的概率.解:(1)略(2)∵共6种等能够状况,两个数字之和能被3整除的状况有2种,∴P(两个数字之和能被3整除)=26=1323.甲、乙两人停止摸牌游戏.现有三张外形大小完全相反的牌,正面区分标有数字2,3,5.将三张牌反面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记载数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相反数字的概率;(2)假定两人抽取的数字和为2的倍数,那么甲获胜;假定抽取的数字和为5的倍数,那么乙获胜.这个游戏公允吗?请用概率的知识加以解释. 解:(1)列表(略),共有9种结果,每种结果出现的能够性相反,其中两人抽取相反数字的结果有3种,所以两人抽取相反数字的概率为13(2)不公允,从(1)中可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公允。
(完整版)九年级数学上概率初步测试题(含答案)
九年级数学上 概率初步测试题(说明:全卷考试时间100分钟,满分120分)一、选择题(每小题3分,共30分) 1. 下列事件中是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖 C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中。
从A 地到B 地有2条水路、2。
条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( ) A .20种 B 。
8种 C. 5种 D.13种 3.一只小狗在如图1的方砖上走来走去,最终停在阴 影方砖上的概率是( )A .154 B.31 C 。
51 D 。
152 4.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域.5。
某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。
若某人购物满100元,那么他中一等奖的概率是 ( )A 。
1001 B. 10001 C. 100001 D. 100001116、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是( ) A.61 B.31 C.21 D.32 7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸"就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A .15B .29C .14D .5188。
九年级上册数学《概率初步》单元检测卷(附答案)
[解析]
试题解析:根据题意,知最后冠军一定是中国选手.故为必然事件的是冠军属于中国选手.
故选A.
考点:随机事件.
2.随机闭合开关 中的两个,能让灯泡发光的概率是()
A. B. C. D.
[答案]B
[解析]
[分析]
分析题意,回想一下利用列表法求概率的一般步骤;首先根据题意列出表格,再由表格求得所有可能的结果与小灯泡发光的情况,即可解答.
A.1B. C. D.
[答案]C
[解析]
[分析]
先根据轴对称图形和中心对称图形的定义得到圆和菱形既是轴对称图形又是中心对称图形,然后根据概率公式求解.
[详解]解:投掷一次,向下一面有四种可能,其中圆、菱形既是轴对称图形又是中心对称图形,有两种可能,故概率为 ;
故选C.
[点睛]本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了轴对称图形和中心对称图形.
九年级上册数学《概率初步》单元测试卷
(满分120分,考试用时120分钟)
一、选择题(每小题3分,共30分)
1.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()
A.冠军属于中国选手B.冠军属于外国选手
C 冠军属于中国选手甲D.冠军属于中国选手乙
2.随机闭合开关 中的两个,能让灯泡发光的概率是()
[详解]根据题意列出所有可能的情况,如下:
共有6种情况,必须闭合开关 灯炮才发光,即能让灯泡发光的概率是 .
故选B.
[点睛]此题考查列表法与树状图法,解题关键在于列出所有结果的表格.
3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()
九年级上册数学《概率初步》单元综合检测题附答案
九年级上册数学《概率初步》单元测试卷(满分120分,考试用时120分钟)一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A .B .C .D .2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A .B .C .D .3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A . 个B . 个C . 个D . 个4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A .B .C .D .5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A .B .C .D .6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A . 次B . 次C . 次D . 次7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A .B .C .D . 不能确定8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A .B .C .D .9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A . 游戏对小明有利B . 游戏对小白有利C . 这是一个公平游戏D . 不能判断对谁有利10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A .B .C .D .二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.13.事件A 发生的概率为0.05,大量重复做这种试验,事件A 平均每100次发生的次数是.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.学|科|网...学|科|网...学|科|网...23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.24.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有个,黄球有个,现从中任意摸出一个是白球的概率为.试求袋中蓝球的个数;第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.25.,两个口袋中,都装有三个相同的小球,分别标有数字,,,小刚、小丽两人进行摸球游戏.游戏规则是:小刚从袋中随机摸一个球,同时小丽从袋中随机摸一个球,当两个球上所标数字之和为奇数时小刚赢,否则小丽赢.这个游戏对双方公平吗?通过列表或画树状图加以说明.26.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:请估计:当很大时,摸到白球的频率将会接近于多少?摸球的次数摸到白球的次数摸到白球的概率假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?试估算口袋中黑、白两种颜色的球各有多少个?参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A .B .C .D .[答案]D[解析][分析]根据甲获胜的概率+和棋的概率+乙获胜的概率=1,求得乙获胜的概率,即可求得乙不输的概率.[详解]根据题意,乙获胜的概率是1-20%-40%=40%,∴乙不输的概率为::40%+40%=80%.故选D .[点睛]本题主要考查了概率的意义,根据“甲获胜的概率+和棋的概率+乙获胜的概率=1” 求得乙获胜的概率,是解决问题的关键.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A .B .C .D .[答案]D[解析]试题分析:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D .考点:概率公式.视频3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A . 个B . 个C . 个D . 个[答案]B[解析][分析]根据概率的意义依次判断后即可解答.[详解]①一事件发生的概率不可能大于1,正确,②大量试验中事件发生的频率就是事件发生的概率;不正确,概率是多次实验数据下的结果,频率只可近似的看作概率;③若一堆产品的合格率为95%,则从中任取100件就一定有95件合格品,5件次品,③错误,④用列举法求概率时列举出来的所有可能的结果应该是等可能的,正确.正确的有2个,故选B .[点睛]概率是反映事件的可能性大小的量.概率是大量实验数据下的结果,在小数据条件下,概率就失去意义了.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A 为不确定事件,那么0<P(A )<1.4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A .B .C .D .[答案]B[解析]试题分析:偶数有2、4、6,则P(向上的一面的点数为偶数)=.考点:概率的计算5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A . B . C . D .[答案]B[解析][分析]列举出所有情况,看刚好能组成“细心”的情况占总情况的多少即可.[详解]画树状图:学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B .[点睛]如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A 的概率P(A )=,注意本题是不放回实验.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A . 次B . 次C . 次D . 次[答案]B[解析][分析]因为只有两种颜色,所以如果前两次取出的颜色不同,则第三次取出的一定与前两次中的某一次的颜色相同.[详解]若第一次取出的是蓝色,第二次取出的若与第一次的颜色不同,是白色,则第三次取出的若是蓝色,就与第一次取出的颜色相同,若是白色就与第二次取出的颜色相同.所以最多取3次就能保证取得同样颜色的一双袜子.故选B .[点睛]本题考查了概率的意义,利用只有蓝、白两种颜色,取出的两种颜色各占一半是解题的关键.7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A .B .C .D . 不能确定[答案]A[解析][分析]列出图表,然后根据概率公式列式进行计算即可得解.[详解]列表如下:共有100种情况,连续两次随机数相同的有10种情况,所以,P(连续两次随机数相同)=.故选A .[点睛]本题考查概率的求法,熟知概率公式(概率=所求情况数与总情况数之比)是解决问题的关键.8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A .B .C .D .[答案]C[解析][分析]列举出所有情况,让甲的点数大于乙的情况数除以总情况数即为所求的概率.[详解]列表得:由表格可知,共有36种等可能的情况,甲的点数大于乙时,共有5+4+3+2+1=15种情况,甲获胜的机率是=.故选C .[点睛]本题考查了用列表法(或树状图法)求概率,列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果;当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A . 游戏对小明有利B . 游戏对小白有利C . 这是一个公平游戏D . 不能判断对谁有利[答案]C[解析]试题分析:根据游戏规则:总共结果有4种,分别是奇偶,偶奇,偶偶,奇奇,它们的和为奇,奇,偶,偶;由此可得:两人获胜的概率,进而得出答案.解:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,因此和为奇数或为偶数概率都为;所以这是一个公平游戏.故选:C .点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.视频10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A . B . C . D .[答案]C[解析][分析]由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数即可.[详解]∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是40×0.40=16个.故选C .[点睛]本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.解决本题的关键是根据频率之和为1计算出摸到白球的频率.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.[答案]32[解析][分析]已知小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,可得黄色球有40×20%=8个,而布袋中装有黄色、白色乒乓球共40个,所以口袋中白色球有40-8=32个.[详解]∵小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,∴黄色球有40×20%=8个,∵布袋中装有黄色、白色乒乓球共40个,∴口袋中白色球可能有40-8=32个.故答案为:32.[点睛]本题考查了利用频率估计概率.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.[答案]54[解析][分析]利用大量反复试验下频率稳定值即概率,由估计出部分数目=总体数目乘以相应概率求出即可.[详解]∵在抛掷一个图钉的试验中,着地时钉尖触地的概率约为0.46,∴没有触地的概率是1-0.46=0.54.∴如果抛掷一个图钉100次,则着地时钉尖没有触地约为:100×0.54=54次.故答案为:54.[点睛]本题主要考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.事件A 发生的概率为0.05,大量重复做这种试验,事件A 平均每100次发生的次数是.[答案]5.[解析]试题解析:事件A 发生的概率为0.05,大量重复做这种试验,则事件A 平均每100次发生的次数为:100×0.05=5.考点:概率的意义.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)[答案]可能.[解析]试题解析:某同学期中考试数学考了100分,是随机事件,则他期末考试数学可能考100分,考点:随机事件.15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.[答案][解析][分析]从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,根据概率公式求解即可.[详解]∵从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,∴摸到的球不是红球的概率为.故答案为:.[点睛]本题考查了简单事件的概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A 的概率P(A )=.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.[答案]2[解析][分析]根据概率的意义考虑出取得最后1粒的方法即可得解.[详解]根据游戏规则,先取的人第一次取2粒,然后保证第二次所取的粒数与另一人所取粒数之和为3即可取到最后1粒,从而使获胜的概率为1,所以,小明先取,要使小明获胜的概率为1,小明第一次应该取走2粒.故答案为:2.[点睛]本题考查了概率的意义,理解题目信息,判断出使两人所取的粒数之和是3是解题的关键.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.[答案][解析][分析]根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.[详解]根据题意分析可得:箱子里共有5个球,从箱子中任意摸出一个球是白球的概率是.故答案为:.[点睛]本题考查了简单事件概率的求法:①找出符合条件的情况数目;②找出全部情况的总数;二者的比值就是其发生的概率.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.[答案][解析][分析]根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽得卡片上数字的差的绝对值大于1的情况,再利用概率公式求解即可.[详解]画树状图得:∵共有9种等可能的结果,两次抽得卡片上数字的差的绝对值大于1的有2种情况,∴两次抽得卡片上数字的差的绝对值大于1的概率是:.故答案为:.[点睛]本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.[答案]一[解析][分析]根据概率的求法,求出第一题使用“求助”小明顺利通关的概率及在第二题使用“求助”小明顺利通关的概率,再比较大小,即可判断出小明在第几题使用“求助”.[详解]第一题使用“求助”小明顺利通关的概率是:;第二题使用“求助”小明顺利通关的概率是:;∵,∴建议小明在第一题使用“求助”.故答案为:一.[点睛]本题主要考查了概率的意义和应用,解答本题的关键是分别求出第一题使用“求助”和第二题使用“求助”使小明顺利通关的概率.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.[答案][解析][分析]根据7批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.[详解]∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故答案为:0.95.[点睛]此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?[答案](数字之和为);要使这个游戏对双方公平,乙胜一次得分应为分.[解析][分析](1)用树状图法求得所以等可能的结果,再求得两个数字和为5的结果,利用概率公式求解即可;(2)分别计算甲、乙二人获胜的概率,由此即可求解.[详解]共有种等可能的情况,和为的有,,共种情况,可得:(数字之和为);因为(甲胜),(乙胜),故甲胜一次得分,要使这个游戏对双方公平,乙胜一次得分应为:(分).[点睛]本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.[答案]所有可能出现的结果见表格;(甲获胜),(乙获胜).[解析][分析](1)根据题意列出表格,即可求得所有可能出现的结果;(2)根据表格可知:积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,根据概率公式求解即可.[详解]所有可能出现的结果如图:从上面的表格(或树状图)可以看出,所有可能出现的结果共有种,且每种结果出现的可能性相同,其中积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,∴甲、乙两人获胜的概率分别为:(甲获胜),(乙获胜).[点睛]本题考查了用列表法(或树状图法)求概率:当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.[答案]参加一次这种游戏活动得到福娃玩具的概率是;估计袋中白球接近的概率为.[解析][分析](1)根据概率的频率定义进行计算即可;(2)设袋中共有x个球,根据摸到红球的概率列出方程,解方程求的x的值,再求袋中白球接近的概率即可.[详解]根据题意可得:参加这种游戏活动为人次,公园游戏场发放的福娃玩具为;故参加一次这种游戏活动得到福娃玩具的概率为,∴参加一次这种游戏活动得到福娃玩具的概率是;∵实验系数很大,大数次实验时,频率接近与理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是,设袋中白球有个,根据题意得:,解得:,经检验,是方程的解.∴估计袋中白球接近个,。
九年级上册数学《概率初步》单元综合检测卷附答案
A.A>BB.A=BC.A<BD. 不能判断
[答案]B
[解析]
[分析]
分别利用概率公式将A和B求得后比较即可得到正确的选项.
12.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中时某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为___________.
13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.
A.两条线段可以组成一个三角形
B.400人中有两个人的生日在同一天
C.早上 太阳从西方升起
D.打开电视机,它正在播放动画片
7.2016年3月,某市举办了首届中学生汉字听写大会,从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( )
A B. C. D. 1
8.下列说法中,正确的是( )
A.不可能事件发生的概率为0
A.20个B.30个C.40个D.50个
[答案]B
[解析]
设袋子里蓝球大约有x个,根据题意可得, ,解得x=30,故选B
10.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )
A. B. C. D.
[答案]C
[解析]
用A,B,C分别表示给九年级的三辆车,画树状图得:
[解析]
试题分析:不可能事件发生的概率为0,故A正确;
九年级上册数学概率初步练习卷附答案学生版
九年级上册数学概率初步练习卷附答案一、单选题(共13题;共26分)1.下列说法正确的是( ).A. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次B. 天气预报“明天降水概率10%,是指明天有10%的时间会下雨”C. 一种福利彩票中奖率是千分之一,则买这种彩票1000张,一定会中奖D. 连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上 2.下列说法正确的是( ).A. “明天降雨的概率是60%”表示明天有60%的时间都在降雨B. “抛一枚硬币反面朝上的概率为 12 ”表示每抛2次就有1次反面朝上C. “抛一枚均匀的正方体骰子, 朝上的点数是5的概率为 16 ”表示随着抛掷次数的增加,“抛出朝上的点数是5”这一事件发生的频率稳定在 16 左右D. “彩票中奖的概率为1%”表示买100张彩票肯定会中奖 3.下列事件中,不确定事件是( )A. 在标准大气压下,水加热到 100°C 时沸腾B. 一名运动员跳高的最好成绩是20.1米C. 小明购买1张彩票,结果中奖了D. 在一个装有红球和黄球的袋中,摸出蓝球 4.下列事件中,是不确定事件的是( ) A. 地球围绕太阳公转 B. 太阳每天从西方落下C. 标准状况下,水在 −10°C 时不结冰D. 一人买一张火车票,座位刚好靠窗口5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A. 16 B. 13 C. 12 D. 23 6.下列说法错误的是( )A. 同时抛两枚普通正方体骰子,点数都是4的概率为 13 B. 不可能事件发生机会为0C. 买一张彩票会中奖是可能事件D. 一件事发生机会为1.0%,这件事就有可能发生 7.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )A. 能够事先确定抽取的扑克牌的花色B. 抽到黑桃的可能性更大C. 抽到黑桃和抽到红桃的可能性一样大D. 抽到红桃的可能性更大 8.从 √2 ,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )A. 15 B. 25 C. 35 D. 459.一个布袋里装有 4 个只有颜色不同的球,其中 3 个红球, 1 个白球.从布袋里摸出 1 个球,记下颜色后放回,搅匀,再摸出 1 个球,则两次摸到的球都是红球的概率是( )A. 116 B. 12 C. 38 D. 91610.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A. 16B. 14C. 13D. 712 11.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( ) A. 14 B. 13 C. 12 D. 3412.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是( ) A. 23 B. 12 C. 13 D. 2913.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ) A. 16 B. 13 C. 12 D. 23二、填空题(共5题;共5分)14.一个不透明的袋子中装有5个小球,其中2个红球,3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是________.15.某校八年级(1)班男生有24人,女生有26人,从中任选一人是男生的事件是________事件. 16.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是________.17.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是________.18.如图,是两个可以自由转动的均匀圆盘A和B,A、B分别被均匀的分成三等份和四等份.同时自由转动圆盘A和B,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是________.三、解答题(共7题;共43分)19.如图是一大一小的两个可以自由转动的转盘,甲盘被平均分成6等份,乙盘被平均分成4等份,每个转盘均被涂上红、黄、蓝三种颜色.转动转盘,当转盘停止后,指针指向的颜色即为转出的颜色.小明与小颖参与游戏:小明转动甲盘,小颖转动乙盘.(1)小明转出的颜色为红色的概率为________;(2)小明转出的颜色为黄色的概率为________;(3)小颖转出的颜色为黄色的概率为________;(4)两人均转动转盘,如果转出的颜色为红,则胜出.你认为该游戏公平吗?为什么?20.甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.21.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.22.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.23.2017•通辽)小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或列表法说明理由.24.小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜. (1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.25.为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指字母相同时,他就可以获得一次指定一位到会者为大家表演节目的机会.(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)若小亮参加一次游戏,则他能获得这种指定机会的概率是多少?四、综合题(共5题;共50分)26.有两个可以自由转动的均匀转盘,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:分别转动转盘,两个转盘停止后,将两个指针所指份内的数字相乘,(若指针停止在等分线上,那么重转一次,直到指针指向某份为止).(1)用列表或画树状图法分别求出数字之积为3的倍数和数字之积为5的倍数的概率;(2)小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?若认为公平请说明理由;若认为不公平,试修改得分规定,使游戏对双方公平.27.在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同).用树状图(或列表法)解答下列问题:(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球.则小丽两次都摸到白球的概率是多少?(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?28.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果。