几何证明题(添加辅助线试题)

合集下载

全等三角形证明题辅助线专题--截长补短和倍长中线

全等三角形证明题辅助线专题--截长补短和倍长中线

全等三角形证明题辅助线专题--截长补短和倍长中线一、截长补短1.如图所示,AC∥BD,EA、EB分别平分∠CAB和∠DBA,点E在线段CD上,求证:AB=AC+BD.2.如图,在四边形ABCD中,AD=CD,BD平分∠ABC,DE⊥AB于点E,求证:AE+BC=BE.3.如图,△ABC中,∠CAB=∠CBA=45∘,点E为BC的中点,CN⊥AE交AB于点N,连接EN.求证AE=CN+EN.4.如图,△ABC的∠B和∠C的平分线BD,CE相交于点F,∠A=60°,(1)求∠BFC的度数.(2)求证:BC=BE+CD.5.如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:第2页,共28页BC=AB+CE.6.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?2(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E,F分别是边BC,CD延长线上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?若成立,请证明;2若不成立,请写出它们之间的数量关系,并证明.7.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF = 60°.探究图中线段BE,EF,FD之间的数量关系.8.如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:OE=OD;(3)猜测AE,CD,AC三者的数量关系,并证明.第4页,共28页9.如图在△ABC中,∠ABC=60°,AC=2AB,AD平分∠BAC交BC于点D,延长DB点F,使BF=BD,连接AF.(1)求证:AF=CD;(2)若CE平分∠ACB交AB于点E,试猜想AC、AF、AE三条线段之间的数量关系,并证明你猜想的结论.二、倍长中线10.如图,在△ABC和△DEF中,AB=DE,AC=DF,AM和DN分别是中线,且AM=DN.求证:△ABC≌△DEF.11.(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图①,△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是______.A.SSS B.SAS C.AAS D.HLⅡ.由“三角形的三边关系”可求得AD的取值范围是______.解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)【初步运用】如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.12.已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BC交AC于F,求证:AF=EF.第6页,共28页13.如图,在△ABC中,AD是中线,∠BAC=∠BCA,点E在BC的延长线上,CE=AB,连接AE.求证:AE=2AD.14.如图,Rt△ABC中,∠ABC=90°(1)如图1,若BD为高线,AB=4,BC=3,AC=5,求BD的长(2)如图2,若BD为中线,求证:BD=1AC215.如图,在五边形ABCDE中,∠E=90O,BC=DE,,连接AC,AD,且AB=AD,AC⊥BC.(1)求证:AC=AE(2)如图,若∠ABC=∠CAD,AF为BE边上的中线,求证:AF⊥CD;(3)如图,在(2)的条件下,AE=8,DE=5,则五边形ABCDE的面积为_______。

全等三角形常见五种辅助线添法专训(学生版)

全等三角形常见五种辅助线添法专训(学生版)

全等三角形常见五种辅助线添法专训【目录】辅助线添法一 倍长中线法辅助线添法二 截长补短法辅助线添法三 旋转法辅助线添法四 作平行线法辅助线添法五 作垂线法【经典例题一倍长中线法】【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.【常见模型】1(2023春·吉林·八年级校考阶段练习)【阅读理解】数学兴趣小组活动时,老师提出如下问题:如图1,在△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明提出了如下解决方法,延长线段AD至点E,使DE=AD,连接BE.请根据小明的方法回答下列问题.(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.HL(2)探究得出AD的取值范围.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【问题解决】(3)如图2,在△ABC中,CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【变式训练】1(2022秋·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≅△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≅△CAD用到的判定定理是:(用字母表示);(2)AD的取值范围是;(3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在△ABC中,AD为BC边上的中线,且AD平分∠BAC,求证:AB= AC.2(2023·江苏·八年级假期作业)(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.3(2023·江苏·八年级假期作业)【观察发现】如图①,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明的解法如下:延长AD 到点E ,使DE =AD ,连接CE .在△ABD 与△ECD 中BD =DC∠ADB =∠EDCAD =DE∴△ABD ≅△ECD (SAS )∴AB =.又∵在△AEC 中EC -AC <AE <EC +AC ,而AB =EC =7,AC =5,∴<AE <.又∵AE =2AD .∴<AD <.【探索应用】如图②,AB ∥CD ,AB =25,CD =8,点E 为BC 的中点,∠DFE =∠BAE ,求DF 的长为.(直接写答案)【应用拓展】如图③,∠BAC =60°,∠CDE =120°,AB =AC ,DC =DE ,连接BE ,P 为BE 的中点,求证:AP ⊥DP .【经典例题二截长补短法】【模型分析】截长补短的方法适用于求证线段的和差倍分关系.截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等).【模型图示】(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段.例:如图,求证BE+DC=AD方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE (2)补短:将短线段延长,证与长线段相等例:如图,求证BE+DC=AD方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE1(2023·江苏·八年级假期作业)把两个全等的直角三角形的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,∠MDN两边分别交AC、BC于点M、N,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)【变式训练】1(2023·江苏·八年级假期作业)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=6,CE=4,求AC的长.2(2023·江苏·八年级假期作业)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为△ABC的角平分线时,线段AB,AC,CD之间又有怎样的数量关系?不需要说明理由,请直接写出你的猜想.(2)如图③,当∠ACB≠90°,AD为△ABC的外角平分线时,线段AB,AC,CD之间又有怎样的数量关系?请写出你的猜想,并对你的猜想进行说明.3(2023·江苏·八年级假期作业)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠EAF=12∠BAD.(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.【经典例题三旋转法】【模型分析】旋转:将包含一条短边的图形旋转,使两短边构成一条边,证与长边相等.注:旋转需要特定条件(两个图形的短边共线),该方法常在半角模型中使用.【模型图示】例:如图,已知AB=AC,∠ABM=∠CAN=90°,求证BM+CN=MN方法:旋转△ABM至△ACF处,证NE=MN1(2022秋·湖北孝感·八年级统考期中)已知:△ABC≌△DEC,∠ACB=90°,∠B=32°.(1)如图1当点D在AB上,∠ACD.(2)如图2猜想△BDC与△ACE的面积有何关系?请说明理由.(温馨提示:两三角形可以看成是等底的)【变式训练】1(2023春·全国·八年级专题练习)(1)如图①,在正方形ABCD中,E、F分别是BC、DC上的点,且∠EAF=45°,连接EF,探究BE、DF、EF之间的数量关系,并说明理由;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、DC上的点,且∠EAF= 1∠BAD,此时(1)中的结论是否仍然成立?请说明理由.22(2021秋·天津和平·八年级校考期中)在△BAC中,∠BAC=90°,AB=AC,AE是过A的一条直线,BD⊥AE于点D,CE⊥AE于E,(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请予以证明;(3)若直AE绕点A旋转到图(3)的位置,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.3(2021秋·河南周口·八年级统考期末)在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.【经典例题四作平行线法】2(2022秋·江苏·八年级专题练习)如图所示:△ABC是等边三角形,D、E分别是AB及AC延长线上的一点,且BD=CE,连接DE交BC于点M.求让:MD=ME【变式训练】4(2022秋·江苏·八年级专题练习)P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA =CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.5(2022秋·八年级课时练习)读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DB上,且∠BAE=∠CDE,求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.图(1):延长DE到F使得EF=DE图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F图(3):过C点作CF∥AB交DE的延长线于F.6(2023春·全国·七年级专题练习)已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.【经典例题五作垂直法】1(2022秋·湖北武汉·八年级统考期中)我们定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①直接写出∠E与∠A的数量关系;②连接AE,猜想∠BAE与∠CAE的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若已知DE=DC =AD,求证:∠BEC是△ABC中∠BAC的遥望角.【变式训练】1(2022秋·八年级课时练习)如图1,已知四边形ABCD,连接AC,其中AD⊥AC,BC⊥AC,AC =BC,延长CA到点E,使得AE=AD,点F为AB上一点,连接FE、FD,FD交AC于点G.(1)求证:△EAF≌△DAF;(2)如图2,连接CF,若EF=FC,求∠DCF的度数.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.【重难点训练】4(2023·江苏·八年级假期作业)如图,AD为△ABC中BC边上的中线(AB>AC).(1)求证:AB-AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.5(2023·江苏·八年级假期作业)如图1,在△ABC中,若AB=10,BC=8,求AC边上的中线BD的取值范围.(1)小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE,可证得△CED≌△ABD.①请证明△CED≌△ABD;②中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,∠ABM=∠NBC=∠90°,连接MN.请写出BD与MN的数量关系,并说明理由.6(2023春·全国·七年级专题练习)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.7(2023·江苏·八年级假期作业)(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.8(2023·江苏·八年级假期作业)课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC,求证:∠ABC=2∠ACB,小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=,连接DF请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD=AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题(书写证明过程);(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.9(2023春·江苏·八年级专题练习)如图,在锐角ΔABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.10(2023·江苏·八年级假期作业)问题背景:如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.11(2023·全国·九年级专题练习)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.12(2023春·全国·七年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)13(2022秋·八年级课时练习)如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D,(1)求证:DP=DQ;(2)过P作PE⊥AC于E,若BC=4,求DE的长.14(2022秋·全国·八年级专题练习)如图,在△ABC中,AC=BC,AD平分∠CAB.(1)如图1,若ACB=90°,求证:AB=AC+CD;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图3,若∠ACB=100°,求证:AB=AD+CD.15(2023·全国·九年级专题练习)通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.【解决问题】如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF =45°,连接EF ,则EF =BE +DF ,试说明理由.证明:延长CD 到G ,使DG =BE ,在△ABE 与△ADG 中,AB =AD∠B =∠ADG =90°BE =DG∴△ABE ≌△ADG 理由:(SAS )进而证出:△AFE ≌___________,理由:(__________)进而得EF =BE +DF .【变式探究】如图,四边形ABCD 中,AB =AD ,∠BAD =90°点E 、F 分别在边BC 、CD 上,∠EAF =45°.若∠B 、∠D 都不是直角,则当∠B 与∠D 满足等量关系________________时,仍有EF =BE +DF .请证明你的猜想.【拓展延伸】如图,若AB =AD ,∠BAD ≠90°,∠EAF ≠45°,但∠EAF =12∠BAD ,∠B =∠D =90°,连接EF ,请直接写出EF 、BE 、DF 之间的数量关系.。

沪教版 八年级(上)数学 秋季课程 第16讲 添加辅助线

沪教版 八年级(上)数学 秋季课程 第16讲 添加辅助线

当几何题难以证明或者比较繁时,可以考虑添加辅助线,帮助解题,添加辅助线的目的是把分散的条件集中到一个三角形或者两个三角形中,构造出全等三角形或者等腰三角形,运用它们的判定或者性质解决问题,本节主要是对几何证明做一总结和拓展.1、常用的辅助线有:(1)联结两个点得到线段;(2)过某一点做平行线或者垂线;(3)延长某一条线段,构造特殊的三角形.辅助线的添加知识结构模块一:根据图形补形添线知识精讲内容分析【例1】 如图,已知AD ∥BC ,∠B =∠C ,求证:AB =CD .下列添加辅助线不正确的是().A .延长BA 、CD 交于点E ;B .过点A 、D 作AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ; C .联结AC 、BD ;D .过点B 、C 作BE ⊥AD ,CF ⊥AD ,垂足分别为E 、F .【例2】 如图,AB =AD ,BC =CD ,求证:∠ABC =∠ADC .【例3】 如图,五边形ABCDE 中,AB =AE ,BC =DE ,∠ABC =∠AED ,求证:∠BCD =∠EDC .【例4】 如图,AB ∥EF ,∠B +∠C +∠D +∠E =____________.例题解析ABCDB CDAABCDEA BC D EF【例5】 如图,△ABC 中,点D 是BC 的中点,过点D 的直线交AB 于点E ,交AC 的延长 线于点F ,且BE =CF .求证:AE=AF .【例6】 如图,已知△ABC 中,AB =AC ,∠BAC =90°,BD 平分∠ABC 交AC 于点D ,CE ⊥BD 交BD 的延长线于点E ,求证:BD=2CE .【例7】 如图,在△ABC 中,CE 是∠ACB 的平分线,AF ⊥CE 于点F ,求证:∠CAF =∠EAF +∠ABC .【例8】 如图,△ABC 中,点D 、E 分别在BC 、AC 的延长线上,且C 是AE 的中点,∠B +∠D =180°,求证:AB =DE .ABCD EFAB CDE ABCDEABCEF【例9】两个全等的含30°、60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME、MC,试判断△EMC 的形状,并求证.BM【例10】如图,△ABC中,BD、CE相交于点O,∠1=∠2=12∠A,求证:BE=CD.【例11】如图,在直角△ABC和直角△ADE中,∠C=∠E =90°,BC=DE,∠BAE=∠DAC,BC与DE交于点F,求证:BF=DF.【例12】如图,已知在△ABC中,∠C=90°,∠A=45°,AB=a,在线段AC上有动点M,在射线CB上有动点N,且AM=BN,连接MN交AB于点P.(1)当点M在边AC(与点A、C不重合)上,线段PM与线段PN之间有怎样的大小关系?试证明你的结论.(2)过点M作边AB的垂线,垂足为点Q,随着M、N两点的移动,线段PQ的长能确定吗?若能确定,请求出PQ的长;若不能确定,请简要说明理由.【例13】已知:如图,△ABC是等边三角形,BD=DC,∠BDC=120°,∠MDN=60°,求证:23AMN ABCC C∆∆=.ABCPNMABCDEFAB CDMNAB CDEQ12【例14】如图,正方形ABCD中,E、F分别是AD、DC上的点,且∠EBF = 45°,(1)求证:AE +CF = EF;(2)若BF=103,BC=1,求BE的长.AB CDEF常做辅助线:遇到中点,通过倍长中线构造全等的三角形.【例15】 已知,如图△ABC 中,AB =5,AC =3,则中线AD 的取值范围是_______.【例16】 如图,△ABC 中,BD =DC =AC , E 是DC 的中点,求证:AD 平分∠BAE .例题解析知识精讲模块二:倍长中线AB CD AB CD E【例17】 已知:如图,AD 是△ABC 的BC 边上的中线,且BE =AC ,延长BE 交AC 于点F .求证:AF =EF .【例18】 已知:如图,AD 是△ABC 的中线,AB = BD ,点E 在BD 上且BE =ED .求证:AC =2AE .【例19】已知,如图,在△ABC 外作正方形ABDE 和ACGF ,M 是BC 的中点.求证:12AM EF .【例20】 已知:如图,在△ABC 中,BD=DC ,ED ⊥DF . 求证:BE +CF >EF .ABCDE ABCDEMGFABCDEFABCDEF【例21】已知:如图,点M 是△ABC 的边BC 的中点,射线ME 、MF 互相垂直,且分别交AB 、AC 于E 、F 两点,连接EF .(1) 求证:线段BE 、CF 、EF 能够成一个三角形;(2) 若∠A =120°,且BE =CF ,试判断BE 、CF 、EF 所构成三角形的形状,并证明 .ABCM EF遇到与角平分线相关的题目,以角平分线为对称轴进行翻折,构造全等的三角形.【例22】 如图,在三角形ABC 中,O 是AC 边上的一点,过点O 作MN ∥BC ,交∠ACB的平分线于点E ,交∠ACB 的邻补角的平分线于点F ,求证:OE =OF .【例23】 如图,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分ABC ∠,求证:︒=∠+∠180C A . 【例24】 如图,已知AD 是△ABC 的角平分线,∠B =2∠C .求证:AB +BD =AC .例题解析模块三:角平分线翻折知识精讲ABCDEOFACBNMABCD【例25】如图,在四边形ABCD 中,AC 平分∠BAD ,过点C 作CE ⊥AB 于点E ,并且1+2AE AB AD (),求∠ABC +∠ADC 等于多少度?【例26】 如图,已知在△ABC 中,∠B =60°,△ABC 的角平分线AD 、CE 相交于点O , 求证:OE =OD .【例27】 如图所示,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,MF //DA交BA 的延长线于点E ,交AC 于点F ,求证:BE =CF .【例28】已知:Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AE 平分∠CAB 交CD 于F ,ABCDEABCD EOABCDE FMCEFH过F作FH∥AB,交BC于H.求证:CE=BH.(提示:平行四边形的对边相等,对角相等)【习题1】 如图,在△ABC 中,∠A =120°∠ABC =∠C ,BD 是∠ABC 的角平分线,如果将△ABD 沿BD 翻折过来,点A 与BC 边上的点E 重合,那么△CDE 是___________三角形.【习题2】 如图,已知AC =BD ,∠D =∠C ,求证:∠A =∠B .【习题3】 如图,在三角形ABC 中,∠ABC =2∠C ,AD ⊥BC ,求证:AB +BD =DC .【习题4】 如图,AD 是△ABC 的角平分线,AC =AB +BD ,∠C =30°.求∠BAC 的度数.随堂检测ABCDEAB CD A BC DA B C D【习题5】 以△ABC 的边AB 、AC 为边分别向外作正方形ABDE 、ACGF ,DP ⊥BC 于点P ,GQ ⊥BC 于点Q ,求证:DP +GQ =BC .【习题6】 已知:如图,正方形ABCD 中,E 、F 分别是AD 、DC 上的点,且AE +CF =EF ,求证:∠EBF =45°.【习题7】 已知,如图,D 为等边△ABC 内一点,DA =DC ,P 为等边△ABC 外一点,PC =AC ,且CD 平分∠BCP ,求∠P 的度数.【习题8】 如图,在△ABC 中,AC BC =,∠C =90°,AD ⊥BD 交于点D ,BD 与AC相交于点E ,当BE =2AD 时,求证:BD 平分ABC ∠.ACBDEFGQPABCDEFABCDPABCD E【习题9】 如图,已知在正方形ABCD 中,E 是AD 的中点,BF =CD +DF ,若∠ABE 为 ,求∠CBF 的度数.【习题10】 在△ABC 中,AB =AC ,D 是△ABC 外一点,且∠ABD =60°,∠ACD =60°.求证:BD +DC=AB .【习题11】 如图,在△ABC 中,E 是BC 边上一点,点D 在BC 的延长线上且CD =AB ,∠BAE =∠D ,AC 平分∠EAD .求证:AD =2AE .A BCDABCDEFABC DE【作业1】 如图,将△ABC 的中线AD 加倍到点E ,联结CE 后,以下结论错误的是 ( ).A .ABD ECD △△;B .AD =DC ; C .CE =AB ;D .AB ∥CE .【作业2】 已知:AD 是△ABC 的角平分线,∠C =2∠B ,将△ACD 沿AD 翻折,点C 落在AB 边上的E 处,△EBD 是____________;AB 、AC 、CD 之间的数量关系是_____________.【作业3】 已知:在△ABC 中,AC =BC ,∠ACB =90°,AD 平分∠BAC 交BC 于点D .求证:AB =AC +CD .【作业4】 已知△ABC 和△BDE 均为等边三角形,求证:BD +DC =AD .课后作业AB CDA BCDABC DACBD E【作业5】 已知直角△ABC 中,∠CAB=90°点D 、E 在边BC 上,∠CAE =∠B ,E 是CD的中点,且AD 平分∠BAE ;求证:BD =AC .【作业6】 如图,已知点C 是AB 的中点,点E 在CD 上,AE =BD ,求证:∠AEC =∠CDB .【作业7】 已知:如图,在△ABC 中,AB =AC ,点D 是AB 上一点,E 是AC 延长线上一点,联结DE 交BC 于点M ,DM =ME ,求证:BD=CE .【作业8】 已知,如图,△ABC 的角平分线AD 、BE 相交于点F ,∠C =60°,求证:AB =AE +BD .A B CD E ABCDMEABCDE FA BCDE【作业9】 如图,已知在△ABC 中,BD 、CE 相交于点Q ,BE =CD ,∠1=∠2.求证:∠A =2∠1.【作业10】 如图所示,正方形ABCD 中,∠EAF =45°,AP ⊥EF 于点P ,求证:AP =AB .【作业11】 以△ABC 的边AB 、AC 为边分别向外作正方形ABEF 、ACGH ,联结FH ,AD ⊥BC 于点D ,延长DA 交FH 于点M . 求证:(1)FM =MH ;(2)BC =2AM .ABCDEQ12 ABC DEFGHMA B C DE F P。

初二数学上册三角形全等辅助线添加6道真题

初二数学上册三角形全等辅助线添加6道真题

初二数学上册三角形全等辅助线添加6道真题三角形全等性质,怎么证明三角形全等?是初中数学里的一个基础常用知识点,重点,也是一个难点。

在后面的几何学习中,经常需要用到三角形全等的知识来解决问题。

所以,熟练掌握三角形全等的性质和判定定理,显得尤为重要。

直接根据条件和图形,可以证明两个三角形全等的题型,估计大多数同学都能做出来。

但是有些题目和图形,需要添加辅助线,很多同学就显得有些艰难。

证明三角形全等,怎么添加辅助线?这6道真题解析抓紧掌握!这6道题,题目不难,但是包括了几种常用的添加辅助线的类型和方法,同学们举一反三,多思考多总结。

第1题,连接AC和AD,构造两个全等三角形,对应边相等得到一个等腰三角形。

根据等腰三角形的三线合一的性质,证明出结论。

第2题,等腰直角三角形,斜边上的中点,一般连接斜边的中线,得到三条边相等,得几个45°角相等。

这是这一类题型的辅助线添加的方法。

第3题,这个辅助线的作法和倍长法有点类似,但若只是倍长,就找不到角相等。

那么做平行线,就有内错角相等,再根据题意的其他条件,得出两个三角形全等。

第4题,要求证明BD平分∠ABC,第一想到的是角平分线的性质的逆定理。

过点D做角两边的垂线,构造两个三角形全等,得到点到角两边的距离相等。

如果这道题,要求大家换一个思路添加辅助线,同学们认真思考一下,看要怎么证明?比如在NC上截取NE=BM。

第5题,这类证明一条线段等于几条线段之和的题型,就是想办法添加辅助线,进行相等的线段进行代换,把几条线段放到一条线段上。

那么线段相等,一般就是需要构造三角形全等。

第6题,就是我们最常见的倍长中线法,构造三角形全等。

这个倍长中线的辅助线添加方法,在很多的题型中,都用得到。

对于很多学生来说,数学成绩一直是困扰他们的最大难题。

其中,几何、代数的出现,更是难上加难。

尤其是几何这块,可以说是很多学生永远都迈不过去的槛。

事实上,初中数学知识点虽然很多,但都比较简单。

巧添辅助线解证几何题

巧添辅助线解证几何题

龙源期刊网
巧添辅助线解证几何题
作者:倪小芳
来源:《数理化学习·初中版》2013年第06期
在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的问题加以解决.值得注意的是辅助线的添加目的与已知条件和所求结论有关.下面我们分别举例加以说明.
一、倍角问题
二、中点问题
三、线段的和差问题
四、垂线段问题
五、梯形问题
[江苏省金坛市第五中学(213200)]。

辅助线证明题三角形全等

辅助线证明题三角形全等

做辅助线证明三角形全等1、如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .求证∠CDA =∠EDB .2、在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AF =BG .3、如图,已知△ABC 是等边三角形,∠BDC =120º,说明AD=BD+CD 的理由4、如图,在△ABC 中,AD 是中线,BE 交AD 于F,且AE=EF,说明AC=BF 的理由5、如图,在△ABC 中,∠ABC=100º,AM=AN,CN=CP,求∠MNP 的度数C 1 2 A B CD E6、用两个全等的等边三角形△ABC 和△ACD 拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB 、AC 重合.将三角尺绕点A 按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC 、CD 相交于点E 、F 时(如图所示),通过观察或测量BE 、CF 的长度,你能得出什么结论?并证明你的结论;B(2)当三角尺的两边分别与菱形的两边BC 、CD 的延长线相交于点E 、F 时(如图所示),你在(1)中得到的结论还成立吗?说明理由。

B7、.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.C B A ED 图1 N M A B C DE M N 图2 A C B E D N M 图3。

第13章轴对称含辅助线证明题专题训练1 人教版数学八年级上册

第13章轴对称含辅助线证明题专题训练1   人教版数学八年级上册

人教版数学八年级上册第十三章轴对称含辅助线证明题专题训练11.如图所示,等边△ABC中,AD⊥BC于D,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为点E,过点E作EF⊥AC,垂足为点F.(1)求证:2BD=2CF+BE;(2)若AB=4,过F作FQ⊥AB,垂足为Q,PQ=1,求BP的长.2.如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.3.已知等边△ABC的边长为4cm,点P,Q分别是直线AB,BC上的动点.(1)如图,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动时,它们的速度都为1cm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.(i)当t=2时,求∠AQP的度数;(ii)当t为何值时,△PBQ是直角三角形?(2)如图,当点P在BA的延长线上,Q在BC上时,若PQ=PC,请探究AP,CQ和AC之间的数量关系,并说明理由.4.如图,在直角坐标系中,△ABC的三个顶点都在坐标轴上,A,B两点关于y轴对称,点C是y轴正半轴上一个动点,AD是角平分线.(1)如图1,若∠ACB=90°,直接写出线段AB,CD,AC之间数量关系;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图2,若∠ACB=100°,求证:AB=AD+CD.5.如图,∠ABC=∠BCD=90°,AB=BD,BD平分∠ABC,AE⊥BD于E,P为线段AD上一动点.(1)求∠DAE;(2)当P到BD的距离为1,到AB的距离为2时,求AE的长;(3)当P运动至CE延长线上时,连结BP,求证:BP⊥AD.6.如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8,求AD的长.7.如图,△ABC中,AB=AC,点D为△ABC外一点,DC与AB交于点O,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)作AM⊥CD于M,求证:BD+DM=CM.8.如图,△ABC是等边三角形,D、E为AC上两点,且AE=CD,延长BC至点F,使CF=CD,连接BD.(1)如图1,当D、E两点重合时,求证:BD=DF;(2)延长BD与EF交于点G.①如图2,求证:∠BGE=60°;②如图3,连接BE,CG.若∠EBD=30°,BG=4,则△BCG的面积为______.9.已知:如图,在△ABC中,∠ABC的平分线BP与AC边的垂直平分线PQ交于点P,过点P分别作PD⊥AB于点D,PE⊥BC于点E,若BE=10cm,AB=6cm,求CE的长.10.(12分)在ΔABC中,∠B=60∘,D是BC上一点,且AD=AC.(1)如图1,延长BC至E,使CE=BD,连接AE.求证:AB=AE;(2)如图2,在AB边上取一点F,使DF=DB,求证:AF=BC;(3)如图3,在(2)的条件下,P为BC延长线上一点,连接PA,PF,若PA=PF,猜想PC与BD的数量关系并证明.11.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1)等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.2)已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为___(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ 交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)12.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结OB,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.13.已知,在等边△ABC中,E为BC上一点,连接AE并延长,在AE的延长线取一点D,连接BD、CD,使得∠BDC=120°.(1)如图1,求证:DA平分∠BDC;(2)如图2,在AC上取点F,使得CE=AF,连接BF交AD于点G,点M为GD 的中点,当ME=FG时,BD=8,求AD的长.14.如图,在四边形ABCD中,∠BAD=α,∠BCD=180∘−α,BD平分∠ABC.(1)如图,若α=90∘,根据教材中一个重要性质直接可得DA=CD,这个性质是_______(2)问题解决:如图,求证AD=CD;(3)问题拓展:如图,在等腰ΔABC中,∠BAC=100∘,BD平分∠ABC,求证:BD+AD=BC.15.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图,若BC=BD,求证:CD=DE;(2)如图,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.16.已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠FAC的度数;(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G 为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.第10页,共1页。

初中数学几何辅助线经典100题

初中数学几何辅助线经典100题

初中数学几何辅助线经典100题摘要:初中数学几何辅助线经典100题一、几何辅助线的概念和作用1.几何辅助线的定义2.几何辅助线在解题中的作用二、几何辅助线的常见类型及应用1.角平分线2.线段和差3.中点定理4.倍长中线5.相似三角形6.判定条件7.证明定理三、初中数学几何辅助线经典100题1.题目1-102.题目11-203.题目21-304.题目31-405.题目41-506.题目51-607.题目61-708.题目71-809.题目81-9010.题目91-100正文:初中数学几何辅助线经典100题一、几何辅助线的概念和作用几何辅助线是在解决几何问题时,通过在图形上添加一些特殊的线段,来帮助我们更好地理解和解题的一种工具。

它可以将复杂的几何问题简化为更简单的形式,使问题更容易解决。

几何辅助线在解题中的作用主要体现在以下几个方面:1.揭示图形中隐含的性质:通过添加辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的。

2.聚拢集中原则:通过添置适当的辅助线,将图形中分散、远离的元素相对集中、聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。

3.化繁为简原则:对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,通过添加辅助线,将复杂图形转化为简单图形,从而简化问题,使解题更加顺利。

二、几何辅助线的常见类型及应用几何辅助线有很多种,这里我们列举几种常见的类型及其应用:1.角平分线:角平分线是将一个角平分成两个相等的角的线段。

在解题中,我们常常利用角平分线的性质来证明两个角相等或求解某个角的度数。

2.线段和差:线段和差是指通过两个线段的和与差来求解几何问题。

在解题过程中,我们通常利用线段和差的性质来证明线段相等或求解线段的长度。

3.中点定理:中点定理是指在一个线段上,如果有一个点是线段中点,那么这个点到线段两端的距离相等。

在解题中,我们常常利用中点定理来证明线段相等或求解线段的长度。

几何证明例题及常见的添加辅助线方法

几何证明例题及常见的添加辅助线方法

几何证明例题及常见的添加辅助线方法几何证明是数学中的一个重要分支,通过使用几何定理和性质,以及一些常见的辅助线方法,来证明几何命题的正确性。

下面将提供几个几何证明的例题,并介绍一些常见的添加辅助线方法:1.证明等边三角形的高线与垂直平分线重合。

添加辅助线方法:连接等边三角形的顶点与底边的中点,将三角形分为两个等腰三角形。

然后,通过利用等腰三角形的性质,可以证明三角形的高线与垂直平分线重合。

2.证明等腰梯形的对角线垂直。

添加辅助线方法:在等腰梯形的两个腰上各取一个点,使得这两个点与梯形的底边相连,形成两个等边三角形。

通过证明这两个等边三角形的高线与底边的中线相垂直,可以得出对角线垂直的结论。

3.证明一个四边形是平行四边形的充要条件是其对角线互相垂直。

添加辅助线方法:对四边形的两个对角线进行延长,连接延长线的交点与四边形的两个相邻顶点,形成两个三角形。

通过证明这两个三角形是直角三角形,可以得出对角线互相垂直的结论。

4.证明正方形的对角线互相垂直。

添加辅助线方法:连接正方形的相邻顶点,形成两个等腰三角形。

通过证明这两个等腰三角形的高线与底边的中线相垂直,可以得出对角线互相垂直的结论。

5.证明一个三角形的内心到三边的距离和边长的乘积是相等的。

添加辅助线方法:通过从三角形的顶点向内切圆引垂线,连接垂足与内心,形成三个小三角形。

通过证明这三个小三角形是相似三角形,可以得出内心到三边的距离和边长的乘积相等的结论。

以上是几个常见的几何证明例题及其对应的添加辅助线方法。

在几何证明中,添加辅助线是一种常用的方法,可以将原始图形分解成更简单的图形,以便于应用几何定理和性质进行证明。

但需要注意的是,添加辅助线时应选择合适的位置和方式,以确保辅助线的添加不会引入其他不必要的情况,更好地辅助证明目标命题的正确性。

几何证明辅助线专题学习(基础)

几何证明辅助线专题学习(基础)

几何证明专题--辅助线Ⅰ.连结例1:如图,AB=AD,BC=DC,求证:∠B=∠D.ABDC1.连结AC,构造全等三角形;2.连结BD,构造两个等腰三角形例2:如图,AB=AE,BC=ED, ∠B=∠E,AM⊥CD,求证:点M是CD的中点.ABC D EM连结AC、AD构造全等三角形例3:如图,AB=AC,BD=CD, M、N分别是BD、CD的中点,求证:∠AMB=∠AND ABC DM N连结AD构造全等三角形例4:如图,AB与CD交于O, 且AB=CD,AD=BC,OB=5cm,求OD的长.OABDC连结BD构造全等三角形Ⅱ.角平分线上点向两边作垂线段例1:如图,△ABC中, ∠C=90o,BC=10,BD=6,AD平分∠BAC,求点D到AB的距离.B CADE过点D作DE⊥AB.构造了:全等的直角三角形且距离相等例2:如图,△ABC中, ∠C=90o,AC=BC,AD平分∠BAC,求证:AB=AC+DC.BCADE过点D作DE⊥AB.构造了:全等的直角三角形且距离相等思考:若AB=15cm,则△BED的周长是多少?例3:如图,梯形中, ∠A= ∠D =90o,BE、CE均是角平分线,求证:BC=AB+CD.B ADCFE过点E作EF⊥BC.构造了:全等的直角三角形且距离相等B ADC FE例4:如图,OC 平分∠AOB, ∠DOE +∠DPE =180o,求证: PD=PE.ABCOD PEGF过点P作PF⊥OA,PG ⊥OB.构造了:全等的直角三角形且距离相等Ⅲ.垂直平分线上点向两端连线段例1:已知CD是AB的垂直平分线,D、E、F三点共线。

求证FBCFA∠+∠=∠CABFDEⅣ.中线延长一倍例1:AD 是△ABC 的中线,求证:AC)(AB 21+<AD DABCE延长AD 到点E ,使DE=AE ,连结CE.Ⅴ.“周长问题”的转化借助“角平分线性质”例1:如图,△ABC 中,∠C=90o,AC=BC,AD 平分∠CAB,DE ⊥AB.若AB=6cm,则△DBE 的周长是多少?CBADEⅤ.“周长问题”的转化借助“垂直平分线性质”例2:如图,△ABC 中, D 在AB 的垂直平分线上,E 在AC 的垂直平分线上.若BC=6cm,求△ADE 的周长.ABCD E例3:如图,A 、A1关于OM 对称, A 、A2关于ON 对称.,若A1 A2 =6cm,求△ABC 的周长.C MONAA 1A 2B例4:如图, △ABC 中,MN 是AC 的垂直平分线.若AN=3cm, △ABM 周长为13cm ,求△ABC 的周长.MNABCⅤ.“周长问题”的转化借助“等腰三角形性质”例5:如图, △ABC 中,BP 、CP 是△ABC 的角平分线,MN//BC.若BC=6cm, △AMN 周长为13cm ,求△ABC 的周长.ABCPMN。

全等三角形证明之辅助线,附练习题含答案

全等三角形证明之辅助线,附练习题含答案

全等三角形证明之辅助线讲义➢ 知识与方法梳理1. 为了解决几何问题,在原图的基础上另外添加的直线或线段称为辅助线.辅助线通常画成虚线.辅助线的原则:添加辅助线,构造新图形,形成新关系,建立已知和未知之间的桥梁,把问题转化成自己已经会解的情况. 辅助线的作用:①把分散的条件转为集中; ②把复杂的图形转化为基本图形.添加辅助线的注意事项:明确目的,多次尝试.2. 要证明边相等(或角相等),可以考虑证明它们所在的三角形全等;要证全等,需要找3组条件. ➢ 例题示范例:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】 ① 读题标注:② 梳理思路:要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明.观察图形,发现不存在全等的三角形.结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE在Rt △ACE 和Rt △ADE 中AE AE AC AD=⎧⎨=⎩(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等)EDC AEDBAEDBCA➢练习题BFEAC D7. 已知:如图,BD ,CE 是△ABC 的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB .判断线段AP 和AQ 的数量和位置关系,并加以证明.8. 已知:如图,∠B =∠D ,AB =CD ,AD ∥BC ,E ,F 分别是AD ,BC 的中点.求证:AF =CE .9. 已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF .10. 已知:如图,∠C =∠F ,AB =DE ,DC =AF ,BC =EF .求证:AB ∥DE .11. 已知:如图,AB ∥CD ,AD ∥BC ,E ,F 分别是AD ,BC 的中点.求证:BE =DF .QPEDCBACAEF B DDGC AB EFFEBAD CF E B A DC12. 已知:如图,在正方形ABCD 中,AD =AB ,∠DAB =∠B =90°,点E ,F 分别在AB ,BC 上,且AE =BF ,AF 交DE 于点G . 求证:DE ⊥AF .连接BM ,交CN 于点F .有下列结论:①∠AMB =∠ANB ;②△ACE ≌△MCF ;③CE =CF ;④EN =FB .其中正确结论的序号是_________________.【参考答案】1. 证明:如图,连接AD在△ABD 和△DCA 中AB DCBD CAAD DA =⎧⎪=⎨⎪=⎩(已知)(已知)(公共边) ∴△ABD ≌△DCA (SSS )∴∠ABO=∠DCO (全等三角形对应角相等) 2. 证明:如图,连接AC∵AB ∥CDGFEDCBANM EB AFC∴∠CAB =∠ACD ∵AD ∥BC ∴∠DAC =∠BCA 在△ABC 和△CDA 中CAB ACDAC CABCA DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABC ≌△CDA (ASA )∴AB =CD ,BC =DA (全等三角形对应边相等) 3. 证明:如图,连接AC ,AD在△ABC 和△AED 中,AB AE B EBC ED =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△ABC ≌△AED (SAS )∴AC =AD (全等三角形对应边相等) ∵F 是CD 的中点 ∴CF =DF在△ACF 和△ADF 中,AC AD AF AFCF DF =⎧⎪=⎨⎪=⎩(已证)(公共边)(已证) ∴△ACF ≌△ADF (SSS )∴∠CFA =∠DFA (全等三角形对应角相等) ∵∠CFA +∠DFA =180° ∴∠CFA =90° ∴AF ⊥CD4. 证明:如图,过点A 作AD ⊥BC 于点D∵AD ⊥BC∴∠ADB =∠ADC=90° 在△ADB 和△ADC 中,B CADB ADCAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(公共边) ∴△ADB ≌△ADC (AAS )∴AB =AC (全等三角形对应边相等) 5. 证明:如图,过点B 作BF ⊥AC 于点FA DBCFCBEDAAD B C6. ∵BC ⊥AD∴∠ACE =∠BCD =90° 在Rt △ACE 和Rt △BCD 中AE BD CE CD =⎧⎨=⎩(已知)(已知)∴Rt △ACE ≌Rt △BCD (HL )∴∠CAE =∠CBD (全等三角形对应角相等) ∵∠ACE =90° ∴∠CAE +∠AEC =90° ∵∠AEC =∠BEF ∴∠CBD +∠BEF =90° ∴∠BFE =90° ∴AF ⊥BD7. 解:AP =AQ 且AP ⊥AQ ,理由如下:如图,∵BD ⊥AC ,CE ⊥AB ∴∠BEQ =∠BDC =∠ADP =90° ∴∠1+∠3=90° ∠2+∠4=90° ∵∠3=∠4 ∴∠1=∠2在△ABP 和△QCA 中54321QCB PE DA1 2 AB QC BP CA =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知) ∴△ABP ≌△QCA (SAS )∴AP =AQ (全等三角形对应边相等) ∠P =∠5(全等三角形对应角相等) ∵∠ADP =90° ∴∠P +∠PAD =90° ∴∠5+∠PAD =90° 即∠QAP =90° ∴AP =AQ 且AP ⊥AQ 8. 证明:如图,连接AC∵AD ∥BC ∴∠DAC =∠BCA 在△ABC 和△CDA 中,∴△ABC ≌△CDA (AAS )∴BC =DA (全等三角形对应边相等) ∵E ,F 分别是AD ,BC 的中点 ∴1122BF BC DE AD ==, ∴BF =DE在△ABF 和△CDE 中,∴△ABF ≌△CDE (SAS )∴AF =CE (全等三角形对应边相等)9. 证明:如图,过点G 作GH ⊥BE 于点H∵GH ⊥BE∴∠GHB =∠GHE =90° 在Rt △GHB 和Rt △GHE 中,BCA DAC B DAB CD (已证)(已知)(公共边)∠=∠⎧⎪∠=∠⎨⎪=⎩AB CD B DBF DE (已知)(已知)(公共边)=⎧⎪∠=∠⎨⎪=⎩H FBA C GDGB GEGH GH=⎧⎨=⎩(已知)(公共边) ∴Rt △GHB ≌Rt △GHE (HL )∴∠B =∠E (全等三角形对应角相等) ∵BC =EF ∴BC +CF =EF +CF 即BF =EC在△ABF 和△DEC 中,A DB EBF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已证) ∴△ABF ≌△DEC (AAS ) ∴DC =AF10. 证明:如图,连接BE在△AEF 和△DBC 中,AF DCF CEF BC =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△AEF ≌△DBC (SAS )∴AE =DB (全等三角形对应边相等) 在△ABE 和△DEB 中,AE DB AB DEEB BE =⎧⎪=⎨⎪=⎩(已证)(已知)(公共边) ∴△ABE ≌△DEB (SSS )∴∠ABE =∠DEB (全等三角形对应角相等) ∴AB ∥DE11. 证明:如图,连接BDCD ABE F∵AB ∥CD ,AD ∥BC∴∠ABD =∠CDB ,∠ADB =∠CBD 在△ABD 和△CDB 中,ABD CDBBD DBADB CBD ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABD ≌△CDB (ASA )∴AD =CB (全等三角形对应边相等) ∵E ,F 分别是AD ,BC 的中点 ∴DE =BF在△BED 和△DFB 中,DE BF ADB CBDBD DB =⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边) ∴△BED ≌△DFB (SAS )∴BE =DF (全等三角形对应边相等) 12. 证明:如图,在△DAE 和△ABF 中AD BA DAE B AE BF =⎧⎪=⎨⎪=⎩(已知)∠∠(已知)(已知) ∴△DAE ≌△ABF (SAS )∴∠1=∠2(全等三角形对应角相等) ∵∠DAB =90° ∴∠2+∠3=90° ∴∠1+∠3=90° ∴∠AGD =90° ∴DE ⊥AF 13. B 14. ②③④CDA B E F ABCDEF G第7题图312。

初中数学】几何题,辅助线的添加方法和典型例题

初中数学】几何题,辅助线的添加方法和典型例题

初中数学】几何题,辅助线的添加方法和典型例题初中数学:几何题型,辅助线的画法和典型例题1.倍长中线法已知在△ABC中,D是BC中点,DE⊥DF,需要判断BE+CF与EF的大小关系,并证明结论。

思路点拨:利用倍长中线法,倍长过中点的线段DF使DG=DF,再证明△XXX≌△EDF,△FDC≌△GDB,将BE、CF与EF线段转化到△BEG中,利用两边之和大于第三边证明。

解析:连接BG、EG,因为D是BC中点,所以BD=CD。

又因为DE⊥DF,在△XXX和△EDF中,ED=ED,∠XXX∠EDF,DG=DF,因此△XXX≌△EDF(SAS),所以EG=EF。

在△XXX与△GDB中,CD=BD,∠1=∠2,DF=DG,因此△FDC≌△GDB(SAS),所以CF=BG。

因为BG+BE>EG,所以BE+CF>EF。

结论得证。

总结升华:有中点的时候作辅助线可以考虑倍长中线法(或倍长过中点的线段)。

变式:已知CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC,需要证明CD=2CE。

解析:连接BF,延长CE至F使EF=CE。

因为EC为中线,所以AE=BE。

在△AEC与△BEF中,AE=BE,∠AEC =∠BEF,CE=EF,因此△AEC≌△BEF(SAS)。

所以AC =BF,∠A=∠FBE。

又因为∠ACB=∠ABC,∠XXX∠ACB+∠A,∠XXX∠ABC+∠A,所以AC=AB,∠XXX∠XXX。

因此AB=BF,BC为△ADC的中线,所以AB=BD,即BF=BD。

在△FCB与△DCB中,∠XXX∠DBC,BC=BC,因此△FCB≌△DCB(SAS),所以CF=CD。

结论得证。

2.以角平分线为对称轴的翻折变换构造全等三角形已知在△ABC中,∠C=2∠B,∠1=∠2,需要证明XXX。

解析:在AB上截取AE=AC,连接CE,作角ACE的平分线交AB于D,连接CD。

因为∠C=2∠B,所以∠ACE=∠XXX∠B,∠XXX∠A=∠1=∠2,所以△AED≌△ACD (SAS),因此ED=CD。

初中几何常见辅助线及题型

初中几何常见辅助线及题型

一、角平分线半垂直,补全垂直试试看,角平分线加垂线,三线合一试试看1、已知,△ABC中,AD平分∠BAC,BE⊥AD交AD延长线于点E,EF∥AC交AB于点F.求证:AF =FB2、已知,如图△ABC中,BD平分∠ABC,AD⊥BD于D.求证:∠BAD=∠CAD +∠C3、已知,如图Rt△ABC中,AB=AC,BD平分∠ABC,CD⊥BE交BE延长线于点D.求证:BE=2CD4、已知,在△ABC中,点D是BC的中点,DE⊥AD,∠EAD=∠BAD.求证:AB=AE+CE5、已知,如图△ABC 中,∠ABC=3∠C ,AD 平分∠BAC ,BE ⊥AD 于E . 求证:)(21AB AC BE -=6、(2011•大连25)已知,在△ABC 中,∠A=90°,AB=AC ,点D 在线段BC 上,∠C=2∠EDB ,BE ⊥DE ,垂足为点E ,DE 与AB 相交于点F . (1)求∠EBF .(2)探究BE 与FD 的数量关系,并证明.二、证明线段和差倍,截长补短试试看1、如图,在△ABC 中,81BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+.求ABC ∠的度数.2、已知△ABC 中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.3、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,试判断DM 与MN 有怎样的数量关系,并证明.4、如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?并证明你的结论.5、已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .6、如图所示,△ABC 是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上. 求AMN ∆的周长.7、五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°. 求证:AD 平分∠CDE .8、已知:如图,ABCD 是正方形,∠EAF=45°,且∠EAF 两边交BC 、CD 分别于E 、F 两点.求证:BE +DF =EF .9、如图,在直角梯形ABCD 中,AB ∥CD ,AB=BC=8,点E 为BC 边上一点,且BE=2,∠EAD=45°. 求DE 的长.10、如图,在△OAB 和△O ′CD 中(O ′ 在线段OA 上),∠A <90°,OB=O ′D ,∠AOB=∠CO ′D ,∠OAB 与∠O ′CD 互补,试探索线段AB 与CD 的数量关系,并证明你的结论.11、已知:∠BAC=90°,AB=AC ,AD=DC ,AE ⊥BD . 求证:∠ADB=∠CDE12、(2006•大连模拟26)如图,Rt △ABC 中,AB=AC ,点D 、E 是线段AC 上两动点,且AD=EC ,AM ⊥BD ,垂足为M ,AM 的延长线交BC 于点N ,直线BD 与直线NE 相交于点F .试判断△DEF 的形状,并加以证明.13、如图1-1,已知Rt △ABC 中,∠ACB=90°,AC=BC ,点D 、E 在边BC 上,且BD=CE ,连结AD ,当∠BAD=13∠BAC , CF ⊥AD ,交AB 于点F ,点G 为垂足,直线EF 交直线AD 、AC 分别于点H 、M . (1)在图1-1中,∠BAD= °,∠DAC= °. (2)如图1-1,猜想△HDE 的形状,并证明你的结论.(3)若点D 、E 在直线BC 上,如图1-2,其它条件不变,试判断△HAM 与(2)中△HDE 的形状是否相同,若不相同,说明理由;若相同,请证明.14、(2012•大连25)如图,梯形ABCD 中,AD ∥BC ,∠ABC=2∠BCD=2a ,点E在AD 上,点F 在DC 上,且∠BEF=∠A .(1)∠BEF=_____(用含a 的代数式表示);(2)当AB=AD 时,猜想线段EB 、EF 的数量关系,并证明你的猜想;(图1-2)七、要想证明是切线,半径垂线仔细添1、已知:如图,⊙O 的直径AB=8cm ,P 是AB 延长线上的一点,过点P 作⊙O 的切线,切点为C ,连接AC . (1) 若∠ACP=120°,求阴影部分的面积; (2)若点P 在AB 的延长线上运动,∠CP A 的平分线交AC 于点M ,∠CMP 的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP 的度数.2、已知:如图,点A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,OC=BC ,OB AC 21. (1)求证:AB 是⊙O 的切线; (2)若∠ACD=45°,OC=2,求弦CD 的长. (3)在(2)的条件下,求图中的阴影面积.3、如图,以等腰△ABC 中的腰AB 为直径作⊙O ,交底边BC 于点D ,交AC 边于点E .过点D 作DF ⊥AC ,垂足为F . (1)求证:DF 为⊙O 的切线; (2)若∠A=60°,AB=8,求DF 的长. (3)在(2)的条件下,求图中的阴影面积.4、如图,点A 、B 、F 在⊙O 上,∠AFB=30°,OB 的延长线交直线AD 于点D ,过点B 作BC ⊥AD 于C ,∠CBD=60°,连接AB . (1)求证:AD 是⊙O 的切线; (2)若BC=3,求⊙O 的直径.5、如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B . (1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为3,AB =4,求AD 的长.6、已知:如图,在△ABC 中,AB = AC ,点D 是边BC 的中点.以BD 为直径作⊙O ,交边AB 于点P ,联结PC ,交AD 于点E . (1)求证:AD 是⊙O 的切线;(2)若PC 是⊙O 的切线,BC = 8,求DE 的长.7、已知:如图,△ABC 中,AB =AC =5,BC =6,以AB 为直径作⊙O 交AC 于点D ,交BC 于点E ,EF ⊥AC 于F 交AB 的延长线于G . (1)求证:FG 是⊙O 的切线; (2)求AD 的长.8、如图,△ABC 中,AB =AE ,以AB 为直径作⊙O 交BE 于C ,过C 作CD ⊥AE 于D , DC 的延长线与AB 的延长线交于点P . (1)求证:PD 是⊙O 的切线; (2)若AE =5,BE =6,求DC 的长.9、如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE ⊥CD 于E ,DA 平分∠BDE . (1)求证:AE 是⊙O 的切线; (2)若∠DBC=30°,DE=1cm ,求BD 的长.10、在Rt△ABC中,∠C=90°,BC=9,CA=12,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,⊙O是△BDE的外接圆,交BC于点F.(1)求证:AC是⊙O的切线;(2)联结EF,求BDAC的值.11、如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC,E是垂足.(1)求证:DE是⊙O的切线;(2)如果AB=5,12DECE,求CE的长.12、已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.(1)求证:FD是⊙O的切线;(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.与相似有关13、已知:如图,AB 为⊙O 的弦,过点O 作AB 的平行线,交⊙O 于点C ,直线OC 上一点D 满足∠D =∠ACB .(1)判断直线BD 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径等于5,AB=8,求CD 的长.14、已知:如图,在△ABC 中,∠ACB =90°,∠ABC 的平分线BD 交AC 于点D ,DE ⊥DB 交AB 于点E ,过B 、D 、E 三点作⊙O . (1)求证:AC 是⊙O 的切线;(2)设⊙O 交BC 于点F ,连结EF ,若BC =9,CA =12.求EFAC的值.15、已知:如图,AB 是⊙O 的直径,E 是AB 延长线上的一点,D 是⊙O 上的一点,且AD 平分∠F AE ,ED ⊥AF 交AF 的延长线于点C .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论; (2)若AF ∶FC =5∶3,AE =16,求⊙O 的直径AB 的长.16、如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,弦AE与BC相交于点F,且CF=9,BF:AF=32,求EF的长.17、(2012•大连23) 如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.八、有k倍,比线段,截图相似平行线1、如图,点E是BC上一点,BE=k•EC,∠BAE=∠CDE.猜想AB、CD的数量关系,加以证明.2、如图,在△ABC 中,∠BAC=90°,AB= k •AC ,CD ∥BA ,点P 是BC 上一点,连结AP ,过点P 做PE ⊥AP 交CD 于E .探究PE 与P A 的数量关系,并加以证明.3、如图,在△ABC 中, AB= k •AC ,点D 在AB 上,点E 在AC 的延长线上,且BD=CE ,DE 交BC 于点P .探究PE 与PD 的数量关系,并加以证明.4、如图,在△ABC 中,∠DBC +∠ECB=∠A ,BD 、CE 交于点P ,P B= k •PC . 探究BE 与CD 的数量关系,并加以证明.5、如图,BD 平分∠EBC ,D ′是BD 上一点,且BD= k •BD ′,连结D ′C 、DE ,并延长DE 至点A ,使得EA=ED ,且∠ABE=∠C .探究AB 与CD ′的数量关系,并加以证明.6、如图,CB=CD ,∠ABC +∠CDE=180°,AB= k •DE . 探究AF 与EF 的数量关系,并加以证明.7、如图,在△ABC 中,AC=BC ,P 为AB 上一点,且AP= k •PB ,∠EPF +∠C=180°. 探究PE 与PF 的数量关系,并加以证明.8、如图,AD是△ABC的中线,AB= k•AC,点E是AC延长线上一点,且∠AEF=∠BAD,EF交BA延长线于点F.探究AE与AF的数量关系,并加以证明.9、(2012•大连25)如图1,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2a,点E在AD上,点F在DC上,且∠BEF=∠A.(1)∠BEF=_____(用含a的代数式表示);(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图2),求EBEF的值(用含m、n的代数式表示)。

添加辅助线构造全等三角形

添加辅助线构造全等三角形

添加辅助线构造全等三角形一.内容:在证明几何题目的过程中,常常需要通过全等三角形,研究两条线段在证明几何题目的过程中,常常需要通过全等三角形,研究两条线段((角)的相等关系,或者转移线段或角。

而有些时候,这样的全等三角形在问题中,并不是十分明显。

因此,我们需要通过添加辅助线,构造全等三角形,进而证明所需的结论。

们需要通过添加辅助线,构造全等三角形,进而证明所需的结论。

在这里,我们试图通过几个典型例题让大家初步了解添加辅助线构造全等三角形的基本方法。

当然这些方法体现的了添加辅助线的方法从简单到复杂,研究线段的长短关系体现了从相等到不等的递进关系。

从相等到不等的递进关系。

二.例题详解1.通过添加辅助线构造全等三角形直接证明线段(角)相等1.已知:如图AB=AD AB=AD,,CB=CD CB=CD,,(1)(1)求证:∠求证:∠求证:∠B=B=B=∠∠D .(2)(2)若若AE=AF试猜想CE 与CF 的大小关系并证明.的大小关系并证明.分析:(1)(1)在没有学习等腰三角形的知识的时候,要证明两个角相等,经常需要证明它们所在在没有学习等腰三角形的知识的时候,要证明两个角相等,经常需要证明它们所在的两个三角形全等。

本题中要证明∠的两个三角形全等。

本题中要证明∠B=B=B=∠∠D .在已知条件中缺少明显全等的三角形。

而连结AC 以后,以后,AC AC 作为公共边,根据题目的已知条件可以看到三角形ABC 全等于三角形ADC ADC,进,进而证明了∠而证明了∠B=B=B=∠∠D 。

如果在学习了等腰三角形的知识以后还可以连结BD BD,通过等边对等角,再用角等量减,通过等边对等角,再用角等量减等量得到∠等量得到∠B=B=B=∠∠D 更为简单更为简单(2)(2)猜想猜想CE=CF CE=CF,,在连结AC 证明了三角形ABC 全等于三角形ADC 以后,得到∠得到∠EAC=EAC=EAC=∠∠FAC FAC,,再去证明三角形EAC 全等于三角形FAC FAC,进而证明,进而证明CE=CF CE=CF。

初中几何辅助线的例题与练习

初中几何辅助线的例题与练习
证明:延长 BA,CE 交于点 F,在 ΔBEF 和 ΔBEC 中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而 CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在 ΔABD 和 ΔACF 中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,
A
BC。
求证:∠ADC+∠B=180
E
B
分析:可由 C 向∠BAD 的两边作垂线。近而证
∠ADC 与∠B 之和为平角。
D F
C
图2-1
练习:
1.如图 2-4∠AOP=∠BOP=15 ,PC//O
B
A,PD⊥OA, 如果 PC=4,则 PD=( )
C
P
A
O
图2-4 D
例 4 如图 7,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交 AC 于点 D,CE 垂直于 BD,交 BD 的延长线于点 E。求证:BD=2CE。
初中几何辅助线的例题及练习
例1. 如图 1-2,AB//CD,BE 平分∠BCD,CE 平分∠BCD,点 E 在 AD 上,
求证:BC=AB+CD。 A
分析:在此题中可在长线段 BC 上截取 B
E
D
F=AB,再证明 CF=CD,从而达到证明的目的。 这里面用到了角平分线来构造全等三角形。 B 另外一个全等自
A
1 (BC AD) 1 (3 1) 1
2
2
练习: 1. 若等腰梯形的锐角是 60°,它的两底分别 B 为 11cm,35cm,则它的腰长为__________cm.
2. 如图所示,AB∥CD,AE⊥DC,AE=12,BD=20,AC

全等三角形辅助线举例试题与解析答案

全等三角形辅助线举例试题与解析答案

全等三角形辅助线举例试题与解析答案一.选择题(共1小题)1.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于M交AC于点N,连接MN,则△AMN的周长为()A.5 B.6C.7D.8考点:旋转的性质;全等三角形的判定与性质;等边三角形的性质.菁优网版权所有专题:压轴题.分析:要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CND,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.解答:解:∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°,∵△ABC是边长为3的等边三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°,延长AB至F,使BF=CN,连接DF,在△BDF和△CND中,∵,∴△BDF≌△CND(SAS),∴∠BDF=∠CDN,DF=DN,∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,在△DMN和△DMF中,∵,∴△DMN≌△DMF(SAS)∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.故选B.点评:此题考查了全等三角形的判定与性质,等边三角形的性质;主要利用等边三角形和等腰三角形的性质来证明三角形全等,构造另一个三角形是解题的关键.二.填空题(共1小题)2.△ABC中,AB=7,AC=3,则BC边的中线AD的取值范围是2<AD<5.考点:全等三角形的判定与性质;三角形三边关系.菁优网版权所有分析:如图,延长AD至E,使DE=AD,就可以得出△ADB≌△EDC,就可以得出CE=AB,在△ACE中,由三角形的三边关系就可以得出结论.解答:解:如图,延长AD至E,使DE=AD,∵D是BC的中点,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS)∴AC=EB.∵AC=3,∴EB=3.∴7﹣3<AE∠7+3,∴4<2AD<10,∴2<AD<5.故答案为:2<AD<5.点评:本题考查了中线的性质的运用,全等三角形的判定及性质的运用,三角形三边关系的运用,解答时运用三角形全等将线段转化在同一三角形中是关键.三.解答题(共13小题)3.以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是AM⊥DE,线段AM与DE的数量关系是DE=2AM;(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.考点:旋转的性质;全等三角形的判定与性质.菁优网版权所有专题:证明题.分析:(1)ED=2AM,AM⊥ED.延长AM到G,使MG=AM,连BG,则ABGC是平行四边形,再结合已知条件可以证明△DAE≌△ABG,根据全等三角形的性质可以得到DE=2AM,∠BAG=∠EDA,再延长MG交DE于H,因为∠BAG+∠DAH=90°,所以∠HDA+∠DAH=90°这样就证明了AM⊥ED;(2)延长CA至F,使FA=AC,FA交DE于点P,并连接BF,证出△FAB≌△EAD,利用全等三角形的性质得到BF=DE,∠F=∠AEN,从而证出∠FPD+∠F=∠APE+∠AEN=90°,得到FB⊥DE,根据AM∥FB,可得到AM=FB.解答:(1)ED=2AM,AM⊥ED;证明:延长AM到G,使MG=AM,连BG,则ABGC是平行四边形,再延长MA交DE于H.∴AC=BG,∠ABG+∠BAC=180°又∵∠DAE+∠BAC=180°,∴∠ABG=∠DAE.再证:△DAE≌△ABG∴DE=2AM,∠BAG=∠EDA.延长MA交DE于H,∵∠BAG+∠DAH=90°,∴∠HDA+∠DAH=90°.∴AM⊥ED.(2)结论仍然成立.证明:如图,延长CA至F,使FA=AC,FA交DE于点P,并连接BF.∵DA⊥BA,EA⊥AF,∴∠BAF=90°+∠DAF=∠EAD.∵在△FAB和△EAD中,∴△FAB≌△EAD(SAS)∴BF=DE,∠F=∠AEN,∴∠FPD+∠F=∠APE+∠AEN=90°.∴FB⊥DE.又∵CA=AF,CM=MB.∴AM∥FB,且AM=FB,∴AM⊥DE,AM=DE.点评:本题考查了旋转的性质和相似三角形的性质,利用旋转不变性找到三角形全等的条件.此题综合性较强,要注意观察图象的特点.4.已知:如图,△ABC中AC=AB,AD平分∠BAC,且AD=BD.求证:CD⊥AC.考点:全等三角形的判定与性质;等腰三角形的性质.菁优网版权所有专题:证明题.分析:过D作DE⊥AB于E,根据等腰三角形性质推出AE=AB,∠DEA=90°,求出AE=AC,根据SAS证△DEA≌△DCA,推出∠ACD=∠AED即可.解答:解:过D作DE⊥AB于E,∵AD=BD DE⊥AB∴AE=AB,∠DEA=90°,∵AC=AB∴AE=AC∵AD平分∠BAC∴∠BAD=∠CAD,在△DEA和△DCA中,,∴△DEA≌△DCA,∴∠ACD=∠AED,∴∠ACD=90°,∴AC⊥DC.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定的应用,关键是求出△DEA≌△DCA,主要培养了学生分析问题和解决问题的能力,题目比较好,难度适中.5.如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.考点:全等三角形的判定与性质.菁优网版权所有专题:证明题.分析:先过E作EF∥AD,交AB于F,则∠DAE=∠AEF,∠EBC=∠BEF,因为EA、EB分别平分∠DAB和∠CBA,所以AF=EF=FB,再根据梯形中位线定理得出AB=AD+BC.解答:解:过E作EF∥AD,交AB于F,则∠DAE=∠AEF,∠EBC=∠BEF,∵EA、EB分别平分∠DAB和∠CBA,∴∠EAF=∠AEF,∠EBF=∠BEF,∴AF=EF=FB,又∵EF∥AD∥BC,∴EF是梯形ABCD的中位线,∴EF=,∴AF+FB=2EF,∴AB=AD+BC.点评:主要考查了全等三角形的判定与性质,用到的知识点是平行线的判定和梯形中位线定理,解题的关键是要灵活运用已知条件求出EF=.6.如图,△ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC 的平分线,求证:BQ+AQ=AB+BP.考点:全等三角形的判定与性质;角平分线的性质.菁优网版权所有专题:证明题.分析:延长AB到D,使BD=BP,连接PD.则∠D=∠5.由已知条件不难算出:∠1=∠2=30°,∠3=∠4=40°=∠C.于是QB=QC.又∠D+∠5=∠3+∠4=80°,故∠D=40°.于是△APD≌△APC(AAS),所以AD=AC.即AB+BD=AQ+QC,等量代换即可得证.解答:证明:延长AB到D,使BD=BP,连接PD.则∠D=∠5.∵AP,BQ分别是∠BAC,∠ABC的平分线,∠BAC=60°,∠ACB=40°,∴∠1=∠2=30°,∠ABC=180°﹣60°﹣40°=80°,∠3=∠4=40°=∠C.∴QB=QC,又∠D+∠5=∠3+∠4=80°,∴∠D=40°.在△APD与△APC中,AP=AP,∠1=∠2,∠D=∠C=40°∴△APD≌△APC(AAS),∴AD=AC.即AB+BD=AQ+QC,∴AB+BP=BQ+AQ.点评:本题实际是以角平分线AP为对称轴将△APC翻折成△APD.利用对称变换解题常常选择角平分线,某一线段的垂直平分线作为对称轴.作辅助线构造全等三角形是关键.7.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.考点:角平分线的性质;全等三角形的判定与性质.菁优网版权所有专题:证明题.分析:首先过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,由BD平分∠ABC,根据角平分线的性质,即可得DE=DF,又由AD=CD,即可判定Rt△CDE≌Rt△ADF,则可证得:∠A+∠C=180°.解答:解:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.点评:此题考查了角平分线的性质与全等三角形的判定与性质.此题难度适中,解题的关键是准确作出辅助线,掌握数形结合思想的应用.8.如图,在四边形ABCD中,AD∥BC,点E是AB上的一个动点,若∠B=60°,AB=BC,且∠DEC=60°,判断AD+AE与BC的关系并证明你的结论.考点:全等三角形的判定与性质;等边三角形的判定.菁优网版权所有专题:动点型.分析:此题连接AC,把梯形的问题转化成等边三角形的问题,然后利用已知条件和等边三角形的性质通过证明三角形全等解决它们的问题.解答:解:有BC=AD+AE.连接AC,过E作EF∥BC交AC于F点.∵∠B=60°,AB=BC,∴△ABC为等边三角形,∵EF∥BC,∴△AEF为等边三角形.即AE=EF,∠AEF=∠AFE=60°.所以∠CFE=120°.(3分)又∵AD∥BC,∠B=60°故∠BAD=120°.又∵∠DEC=60°,∠AEF=60°.∴∠AED=∠FEC.(1分)在△ADE与△FCE中,∴△ADE≌△FCE.∴AD=FC.(1分)则BC=AD+AE.(1分)点评:此题的解法比较新颖,把梯形的问题转化成等边三角形的问题,然后利用全等三角形解决问题.9.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD+AE.考点:三角形三边关系.菁优网版权所有专题:证明题.分析:先连接AF并延长至G,使FG=AF,其中F是BC的中点,连接GB,GC,GD,GE.可知四边形ABGC,四边形ADGE是平行四边形,延长AD至H,交BG于H.运用三角形的三边关系:“两边之和大于第三边”即可进行证明.解答:证明:连接AF并延长至G,使FG=AF,其中F是BC的中点,连接GB,GC,GD,GE,∵BD=CE,∴DF=EF,∴四边形ABGC,四边形ADGE是平行四边形,∴BG=AC,DG=AE,延长AD至H,交BG于H,∵AB+BH>AD+DH,DH+HG>DG,∴AB+BH+DH+HG>AD+DH+DG,∴AB+BG>AD+DG,即AB+AC>AD+AE.点评:本题考查了三角形三边关系,将证明边的大小关系的问题转化为三角形三边关系问题是解题的关键.本题借助辅助线DH起枢纽作用.10.已知:如图△ABC中,∠A=60°,BD、CE分别是∠ABC和∠ACB的平分线,相交于点F.求证:(1)∠BFE=60°;(2)FE=FD.考点:全等三角形的判定与性质;角平分线的性质.菁优网版权所有专题:证明题.分析:(1)证明∠EBF=∠CBF=α,∠DCF=∠BCF=β,求出α+β=60°,证明∠BFE=α+β=60°问题即可解决.(2)证明∠A+∠EFD=180°,得到A、E、F、D四点共圆;证明∠EAF=∠DAF,故FE=FD.解答:证明:(1)∵BD、CE分别是∠ABC和∠ACB的平分线,∴∠EBF=∠CBF=α,∠DCF=∠BCF=β;又∵∠A=60°,∴2α+2β=180°﹣60°=120°,∴α+β=60°,∴∠BFE=α+β=60°.(2)如图,连接AF;∵∠BFE=60°,∴∠EFD=120°,∴∠A+∠EFD=180°,∴A、E、F、D四点共圆,设为⊙O;由题意知在⊙O中,∠EAF=∠DAF,∴FE=FD(相等的圆周角所对的弦相等).点评:该题主要考查了三角形角平分线的性质、三角形外角的性质、四点共圆的判定及其应用等几何知识点;对综合的分析问题解决问题的能力提出了较高的要求.11.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.(1)证明:BE=CF;(2)如果AB=12,AC=8,求AE的长.考点:全等三角形的判定与性质;角平分线的性质.菁优网版权所有分析:(1)连接DB、DC,证明Rt△BDE≌Rt△CFD即可得出结论;(2)由(1)可得出CF=BE,且AE=AF=AC+CF,而CF=BE=AB﹣AE,代入可求得结果.解答:(1)证明:连接DB、DC,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵DG⊥BC且平分BC于点G,∴DB=DC,在Rt△BDE和Rt△CFD中,,∴Rt△BDE≌Rt△CDF(HL),∴BE=CF;(2)解:由(1)知BE=CF,且在△ADE和△ADF中∴△ADE≌△ADF(AAS),∴AE=AF=AC+CF,而CF=BE=AB﹣AE,∴AE=AC+AB﹣AE,∴2AE=AC+AB=8+12=20,∴AE=10.点评:本题主要考查三角形全等的判定和性质,掌握三角形全等的判定方法是解题的关键.12.如图,点E为正方形ABCD的边AB上一点,点F为边BC上一点,EF=AE+CF,试求∠EDF的度数.考点:正方形的性质;全等三角形的判定与性质.菁优网版权所有分析:由四边形ABCD为正方形,可得DA=DC,∠A=∠DCB=90°,然后把△DAE绕点D顺时针旋转90°得到△DCM,易证得△DFM≌△DFE(SSS),继而求得答案.解答:解:四边形ABCD为正方形,∴DA=DC,∠A=∠DCB=90°,∴把△DAE绕点D顺时针旋转90°得到△DCM,如图,∴∠A=∠DCM=90°,DE=DM,∠EDM=90°,AE=CM,∴点M在BC的延长线上,∴MF=CF+CM,∵EF=AE+CF,∴MF=EF,在△DFM和△DFE中,∴△DFM≌△DFE(SSS),∴∠MDF=∠EDF,∴∠EDF=∠EDM=45°.点评:此题考查了正方形的性质、旋转的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.如图所示,△ABC是等腰直角三角形,∠BAC=90°,AB=AC.(1)若D为BC的中点,过D作DM⊥DN分别交AB、AC于M、N,求证:DM=DN;(2)若DM⊥DN分别和BA、AC延长线交于M、N,问DM和DN有何数量关系,并证明.考点:全等三角形的判定与性质;等腰直角三角形.菁优网版权所有专题:常规题型.分析:(1)连接AD,可得∠ADM=∠CDN,可证△AMD≌△CND,可得DM=DN;(2)连接AD,可得∠ADM=∠CDN,可证△AMD≌△CND,可得DM=DN.解答:解:(1)连接AD,∵D为BC中点,∴AD=BD,∠BAD=∠C,∵∠ADM+∠ADN=90°,∠ADN+∠CDN=90°,∴∠ADM=∠CDN,在△AMD和△CND中,,∴△AMD≌△CND(ASA),∴DM=DN.(2)连接AD,∵D为BC中点,∴AD=BD,∠BAD=∠C,∵∠ADM+∠MDC=90°,∠MDC+∠CDN=90°,∴∠ADM=∠CDN,∵∠MAD=MAC+DAC=135°,∠NCD=180°﹣∠ACD=135°在△AMD和△CND中,,∴△AMD≌△CND(ASA),∴DM=DN.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AMD≌△CND是解题的关键.14.(2007•牡丹江)已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.考点:全等三角形的判定与性质.菁优网版权所有专题:几何综合题;压轴题.分析:根据已知可以利用SAS证明△ABE≌△CBF,从而得出对应角相等,对应边相等,从而得出∠ABE=∠CBF=30°,△BEF为等边三角形,利用等边三角形的性质及边与边之间的关系,即可推出AE+CF=EF.同理图2可证明是成立的,图3不成立.解答:解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;图2成立,图3不成立.证明图2.延长DC至点K,使CK=AE,连接BK,在△BAE和△BCK中,则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE﹣CF=EF.点评:本题主要考查全等三角形的判定方法,常用的方法有SSS,SAS,AAS等,这些方法要求学生能够掌握并灵活运用.15.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是BM+NC=MN;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.考点:等边三角形的性质;全等三角形的判定与性质.菁优网版权所有分析:(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系BM+NC=MN,此时;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC﹣BM=MN.解答:解:(1)如图1,BM、NC、MN之间的数量关系BM+NC=MN.此时.(2分).理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠BDC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴=;(2)猜想:结论仍然成立.(3分).证明:在CN的延长线上截取CM1=BM,连接DM1.(4分)∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴=;(3)证明:在CN上截取CM1=BM,连接DM1.(4分)可证△DBM≌△DCM1,∴DM=DM1,(5分)可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,(7分).∴NC﹣BM=MN.(8分).点评:此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.。

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明DCBA全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

初中数学巧添辅助线解证几何题

初中数学巧添辅助线解证几何题

巧添辅助线 解证几何题[引出问题] 在几何证明或计算问题中,常常需要添加必要的辅助线,它的目的能够归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的彼此关系解题;三是把新问题转化为已经解决过的旧问题加以解决。

值得注意的是辅助线的添加目的与已知条件和所求结论有关。

下面咱们别离举例加以说明。

[例题解析]一、倍角问题 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。

求证:∠DBC=12∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。

证法一:∵在△ABC 中,AB=AC ,∴∠ABC=∠C=12(180°-∠BAC )=90°-12∠BAC 。

∵BD ⊥AC 于D ∴∠BDC=90°∴∠DBC=90°-∠C=90°-(90°-12∠BAC)= 12∠BAC 即∠DBC=12∠BAC 分析二:∠DBC 、∠BAC 别离在直角三角形和等腰三角形中,由所证的结论“∠DBC= ½∠BAC ”中含有角的倍、半关系,因此,能够做∠A 的平分线,利用等腰三角形三线合一的性质,把½∠A 放在直角三角形中求解;也能够把∠DBC 沿BD 翻折构造2∠DBC 求解。

证法二:如图2,作AE ⊥BC 于E ,那么∠EAC+∠C=90°∵AB=AC ∴∠EAG=12∠BAC ∵BD ⊥AC 于D∴∠DBC+∠C=90°∴∠EAC=∠DBC (同角的余角相等)即∠DBC=12∠BAC 。

证法三:如图3,在AD 上取一点E ,使DE=CD 连接BE ∵BD ⊥AC∴BD 是线段CE 的垂直平分线 ∴BC=BE ∴∠BEC=∠C∴∠EBC=2∠DBC=180°-2∠C ∵AB=AC ∴∠ABC=∠C∴∠BAC=180°-2∠C ∴∠EBC=∠BAC ∴∠DBC=12∠BAC 说明:例1也能够取BC 中点为E ,连接DE ,利用直角三角形斜边的中线等于斜边的一半和等腰三角形的性质求解。

初中几何辅助线——四边形辅助线大全

初中几何辅助线——四边形辅助线大全

初中几何辅助线——四边形辅助线大全题型1.平行四边形的两邻边之和等于平行四边形周长的一半.例1已知,□ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长多8cm,求这个四边形各边长.解:∵四边形ABCD为平行四边形∴AB = CD,AD = CB,AO = CO∵AB+CD+DA+CB = 60AO+AB+OB-(OB+BC+OC) = 8∴AB+BC = 30,AB-BC =8∴AB = CD = 19,BC = AD = 11答:这个四边形各边长分别为19cm、11cm、19cm、11cm.题型 2.平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.(例题如上)题型3.有平行线时常作平行线构造平行四边形.例2已知,如图,Rt△ABC,∠ACB = 90o,CD⊥AB于D,AE平分∠CAB交CD于F,过F 作FH∥AB交BC于H求证:CE = BH证明:过F作FP∥BC交AB于P,则四边形FPBH 为平行四边形∴∠B =∠FP A,BH = FP∵∠ACB = 90o,CD⊥AB∴∠5+∠CAB = 45o,∠B+∠CAB = 90o∴∠5 =∠B∴∠5 =∠FP A又∵∠1 =∠2,AF = AF∴△CAF≌△P AF∴CF = FP∵∠4 =∠1+∠5,∠3 =∠2+∠B∴∠3 =∠4∴CF = CE∴CE = BH练习:已知,如图,AB∥EF∥GH,BE = GC求证:AB = EF+GH54321PHFEDCB AGHFEB AC题型4.有以平行四边形一边中点为端点的线段时常延长此线段.例3已知,如图,在□ABCD中,AB = 2BC,M为AB中点求证:CM⊥DM证明:延长DM、CB交于N∵四边形ABCD为平行四边形∴AD = BC,AD∥BC∴∠A = ∠NBA∠ADN=∠N又∵AM = BM∴△AMD≌△BMN∴AD = BN∴BN = BC∵AB = 2BC,AM = BM∴BM = BC = BN∴∠1 =∠2,∠3 =∠N∵∠1+∠2+∠3+∠N = 180o,∴∠1+∠3 = 90o∴CM⊥DM题型5.平行四边形对角线的交点到一组对边距离相等.例4如图:OE=OF题型 6.平行四边形一边(或这边所在的直线)上的任意一点与对边的两个端点的连线所构成的三角形的面积等于平行四边形面积的一半.例5如图:S△BEC= 12S□ABCD题型7.平行四边形内任意一点与四个顶点的连线所构成的四个三角形中,不相邻的两个三角形的面积之和等于平行四边形面积的一半.例6如图:S△AOB+S△DOC= S△BOC+S△AOD = 12S□ABCDEDCBAODCBA321NM BAD CFEODCBA题型8.任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方和相等. 例7如图:AO 2+OC 2 = BO 2 +DO 2题型9.平行四边形四个内角平分线所围成的四边形为矩形.例8如图:四边形GHMN 是矩形(题型5~题型9请自己证明)题型10.有垂直时可作垂线构造矩形或平行线.例9已知,如图,E 为矩形ABCD 的边AD 上一点,且BE = ED ,P 为对角线BD 上一点,PF ⊥BE 于F ,PG ⊥AD 于G 求证:PF +PG = AB证明:证法一:过P 作PH ⊥AB 于H ,则四边形AHPG 为矩形∴AH = GP PH ∥AD ∴∠ADB =∠HPB∵BE = DE ∴∠EBD = ∠ADB ∴∠HPB =∠EBD 又∵∠PFB =∠BHP = 90o∴△PFB ≌△BHP∴HB = FP∴AH +HB = PG +PF 即AB = PG +PF证法二:延长GP 交BC 于N ,则四边形ABNG 为矩形,(证明略)NP H G FE D C B AN M HG DCBAA DC B OO B CD A题型11.直角三角形常用辅助线方法⑴作斜边上的高例10已知,如图,若从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线交于点E 求证:AC = CE证明:过A作AF⊥BD,垂足为F,则AF∥EG∴∠F AE = ∠AEG∵四边形ABCD为矩形∴∠BAD = 90o OA = OD∴∠BDA =∠CAD∵AF⊥BD∴∠ABD+∠ADB= ∠ABD+∠BAF= 90o∴∠BAF =∠ADB =∠CAD∵AE为∠BAD的平分线∴∠BAE =∠DAE∴∠BAE-∠BAF =∠DAE-∠DAC即∠F AE =∠CAE∴∠CAE =∠AEG∴AC = EC⑵作斜边中线,当有下列情况时常作斜边中线①有斜边中点时例11已知,如图,AD、BE是△ABC的高,F是DE的中点,G是AB的中点求证:GF⊥DE证明:连结GE、GD∵AD、BE是△ABC的高,G是AB的中点∴GE = 12AB,GD =12AB∴GE = GD∵F是DE的中点∴GF⊥DE②有和斜边倍分关系的线段时例12已知,如图,在△ABC中,D是BC延长线上一点,且DA⊥BA于A,AC = 12 BD求证:∠ACB = 2∠B证明:取BD中点E,连结AE,则AE = BE = 12 BD∴∠1 =∠BGOFEDCBAFEDCBA∵AC =12BD ∴AC = AE∴∠ACB =∠2 ∵∠2 =∠1+∠B ∴∠2 = 2∠B ∴∠ACB = 2∠B题型12.正方形一条对角线上一点到另一条对角线上的两端距离相等.例13已知,如图,过正方形ABCD 对角线BD 上一点P ,作PE ⊥BC 于E ,作PF ⊥CD 于F 求证:AP = EF证明:连结AC 、PC∵四边形ABCD 为正方形∴BD 垂直平分AC ,∠BCD = 90o∴AP = CP∵PE ⊥BC ,PF ⊥CD ,∠BCD = 90o ∴四边形PECF 为矩形 ∴PC = EF ∴AP = EF 题型13.有正方形一边中点时常取另一边中点.例14已知,如图,正方形ABCD 中,M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN 于N求证:MD = MN证明:取AD 的中点P ,连结PM ,则DP = P A =12AD ∵四边形ABCD 为正方形 ∴AD = AB , ∠A =∠ABC = 90o∴∠1+∠AMD = 90o ,又DM ⊥MN ∴∠2+∠AMD = 90o ∴∠1 =∠2 ∵M 为AB 中点∴AM = MB = 12AB∴DP = MB AP = AM ∴∠APM =∠AMP = 45o ∴∠DPM =135o ∵BN 平分∠CBE ∴∠CBN = 45o∴∠MBN =∠MBC +∠CBN = 90o +45o = 135o 即∠DPM =∠MBN ∴△DPM ≌△MBN21EDCBAP F ED CB A21P NEDCA∴DM = MN注意:把M 改为AB 上任一点,其它条件不变,结论仍然成立。

万唯几何模型和几何辅助线压轴题

万唯几何模型和几何辅助线压轴题

万唯几何模型和几何辅助线压轴题
万唯几何模型是一种应用于高中数学中的几何辅助工具,通常用于解决几何证明题中的难点。

在万唯几何模型中,我们将几何图形转化为一系列的线段和角度,从而更容易地进行推导和证明。

在这个过程中,几何辅助线也是非常重要的,它可以帮助我们发现几何图形中的隐藏性质,并加上一些约束条件,使得证明更加严谨。

下面,我们来看一个万唯几何模型和几何辅助线的例子:假设我们需要证明一个三角形的内心、垂心和重心共线,即I、H、G三点共线。

我们可以首先画出三角形ABC和它的外接圆,然后通过画出三角形ABC三个角的平分线,将三角形分成三个小三角形。

接着,我们可以通过连线,将每个小三角形的垂心、中心、重心、外心等特殊点连接起来,形成一个新的图形。

在这个图形中,垂心、中心、重心、外心四个特殊点构成了一个正方形,而内心I则处于正方形的中心。

接下来,我们可以通过连接I和H,以及I和G,证明I、H、G三点共线。

这个例子展示了万唯几何模型和几何辅助线的重要性。

通过对几何图形的转化和辅助线的引入,我们可以更好地理解几何性质,更快地推导出结论,并且可以更加严谨地证明各种定理。

因此,万唯几何模型和几何辅助线对于高中数学学习来说是非常重要的工具,也是考试中常见的考点。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明题(添加辅助线)1.已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,求证AF⊥CD
2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
4.如图所示,在△ABC中,AB=AC,在AB边上取点D,在AC的延长线上取点E,使得BD=CE,连接DE交BC于点G,求证:DG=GE.
5.已知,E是AB中点,AF=BD,BD=5,AC=7,求DC D
E
B
2
1
D E
B
A
F A D
C
6.如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm , 求AO+BO 的值.
7.如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE 。

8.已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C
9.已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE
10.如图,AB=AC,∠BAC=900
,∠1=∠2,CE ⊥BE,求证BD=2CE
D
B
C
A
E
A
B
C
D
2
1D
E C A C
O
P
A B
F
E
D C
B
A
11.正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.
12.已知:如图,在正方形ABCD 中,E 是BC 的中点,点F 在CD 上,∠FAE=∠BAE . 求证:AF=BC+FC .
13.如图,已知F 是正方形ABCD 的边CD 的中点,点E 在BC 上,且∠DAF=∠EAF 求证:AE=CD+CE
14.△ABC 中,∠A=90°,AB=AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.
15.△ABC 是等腰直角三角形,,∠A=900
,点P 、Q 分别是AB 、AC 上的动点,且满足BP=AQ ,D 是BC 的中点.(1)求证:△PDQ 是等腰直角三角形。

(2)当点p 运动到什么位置时,四边形APDQ 是正方形?说明理由。

D
A
B
E Q
D
C
A
B
P
16.如图,正方形ABCD ,E 是AB 上的一个一点,BE=2,AE=3BE,P 是AC 上的一动点,则PB+PE 的最小值是多少?
17.①(20XX 年崇左)如图13,△ABC 中,D 、F 分别是边BC,AB 的中点,AD 、CF 相交于E . 求证 AD AE =CF CE =31

②如图14,△ABC 中,D 是边BC 的中点,F 是AB 上一点,连AD 、CF 相交于E . 求证 ED AE =
FB 2AF
③.如图15,已知△ABC 的高AD 、CF 相交于点E , 求证:AE ·ED=CE ·EF .
18.①如图16,已知AB=AC ,(1)若CE=BD ,求证:GE=GD ;
(2)若CE=m ·BD (m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).
D
B
C
D
C
图16
A
B
D。

相关文档
最新文档