电路分析基础第一章
电路分析基础第一章 电路模型和电路定律
+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
电路分析基础第一章
5
本章学习目的及要求
本章内容是贯穿全课程的重要理论 基础,要求在学习中给予足够的重视。 通过本章学习要求理解理想电路元件和 电路模型的概念;理解电压、电流、电 动势和电功率的概念;深刻理解和掌握 参考方向在电路分析中的应用;牢固掌 握基尔霍夫定律及其应用;深刻领会电 路等效和掌握电路等效的基本方法。
20
功率的计算
1. u、i取关联参考方向
+
i
p吸 = u i 例 U = 5V, I = - 1A
u
P吸= UI = 5× (-1) = -5 W
–
p吸< 0 ,说明元件实际发出功率5W。
2. u、i取非关联参考方向
+
i
p吸 =- u i 例 U = 5V, I = - 1A
P吸= -UI = -5× (-1) = 5 W
13
1.2 电路的基本物理量
1.2.1 电流
电流(强度)— 单位时间内通过导体横截面的电量。
电流的大小:i
=
dq dt
…… (1-1)
电流的单位及换算:安培(A)=库仑(C)/秒(s)
1A=103mA=106μA=109nA
稳恒直流情况下: I=
q t
…… (1-2)
电流是一个有方向的物理量,仅指出大小是不够
的,规定以正电荷移动的方向为电流的真实方向。
列写电路方程时,电压、电流的正、负是以电路图
上预先假定的参考方向为依据的,若计算结果为正值,
说明电压、电流的真实方向与参考方向相符,否则相
反。
14
1.2.2 电压、电位和电动势
电动势E 只存 在于电源内部 ,其大小反映 了电源力作功 的本领。其方 向规定由电源 “负极”指向 电源“正极” 。
电工技术第一章电路分析基础
上篇: 电工技术第一章: 电路分析基础1.1: 电路的基本概念、定律、分析方法 1.1.1:基本要求(1) 正确理解电压、电流正方向的意义。
(2) 在正确理解电位意义的基础上,求解电路各点电位。
(3) 加强电压源的概念,建立电流源的概念。
(4) 了解电路有载工作、开路与短路的状态,强化额定值概念。
(5) 熟悉电路基本定律并能正确应用之。
(6) 学会分析、计算电路的基本方法 1.1.2: 基本内容 1.1.2.1基本概念1 电压、电流的正方向 在分析计算电路之前,首先在电路图上标注各元件的未知电流和电压的正方向(这些假设的方向,又名参考方向),如图1-1-1所示。
3R I图1-1-1根据这些正方向,应用电路的定理、定律列写方程(方程组),求解后若为正值..,说明假设的方向与实际的方向相同;求解后若为负值..,说明假设的方向与实际方向相反。
对于电路中的某个(些)已知的方向,有两种可能,其一是实际的方向,其二也是正方向,这要看题目本身的说明。
2电路中的电位计算求解电路某点的电位,必须首先确定参考点,令该点电位为零,记为“⊥”, 电路其余各点与之比较,高者为正(电位),低者为负(电位),如图1-1-2所示:U图 1-1-2设C 为参考点,则:c 点的电位: V C =0(V) a 点的电位: V a = +6 (V) b 点的电位: V b =-9 (V)ab 两点间的电压:U ab = V a - V b = (+6)-(-9) =15(V)注·电位具有单值性(参考点一旦设定,某点的电位是唯一的)。
·电位具有相对性(参考点选择不同,某点的电位也不同)。
·任意两点间的电位差叫电压,例如U ab = V a - V b ,显然电压具有单值性和绝对性(与参考点选择无关) 1.1.2.2基本定律 1 欧姆定律(1)一段无源支路(元件)的欧姆定律。
在图1-1-3中,U ab = R ·I (取关联正方向)。
电路分析基础第1章
1-11 电路如图题1-9所示。 (1)图(a)中已知u=7cos(2t) V,求i;
4 i
-u + (a)
i u• 7 cos 2t 7 cos 2t A 444
(2)图(b)中已知u=(5+4e-6t) V ,i=(15+12e-6t)A ,求R;
iR
+u - (b)
R
u i
5 4e 6t 15 12e 6t
2A,求u4 。
•
i1 a
5
b
1
i4 c
(1)u1 5i1 5 4 20 V
+
+ u1 - +
+ u4 -
i2
-
i3
(2)u2 4i2 4 (2) 8 V uS-
u2 4 -
u3 3 +
d
(3)u3 3i3 3 2 6 V
(4)u4 i4 (2) 2 V
1-14 电路如图题1-12所示若u1=10V,u2=-5V,试电压源的
12V -
4
u=11V
-
1-16 求图题1-14所示电路中的uS 和i 。 uS
5A -
+
6A•
12
i1 15 18 3 A
3
i1
18A
15A
R
i 1
uS 18 3 12i1 54 12 3 90 V
i 651 A
1-20 电路如图题1-15所示,试求电流源电压u和电压源电流i,
i2/A 2
1
•
i3/A
1
o 1 2 3 t/s -1
o1 -1
2 3 t/s
对图1-9所示节点列KCL方程:
i1/A 1
i1 i2 i3
o1 -1
《电路分析基础》第一章:集总电路中电压(流)的约束关系
信息学院电子系
10
(3). 功率
中¾ 定义:电路中能量转换的速率 p(t) = dw = u(t)i(t) (关联参考方向) 国dt SI单位:瓦[特](W)
能量传 输方向
海 p(t)>0,吸收功率,功率的实际方向与参考方向一致 洋 p(t)<0,产生功率,功率的实际方向与参考方向相反
大 ¾ 在 t0 到 t 的时刻内所吸收的能量为:
¾ 分类
大 线性电阻与非线性电阻 学 时变电阻与非时变电阻
特性曲线
信息学院电子系
21
(1). 线性电阻元件
¾两端的电压与电流服从欧姆定律
中 形式一: u(t)=Ri(t)
(关联参考方向)
• R 称为电阻,其 SI单位为欧[姆](Ω)
国• 对于非关联参考方向, u(t)=-Ri(t)
• 欧姆定律体现电阻对电流呈现阻力的本质
¾ 受控源的功率根据受控支路计算 p(t)= u2(t) i2(t)
信息学院电子系
29
例 求受控源的功率
中a
I2
国 I3
海洋大学 思路: P=ui;分析电路构成;依据为KCL、KVL和VCR
信息学院电子系
30
If
If
+
中ω
_ RIf
国海洋大学 CCVS 直流发电机
μ = 1+ R2 R1
VCVS 由运放构成比例器
信息学院电子系
4
1.2 电路变量 电流、电压及功率
中电路的特性是由电流、电压和功率等物理量来描述的
(1). 电流
国 ¾ 电量: 带电粒子所带电荷的多少(符号:q或Q,单位:库[仑]( C ))
海 ¾ 电流: 带电粒子定向移动形成电流
电路分析基础第1章 电路的基本概念与定律
第1章电路的基本概念和定律 为了便于对电路进行分析与计算,对复杂的实际问题进 行研究,在理论分析中常常把实际电路中的各种设备和电路 元(器)件用能够表征电路主要电磁性质的理想化的电路元件 来表示。例如,电阻具有消耗电能的特性,我们就可以将具 有这一特性的电灯、电炉等用电器都用电阻来代替,虽然这 种替代会带来一定的误差,但在一定条件下是可以忽略的。 在实际工程问题中,若需要更精密地做研究时,可再考虑由
1kV=103V,1V=103mV,1mV=103μV
22
第1章电路的基本概念和定律 2. 电压参考方向与电流参考方向一样,也是任意选定的, 其参考方向可用箭头,“+”、“-”极性和双字母构成的下 标三种方法表示。在分析电路时,先选定某一方向为电压的 参考方向,若计算结果为正值(u>0),说明电压参考方向与 实际方向一致;若计算结果为负值(u<0),则电压参考方向 与实际方向相反,如图1-6 图1-7(a)、(b)、(c)所示分别为用箭头,“+”、“-”极
表1-2 电路元件功率的计算方式
35
第1章电路的基本概念和定律 【例1-3】 图1-10所示电路中,已知元件1的U=-4V, I=2A,元件2的U=5V,I=-3A。求元件1、2的功率是多少, 并说明是吸收功率还是发出功率。 解 (1)对于元件1,U、I为关联参考方向,故P1=UI=- 4×2=-8W<0,表示元件1发出8W (2)对于元件2,U、I为非关联参考方向,故P2=-UI=- [5×(-3)]=15W>0,表示元件2吸收15W
第1章电路的基本概念和定律
第1章 电路的基本概念和定律
1.1 电路和电路模型 1.2 电路中的基本物理量 1.3 电阻元件及欧姆定律 1.4 基尔霍夫定律 1.5 电路中的电源 1.6 受控源
(大学物理电路分析基础)第1章电路分析的基本概念和定律
当电容并联时,总电容 等于各电容之和,总电 流等于各电容电流之和。
电感的并联
当电感并联时,总电感 为各电感倒数之和,总 电压等于各电感电压之
和。
05
非线性电阻电路的分析简介
非线性电阻元件的特点
伏安特性曲线
非线性电阻元件的伏安特性曲线不是一条直线,而是随着电压的 变化而变化。
电流与电压不成正比
非线性电阻元件的电流与电压不成正比,即不满足欧姆定律。
大学物理电路分析基础 第1 章 电路分析的基本概念和定
律
目录
• 电路分析的基本概念 • 电路分析的几个重要定律 • 线性电阻电路的分析方法 • 含电容和电感的电路分析 • 非线性电阻电路的分析简介
01
电路分析的基本概念
电路的定义与组成
总结词
电路是由若干个元件按照一定的方式连接起来,用于实现电能或信号传输的闭 合回路。
动态特性
非线性电阻元件的动态特性是指其阻值随时间、温度等因素的变化 而变化。
非线性电阻电路的分析方法
解析法
通过建立数学模型,利用数学工具求解非线性电 阻电路的电压、电流等物理量。
实验法
通过实验测量非线性电阻电路的电压、电流等物 理量,并进行分析。
仿真法
利用电路仿真软件对非线性电阻电路进行模拟, 得到电路的电压、电流等物理量。
电流源
电流源是一种理想电源,能够保持输出电流恒定,不受输出电压变 化的影响。
等效变换
对于线性电阻电路,电压源和电流源可以通过适当的等效变换进行相 互转换。等效变换是指两种电路在端口处具有相同的电压和电流。
支路电流法与节点电压法
支路电流法
支路电流法是一种通过设定支路电流变量,然后根据基尔霍夫定律建立方程组求解的方法。该方法适 用于支路数较少、节点数较多的电路。
《电路分析基础》第1章指导与解答
第1章电路的基本概念及基本定律电路分析基础是高职、高专电类各专业的一门专业技术基础课程。
《电路分析基础》阐述了电路的基本概念、基本定理及其基本分析方法,是从事任何电类专业学习和工作的人员普遍要学习和掌握的、必不可少的知识。
本章介绍的内容是贯穿全书的基本理论基础,要求在学习中给予足够的重视。
本章的学习重点:●电路模型的概念和理想电路元件的概念;●电压、电流参考方向的概念及其与实际方向之间的联系,电功率的概念;●理想的无源元件、有源元件的概念;●基尔霍夫电流、电压定律的深刻理解和应用;●电路“等效”概念的建立及其电路“等效”的基本方法;●直流电路中电位的计算及其负载上获得最大功率的条件。
1.1 电路和电路模型1、学习指导(1)电路的组成和功能电路通常由电源、负载、中间环节三大部分组成。
电路分有两种类型:电力系统的电路功能是实现电能的传输、分配和转换;电子技术的电路功能是对电信号进行传递、变换、储存和处理。
(2)电路模型电路理论是建立在一种科学的抽象——“电路模型”的概念和基础上进行阐述的。
所谓电路模型,实际上是由一些理想电路元件构成的、与实际电路相对应的电路图。
对工程实际问题进行分析和研究时,我们往往在一个实际电路给定的情况下,首先对该电路进行模型化处理,并使模型电路的性状和实际电路的性状基本相同或十分逼近,然后借助于这种理想化的电路模型,对实际电路的问题进行分析和研究。
利用电路模型分析和研究实际电路是一种科学的思维方法,也是工程技术人员应具备的业务素质之一。
(3)理想电路元件理想电路元件是电路模型中不可再分割的基本构造单元并具有精确的数学定义。
理想电路元件也是一种科学的抽象,可以用来表征实际电路中的各种电磁性质。
例如“电阻元件”表征了电路中消耗电能的电磁特性;“电感元件”表征了电路中储存磁场能量的电磁特性;“电容”元件则表征了电路中储存电场能量的电磁特性。
实际电路中的实体部件上发生的电磁现象往往是复杂的、多元的,如电阻器、电炉等设备,它们除了具有消耗电能的特性外,还有磁场和电场方面的特性,分析时若把它们的全部电磁特性都表征出来既有困难也不必要。
第1章 电路分析基础
i1
u R1
R2 R1 R2
iS
i2
u R2
R1 R1 R2
iS
简单电阻电路的计算:18页例1.9
第40页,共58页。
1.3.3支路电流法
电路有m条电路,以m条支路电流作为未知量,应用
基尔霍夫定律列出m个独立的方程式,联立求解方程式 即可解出各支路电流。这就是支路电流法。
I1 U1
R1
a I2
b
电感(Inductance)等 为了对实际电路进行分析,可忽略负载的次要因素,将其近 似看作理想电路元件,简称为元件(Element ) 。 元件通过端子与外电路相连,按端子的数目可将元件分为 :二端元件、三端元件、四端元件等。
第4页,共58页。
实际情况中,电路由电源(信号源)、负载和中间环结组 成。
3、联立求解3个方程即可。
R1
b
3个方程如下: Il+I2+IS3-I4=0 I1R1-US1+US2-I2R2=0 I2R2-US2+I4R4=0
解之得:
Il=-22(A)
I2=14(A) I4=10(A)
第43页,共58页。
1.3.4结点电压法 以结点电压作为未知量,将各支路电流用结点电压表示
U4
R2
R3
U5
R4 R5
电路分析基础课件(第1章)
§1-1 电路及集总电路模型 (c)分布参数元件与集总参数元件 集总参数元件:理想电阻、理想电感、理想电 容、理想电源等。 集总参数电路:由集总参数元件构成的电路, 简称集总电路。
21
§1-1 电路及集总电路模型
一个电路应该作为集总参数电路,还是作为分 布参数电路,或者说,要不要考虑参数的分布 性,取决于其本身的线性尺寸与表征其内部电 磁过程的电压、电流的波长之间的关系。 一个实际电路器件,在不同条件下可以有不 同的电路模型。
a b
+
+
元件
41
u 2V
§1-2 电路变量 电流、电压及功率 参考极性不一定就是电压的真实极性。 当电压为正值时,该电压的真实极性与参考 极性相同。 当电压为负值时,该电压的真实极性与参考 极性相反。
a b
元件
a
b
元件
+
-
-
+
42
u 2V
u= - 2V
§1-2 电路变量 电流、电压及功率
19
§1-1 电路及集总电路模型 (b)分布概念 参数的分布性指,当实际电路的尺寸可以与电 路工作时电磁波的波长相比拟(即高频)时, 电路中同一瞬间相邻两点的电位和电流都不相 同。这样的元件称为分布元件,而这样的电路 参数叫做分布参数。
这说明分布参数电路中的电压和电流除了是时 20 间的函数外,还是空间坐标的函数。
9
§1-1 电路及集总电路模型
例如
理想化
理想电阻元件 (模型)
理想化、抽象化即模型化的过程。
电阻器包含有电阻、电感、电容性质,但 电感、电容很小,可忽略不计,可用一个 电阻元件作为它的模型。
同样,请例举3个以上其他,模型的例子....
第1章 电路分析基础
• 子致];,当符电号压为的S值。为负时, 表示电压的实际方向与参考方向相反。
流过电阻的电流i 与电压u 之间的关系曲线称为电阻元件的伏安特性曲线。
第一章 电路分析基础
• •
1与(示.3电1。.流)2类采似用,正电在(容分元+析件)电及、压其负时伏(也安要特-规性)定极电性压表的示参,考方称1向为.,参3考通极常电性有,路三种如中表图的示1基方‐3式本(:元a)件所
电介质, 如图所示。
式中, Q ——— 电容器一个极板上的电荷量(C) ; U ——— 电容器两极板间的电压(V) ; C ——— 电容(F) 。
第一章 电路分析基础
• •
1与(示.3电1。.流)3类采似用,正电在(感分元+析件)电及、压其负时伏(也安要特-规性)定极电性压表的示参,考方称1向为.,参3考通极常电性有,路三种如中表图的示1基方‐3式本(:元a)件所
• 感致元;件当。电显压然的电值为流负i越时大,,表与示线电压圈的相实交际链方的向磁与通参就考越方向大相,反磁。通与之交链的线
圈匝数的乘积称为磁通链ψ 。我们把ψ 与i 的比值称为电感元件的电感, 用
符号L 表示, 即
第一章 电路分析基础
1.4 电 源
第一章 电路分析基础
• •
1与(示.4电1。.流)1类采似用,正理在(想分+电析源)电模、压型负时(也要-规)定极电性压表的示参,考方称向为,参考通极常1性有.,4三种如表图电示1源方‐3式(:a) 所
• 电(阻2元)件采是用实实际线箭电头阻表器示的,理如想图化1模‐3型(。b电)阻所元示件。简称电阻, 用字母R 表示。
• •
其(确单3定位)了是电表欧压示的[电参姆压考的]方字,向母符后加号,上是双当Ω下电。标压G,的值=如为u1A正/B时表R,示,表电称示压为电的电压参导的考实,方际向其方由单向A位与指为参向西考B 方[。向门一
第一章 电路分析基础
u0
u
电流源不能开路!
例1.10: 计算各元件的功率。
i
解:
2A
i iS 2 A
u 5V
产生
5V
u
_
满足:P(产)=P(吸)
+
+
_
P2 A iS u 2 5 10W
P5V uS i 5 2 10W
吸收
实际电流源 i
伏安特性:
iS
i
u i iS RS
色码电阻
色别 黑 数字 0 误差 棕 1 红 2 橙 3 黄 4 绿 5 蓝 6 紫 7 灰 8 白 9 金 银 本色 I II III 5 10 20
有效数值 ‘0’的个数 1 2 3 4 误差等级 7 5 0
±5 %
6 8 0 0 = 6.8K
±10 %
二. 电阻元件的特性
参考方向与真实方向的关系
a
I(DC) i
(AC)
b b
I1 I2 b b
计算 结果
>0 一致 <0 相反
例1.1: 如何表示1A的电流从a点流向b点。
a
解:
a
a
I1=1A
I2= -1A 电流表
4.电流的测量 电流表要串联接入
被测量支路
电流表
二.电压
1. 电压的大小和极性
(1) 电压大小: 单位正电荷从 a点移到 b 点所获得的能量 u(t)=dw/dq (2) 电压极性: 高电位指向低电位,即电 压降方向。 (3) 电压的单位: 伏特(V) 1V=1000mV 1mV=1000uV
5i1 +
u+
1
解:
电路分析基础第一章
1.理想电压源
1.1 基本性质:(1)端电压是定值或是固定的时间函 数,与流过的电流无关;(2)流过电压源的电流 由与之相连接的外电路决定。
u
1.2 伏安特性
o
us
us
i
u
us
Us
+ -
i
i
i1
i2
输出电压u0 u s与电阻R1、R2无关, 但流过电源的电流i 与R1、R2 有关。
时变(time-varying),非时变(time-invariant) 非时变:伏安特性曲线不随时间而变化。
u
t1 t2
O
u
t1 t2
i
O
i
2.电压电流关系
A
i
u
30 20 10 -20 -10
v
i/mA
B
正向特性
二极管 二极管具有单向导电性。
-2 O 0.5 -4 -6 反向特性 i/uA
dq i (t ) dt
1.电流(current)及其参考方向
方向:正电荷流动的方向。 表示:箭头,双下标 iAB 。
A
i
元件
B
1.2 电流的参考方向(reference direction)
任意选定的方向(正方向)。
根据计算结果确定电流的真实方向
若 i0
真实方向与参考方向一致
i0
真实方向与参考方向相反
i1
A i2 B
i3
C
i6 i1 i3
对于D节点:
(1) (2)
i4
i5
D
i6
i4 i5 i6
第1章 电路分析基础
例
b
支路:共 ?条
I2 结点:共 ?个
6条 4个
I1
a I6 R6
c
I5 回路:共 ?个 独立回路:?个
I4
I3 d
+E _ 3
R3
3个
有几个网眼就有几个独立回路
基尔霍夫电流定律(KCL) 在任何电路中,任何结点上的所有支路电流的代数 和在任何时刻都等于0:
i 0
基尔霍夫电流定律同样适用于任一闭合面。
I1 I 2 I 3 0
(2) 选定单孔回路Ⅰ和Ⅱ为顺时针方向,得回路电压方程
U S1 R1 I1 R2 I 2 U S 2 0 U S 2 R2 I 2 R3 I 3 U S 3 0
(3) 将已知数据代入各方程式,整理后得
I1 I 2 I 3 0 20 10 3 I1 60 10 3 I 2 4 0 60 10 3 I 2 30 10 3 I 3 24 0
基尔霍夫电压定律
对电路中的任一回路,沿任意循行方向转一周,其电位降 等于电位升,或电压的代数和为 0。
I1
R1 + U1 - #1 I3
a R #3 b
3
+ #2 _ U2
I2 R2
U 0 即:
电位降为正 电位升为负
例如: 回路#1
I1R1 I3R3 U 1
电位降
对回路#2:
对回路#3:
列电流方程 结点a:
I 3 I 4 I1
结点b:
结点c:
I1 I 6 I 2
I 2 I5 I3
+
U3
d
R3 结点d:
I 4 I6 I5
电路分析基础第一章(李瀚荪)
A
iAB
B
2. 电压的参考方向 (voltage reference direction)
电位 电压U
单位正电荷q 从电路中一点移至参考点 (=0)时电场力做功的大小
单位正电荷q 从电路中一点移至另一点时 电场力做功(W)的大小
U
def
dW
dq
实际电压方向
电位真正降低的方向
单位:V (伏)、kV、mV、V
问题
复杂电路或交变电路中,两点间电压的实际方向往往 不易判别,给实际电路问题的分析计算带来困难。
电压(降)的参考方向
假设的电压降低之方向
参考方向
+
U
–
参考方向
+
U
–
+ 实际方向
U >0
实际方向 +
U <0
电压参考方向的三种表示方式:
(1) 用箭头表示
U
(2) 用正负极性表示
+
U
(3) 用双下标表示
def
i(t)
lim Δ q
dq
Δ t0 Δ t dt
单位
A(安培)、kA 、mA、A
1kA=103A 1mA=10-3A
1 A=10-6A
方向
规定正电荷的运动方向为电流的实际方向
元件(导线)中电流流动的实际方向只有两种可能:
实际方向
A
B
实际方向
A
B
问题
复杂电路或电路中的电流随时间变化时, 电流的实际方向往往很难事先判断
例
a
已知:4C正电荷由a点均匀移动至b点
b
电场力做功8J,由b点移动到c点电场
力做功为12J,
电路分析基础第一章
I =-2A
在求解电路中的电流时,应该首先选定电流的 参考方向(正方向),然后根据假设的电流方向进 行分析求解。 若求得I > 0,则电流的实际方向与参考方向一致 若求得I < 0,则电流的实际方向与参考方向相反
二、受控源的类型
电压控制电压源(VCVS) 电压控制电流源(VCCS) 电流控制电压源(CCVS); 电流控制电流源(CCCS)
三、受控源的符号
+ u1 + + u1 -
u1
-
+
u1
-
电压控制电压源
电压控制电流源
i1
i1
-
i1
gi1
电流控制电压源
电流控制电流源
1-4 基尔霍夫定律
在电路理论中,电路元件的电压、电流受自身伏安关系的 约束。当各元件联接成一个电路以后,电路中的电压、电流除 了必须满足元件自身的约束方程以外,还必须同时满足电路结 构的约束。这种约束体现为基尔霍夫的两个定律,即基尔霍夫 电流定律(Kirchhoff’s Current Law),简写为KCL)和基尔 霍夫电压定理(Kirchhoff’s Voltage Law),简写为KVL。
1-2 电路的基本变量
1-2-1 电流
一、电流的定义
电荷的定向移动形成电流,电流的大小 用电流强度来描述,符号为I或i。电流强度 定义为电位时间流过导体横截面的电量,即
dq i dt
如果电流的大小方向随时间变化,称为交流电 流;若电流的大小方向不随时间变化,称为直流电 流。在这种情况下,通过导体横截面的电量Q与时间 t呈正比,即
i iS u / RS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒定电压:大小和极性不随时间改变; 交变电压:大小和极性随时间作周期性改变。
三、关联参考方向
关联参考方向:电流参考方向与电压参考极性一致。 关联参考方向: 规定:电流由高电位流向低电位。
关联参考方向
非关联参考方向
四、功率
设在 dt 时间内由a点转移到b点的正电荷为 dq,且由a到b 为电压降u,则 dq 失去能量,也就是这段电路吸收能量。
这段电路吸收的能量: dw = udq
dw dq =u 功率为吸收能量的速率: p(t ) = dt dt
关联参考方向:
dq i (t ) = dt
p (t ) = u (t )i (t )
非关联参考方向: p (t ) = −u (t )i (t ) p(t) > 0 吸收(消耗)功率;p(t) < 0 提供(产生)功率
k =1 K
式中,ik (t ) 为流出(或流进)节点的第k条支路的电流, K 为节点处支路数。 KCL是电荷守恒法则运用于集总电路的结果。
KCL也可以表述为: 对于任一集总电路中的任一节点,在任一时刻, 流出节点的电流的总和等于流入这个节点的电流 流出 等于流入 的总和。
KCL也适用于电路中任一 假设的闭合面。流出(或 流入)封闭面电流的代数 和为零。 i1 + i2 + i3 = 0
例 :图中电流均为2A,均由a流向b,已知u1=1V, u2=-1V,求两元件功率p(t)。若b图中元件提供功 率为4W,求电流。
(1) u=1V, i=2A p(t)=ui=1×2=2W>0 吸收功率
(2) u=-1V, i=2A p(t)=-ui=-(-1)×2=2W>0 吸收功率
(3) p(t)=-ui =-(-1)i=-4W i=-4A
注:功率公式不仅适用于某一元件,对任一部分电路也适用。
§1-3 基尔霍夫定律
一个具有两个端钮而由多个元件串联而成的组合
1. 支路 (branch):任何一个二端元件称为一条支路。 2. 节点 (node):两条或两条以上支路的连接点。 3. 回路 (loop):任何一个闭合的路径叫回路。 4. 网孔 (mesh):在回路中不含有其他支路的回路称为网孔。
四、电路元件:
(1)线性元件: 元件的特性能够用线性代数方程或线性微分方程 来表述,如欧姆定律,U(t)=RI(t)。 (2)非线性元件:元件的特性不能用线性代数方程 非线性元件: 或线性微分方程来表述,时变时不变,如二极 I 管,PN结。 (3)非时变元件: 元件的参量(特性曲线)不随时间变化。
例1:求图示电路中的各未知电流。已知 i1=2A, i2=-1A,i6=4A。
i3 =-3A = i4,i3的真实方向与参考方向相反 i5 =2A,i5的真实方向与参考方向相同
解后总结:
(1)注意两套符号: 括号前的符号取决于参考方向相对于节点的关系。 设流出为正,流入为负,是列方程出现的符号。 括号里的符号是电流本身的符号,反映真实方向和 参考方向的关系,正的相同,负的相反。 (2)求出的值无论正负,都不要把参考方向改成真实 方向。
例2:求图示电路中的u1,u2,u3。 解:
u1-(6)-(2)=0 u1=6+2=8V u3-(6)-(12)=0 u3=6+12=18V u2+u3-u1=0 u2=8-18=-10V KVL解题中需要注意的问题: (1)两套符号: 一是参考极性与绕行方向的关系,遇电压降取正,电 压升取负,即括号前的符号。 二是数值本身的符号,即括号里的符号,反映参考极 性与真实极性关系。 (2)求出的值无论正负,都不要把参考方向改成真实方向。
二、电压
1. 定义:单位正电荷由a点移动到b点所获得或失去的 能量,即a,b两点之间的电压。
dw u(t ) = dq
获得能量,a点电位低,b点电位高。 失去能量,a点电位高,b点电位低。 uab指a~b的电压降
2. 电压参考极性:
+ 表示高电位,-表示低电位。
按所设参考极性进行计算, 如果求出 uab> 0 ,则真实极性与参考极性一致。 如果求出 uab< 0 ,则真实极性与参考极性相反。
U
五、本课程的内容:
第一部分:研究由电阻、电源组成的电路(电阻 第一部分: 电路)的基本理论和基本分析方法; 电路 第二部分:研究由电容、电感组成的电路(动态 第二部分: 电路)的基本理论和基本分析方法; 电路 第三部分:研究动态电路在正弦稳态时的基本原 第三部分: 正弦稳态 理、基本分析方法。
六、学习本课程的目的:
三、电路模型 : 由集总(理想)元件构成的电路叫电路
模型,我们所研究的是电路模型而不是实际电路。
开关 灯泡
10BASE-T wall plate
干 电 池
导线
实际电路
电路模型(电路图)
§1-2 电路变量、电流、电压及功率
一、电流
1. 定义:带电粒子的定向运动(有秩序的运动)形成电流。
dq i (t ) = dt --电荷的变化率
掌握基本概念、基本理论、基本方法。
集总电路: 由电阻、电容、电感等元件组成的
电路。(电阻电路、动态电路)
集总参数电路:当实际电路的尺寸远小于使用时
其最高工作频率所对应的波长时,可以用“集总参数 其最高工作频率所对应的波长时, 元件”来构成实际部、器件的模型。每一种元件只反 映一种基本电磁现象,且可由数学方法加以定义。
主要内容:
1.基本概念:电路及电路模型、集总假设、电路变量、 电流、电压、功率、独立电源、受控源、 参考方向及关联参考方向。 2.基本定律:基尔霍夫定律,欧姆定律(VAR)。
§1-1
电路及集件按照一定的方式连
接起来构成电流的通路。
开关 灯泡
10BASE-T wall plate
代入, − u1i1 + u2i2 + u3i3 + u4i1 + u5i3 + u6i1 = 0 KCL:i2 = i1 + i3 代入, ( −u1 + u4 + u6 + u2 )i1 + (u2 + u3 + u5 )i3 = 0
{u +u +u = 0
2 3 5
− u1 + u 4 + u6 + u 2 = 0
电阻基本参数: 精度 电阻基本参数
额定功率
{
标称值 如,500Ω,5W
电阻的种类:线绕电阻、金属膜电阻、碳膜电阻等。
在温度恒定并且电压、电流限制在一定范围内的条件下可以 用线性电阻作为它们的模型。 线性电阻
二、线性非时变电阻、欧姆定律 电压电流关系,VCR,
电路分析基础(第4版)
李瀚荪
主讲:张乐天
一、电路分类:
传输能量的电路 能量 传输信息的电路 信息
二、电在线路中的运动规律是相同的(电 路理论)。
电路分析:研究给定电路参数、电路结构,分 析各处电压电流; 电路综合:研究给定输入输出条件,设计电路 结构。
三、本课程的主要任务:
研究由线性、非时变元件组成的电路(线 性非时变电路)的基本理论、基本分析方法, 为今后学习集成电路、模拟电路、高频电路、 信号与系统打基础。
能量守恒:
w1 + w2 + w3 + w4 + w5 + w6 = 0
微分得,
p1 + p2 + p3 + p4 + p5 + p6 = 0 dw1 dw2 , p2 = ,...... p1 = dt dt
p1 = −u1i1 p2 = u 2i2 p3 = u3i3 p4 = u 4i4 = u4i1 p5 = u5i5 = u5i3 p6 = u6i6 = u6i1
元件1、4、6、2回路 元件2、3、5回路
− u1 + u4 + u6 − u5 − u3 = 0 元件1、4、6、5、3回路
例1:如图表示一复杂电路中的一个回路。已知各 元件的电压:u1=u6=2V,u2=u3=3V,u4=-7V,试 求u5和a、b两点间的电压。
解: 设u5 的参考极性如图,从a
手电筒电路:
干 电 池
导线
二、集总假设、电路元件 1. 集总假设:
☺不考虑电路中电场与磁场的相互作用; ☺不考虑电磁波的传播现象; ☺实际电路的尺寸远小于最高工作频率所对应的波
长 时,可将它所反映的物理现象分别进行研究,即 时, 用三种基本元件表示其三种物理现象; 当电路的尺寸大于最高频率所对应的波长或两者 属于同一数量级时,便不能作为集总电路处理,应 作为分布(distributed)参数电路处理。 参数电路
例如,无线电调频接收机,若所接收的信号频率为100MHz, 对应波长λ=c/f = 3m,连接接收天线与接收机之间的传输线 即便只有1m长,也不能作为集总电路来处理。 又如,我国电力用电频率为50Hz,对应的波长为6×106m,对 以此为工作频率的用电设备来说,其尺寸远小于这一波长,可 以按集总电路处理,而对于远距离输电线来说,就不能按集总 电路来处理。
方向:正电荷运动的方向 恒定电流:大小和方向 都不随时间而改变。 交变电流:大小和方向随 时间作周期性变化。
直流DC
交流AC
2. 电流的参考方向 电流的参考方向:预先假定的方向,用箭头表示, 也 称正方向。 正方向 根据所设参考方向进行计算, 如果求出 i >0,则真实方向与参考方向一致 如果求出 i <0,则真实方向与参考方向相反 在电路分析中,电路中标出的电流方向都是参考方向。 算得结果的正负配合参考方向就可确定真实方向,但 不必把参考方向改为真实方向。
二、基尔霍夫电压定律 (Kirchhoff’s voltage law, KVL):