CETP_00.00-L-467_全球实验室加速循环腐蚀试验
一种新型周浸循环腐蚀试验箱的研制
接和试验轴 进行连接 ,减 少传动皮带等
附加装置 ,精 简 了系统 的结构 ,减少 了 源自设 备发生故障的概率 。
溶液加 载系统 :试 验槽采 用圆弧形 结 构 ,通过补 充液槽把溶 液加载到试验 槽 中,补充液槽 内的溶液则 由试验箱外
的大溶液槽 通过耐腐蚀泵 加载 ,大溶液 槽 内的液体 的浓度采用手 动配 比,精密
槽 再 向试验 液槽加装液体 ,直到试验 液槽 中的液 体达到
预定 的液 位 ,液体加 载程序停 止 。P C控制加热 单元 、 L 制 冷单元工作 ,控制箱 内的环境温 度 ,加湿器 喷雾 ,给 试 验箱 内加湿 ,通过干燥 器调节湿度 ,箱体 内试 验环境
达 到预定值 ,红外灯对试 验表面加热 至预定值 ,通过冷
验 中常见 的试 验技术 之一 l,该方法 以试样交替 地在试 8 】
验溶 液浸泡 以及在 空气环境 中干燥 为特点 , 由于周期浸 润试验 模拟 了材 料在大气环境 中干湿交替 的特点 ,可能 是 发展更精 确加 速试验方 法 的基 础 , 因此 ,周期 浸润也
逐步成为一种重要的加速腐蚀试 验方法。
Abs r ct Th pa e i t d c a e t p o al er a e i m rs o c cl C c r os o t st r hi h ta : i S p r n ro u ed n w y e f t n t m e i n y i o r i n e e w e wa s d v l pe . T e e t r a c nt ol e b p o r m d o i c n r l r u o a c l a d ou d o l c a d eeo d h t s e w s o r l d y r g a me l g C o t ol e a t m ti al y n c l c l e t n r c r t e es d t P C T e es e e o d h t t a a by L . h t t r’ S re i bi i y as r a l e h n e a d h e p ri n d t r p a 1 a 1 t w g e t y n a c d n t e x e me t a a e e t
浅析循环腐蚀试验标准GMW 14872—2013的应用
浅析循环腐蚀试验标准GMW 14872—2013的应用作者:***来源:《机电信息》2021年第18期摘要:循環腐蚀试验标准GMW 14872—2013描述了评估零部件和总成件的加速实验室耐腐蚀性测试的方法,试验程序提供了循环条件(盐溶液、各种温度、湿度和周围环境)的组合,以加速金属腐蚀。
该程序可有效评估各种腐蚀机制,如一般腐蚀、电镀腐蚀、缝隙腐蚀等,可单独调整试验曝露/环境条件,以达到任何所需的腐蚀曝露水平。
现针对GMW 14872—2013实施过程,从试验条件设置实施中遇到的难点、复合盐雾在试验过程中应用遇到的问题以及腐蚀片在试验中的应用这3个方面出发进行分析,从而更好地实现测试结果的复现。
关键词:腐蚀片;功能性;外观性0 引言GMW 14872—2013循环腐蚀测试方法包括1%(近似值)的复合盐雾在高温、高湿和高温干燥下的共同应用。
一个试验循环等于24 h,一个测试周期1天完成,测试曝露是根据目标试片质量损失量来描述的,根据标准中提供的产品安装位置以及寿命要求,测试必须按照满足试片质量损失所需循环次数来执行。
它不同于ASTM B117的连续喷雾针对产品耐腐蚀寿命的考察,更贴近测试样品在大自然条件下耐腐蚀寿命的考察模式,作为整车、零部件、总成件的通用标准应用很广泛,因此这个标准的试验应用更值得研究。
本文以底盘件控制臂的测试为例,对试验过程中遇到的3个方面的问题进行简单分析,一个测试周期在环境阶段喷4次盐雾,外观性检查进行6个循环周期,功能性检查进行63个循环周期,腐蚀片的腐蚀量如下:6个测试周期时,腐蚀量为(0.84±0.14)g;63个测试周期时,腐蚀量为(9.47±0.38)g。
1 试验条件设置实施中遇到的问题1.1 喷盐雾后30 min内从100%RH降湿至45%RH一个测试循环由3个测试阶段组成:(1)第一阶段:环境阶段。
温度为(25±3)℃;相对湿度为(45±10)%RH;持续时间约8 h。
GM9540P -加速腐蚀试验
I
ACCELERATED CORROSION TEST
GM9540P 3.1.3 Dryoff Environment. The dryoff environment area shall be maintained with sufficient air circulation to prevent temperaturestratification, and also allow thorough drying of the material. The temperature and humidity conditions are shownin Table 3. TABLE 3 - TEST PARAMETERS
DECEMBER 1997
PAGE 1
954OP
VND.GM
GM=l54ClP-ENGL
I,997
m
=lllClb37=l
llOl,2L32
Lbll
m
I
GENERAL MOTORS ENGINEERING STANDARDS
I
s and Processqs - Procedures
6038-6638 63456945 6957-7557 8178-8778
* These massloss values correspondto the test duration requirements listed in Table 1 above and are applicable to the standard test procedure only. Modifications to the test may or may not attaiu equivalent levels of mass loss.
CETP_00.00-L-467_全球实验室加速循环腐蚀试验资料
C E T P_00.00-L-467_全球实验室加速循环腐蚀试验1.0 INTRODUCTION 介绍1.1 TEST SCOPE 试验范围This standard specifies an accelerated laboratory atmospheric corrosion test. The testingenvironment addressed is similar in effect to that of the salt load/ climatic part of the provingground corrosion test procedure, CETP 00.00-R-343 and yields corresponding results. Theobjective of the test is to allow evaluation of the corrosion resistance of metals in environments where there is a significant influence of chloride ions, mainly as sodium chloride from a marine source or by winter road de-icing salt. The laboratory test provides full exposure to the salt load and humidity environment. It does not attempt to simulate other engraving factors such as mud loads, temperature stresses or wear. It serves as a general purpose atmospheric corrosion test and applies to a variety of materials, coatings, and interactions of materials, both as testspecimens or in designed components. The test can be used as a design verification method in order to (a) develop and qualify new corrosion resistant products, (b) develop new pre-treatments and finishing processes, (c) select materials and, (d) perform quality control of the final product.本标准是关于一项在实验室里加速进行的大气腐蚀试验。
ASTM G1-03-E Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens
Designation:G1–03Standard Practice forPreparing,Cleaning,and Evaluating Corrosion Test Specimens1This standard is issued under thefixed designation G1;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope1.1This practice covers suggested procedures for preparing bare,solid metal specimens for tests,for removing corrosion products after the test has been completed,and for evaluating the corrosion damage that has occurred.Emphasis is placed on procedures related to the evaluation of corrosion by mass loss and pitting measurements.(Warning—In many cases the corrosion product on the reactive metals titanium and zirco-nium is a hard and tightly bonded oxide that defies removal by chemical or ordinary mechanical means.In many such cases, corrosion rates are established by mass gain rather than mass loss.)1.2This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.For specific precautionary statements,see1and7.2.2.Referenced Documents2.1ASTM Standards:A262Practices for Detecting Susceptibility to Intergranu-lar Attack in Austenitic Stainless Steels2D1193Specification for Reagent Water3D1384Test Method for Corrosion Test for Engine Coolants in Glassware4D2776Test Methods for Corrosivity of Water in the Ab-sence of Heat Transfer(Electrical Methods)5G15Terminology Relating to Corrosion and Corrosion Testing6G16Guide for Applying Statistics to Analysis of Corrosion Data6G31Practice for Laboratory Immersion Corrosion Testing of Metals6G33Practice for Recording Data from Atmospheric Cor-rosion Tests of Metallic-Coated Steel Specimens6G46Guide for Examination and Evaluation of Pitting Corrosion6G50Practice for Conducting Atmospheric Corrosion Tests on Metals6G78Guide for Crevice Corrosion Testing of Iron Base and Nickel-Base Stainless Alloys in Seawater and Other Chloride-Containing Aqueous Environments63.Terminology3.1See Terminology G15for terms used in this practice.4.Significance and Use4.1The procedures given are designed to remove corrosion products without significant removal of base metal.This allows an accurate determination of the mass loss of the metal or alloy that occurred during exposure to the corrosive environment.4.2These procedures,in some cases,may apply to metal coatings.However,possible effects from the substrate must be considered.5.Reagents and Materials5.1Purity of Reagents—Reagent grade chemicals shall be used in all tests.Unless otherwise indicated,it is intended that all reagents conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society where such specifications are available.7Other grades may be used, provided it isfirst ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.5.2Purity of Water—Unless otherwise indicated,references to water shall be understood to mean reagent water as defined by Type IV of Specification D1193.1This practice is under the jurisdiction of ASTM Committee G01on Corrosion of Metals and is the direct responsibility of Subcommittee G01.05on Laboratory Corrosion Tests.Current edition approved October1,2003.Published October2003.Originally approved st previous edition approved in1999as G1–90(1999)e1.2Annual Book of ASTM Standards,V ol01.03.3Annual Book of ASTM Standards,V ol11.01.4Annual Book of ASTM Standards,V ol15.05.5Discontinued,replaced by Guide G96.See1990Annual Book of ASTM Standards,V ol03.02.6Annual Book of ASTM Standards,V ol03.02.7Reagent Chemicals,American Chemical Society Specifications,American Chemical Society,Washington,DC.For suggestions on the testing of reagents not listed by the American Chemical Society,see Analar Standards for Laboratory Chemicals,BDH Ltd.,Poole,Dorset,U.K.,and the United States Pharmacopeia and National Formulary,U.S.Pharmacopeial Convention,Inc.(USPC),Rockville, MD.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.6.Methods for Preparing Specimens for Test6.1For laboratory corrosion tests that simulate exposure to service environments,a commercial surface,closely resem-bling the one that would be used in service,will yield the most meaningful results.6.2It is desirable to mark specimens used in corrosion tests with a unique designation during preparation.Several tech-niques may be used depending on the type of specimen and test.6.2.1Stencil or Stamp—Most metallic specimens may be marked by stenciling,that is,imprinting the designation code into the metal surface using hardened steel stencil stamps hit with a hammer.The resulting imprint will be visible even after substantial corrosion has occurred.However,this procedure introduces localized strained regions and the possibility of superficial iron contamination in the marked area.6.2.2Electric engraving by means of a vibratory marking tool may be used when the extent of corrosion damage is known to be small.However,this approach to marking is much more susceptible to having the marks lost as a result of corrosion damage during testing.6.2.3Edge notching is especially applicable when extensive corrosion and accumulation of corrosion products is antici-pated.Long term atmospheric tests and sea water immersion tests on steel alloys are examples where this approach is applicable.It is necessary to develop a code system when using edge notches.6.2.4Drilled holes may also be used to identify specimens when extensive metal loss,accumulation of corrosion products, or heavy scaling is anticipated.Drilled holes may be simpler and less costly than edge notching.A code system must be developed when using drilled holes.Punched holes should not be used as they introduce residual strain.6.2.5When it is undesirable to deform the surface of specimens after preparation procedures,for example,when testing coated surfaces,tags may be used for specimen identi-fication.A metal or plastic wire can be used to attach the tag to the specimen and the specimen identification can be stamped on the tag.It is important to ensure that neither the tag nor the wire will corrode or degrade in the test environment.It is also important to be sure that there are no galvanic interactions between the tag,wire,and specimen.6.3For more searching tests of either the metal or the environment,standard surfacefinishes may be preferred.A suitable procedure might be:6.3.1Degrease in an organic solvent or hot alkaline cleaner. (See also Practice G31.)N OTE1—Hot alkalies and chlorinated solvents may attack some metals. N OTE2—Ultrasonic cleaning may be beneficial in both pre-test and post-test cleaning procedures.6.3.2Pickle in an appropriate solution if oxides or tarnish are present.In some cases the chemical cleaners described in Section6will suffice.N OTE3—Pickling may cause localized corrosion on some materials.6.3.3Abrade with a slurry of an appropriate abrasive or with an abrasive paper(see Practices A262and Test Method D1384).The edges as well as the faces of the specimens should be abraded to remove burrs.6.3.4Rinse thoroughly,hot air dry,and store in desiccator.6.4When specimen preparation changes the metallurgical condition of the metal,other methods should be chosen or the metallurgical condition must be corrected by subsequent treat-ment.For example,shearing a specimen to size will cold work and may possibly fracture the edges.Edges should be ma-chined.6.5The clean,dry specimens should be measured and weighed.Dimensions determined to the third significantfigure and mass determined to thefifth significantfigure are sug-gested.When more significantfigures are available on the measuring instruments,they should be recorded.7.Methods for Cleaning After Testing7.1Corrosion product removal procedures can be divided into three general categories:mechanical,chemical,and elec-trolytic.7.1.1An ideal procedure should remove only corrosion products and not result in removal of any base metal.To determine the mass loss of the base metal when removing corrosion products,replicate uncorroded control specimens should be cleaned by the same procedure being used on the test specimen.By weighing the control specimen before and after cleaning,the extent of metal loss resulting from cleaning can be utilized to correct the corrosion mass loss.N OTE4—It is desirable to scrape samples of corrosion products before using any chemical techniques to remove them.These scrapings can then be subjected to various forms of analyses,including perhaps X-ray diffraction to determine crystal forms as well as chemical analyses to look for specific corrodants,such as chlorides.All of the chemical techniques that are discussed in Section7tend to destroy the corrosion products and thereby lose the information contained in these corrosion products.Care may be required so that uncorroded metal is not removed with the corrosion products.7.1.2The procedure given in7.1.1may not be reliable when heavily corroded specimens are to be cleaned.The application of replicate cleaning procedures to specimens with corroded surfaces will often,even in the absence of corrosion products, result in continuing mass losses.This is because a corroded surface,particularly of a multiphase alloy,is often more susceptible than a freshly machined or polished surface to corrosion by the cleaning procedure.In such cases,the following method of determining the mass loss due to the cleaning procedure is preferred.7.1.2.1The cleaning procedure should be repeated on speci-mens several times.The mass loss should be determined after each cleaning by weighing the specimen.7.1.2.2The mass loss should be graphed as a function of the number of equal cleaning cycles as shown in Fig.1.Two lines will be obtained:AB and BC.The latter will correspond to corrosion of the metal after removal of corrosion products.The mass loss due to corrosion will correspond approximately to point B.7.1.2.3To minimize uncertainty associated with corrosion of the metal by the cleaning method,a method should be chosen to provide the lowest slope(near to horizontal)of lineBC.7.1.3Repeated treatment may be required for complete removal of corrosion products.Removal can often be con-firmed by examination with a low power microscope (for example,73to 303).This is particularly useful with pitted surfaces when corrosion products may accumulate in pits.This repeated treatment may also be necessary because of the requirements of 7.1.2.1.Following the final treatment,the specimens should be thoroughly rinsed and immediately dried.7.1.4All cleaning solutions shall be prepared with water and reagent grade chemicals.7.2Chemical procedures involve immersion of the corro-sion test specimen in a specific solution that is designed to remove the corrosion products with minimal dissolution of any base metal.Several procedures are listed in Table A1.1.The choice of chemical procedure to be used is partly a matter of trial and error to establish the most effective method for a specific metal and type of corrosion product scale.(Warning—These methods may be hazardous to personnel).7.2.1Chemical cleaning is often preceded by light brushing (non metallic bristle)or ultrasonic cleaning of the test speci-men to remove loose,bulky corrosion products.7.2.2Intermittent removal of specimens from the cleaning solution for light brushing or ultrasonic cleaning can often facilitate the removal of tightly adherent corrosion products.7.2.3Chemical cleaning is often followed by light brushing or ultrasonic cleaning in reagent water to remove loose products.7.3Electrolytic cleaning can also be utilized for removal of corrosion products.Several useful methods for corrosion test specimens of iron,cast iron,or steel are given in Table A2.1.7.3.1Electrolytic cleaning should be preceded by brushing or ultrasonic cleaning of the test specimen to remove loose,bulky corrosion products.Brushing or ultrasonic cleaning should also follow the electrolytic cleaning to remove any loose slime or deposits.This will help to minimize any redeposition of metal from reducible corrosion products that would reduce the apparent mass loss.7.4Mechanical procedures can include scraping,scrubbing,brushing,ultrasonic cleaning,mechanical shocking,and im-pact blasting (for example,grit blasting,water-jet blasting,and so forth).These methods are often utilized to remove heavily encrusted corrosion products.Scrubbing with a nonmetallic bristle brush and a mild abrasive-distilled water slurry can also be used to remove corrosion products.7.4.1Vigorous mechanical cleaning may result in the re-moval of some base metal;therefore,care should be exercised.These should be used only when other methods fail to provide adequate removal of corrosion products.As with other meth-ods,correction for metal loss due to the cleaning method is recommended.The mechanical forces used in cleaning should be held as nearly constant as possible.8.Assessment of Corrosion Damage8.1The initial total surface area of the specimen (making corrections for the areas associated with mounting holes)and the mass lost during the test are determined.The average corrosion rate may then be obtained as follows:Corrosion Rate 5~K 3W !/~A 3T 3D !(1)where:K =a constant (see 8.1.2),T =time of exposure in hours,A =area in cm 2,W =mass loss in grams,andD =density in g/cm 3(see Appendix X1).8.1.1Corrosion rates are not necessarily constant with time of exposure.See Practice G 31for further guidance.8.1.2Many different units are used to express corrosion ing the units in 7.1for T,A,W ,and D ,the corrosion rate can be calculated in a variety of units with the following appropriate value of K :Corrosion Rate Units DesiredConstant (K )in CorrosionRate Equation mils per year (mpy) 3.453106inches per year (ipy) 3.453103inches per month (ipm) 2.873102millimetres per year (mm/y)8.763104micrometres per year (um/y)8.763107picometres per second (pm/s)2.783106grams per square meter per hour (g/m 2·h)1.0031043D milligrams per square decimeter per day (mdd)2.4031063D micrograms per square meter per second (µg/m 2·s)2.7831063DN OTE 5—If desired,these constants may also be used to convert corrosion rates from one set of units to another.To convert a corrosion rate in units X to a rate in units Y ,multiply by K Y /K X ;for example:15mpy 5153~2.783106!/~3.453106!pm/s(2)8.1.3In the case of sacrificial alloy coatings for which there is preferential corrosion of a component whose density differs from that of the alloy,it is preferable to use the density of the corroded component (instead of the initial alloy density)for calculating average thickness loss rate by use of Eq 1.This is done as follows:(1)cleaning to remove corrosion products only and determine the mass loss of the corroded component;(2)stripping the remaining coating to determine the mass of the uncorroded component;(3)chemical analysis of the stripping solution to determine the composition of theuncorrodedFIG.1Mass Loss of Corroded Specimens Resulting fromRepetitive CleaningCyclescomponent;(4)performing a mass balance to calculate the composition of the corroded component;(5)using the mass and density of the corroded component to calculate the average thickness loss rate by use of Eq 1.An example of this procedure is given in Appendix X2.The procedure described above gives an average penetration rate of the coating,but the maximum penetration for a multiphase alloy may be larger when the corroded phase is not uniformly distributed across the surface.In such cases,it is generally considered good practice to obtain a cross section through the corroded surface for microscopic examination. This examination will reveal the extent of selective corrosion of particular phases in the coating,and help in understanding the mechanism of attack.8.2Corrosion rates calculated from mass losses can be misleading when deterioration is highly localized,as in pitting or crevice corrosion.If corrosion is in the form of pitting,it may be measured with a depth gage or micrometer calipers with pointed anvils(see Guide G46).Microscopical methods will determine pit depth by focusing from top to bottom of the pit when it is viewed from above(using a calibrated focusing knob)or by examining a section that has been mounted and metallographically polished.The pitting factor is the ratio of the deepest metal penetration to the average metal penetration (as measured by mass loss).N OTE6—See Guide G46for guidance in evaluating depths of pitting. N OTE7—See Guide G78for guidance in evaluating crevice corrosion.8.3Other methods of assessing corrosion damage are:8.3.1Appearance—The degradation of appearance by rust-ing,tarnishing,or oxidation.(See Practice G33.)8.3.2Mechanical Properties—An apparent loss in tensile strength will result if the cross-sectional area of the specimen (measured before exposure to the corrosive environment)is reduced by corrosion.(See Practice G50.)Loss in tensile strength will result if a compositional change,such as dealloy-ing taking place.Loss in tensile strength and elongation will result from localized attack,such as cracking or intergranular corrosion.8.3.3Electrical Properties—Loss in electrical conductivity can be measured when metal loss results from uniform corrosion.(See Test Methods D2776.)8.3.4Microscopical Examination—Dealloying,exfoliation, cracking,or intergranular attack may be detected by metallo-graphic examination of suitably prepared sections.9.Report9.1The report should include the compositions and sizes of specimens,their metallurgical conditions,surface preparations, and cleaning methods as well as measures of corrosion damage,such as corrosion rates(calculated from mass losses), maximum depths of pitting,or losses in mechanical properties.10.Precision and Bias10.1The factors that can produce errors in mass loss measurement include improper balance calibration and stan-dardization.Generally,modern analytical balances can deter-mine mass values to60.2mg with ease and balances are available that can obtain mass values to60.02mg.In general, mass measurements are not the limiting factor.However, inadequate corrosion product removal or overcleaning will affect precision.10.2The determination of specimen area is usually the least precise step in corrosion rate determinations.The precision of calipers and other length measuring devices can vary widely. However,it generally is not necessary to achieve better than 61%for area measurements for corrosion rate purposes. 10.3The exposure time can usually be controlled to better than61%in most laboratory procedures.However,infield exposures,corrosive conditions can vary significantly and the estimation of how long corrosive conditions existed can present significant opportunities for error.Furthermore,corro-sion processes are not necessarily linear with time,so that rate values may not be predictive of the future deterioration,but only are indications of the past exposure.10.4Regression analysis on results,as are shown in Fig.1, can be used to obtain specific information on precision.See Guide G16for more information on statistical analysis. 10.5Bias can result from inadequate corrosion product removal or metal removal caused by overcleaning.The use of repetitive cleaning steps,as shown in Fig.1,can minimize both of these errors.10.5.1Corrosion penetration estimations based on mass loss can seriously underestimate the corrosion penetration caused by localized processes,such as pitting,cracking,crevice corrosion,and so forth.11.Keywords11.1cleaning;corrosion product removal;evaluation;mass loss;metals;preparation;specimensANNEXES(Mandatory Information)A1.CHEMICAL CLEANING PROCEDURESTABLE A1.1CHEMICAL CLEANING PROCEDURES FOR REMOVAL OF CORROSION PRODUCTSDesignation MaterialSolutionTime Temperature RemarksC.1.1Aluminum and Alu-minum Alloys50mL phosphoric acid (H 3PO 4,sp gr 1.69)20g chromium trioxide (CrO 3)Reagent water to make 1000mL 5to 10min90°C to BoilingIf corrosion product films remain,rinse,then follow with nitric acid procedure (C.1.2).C.1.2Nitric acid (HNO 3,sp gr 1.42)1to 5min 20to 25°CRemove extraneous deposits and bulky corrosion products to avoid reactions that may result in excessive removal of base metal.C.2.1Copper and Copper Alloys500mL hydrochloric acid (HCl,sp gr 1.19)Reagent water to make 1000mL 1to 3min 20to 25°C Deaeration of solution with purified nitrogen will minimize base metal removal.C.2.24.9g sodium cyanide (NaCN)Reagent water to make 1000mL 1to 3min20to 25°CRemoves copper sulfide corrosion products that may not be removed by hydrochloric acid treatment (C.2.1).C.2.3100mL sulfuric acid (H 2SO 4,sp gr 1.84)Reagent water to make 1000mL1to 3min 20to 25°CRemove bulky corrosion products before treatment to minimize copper redeposition on specimen surface.C.2.4120mL sulfuric acid (H 2SO 4,sp gr 1.84)30g sodium dichromate (Na 2Cr 2O 7·2H 2O)Reagent water to make 1000mL5to 10s 20to 25°CRemoves redeposited copper resulting from sulfuric acid treatment.C.2.554mL sulfuric acid (H 2SO 4,sp gr 1.84)Reagent water to make 1000mL30to 60min 40to 50°CDeaerate solution with nitrogen.Brushing of test specimens to remove corrosionproducts followed by re-immersion for 3to 4s is recommended.C.3.1Iron and Steel1000mL hydrochloric acid (HCl,sp gr 1.19)20g antimony trioxide (Sb 2O 3)50g stannous chloride (SnCl 2)1to 25min 20to 25°CSolution should be vigorously stirred orspecimen should be brushed.Longer times may be required in certain instances.C.3.250g sodium hydroxide (NaOH)200g granulated zinc or zinc chips Reagent water to make 1000mL 30to 40min 80to 90°CCaution should be exercised in the use of any zinc dust since spontaneous ignition upon exposure to air can occur.C.3.3200g sodium hydroxide (NaOH)20g granulated zinc or zinc chips Reagent water to make 1000mL 30to 40min 80to 90°CCaution should be exercised in the use of any zinc dust since spontaneous ignition upon exposure to air can occur.C.3.4200g diammonium citrate ((NH 4)2HC 6H 5O 7)Reagent water to make 1000mL20min 75to 90°CDepending upon the composition of the corrosion product,attack of base metal may occur.C.3.5500mL hydrochloric acid (HCl,sp gr 1.19)3.5g hexamethylene tetramine Reagent water to make 1000mL 10min 20to 25°CLonger times may be required in certain instances.C.3.6Molten caustic soda (NaOH)with 1.5–2.0%sodium hydride (NaH)1to 20min 370°CFor details refer to Technical Information Bulletin SP29-370,“DuPont Sodium Hydride Descaling Process Operating Instructions.’’C.4.1Lead and Lead Alloys10mL acetic acid (CH 3COOH)Reagent water to make 1000mL5min Boiling ...C.4.250g ammonium acetate (CH 3COONH 4)Reagent water to make 1000mL10min 60to 70°C ...C.4.3250g ammonium acetate (CH 3COONH 4)Reagent water to make 1000mL 5min60to 70°C...C.5.1Magnesium and Mag-nesium Alloys150g chromium trioxide (CrO 3)10g silver chromate (Ag 2CrO 4)Reagent water to make 1000mL 1min BoilingThe silver salt is present to precipitate chloride.C.5.2200g chromium trioxide (CrO 3)10g silver nitrate (AgNO 3)20g barium nitrate (Ba(NO 3)2)Reagent water to make 1000mL1min 20to 25°CThe barium salt is present to precipitate sulfate.C.6.1Nickel and Nickel Alloys150mL hydrochloric acid (HCl,sp gr 1.19)Reagent water to make 1000mL1to 3min 20to 25°C ...C.6.2100mL sulfuric acid (H 2SO 4,sp gr 1.84)Reagent water to make 1000mL1to 3min 20to 25°C ...C.7.1Stainless Steels100mL nitric acid (HNO 3,sp gr 1.42)Reagent water tomake 1000mL20min60°C...Designation Material Solution Time Temperature Remarks C.7.2150g diammonium citrate((NH4)2HC6H5O7)Reagent water to make1000mL10to60min70°C...C.7.3100g citric acid(C6H8O7)50mL sulfuric acid(H2SO4,sp gr1.84)2g inhibitor(diorthotolyl thiourea orquinoline ethyliodide or betanaphtholquinoline)Reagent water to make1000mL5min60°C...C.7.4200g sodium hydroxide(NaOH)30g potassium permanganate(KMnO4)Reagent water to make1000mLfollowed by100g diammonium citrate((NH4)2HC6H5O7)Reagent water to make1000mL5min Boiling...C.7.5100mL nitric acid(HNO3,sp gr1.42)20mL hydrofluoric acid(HF,sp gr1.198–48%)Reagent water to make1000mL5to20min20to25°C...C.7.6200g sodium hydroxide(NaOH)50g zinc powderReagent water to make1000mL 20min Boiling Caution should be exercised in the use ofany zinc dust since spontaneous ignitionupon exposure to air can occur.C.8.1Tin and Tin Alloys150g trisodium phosphate(Na3PO4·12H2O)Reagent water to make1000mL10min Boiling...C.8.250mL hydrochloric acid(HCl,sp gr1.19)Reagent water to make1000mL10min20°C...C.9.1Zinc and Zinc Alloys150mL ammonium hydroxide(NH4OH,sp gr0.90)Reagent water to make1000mLfollowed by5min20to25°C...50g chromium trioxide(CrO3) 10g silver nitrate(AgNO3) Reagent water to make1000mL 15to20s Boiling The silver nitrate should be dissolved in waterand added to the boiling chromic acid toprevent excessive crystallization of silverchromate.The chromic acid must besulfate free to avoid attack of the zinc basemetal.C.9.2100g ammonium chloride(NH4Cl)Reagent water to make1000mL2to5min70°C...C.9.3200g chromium trioxide(CrO3)Reagent water to make1000mL 1min80°C Chloride contamination of the chromic acidfrom corrosion products formed in saltenvironments should be avoided to preventattack of the zinc base metal.C.9.485mL hydriodic acid(HI,sp gr1.5)Reagent water to make1000mL 15s20to25°C Some zinc base metal may be removed.Acontrol specimen(3.1.1)should beemployed.C.9.5100g ammonium persulfate((NH4)2S2O8)Reagent water to make1000mL 5min20to25°C Particularly recommended for galvanizedsteel.C.9.6100g ammonium acetate(CH3COONH4)Reagent water to make1000mL2to5min70°C...A2.ELECTROLYTIC CLEANING PROCEDURESTABLE A2.1ELECTROLYTIC CLEANING PROCEDURES FOR REMOVAL OF CORROSION PRODUCTS Designation Material Solution Time Temperature RemarksE.1.1Iron,Cast Iron,Steel75g sodium hydroxide(NaOH)25g sodium sulfate(Na2SO4)75g sodium carbonate(Na2CO3)Reagent water to make1000mL 20to40min20to25°C Cathodic treatment with100to200A/m2cur-rent density.Use carbon,platinum or stainless steel anode.Designation MaterialSolutionTimeTemperature RemarksE.1.228mL sulfuric acid (H 2SO 4,sp gr 1.84)0.5g inhibitor (diorthotolyl thiourea or quinoline ethyliodide or betanaphthol quinoline)Reagent water to make 1000mL 3min75°CCathodic treatment with 2000A/m 2current e carbon,platinum or lead anode.E.1.3100g diammonium citrate ((NH 4)2HC 6H 5O 7)Reagent water to make 1000mL5min 20to 25°CCathodic treatment with 100A/m 2current e carbon or platinum anode.E.2.1Lead and Lead Alloys 28mL sulfuric acid (H 2SO 4,sp gr 1.84)0.5g inhibitor (diorthotolyl thiourea or quinoline ethyliodide or betanaphthol quinoline)Reagent water to make 1000mL 3min 75°CCathodic treatment with 2000A/m 2current e carbon,platinum or lead anode.E.3.1Copper and Copper Alloys7.5g potassium chloride (KCl)Reagent water to make 1000mL1to 320to 25°C Cathodic treatment with 100A/m 2current e carbon or platinum anode.E.4.1Zinc and Cadmium50g dibasic sodium phosphate (Na 2HPO 4)Reagent water to make 1000mL5min70°CCathodic treatment with 110A/m 2current den-sity.Specimen must be energized prior to e carbon,platinum or stainless steel anode.E.4.2100g sodium hydroxide (NaOH)Reagent water to make 1000mL1to 2min 20to 25°CCathodic treatment with 100A/m 2current den-sity.Specimen must be energized prior to e carbon,platinum or stainless steel anode.E.5.1General (excluding Alu-minum,Magnesium and Tin Alloys)20g sodium hydroxide (NaOH)Reagent water to make 1000mL5to 10min 20to 25°CCathodic treatment with 300A/m 2current den-sity.A S31600stainless steel anode may be used.APPENDIXES(Nonmandatory Information)X1.DENSITIES FOR A V ARIETY OF METALS AND ALLOYSTABLE X1.1DENSITIES FOR A VARIETY OF METALS AND ALLOYSN OTE 1—All UNS numbers that include the letter X indicate a series of numbers under one category.N OTE 2—An asterisk indicates that a UNS number not available.Aluminum AlloysUNS Number AlloyDensity g/cm 3A911001100 2.71A911991199 2.70A920242024 2.78A922192219 2.84A930033003 2.73A930043004 2.72A950055005 2.70A950505050 2.69A950525052 2.68A950835083 2.66A950865086 2.66A951545154 2.66A953575357 2.69A954545454 2.69A954565456 2.66A960616061 2.70*6062 2.70A960706070 2.71A961016101 2.70A970757075 2.81A970797079 2.75A971787178 2.83Stainless Steels S20100Type 2017.94S20200Type 2027.94S30200Type 3027.94S30400Type3047.94。
ASCOTT产品手册IP系列 中文版
示盐液浓度。盐水溶液根据需要自动成成,储液槽可以适合诸
ACC114 – SIM 连接
多型号试验箱使用。
在箱体控制系统中添加了SIM读卡器。用户可以将SIM信 息置入读卡器,通过控制面板进行编程,通过SIM读卡 器,试验箱会将预设的储存管理信息发送给用户指定的 电话号码。
ACC120 – 软件
所有后缀为iP的试验箱都能够经RJ45(以太网)端口连接到 本地局域网(LAN)。如果ACC120软件安装在一台合适的 计算机连接到有线或无线局域网,那么就可以实现计算机和
* 触摸屏操作控制界面 * 一键控制的气动门 * 干式密封圈防止弄湿操作员衣物 * 低前沿利于放样取样 * 落地式盐雾箱配有带脚轮易于移动 的大容量储液箱 * 校准证书
* 箱盖颜色可选 * 定制样品架 * 内部观察视窗 * 耗材备件包 * 盐液喷雾器由透明耐磨的丙烯酸塑 料制成 * 测试完成后箱盖打开前作自动盐 雾吹扫
2
出众的 箱体设计
多年来ASCOTT一直引领试验 箱设计的前沿,我们的产品 综合体现了创新及技术优势 专业致力于制造和控制耐腐 蚀气候环境。新材料和表面 涂层的不断开发,加上用户
期望值的提升,使得目前的测 试要求越发严格。选择ASCOTT 试验箱,用我们的专业经验确 保您的测试符合标准、具备精 确性与重复性。
颜色
9款标准颜色供选择
供电
Standard 盐雾试验箱 Premium 盐雾试验箱 CCT 循环腐蚀试验箱
1 phase 1 phase
-
1 phase 1 phase 3 phase
1 phase 1 phase 3 phase
电压(VAC)和频率(Hz)依照城市区域用电来安装
1 phase 3 phase 3 phase
循环腐蚀试验标准(一)
循环腐蚀试验标准(一)循环腐蚀试验标准一、试验目的循环腐蚀试验旨在模拟实际使用条件下材料或设备在多次疲劳循环下的腐蚀情况,以判断其耐腐蚀性。
二、试验方法试验一般采用盐雾循环腐蚀试验、湿热循环腐蚀试验和干湿交替循环腐蚀试验等方法。
1. 盐雾循环腐蚀试验试验样品放入盐雾试验箱中,循环喷雾高浓度氯离子溶液。
试验周期和具体要求根据不同材料以及使用环境而定。
2. 湿热循环腐蚀试验试验样品放入恒温恒湿试验箱中,采用高温高湿环境循环,具体试验条件根据不同材料以及使用环境而定。
3. 干湿交替循环腐蚀试验试验样品放入恒温干湿交替试验箱中,在干湿交替的环境下进行试验,具体试验条件根据不同材料以及使用环境而定。
三、试验评估根据试验结果,可以进行材料或设备的耐腐蚀性评估。
评估标准一般采用国际标准或行业标准,如ASTM、ISO等。
四、试验注意事项1.试验时应按照试验标准的具体要求进行操作。
2.样品准备应注意防止污染、氧化、划痕等现象。
3.试验过程中需定期检查、记录数据。
4.试验结束后需对样品进行检查、评估并做好保存工作。
五、试验应用循环腐蚀试验是评价材料或设备在实际使用环境下的腐蚀性能的重要方法,广泛应用于航空、军工、汽车、电子、建筑等领域。
六、试验设备和设施循环腐蚀试验需要使用一定的试验设备和设施,例如盐雾试验箱、恒温恒湿试验箱、干湿交替试验箱等。
这些设备和设施必须具有准确的控温、控湿、控制系统等功能,以便准确模拟不同的环境条件,从而获得准确的试验结果。
七、试验数据分析试验结束后,需要对试验结果进行数据分析。
一般采用腐蚀速率、腐蚀程度、腐蚀形态、腐蚀产物、腐蚀机理等参数来评价材料或设备的耐腐蚀性。
通过数据分析,可以评估材料或设备在实际使用环境下的腐蚀性能,并提出改进意见和建议。
八、试验前准备工作为了确保试验的准确性和可靠性,试验前需要做好充分的准备工作,包括试验设计、试验样品的选择和制备、试验设备和设施的校验和维护、试验环境的准备等。
汽车零部件及材料实验室循环腐蚀试验方法编制说明
《汽车零部件及材料实验室循环腐蚀试验方法》编制说明(标准征求意见稿)A. 工作简况1. 任务来源本标准依据中国汽车工程学会2015年10月16日印发中汽学函[2015]76号《中国汽车工程学会技术标准起草任务书》,任务书编号2015-1制定,标准名称《汽车零部件及材料实验室循环腐蚀试验方法》。
本标准主要完成单位:中国第一汽车股份有限公司技术中心,美国Q-Lab 公司中国代表处,重庆长安汽车股份有限公司等。
2. 主要工作过程2.12015年7月由中国第一汽车股份有限公司技术中心向中国汽车工程学会(以下简称中汽学会)提出制定《汽车零部件及材料实验室循环腐蚀试验方法》标准的申请,当年8月成立了标准工作组,提出规划并进行分工。
2.2工作组于2015年9月召开标准讨论会,确认撰写大纲和章节目录。
会后组织实验室循环腐蚀试验与户外腐蚀对比试验,并对对比试验工作进行分工,确定样品提供单位、实验室循环腐蚀试验单位和户外腐蚀测试试验单位。
2.3先后有10家主机厂的参与单位,根据汽车生产的实际工艺提供了试验样品。
试验一共收到21种试验样品,其中有效试验样品19种(样板信息见表10)。
这19种试验样品经过对分层膜厚和总厚度的测试和记录,筛选外观合格的最终的样板数量是4257片。
样品准备的截止时间是2017年2月。
2.4经本标准的主要起草单位人员,分别是王纳新、王振尧、孙杏蕾、瞿华盛和张恒。
在各个参加单位准备样品期间,讨论通过了本标准的试验方案和实施路线。
首先,确定本标准的试验分两部分:几种实验室的循环腐蚀试验方法和验证实验室试验的户外腐蚀试验。
其中,户外腐蚀试验分为两类,一类是户外加速腐蚀试验,一类是户外自然腐蚀试验。
其次,通过比对试验和筛选,主要起草人员讨论决定:(1)户外加速腐蚀试验分别在2个不同的试验场进行,一个是中国船舶重工集团公司第七二五研究所厦门分部的试验场,在厦门海边,属于自然加速腐蚀,总的试验时间是2年;另一个是海南热带汽车试验有限公司的试验场,在海南琼海,人工喷洒盐水,属于人工加速腐蚀,总的试验时间也是2年。
ASCOTT CCT循环腐蚀中文(最终)
图示:CC1000xp
往安装在储水槽下部的鼓泡装置导入压缩空气,使盐水储槽里的盐水充分溶解。压缩空气的压力可调。
F
(注:压缩空气气源由用户自备)
盐水排液泵
ACC20
当实验室排水不是很畅时,该装置配给了一套盐水排液泵和储水箱。当CCT试验箱排水不畅时,排液泵就会
F
启动,将费盐水排出水平10米或垂直3米之外的场所。
水离子交换柱
ACC90
与附件ACC080配合使用,产生制冷或除湿的空气,由一根绝缘的管道输送至试验箱,这样可以降低箱体内
F
温度和湿度。
盐水/盐渣清洗器
ACC92 †
ACC92
数据检测与记录器
单通道、记录纸型 双通道、记录纸型
ACC08/1 ACC08/2
双通道、无纸记录型 ACC40/2
ACC40/2
无纸记录仪软件 手持式PH计
F
以电池供电,全程记录箱体内温度(°C) 变化的全过程。数据也可以通过软件导入电脑进行分析。
ACC42
由一个喷水装置组成,自动清洗CCT试验箱腔体内壁,清洗时间可以由用户设定可调。这个功能也是汽车行业标准 Renault D17 2028(ECC-1)的需要。为实现这一功能,CCT试验箱需要配备一个可以提供压力稳定、水质优良及温度 始终的水源。
盐水水平喷射 ACC44 SO2注入试验 ACC46 多种盐液喷雾 ACC86
WSS-M1P85-B
电镀,电解锌,5微米,薄膜钝化 WSS-M1P85-B1电镀,电解锌,8微米,薄膜钝化 WSS-M1P85-B2电镀,电解锌,8微米,厚膜钝化 WSS-M1P85-B3电镀,电解锌,8微米,薄膜钝化,密封 WSS-M1P85-B4电镀,电解锌,8微米,厚膜钝化,密封 WSS-M1P85-B51.范围以上规格规定了铁零件上钝化,电解镀锌涂层的性能要求(冲压件,锻件,铸件,等。
),以及无摩擦控制要求的螺纹紧固件上的此类性能要求。
2.应用这些规格最初发表是为了规定电解镀锌涂层的性能要求,需要在铁零件表面进行防腐处理和/或其他装饰性外观处理。
零件可能进行挂镀或滚镀,对镀液化学成分没有规定。
对镀锌零件进行辅助性钝化处理(三价铬或无铬),以便推迟产品上白锈的形成。
薄膜钝化会保留镀锌件上的银色,或者出现一点蓝色。
厚膜钝化会让镀锌件出现彩虹色或者多种颜色的外观。
使用密封处理可以延长镀锌件的防腐期限。
这些密封剂可以是有机的,也可以是无机的,又或者是有机成分和无机成分的混合物。
无机密封剂通常耐热,防止因为机动流体导致的退化的出现,因此更优于有机密封剂。
WSS-M1P85-B1 适用于非可视紧固件。
WSS-M1P85-B2 和–B3 适用于非可视内饰件,或者那些随后将要进行涂漆的零件。
WSS-M1P85-B4和-B5 适用于非可视外饰件或非可视发动机舱件。
3.要求3.0生产材料的标准要求材料供应商和零件生产商需遵守公司对生产材料的相关法规(WSS-M99P1111-A)。
3.1厚度(ASTM B 659/ASTM B 487)WSS-M1P85-B1 5-11微米WSS-M1P85-B2/B3/B4/B5 8-14微米所有重要表面(如4.1所述)上的电镀锌层厚度满足上述要求,除非在工程图纸上有另外说明。
若出现争议,厚度测量判定办法根据ASTM B 487进行金相切片法。
钝化和密封层不接受测量,但是需要满足外观和实验室加速腐蚀的相关规定和要求。
循环腐蚀试验箱操作规程
1、设备功能及参数:1.1、设备功能:Corrosion循环腐蚀试验箱可运行包括时间、温度、湿度在内的测试条件都可以通过界面设置的下述四种测试循环:干燥循环、盐雾循环、100%湿度循环、相对湿度。
盐雾喷射实验:一种耐腐蚀测试方案是通过一个在测试试验箱顶部的喷嘴喷出来的水雾,箱内的盐雾散布结构可以将盐雾平均地分配到整个测试区域内。
根据箱体的容积,箱内需安装多个喷嘴,废液通过仪器底部的排水装置被收集起来,储存在测试实验箱底部,然后排出到外面。
满足高要求的实验室加速腐蚀试验此类试验:包括ASTM,DIN,IEC,CCT1,CCT2,CCT3,CCT4,VDA621-415,ISO14993,SAEJ2334等汽车厂家标准:GM9540P/GMW14872通用汽车;PVW-1200,1209,1210大众汽车;CETP00.00-L-467,福特汽车;STD423-0014/VCS1027,149,沃尔沃汽车;1.2、设备参数:●喷雾模式箱体温度范围:10~75℃盐雾收集量:0.5ml~5ml(连续可调)空气饱和温度范围:RT+10 ~+70℃●冷凝模式温度范围:40~50℃湿度范围:95%~ 100%(相对湿度)●干燥模式温度范围:RT~+70℃(可调)湿度范围:10%RH~50%RH,●喷雾方式该喷嘴为美国进口标准产品,便于后期维护,喷嘴为锥形喷雾范围,确保样品能被溶液均匀喷洒。
温度分辨率为:0.1℃,温度波动度:±0.5℃,温度偏差:±2℃,湿度偏差:±3%RH,温度均度:≥湿度均匀度:≥5%RH内部尺寸(mm):1200*920*900mm,外部尺寸(mm):2050*1230*2150mm设备型号:GRS-1000实验室作业文件文件编号实施日期2、操作流程: 面板界面介绍操作图片作业说明2.1、主界面主界面显示包括监视画面、操作设定、定值设定、程式设定、曲线显示五部分2.2监视画面:调出步骤:点击主画面的监视画面即可得左图2,点击下面操作栏中的详细即可得图3。
GMW14872(正文部分)汇编
GM 1ScopeNote:Nothing in the standard supersedes applicable laws and regulations unless specific ex 除了已获得具体豁免的,否则这个标准内容不能替代适用的法律法规。
Note:In the event of confilict between the English and domestic language ,the Enlish langu 当英文与国内语言相冲突的时候,以英文为准。
1.1Purpose.1.2 Foreword.1.3 Applicability.WORLDWIDE ENGINEERING STANDARDS TEST PROCEDURE MATERIALS 全球工程标准试验程序GMW1487This procedure describes an accelerated laboratory test method to evaluate assembliprocedure provides a combination of cyclic conditions(salt solution,various temperatures,h environment) to accelerate metallic corrosion. the procedure is effective for evaluating a mechanisms, such as general,galvanic,crevice,etc. The test exposure/conditions can be indi achieve any desired level of corrosion exposure.这个程序描述了评估部件和组件的加速实验室测试方法。
这个实验提供了一个循环条件的组合(境)来加速金属腐蚀。
青岛海洋所研发出环氧内壁环保涂料
1 表 工 资 2 0 第期 面 程 讯・0 年 5 6{ 1
j
}
}
技 术 部 技 术 人 员 与车 架 一 线 技 术 、 施 工 人 员 和 操作 者 化学冷却工艺 ,采用有 限元 方法模拟 了螺纹钢冷却过
程 中的温度场 变化。结果表 明,采用两段式冷却 ,前 M冷却 ,保证 氧化皮 的质 续 5 月 产 销 过 万 ,而 快 速 高 效 确 保 车 架 总 成 的 电泳 段采 用冷速较 慢的化学 剂F 个 质量成 为一道 必须攻克 的质量和效率难题。对此 ,卡 量 ;后段强穿水冷 ,满足力学性能的要求 ,可以实现 车 股份 技 术 部 重 点 立 项 并 在 查 阅 国 外相 关 资料 的基 础 提高螺纹钢综合性能的 目标。 ( 毕伟 刘言 )
皮/ 基体 界面也形成 一层较厚 的F 。 ,提高 了氧化 eO 层 皮与基体 之间的结合 力。电化学 阻抗评价结果表 明, 化学冷 却螺纹钢在 混凝土 中的耐蚀性也明显好于水冷
螺纹钢 。在一年 多的浸泡加速腐蚀 实验 中,化学冷却 螺纹钢 的腐蚀 速率仅 是水冷螺纹钢 的12 。为了制定 /0
输水管道内壁的防护。
热轧螺纹钢表面氧化皮主要形成于终轧后 的冷却
过程 ,氧化温度 、氧化 时间、供氧程度及冷却速度是
影 响 其 组 成 和 结 构 的 主 要 因பைடு நூலகம்素 。 氧 化 皮 由 F O、 e
中 国重 汽 卡 车 股 份 攻 克 “ 架 阴 极 电 车 泳 涂装 电极抑 菌 " 难题
上 ,结合 中国重汽正在使用 的各 条电泳线 的技术特点 和 工 艺思路 ,综合 采 用 “ 过滤 杀菌 、阴极 金属 防 水
cct循环腐蚀试验标准
cct循环腐蚀试验标准摘要:一、背景介绍二、CCT循环腐蚀试验标准概述1.试验目的2.试验方法3.试验设备4.试验指标三、CCT循环腐蚀试验过程1.试验前的准备2.试验步骤1) 溶液配制2) 试样处理3) 试验操作3.试验中的注意事项四、CCT循环腐蚀试验结果分析与评价1.试验数据的处理2.腐蚀速率的计算3.腐蚀程度的评价五、CCT循环腐蚀试验的应用与意义1.在材料研究中的应用2.在工程领域的应用3.对新产品研发的指导意义六、总结与展望正文:一、背景介绍腐蚀是材料在环境作用下引起性能下降的现象。
为了评估材料的耐腐蚀性能,研究人员采用了各种腐蚀试验方法。
其中,CCT(Cyclic Corrosion Test)循环腐蚀试验已成为一种广泛应用于材料腐蚀研究领域的重要试验方法。
二、CCT循环腐蚀试验标准概述1.试验目的CCT循环腐蚀试验的主要目的是评估材料在特定环境下的耐腐蚀性能,以指导材料的选择、设计和应用。
通过模拟实际工况环境,试验可以反映材料在不同腐蚀阶段的性能变化。
2.试验方法CCT循环腐蚀试验采用周期性变化的环境条件,如温度、湿度、气体氛围等,使材料在不同的腐蚀环境下交替暴露。
试验过程中,通过观察材料的表面变化、重量损失、腐蚀深度等指标,评估材料的耐腐蚀性能。
3.试验设备CCT循环腐蚀试验设备通常包括试验槽、溶液供应系统、温度控制系统、气体供应系统等。
试验槽用于容纳不同腐蚀溶液,溶液供应系统用于调节溶液的浓度、温度等参数,温度控制系统用于保持试验温度稳定,气体供应系统用于模拟实际工况的气体环境。
4.试验指标CCT循环腐蚀试验的主要指标包括:腐蚀速率、腐蚀深度、表面形貌等。
通过试验数据的分析,可以评价材料的耐腐蚀性能。
三、CCT循环腐蚀试验过程1.试验前的准备在进行CCT循环腐蚀试验前,需要进行试验方案设计、设备准备、试样准备等工作。
其中,试验方案设计需要考虑试验条件(如温度、溶液类型等)、试验周期、试验指标等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.0 INTRODUCTION 介绍1.1 TEST SCOPE 试验范围This standard specifies an accelerated laboratory atmospheric corrosion test. The testingenvironment addressed is similar in effect to that of the salt load/ climatic part of the proving ground corrosion test procedure, CETP 00.00-R-343 and yields corresponding results. Theobjective of the test is to allow evaluation of the corrosion resistance of metals in environments where there is a significant influence of chloride ions, mainly as sodium chloride from a marine source or by winter road de-icing salt. The laboratory test provides full exposure to the salt load and humidity environment. It does not attempt to simulate other engraving factors such as mud loads, temperature stresses or wear. It serves as a general purpose atmospheric corrosion test and applies to a variety of materials, coatings, and interactions of materials, both as testspecimens or in designed components. The test can be used as a design verification method in order to (a) develop and qualify new corrosion resistant products, (b) develop new pre-treatments and finishing processes, (c) select materials and, (d) perform quality control of the final product.本标准是关于一项在实验室里加速进行的大气腐蚀试验。
本文所述的试验环境类似于《试验场腐蚀试验程序CETP00.00-R-343》中的盐负荷/环境影响部分,得出相应的结果。
试验目的在于评估金属在富含氯化物的环境中(主要是海水中的盐或冬天用于融雪的盐)的抗腐蚀性。
该实验室试验主要是将试验件完全暴露在湿润的盐负荷环境中,而非模拟其他摩擦因素如泥负荷、温度压力或磨损。
该试验主要作为一项大气腐蚀试验,适用于各种各样的材料、涂层、试样或设计零部件材料的相互作用。
该试验可作为一种验证设计的方法,用于(a)开发并验证新的抗腐蚀产品;(b)开发新的预处理和表面处理工艺;(c)选择材料;(d)对最终产品的质量控制。
The standard specifies controlled conditions for equipment and procedures to allow the test to be performed with a high degree of repeatability and reproducibility. It is designed to besuitable to run in various climate chambers, either as a fully automated procedure or withpartial manual operations.本标准说明了设备和程序的受控条件,让实验具有高度的重复性和再现性。
本标准适用于多种环境试验箱,包括全自动试验或部分手动操作的试验。
1.2 SUMMARY OF TEST CONTENT 试验内容摘要The workday test procedure consists of: 工作日的试验程序由以下几个方面组成:• A 6 h wet phase at room temperature. with intermittent exposure to salt solution (0.5% NaCl).• A 2.5 h transition phase with drying under climate control.• A 15.5 h phase with constant temperature and humidity (50︒C, 70% RH).•室温下6小时的加湿阶段,间歇曝露到0.5%的氯化钠溶液中• 2.5小时的过渡阶段,通过环境控制进行烘干•15.5小时的恒温恒湿阶段(50︒C, 70% RH)After repeating this procedure Mon-Fri a 48 h weekend phase under continued constant climate control is added.从周一到周五重复该试验程序后,在周末加入持续恒定环境控,进行48小时的试验。
1.3 COMMONALITY 共通性This is a CONTROL TEST and can be used to qualify components throughout the world. The test may be conducted at any location having the necessary equipment and facilities.Proposed revisions to this procedure must be submitted per FAP03-179.这是一项可验证世界上所有的零部件的控制试验,可在任何地方进行,只要具备所需的设备仪器。
对本试验程序的修改建议必须按FAP03-179提交。
2.0 INSTRUMENTATION 仪器The following elements are usually required to conduct the test procedure:进行试验程序一般需要以下仪器:2.1 Compressed, clean air of 4 - 6 bars for cleaning salt solution from spray nozzles, as a source forthe renewal of chamber air and for humidification, supplied by spray humidifiers.2.1 4-6 bar的干净的压缩空气,用于清理喷嘴上的盐溶液、箱内换气和喷雾加湿器进行加湿。
2.2 A low conductivity water supply (20 μS max) for humidification or evaporative sprayhumidifiers and for the preparation of salt solutions.2.2 一根低导电率的供水管(最大20 μS),用于加湿或喷雾加湿器以及准备盐溶液。
2.3 A tank for preparation and storage of salt solution or, alternatively, a system for direct on-linemixing of water and saturated NaCl solution to the actual concentration (0.5 ± 0.05% byweight)2.3 一个用于准备和存储盐溶液的水槽,或者一套直接在线按实际浓度(0.5 ± 0.05%,按重量)混合水和饱和氯化钠溶液的系统。
2.4 A conductivity meter with built-in temperature compensation for preparation and control of the0.5% NaCl salt solution (conductivity: 8.3 mS/cm + 0.80 at 20︒C). A 0.50% by weight NaClsolution is used as a calibration standard at each measurement.2.4 一个带内置温度补偿的电导仪,用于准备和控制0.5%的氯化钠盐溶液(温度为20︒C时的导电性:8.3 mS/cm + 0.80)。
一份按重量为0.50%的氯化钠溶液,作为每次测量时的校正标准。
2.5 A high quality device for independent control of temperature and relative humidity shall beaccessible. This instrument shall on a stipulated regular interval (Ref 5.4) be used forindependent monitoring and calibration of the conditions in the very test plane of the exposure chamber. The total measurement error must not exceed 0.1︒C.2.5 一套高质量的设备,用于独立控制温度和相对湿度。
该设备按照规定的时间间隔(参考5.4),独立监控和校正试验箱李的试验平面上的各项条件,测量总误差不超过0.1︒C。
2.6 Racks of inert material for support and aligned fixation of test specimens must not hamper afree air-flow around the test objects, nor collect standing wetness. The test objects in a rackmust not screen one another from the salt solution downfall and they should be exposed with the stipulated exposure angle to the spray (15- 20 degrees inclination from vertical).2.6 由惰性材料制成的夹具,用于支撑、排列和固定试样,但不得妨碍试样周围的空气流通,不得累积水分。