市级公开课《分类加法计数原理与分步乘法计数原理》教学设计新部编版
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用计数原理解决实际问题的能力。
3. 引导学生通过合作交流,提高思维能力和创新能力。
二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。
(2)学会运用分类加法计数原理解决问题。
2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。
(2)学会运用分步乘法计数原理解决问题。
三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。
(2)分步乘法计数原理的应用。
2. 教学难点:(1)理解分类加法计数原理的含义。
(2)理解分步乘法计数原理的含义。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 运用实例分析,让学生直观理解计数原理。
3. 组织小组讨论,培养学生合作交流能力。
五、教学准备1. 课件、黑板、粉笔等教学工具。
2. 相关实例和练习题。
教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。
2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。
3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。
二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。
2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。
3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。
2. 讲解分类加法计数原理的概念和步骤。
3. 让学生举例说明并计算。
二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。
2. 讲解分步乘法计数原理的概念和步骤。
分类加法计数原理与分步乘法计数原理教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校1.1分类加法计数原理与分步乘法计数原理(第一课时)内容分析:本节课要学的内容分类加法计数原理与分步乘法计数原理主要包括:分类加法计数原理的定义、分步乘法计数原理的定义以及两个原理的简单应用,其核心是两个计数原理,理解它关键就是要体会两个计数原理的基本思想及其应用方法.学生已经学过加法、乘法,本节课的内容要与之建立相关联系.由于它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法贯穿本章内容的始终,所以在本章有重要的地位,是本学科的重要内容.教学的重点是两个计数原理,解决重点的关键是结合实例阐述两个计数原理的基本内容,分析原理的条件和结论,特别是要注意使用对比的方法,引导学生认识它们的异同.问题诊断分析:在本节课的教学中,学生可能遇到的问题是如何选择对应的原理解决具体问题,产生这一问题的原因是学生无法把具体的问题特征与两个计数的基本思想联系起来.要解决这一问题,在本节教学时先采取通过典型的、学生熟悉的实例,经过抽象概括而得出两个计数原理,然后按照从单一至综合的方式,安排比较典型的例题,引导学生逐步体会两个计数原理的基本思想及其应用方法.学情分析:本节课的授课对象是民族地区完全中学普通高中的学生.这些学生学习基础相对比较薄弱,思维不够灵活,分析问题的能力也不强。
为此在教学时需循序渐进,逐步培养学生对分类加法计数原理和分步乘法计数原理的辨析能力,规范学生对这种问题的分析过程和解答过程,引领学生学会解决此类问题的一般性方法,从而有效地促使学生强化对两个原理的理解深度.三维目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理,并掌握他们的区别与联系;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:通过对两个原理概念的学习培养学生的理解能力、归纳概括能力和类比分析能力;②通过对两个原理的应用,提高学生对数学知识的应用能力;情感态度与价值观:①了解学习本章的意义,激发学生的学习兴趣;②引导学生形成“自主学习”与“合作学习”等良好的学习方式.目标解析:①理解分类加法计数原理就是指将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;②理解分步乘法计数原理就是指将一个复杂问题分解为若干“步骤”,先对每一个步骤进行细致分析,再整合为一个完整的过程;③会应用两个计数原理解决简单的实际问题就是指根据具体问题的特征选择对应的计数原理。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 让学生学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:(1)概念介绍:同一类对象的数量相加得到总数。
(2)实例讲解:学校举办运动会,参加跑步的有20人,参加跳高的有15人,参加跳远的有10人,请问参加运动会的总人数是多少?a. 班级里有男生30人,女生20人,请问班级里总共有多少人?b. 图书馆里有小说50本,科普书籍30本,请问图书馆里总共有多少本书?2. 分步乘法计数原理:(1)概念介绍:完成一项任务需要多个步骤,每个步骤的数量相乘得到总数量。
(2)实例讲解:做一份报纸,需要先排版(10分钟),印刷(20分钟),装订(10分钟),请问完成这份报纸需要多长时间?a. 制作一个蛋糕,需要打发鸡蛋(10分钟),加入面粉和糖(5分钟),烘烤(20分钟),请问制作一个蛋糕需要多长时间?b. 工厂生产一批玩具,每台机器每小时可以生产10个玩具,共有3台机器工作,请问每小时可以生产多少个玩具?三、教学方法1. 采用讲授法,讲解分类加法计数原理和分步乘法计数原理的概念及应用。
2. 利用实例讲解,让学生更好地理解计数原理。
3. 设计练习题,让学生动手实践,巩固所学知识。
四、教学评价1. 课堂问答:检查学生对分类加法计数原理和分步乘法计数原理的理解。
2. 练习题解答:评价学生运用计数原理解决问题的能力。
3. 课后作业:布置相关题目,让学生进一步巩固所学知识。
五、教学资源1. PPT课件:展示分类加法计数原理和分步乘法计数原理的概念及实例。
2. 练习题:提供丰富的练习题,让学生动手实践。
3. 教学视频:可选用的相关教学视频,辅助学生理解计数原理。
4. 黑板、粉笔:用于板书关键词和讲解实例。
六、教学步骤1. 引入新课:通过一个简单的实例,让学生感受分类加法计数原理和分步乘法计数原理的应用。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。
公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。
公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。
分步乘法计数原理的概念和公式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。
2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。
五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。
2. 讲解分类加法计数原理的公式和应用示例。
3. 讲解分步乘法计数原理的公式和应用示例。
4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。
六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。
2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。
3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。
七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。
教学设计2:分类加法计数原理与分步乘法计数原理
10.6.1 分类加法计数原理与分步乘法计数原理考纲传真 1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法.1.(人教A 版教材习题改编)在所有的两位数中,个位数字大于十位数字的两位数共有( )A .50个B .45个C .36个D .35个【解析】 根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).【答案】 C2.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A .10B .11C .12D .15【解析】 若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24.由分类计数原理知满足条件的信息个数为1+C34+C24=11.【答案】B3.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504 B.210 C.336 D.120【解析】分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.【答案】A4.(2012·大纲全国卷)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A.240种B.360种C.480种D.720种【解析】第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法.因此不同的演讲次序共有A14·A55=480(种).【答案】C5.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.【解析】法一分两类,①一男一女,共有4×2=8种;②两女,只有1种,共有8+1=9种.法二间接法C26-C24=15-6=9种.【答案】9分类加法计数原理某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【思路点拨】由于是两类不同的书本,故用分类加法计数原理.【尝试解答】赠送一本画册,3本集邮册.需从4人中选取一人赠送画册,其余送邮册,有C14种方法.赠送2本画册,2本集邮册,只需从4人中选出2人送画册,其余2人送邮册,有C24种方法.由分类加法计数原理,不同的赠送方法有C14+C24=10(种).【答案】B,1.本题常见错误:①忽视相同画册,相同集邮册条件,错用排列计算.②找不准分类标准.求解的关键在于抓住赠送画册的本数进行分类.2.分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法.图10-1-1如图10-1-1所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.【解析】把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).【答案】40分步乘法计数原理(2012·大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【思路点拨】先排第一列三个位置,再排第二列第一行上的元素,则其余位置上元素就可以确定.【尝试解答】先排第一列,由于每列的字母互不相同,因此共有A33种不同排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12(种)不同的排列方法.【答案】A,1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且也要确定分步的标准,分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:(1)步骤互相独立,互不干扰.(2)步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.【解】(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y =ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的取值均有6种情况.因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.两个计数原理的综合应用图10-1-2如图10-1-2所示,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种【思路点拨】解答本题应注意两点:(1)每一个点都有可以和它同色的两个点.(2)涂色的顺序不同影响解题的难度,可先涂A、D、E,再分类涂B、F、C.【尝试解答】先涂A、D、E,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法,另一类是B与E 和D不同色,共有1×(1×1+1×2)=3种涂法,故涂色方法共有24×(8+3)=264种.【答案】B,1.给B、C、F涂色时,在每一类下又有两种情况,应切实掌握好分类的标准,分清哪些可以同色,哪些不同色.2.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,把完成每一步的方法数相乘,得到总数.(2013· 杭州模拟)如图10-1-3,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.图10-1-3【解析】按区域1与3是否同色分类:(1)区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24种方法.(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法,故由分类计数原理,不同的涂色种数为24+72=96.【答案】96两个原理分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,构成完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.两点提醒1.分类时,标准要明确,应做到不重不漏.2.分步时,要合理设计顺序、步骤,并注意元素是否可以重复选取.从近两年高考试题看,两个计数原理是高考考查的热点,一般与排列、组合等知识结合,考查分类讨论的数学思想.主要涉及数字问题、几何问题、涂色问题,有时也出现与其它知识相结合的新定义题型.创新探究之十二与计数原理有关的新定义题(2012·江苏高考)设集合P n={1,2,…,n},n∈N*,记f(n)为同时满足下列条件的集合A 的个数:①A ⊆P n ;②若x ∈A ,则2x ∉A ;③若x ∈∁P n A ,则2x ∉∁P n A .(1)求f (4);(2)求f (n )的解析式(用n 表示).【解】 (1)当n =4时,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4},故f (4)=4.(2)任取偶数x ∈P n ,将x 除以2,若商仍为偶数,再除以2,…,经过k 次以后,商必为奇数,此时记商为m ,于是x =m ·2k ,其中m 为奇数,k ∈N *.由条件知,若m ∈A ,则x ∈A ⇔k 为偶数;若m ∉A ,则x ∈A ⇔k 为奇数.于是x 是否属于A 由m 是否属于A 确定.设Q n 是P n 中所有奇数的集合,因此f (n )等于Q n 的子集个数.当n 为偶数(或奇数)时,P n 中奇数的个数是n 2(或n +12), 所以f (n )=⎩⎨⎧2n 2,n 为偶数,2n +12,n 为奇数.创新点拨:(1)以集合的概念和运算为背景,求解计数问题.(2)一题两问,体现由特殊到一般的数学思想,考查归纳、抽象概括能力.防范措施:(1)通过阅读、分析,弄清新定义,弄清利用新定义所解决的问题,如本题中f (n )表示集合A 的个数,且集合A 满足三个条件.(2)从特殊情形入手,通过分析、归纳,发现问题中隐含的一些本质特征和规律,然后再推广到一般情形,必要时可以多列举一些特殊情形,使规律方法更加明确.1.(2012·课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种【解析】 分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C 12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法.由分步乘法计数原理得不同的选派方案共有2×6=12(种).【答案】A2.(2013·济南质检)如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.【解析】第一类:恰有三个相同的数字为1,选2,3,4中的一个数字排在十、百、千位的一个位置上,有C13·A13种方法,四位“好数”有9个.第二类:相同的三个数字为2,3,4中的一个,这样的四位“好数”为2221,3331,4441共3个.由分类加法计数原理,共有“好数”9+3=12个.【答案】12。
分类加法计数原理与分步乘法计数原理教学设计
分类加法计数原理与分步乘法计数原理教学设计教学设计:分类加法计数原理与分步乘法计数原理一、教学目标:1.了解分类加法计数原理和分步乘法计数原理的概念和应用。
2.掌握分类加法计数原理和分步乘法计数原理的解题方法。
3.培养学生的分类、归纳和逻辑思维能力。
二、教学准备:1.教学用具:黑板、粉笔、教学课件、教学实例。
2.学生学具:纸笔。
三、教学过程:步骤一:导入新知识1.教师简要介绍分类加法计数原理和分步乘法计数原理的内容和应用。
2.引导学生思考:在日常生活中,是否经常遇到需要进行分类和计数的问题?举例说明。
步骤二:分类加法计数原理1.定义:将问题分解成若干个相互独立的部分,计算每个部分的数量然后求和。
2.通过教学实例,讲解分类加法计数原理的解题方法。
(1)例1:班有3个男生和4个女生,问这个班一共有几个人?(2)例2:有红、黄、绿三种颜色的苹果,已知红色有5个,黄色有3个,绿色有2个,问一共有几个苹果?(3)例3:一件衣服原价100元,店铺打8折,现在卖多少钱?3.设计学生练习题,引导学生自主解答。
步骤三:分步乘法计数原理1.定义:将问题分解成若干个相互独立的步骤,计算每个步骤的数量然后相乘。
2.通过教学实例,讲解分步乘法计数原理的解题方法。
(1)例1:从1到4,选出一个数字作为个位数,选出一个数字作为十位数,选出一个数字作为百位数,一共有多少种不同的三位数?(2)例2:现有4个不同的数字,从中选取2个数字,可以组成多少个不同的两位数?3.设计学生练习题,引导学生自主解答。
步骤四:小结与巩固1.简要总结分类加法计数原理和分步乘法计数原理的应用和解题方法。
2.设计综合练习题,要求学生灵活运用分类加法计数原理和分步乘法计数原理解答问题。
步骤五:拓展应用1.鼓励学生运用分类加法计数原理和分步乘法计数原理解决实际生活中的问题。
(1)例1:在次抽奖活动中,每个人有5张彩票,每张彩票都有4个数字,已知每个数字的范围是1到10,那么这次抽奖一共有多少个可能的中奖号码?(2)例2:一个班级有4个男生和3个女生,学校要选出一个代表队,其中队长必须是男生,队员可以是男生或女生,那么一共有多少种可能的代表队组合?2.扩大学生的思维视野,培养他们的综合运用能力。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标:1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学重点与难点:1. 教学重点:分类加法计数原理和分步乘法计数原理的理解和应用。
2. 教学难点:如何引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
三、教学方法:1. 采用问题驱动的教学方法,让学生在解决问题的过程中理解分类加法计数原理和分步乘法计数原理。
2. 使用案例分析和小组讨论的方式,培养学生的合作能力和沟通能力。
3. 运用数形结合的方法,帮助学生直观地理解分类加法计数原理和分步乘法计数原理。
四、教学准备:1. 教具准备:黑板、粉笔、多媒体教学设备。
2. 学具准备:学生用书、练习本、文具。
3. 教学素材:相关案例分析题、小组讨论题。
五、教学过程:1. 导入新课:通过一个实际问题,引入分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:解释分类加法计数原理的概念,并通过实例讲解如何运用。
3. 讲解分步乘法计数原理:解释分步乘法计数原理的概念,并通过实例讲解如何运用。
4. 案例分析:给出一个案例,让学生运用分类加法计数原理和分步乘法计数原理解决问题。
5. 小组讨论:学生分组讨论,分享各自解决问题的方法和答案。
7. 课堂练习:给出一些练习题,让学生巩固所学内容。
8. 课后作业:布置一些相关的作业题,让学生进一步巩固所学知识。
9. 课堂小结:对本节课的内容进行小结,强调重点和难点。
六、教学评价:1. 评价目标:通过课堂表现、练习完成情况和课后作业来评价学生对分类加法计数原理和分步乘法计数原理的理解和应用能力。
2. 评价方法:a) 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现。
b) 练习完成情况:检查学生练习题的完成质量,包括解题思路、步骤和答案的正确性。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、分类加法计数原理教案主旨: 学习分类加法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明有3个红色球和4个蓝色球,他想穿一双颜色相同的球,有多少种可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分类加法计数原理的概念: 分类加法计数原理是指在一个问题中,通过将问题进行分类,然后对每个分类进行计数,最后将各个分类的计数结果相加,得到最终的解决方案。
2. 给出示例问题: 一个篮球队有5个队员,一个足球队有6个队员,现在要选出两个队员进行混合比赛,有多少种可能性?三、讲解 (15分钟)1. 分类: 将问题分为篮球队员和足球队员两类。
2. 计数: 分别计算篮球队员和足球队员的可能性,篮球队员有C(5,2)种组合方式,足球队员有C(6,2)种组合方式。
3. 合并: 将篮球队员和足球队员的组合数相加得到最终的解。
四、练习 (15分钟)1. 分发练习册,让学生完成相关练习。
2. 教师巡视督促学生的练习过程,提供必要的帮助和指导。
五、总结 (5分钟)1. 总结分类加法计数原理的步骤:分类、计数、合并。
2. 强调分类加法计数原理在解决实际问题中的应用。
3. 回顾学生在课堂练习中的解题思路和结果。
二、分步乘法计数原理教案主旨: 学习分步乘法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明喜欢穿不同颜色的T恤和裤子,他有3种不同颜色的T恤和4种不同颜色的裤子,他有多少种穿搭可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分步乘法计数原理的概念: 分步乘法计数原理是指在一个问题中,将问题分为多个独立的步骤,然后计算每个步骤的可能性,并将各个步骤的可能性相乘,得到最终的解决方案。
2. 给出示例问题: 一个密码锁有3个拨轮,每个拨轮上分别有0-9的数字,求密码锁的可能组合数。
分类加法计数原理与分步乘法计数原理教学设计
分类加法计数原理与分步乘法计数原理教学设计一、教学目标通过本节课的学习,学生应能:1.掌握分类加法计数原理的基本概念与计算方法;2.理解分步乘法计数原理的基本概念与计算方法;3.能够灵活运用分类加法计数原理与分步乘法计数原理解决实际问题。
二、教学重难点1.分类加法计数原理与分步乘法计数原理的理解与运用;2.引导学生学会灵活运用计数原理解决实际问题。
三、教学准备多媒体教学设备、教学课件、题目练习资料。
四、教学过程1.情境导入(5分钟)教师通过引入生活中的实际问题,比如:小明有两张红色的贴纸和三张绿色的贴纸,他把这些贴纸都收集在一个盒子里,请问他一共有多少张贴纸?引导学生思考该问题。
2.引入分类加法计数原理(10分钟)老师引导学生将红色的贴纸和绿色的贴纸分别进行分类,并进行计数,然后通过分类加法计数原理,将两个分类中的数量相加,得到总数。
师生共同完成示例题目。
3.分类加法计数原理的运用(10分钟)教师给出一组题目,鼓励学生自己尝试用分类加法计数原理解决。
同时教师巡视指导,及时纠正学生解题错误。
4.引入分步乘法计数原理(10分钟)教师通过引导学生思考生活中实际问题,如不重复的选择一件上衣和一条裤子,共有几种搭配方式。
引导学生发现选择上衣和选择裤子的方式是分步的,然后通过分步乘法计数原理,计算有多少种搭配方式。
5.分步乘法计数原理的运用(15分钟)教师给出一组题目,鼓励学生自己尝试用分步乘法计数原理解决。
同时教师巡视指导,及时纠正学生解题错误。
6.计数原理的综合运用(20分钟)教师给出综合性应用题,要求学生结合分类加法计数原理与分步乘法计数原理进行综合运用,解决实际问题。
7.总结与扩展(10分钟)教师梳理本节课的重点知识,对分类加法计数原理与分步乘法计数原理进行总结。
然后教师布置课后作业,拓展学生的思维。
五、教学延伸1.老师可以引导学生思考计数原理在日常生活中的应用,如超市货物的分类与计数、人物影视剧中演员的选择等。
分类加法计数原理、分步乘法计数原理说课稿 教案
分类加法计数原理、分步乘法计数原理问题1.1:从温州到杭州,可以乘汽车,也可以乘火车,一天之中,火车有2班,汽车有3班,那么一天中,乘坐这些交通工具从温州到杭州共有几种不同的走法?问题1.2:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?探究:你能说说以上两个问题的特征吗?分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有N=m+n种不同的方法.问题1.3:在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学生物学数学化学会计学医学信息技术学物理学法学工程学那么,这名同学可能的专业选择共有多少种?变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?分类加法计数原理完成一件事,有n 类不同方案,在第1类方案中有m1 种不同方法,在第2类方案中有m2 种不同的方法,‥‥‥在第n类方案中有mn 种不同的方法,那么完成这件事共有N种不同的方法:N=m1+m2+‥‥‥+mn 。
问题2.1:从温州到绍兴,没有直达的火车。
但可以先乘火车到缙云,再搭汽车到绍兴。
一天之中,从温州到缙云的火车有3班(在中午之前),从缙云到绍兴的汽车有4班(在午后),那么一天中,乘坐这些交通工具从温州到绍兴共有几种不同的走法?问题2.2:用前6个大写英文字母和1—9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?探究:你能说说这个问题的特征吗?分步乘法计数原理完成一件事需要分二个步骤,在第1步中有m种不同的方法,在第2步中有n种不同的方法. 那么完成这件事共有N=m+n种不同的方法.问题2.3:书架上有不同的数学书3本,不同的语文书2本,不同的英语书4本,从书架上拿数学书、语文书、英语书各一本,共有多少种不同的拿法?探究:如果完成一件事需要三个步骤,做第1步有m11种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,‥‥‥做第n步有mn种不同的方法,那么完成这件事共有N种不同的方法。
公开课教案】分类加法计数原理与分步乘法计数原理教学设计
公开课教案】分类加法计数原理与分步乘法计数原理教学设计二是要注重培养学生的思维能力,引导学生在解决问题时能够灵活运用两个计数原理,并能将其应用于实际问题中,这是提高学生数学素养的关键.3.教学目标1)知识目标:①掌握分类加法计数原理和分步乘法计数原理的概念和应用方法;②初步掌握运用两个计数原理解决实际问题的方法;③了解两个计数原理在排列、组合和二项式定理中的应用.2)能力目标:①培养学生的分类思维和分步思维;②提高学生的问题解决能力;③提高学生的数学抽象概括能力.3)情感目标:①激发学生研究数学的兴趣和热情;②培养学生的数学思维和创新精神;③提高学生的自信心和自主研究能力.二、教学过程设计1.教学方法本课程采用讲授、示范、演练和讨论相结合的教学方法.2.教学内容及时间安排1)引入(5分钟):通过引入一道简单的计数问题,让学生对两个计数原理有一个初步的认识.2)概念讲解(10分钟):通过PPT展示,讲解分类加法计数原理和分步乘法计数原理的概念和应用方法.3)实例讲解(20分钟):通过多个实例,讲解如何运用两个计数原理解决实际问题.4)练(15分钟):提供一些简单的计数问题,让学生在小组内讨论解决方法,并在班内汇报.5)拓展(10分钟):介绍两个计数原理在排列、组合和二项式定理中的应用.6)总结(5分钟):对本节课的研究内容进行总结,强调掌握两个计数原理对于数学研究的重要性.三、教学评价1.评价方式本节课采用自评、互评和教师评价相结合的方式进行评价.2.评价内容1)知识掌握情况;2)解决问题的能力;3)数学思维和创新精神;4)自主研究能力.本节课的重点是教授两个计数原理,即弄清“完成一件事”的含义和区分“分步”与“分类”的特征。
教学目标是通过具体实例,让学生体会到从特殊到一般的思维过程,并能正确选择和应用两个计数原理解决一些简单的实际问题。
本节课采用“情景引入—问题诱导—实例探究—抽象概括—原理应用—归纳总结—拓展铺垫”的探究发现式教学方法,让学生在不断思考中获取两个计数原理的发现过程。
市级公开课《分类加法计数原理与分步乘法计数原理》教学设计新部编版
精品教学教案设计|Excellentteachingplan教师学科教案[ 20 –20 学年度第__学期 ]任教学科:_____________任教年级:_____________xx任教老师:_____________市实验学校育人犹如春风化雨,授业不惜蜡炬成灰分类加法计数原理与分步乘法计数原理〔第一课时〕一.教学内容解析〔一〕教材的地位和作用“分类加法计数原理和分步乘法计数原理〞〔以下简称“两个计数原理〞〕是人教 A版高中数学课标教材选修2-3“第一章计数原理〞第节的内容,教学需要安排4个课时,本节课为第1课时.两个计数原理是人类在大量的实践经验的根底上归纳出的根本规律,是解决计数问题的最根本、最重要的方法,它们不仅是推导排列数、组合数计算公式的依据,而且其根本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识.由于排列、组合及二项式定理的研究都是作为两个计数原理的典型应用而设置的,因此,理解和掌握两个计数原理,是学好本章内容的关键。
从认知根底的角度看,两个计数原理实际上是学生从小学就开始学习的加法运算与乘法运算的拓展应用,是表达加法与乘法运算相互转化的典型例证.从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂的计数问题分解为假设干“类别〞,再分类解决;运用分步乘法计数原理解决问题那么是将一个复杂的计数问题分解为假设干“步骤〞,先对每个步骤分类处理,再分步完成.综合运用两个计数原理就是将综合问题分解为多个单一问题,再对每个单一问题各个击破.也就是说,两个计数原理的灵魂是化归与转化的思想、分类与整合的思想和特殊与一般的思想的具体化身.从数学本质的角度看,以退为进,以简驭繁,化难为易,化繁为简,是理解和掌握两个计数原理的关键,运用两个计数原理是知识转化为能力的催化剂.〔二〕教学目标知识与技能:1〕正确理解和掌握分类加法计数原理和分步乘法计数原理;2〕会利用两个原理分析和解决一些简单的应用问题;。
分类加法计数原理和分步乘法计数原理教案
分类加法计数原理和分步乘法计数原理教案教案:分类加法计数原理和分步乘法计数原理教学目标:1.理解分类加法计数原理和分步乘法计数原理的概念和应用。
2.能够运用分类加法计数原理和分步乘法计数原理解决问题。
教学重点:1.掌握分类加法计数原理和分步乘法计数原理的具体应用。
2.提高学生的问题解决能力。
教学难点:能够正确理解分类加法计数原理和分步乘法计数原理的应用,并能运用到实际问题中。
教学准备:1.板书:分类加法计数原理和分步乘法计数原理的定义和示例。
2.教学课件:包含丰富的分类加法计数原理和分步乘法计数原理的例题。
教学过程:Step 1:导入新知识(10分钟)导入新知识:让学生思考以下问题:1.如果我有两种不同的衣服和三种不同的裤子,我可以有多少种不同的搭配方式?2.如果我有三个家具店,每个店铺里有四种不同的椅子和五种不同的桌子,我可以有多少种不同的搭配方式?引导学生思考和讨论问题,引出分类加法计数原理的概念。
Step 2:分类加法计数原理(20分钟)1.板书:分类加法计数原理的定义。
2.板书:示例题目,并与学生一起解答。
例题1:小明有五个红苹果和三个绿苹果,请问他有多少个苹果?解答过程:将问题分为红苹果和绿苹果两个部分,根据分类加法计数原理,总数为红苹果的个数加上绿苹果的个数,即5+3=8例题2:甲班有四个男生和五个女生,乙班有三个男生和六个女生,请问两个班级一共有多少学生?解答过程:将问题分为甲班和乙班两个部分,根据分类加法计数原理,总数为甲班学生的个数加上乙班学生的个数,即4+5+3+6=183.布置练习题:让学生自己尝试解决几个分类加法计数原理的练习题。
Step 3:分步乘法计数原理(20分钟)1.板书:分步乘法计数原理的定义。
分步乘法计数原理:当一个问题可以分为多个独立的步骤时,总数为每个步骤的选择数相乘。
2.板书:示例题目,并与学生一起解答。
例题1:小明有五种不同的上衣和三种不同的裤子,请问他有多少种不同的穿搭方式?解答过程:将问题分为选择上衣和选择裤子两个步骤,根据分步乘法计数原理,总数为上衣的种类数乘以裤子的种类数,即5×3=15例题2:家餐厅有四道不同的主菜和五种不同的甜点,请问用餐顾客有多少种不同的品尝方式?解答过程:将问题分为选择主菜和选择甜点两个步骤,根据分步乘法计数原理,总数为主菜的种类数乘以甜点的种类数,即4×5=20。
《分类加法与分步乘法(第1课时)》教学设计
1.1分类加法计数原理与分步乘法计数原理(第1课时)一、教学目标1.核心素养通过学习分类加法计数原理和分步乘法计数原理,初步区分“分类”和“分步”,为拥有良好的计数能力打下基础,从而提高了学生的数学运算能力和逻辑推理能力.2.学习目标(1)通过实例,总结出分步乘法计数原理;(2)通过实例,总结出分步乘法计数原理;(3)能根据具体问题特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题.3.学习重点归纳地得出分类加法计数原理和分步乘法计数原理,能应用它们解决简单的实际问题..4.学习难点正确的理解“完成一件事情”的含义;根据实际问题的特征,正确地区分“分类”或“分步”.二、教学设计(一)课前设计1.预习任务任务1阅读教材P2-P6,思考:分类加法计数原理内容是什么?分步乘法计数原理是什么?他们的区别是什么?2.预习自测1.教室书架上,上层有4本不同的语文书,下层有7本不同的数学书,从书架上任取一本书,不同的取法种数为( )A.4B.7C.11D.28解:C2.教室书架上,上层有4本不同的语文书,下层有7本不同的数学书,从书架上取一本语文书和一本数学书,不同的取法种数为( )A.4B.7C.11D.28解:D(二)课堂设计问题探究问题探究一 分类加法计数原理 重点、难点知识★▲如上图,从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有几种方法.分类加法原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法.那么完成这件事共有N=m+n 种不同的方法注:两类不同方案中的方法互不相同推广:完成一件事有n 类不同方案,在第一类方案中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法.那么完成这件事共有N =m 1 +m 2+…+m n 种不同方法.完成这件事情的N 类方法中,只需用一种方法就能完成这件事.问题探究二 分步乘法计数原理 重点、难点知识★▲如上图,从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地,一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?并罗列出所有的走法.分步乘法原理: 完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法.那么完成这件事共有n m N ⨯=种不同的方法注:无论第一步采用哪种方法,都不影响第2步方法的选取推广:完成一件事有n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 类办法中有n m 种不同的方法.那么完成这件事共有N = 种不同方法.完成这件事情的n 个步骤中,每个步骤都完成才能完成这件事.问题探究三 分类加法与分步乘法的应用 重点、难点知识★▲例1.若x,y∈N,且x+y≤6,试求有序自然数对(x,y)的个数.+【知识点:分类加法计数原理;数学思想:分类讨论】详解:按x的取值进行分类:x=1时,y=1,2,3,4,5,共构成5个有序自然数对;x=2时,y=1,2,3,4,共构成4个有序自然数对;x=3时,y=1,2,3,共构成3个有序自然数对;x=4时,y=1,2,共构成2个有序自然数对;x=5时,y=1,共构成1个有序自然数对.根据分类加法计数原理,共有N=5+4+3+2+1=15个有序自然数对.点拨:解答本题可按x(或y)的取值分类解决. 利用分类加法计数原理时要注意:(1)要准确理解题意,确定分类的标准.(2)分类时要做到“不重不漏”,即类与类之间要保证相互间的独立性.例2.现有5件不同样式的上衣和4条不同颜色的长裤,如果选一条长裤与一件上衣配成一套,则不同的配法种数为种【知识点:分步乘法计数原理;】解析:要完成配套需分两步,第一步,选上衣,从5件上衣中任选一件,有5种不同选法;第二步,选长裤,从4条长裤中任选一条,有4种不同选法.故共有5×4=20种不同的配法.点拨:利用分步乘法计数原理时要注意:(1)仔细审题,抓住关键点确立分步标准,有特殊要求的先行安排;(2)分步要保证各步之间的连续性和相对独立性.例3.书架的第一层放有3本不同的艺术书,第二层放有2本不同的计算机书,第三层放有5本不同的体育书,从书架上任取2本不同学科的书,共有多少种不同的取法?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】详解:根据取书的学科不同,可以分为三类:1.计算机与艺术:3×2=62. 计算机与体育: 2×5=103. 艺术与体育: 3×5=15共有6+10+15=31种不同的取法点拨:首先将问题分类,可分为四类,然后每一类再分步完成.即解答本题可“先分类,后分步3.课堂总结【知识梳理】分类加法计数原理; 分步乘法计数原理;【重难点突破】正确的理解完成一件事情的含义;合理分类与分步,先分类后分步.4.随堂检测1. 一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出一本,则不同的取法共有()A. 37种B.1848种C.3种D. 6种【知识点:分类加法原理;数学思想:分类讨论】答案:A2.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出语文、数学、英语各一本,则不同的取法共有()A.37种B.1848种C.3种D.6种【知识点:分步乘法原理】答案:B3.某商业大厦有东南西3个大门,楼内东西两侧各有2个楼梯,从楼外到二楼的不同走法种数是()A.5B.7C.10D.12【知识点:分步乘法原理】答案:D4.用1、2、3、4四个数字可以排成不含重复数字的四位数有()A.265个B.232个C.128个D.24个【知识点:分步乘法原理】答案:D5.用1、2、3、4四个数字可排成必须含有重复数字的四位数有()A. 265个B.232个C.128个D.24个【知识点:分步乘法原理,间接法】答案:B(三)课后作业基础型自主突破1.一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成.从中选出1人来完成这项工作,不同选法的种数是()A.8B.15C.16D.30【知识点:分类加法原理;数学思想:分类讨论】答案:A2.如图所示,一条电路从A处到B处接通时,可构成的通路有()A.8条B.6条C.5条D.3条【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:B 解析:依题意,可构成的通路有2×3=6(条).3.已知集合A是{1,2,3}的真子集,且A中至少有一个奇数,则这样的集合A有()A.2个B.3个C.4个D.5个【知识点:分类加法原理;数学思想:分类讨论】答案:D 解析:满足题意的集合A分两类:第一类有一个奇数有{1},{3},{1,2},{3,2}共4个;第二类有两个奇数有{1,3},所以共有4+1=5(个).4.4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中一个运动队,不同的报法种数为()A.16B.6C.81D.64【知识点:分步乘法原理】答案:C 解析:4名同学报名参加体育队这个事件,分为四个步骤,第一个同学有3个选择,第二个同学有3个选择,第三个同学有3个选择,第四个同学有3个选择,总共有3×3×3×3=81种.5.3个班分别从5个风景点中选择一处游览,不同选法的种数为()A.15B.25C.243D.125【知识点:分步乘法原理】答案:D6. 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【知识点:分类加法原理;数学思想:分类讨论】解:法一:按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成八类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36个.法二:按个位上的数字是2,3,4,5,6,7,8,9分成八类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个.所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36个.能力型师生共研1.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()A.10种B.52种C.25种D.42种【知识点:分步乘法原理】答案:D2. 三边长均为整数,且最大边为11的三角形的个数为()A.25B.36C.26D.37【知识点:分类加法原理,三角形边角关系;数学思想:分类讨论】答案:B3. 某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中1人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:解:(1)56415N=++=种;(2)564120N=⨯⨯=种;(3)56644574N=⨯+⨯+⨯=种4.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:解:分两类:(1)幸运之星在甲箱中抽,再在两箱中各定一名幸运伙伴,有30×29×20=17400种结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11400种结果因此共有17400+11400=28800种不同结果探究型多维突破1.甲、乙、丙、丁四个人各写一张贺卡,放在一起,再各取一张不是自己所写的贺卡,共有多少种不同的取法?【知识点:分步乘法原理】⨯⨯⨯=种.甲先拿有三种选择,甲拿到的贺卡主人答案:解:列表排出所有的分配方案,共有33119继续拿有3个选择,剩下两人均只有1种选择.2.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:解:和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两数,即子集中的元素取自5个组中的一个数而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32自助餐1.从甲地到乙地一天有汽车8班、火车3班、轮船2班,某人从甲地到乙地,他共有不同的方法种数为()A.13B.16C.24D.48答案:A2.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为()A.182B.14C.48D.91答案:C3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有()A.30个B.42个C.36个D.35个答案:C4.设集合A中有5个元素,集合B中有2个元素,建立A→B的映射,共可建立()A.10个B.20个C.25个D.32个【知识点:映射的定义,分步乘法原理】答案:D 解析:根据映射的定义知,集合A中的每一个元素在集合B中都有唯一的元素与之对应.A中每个元素的像均有两种选择,由分步乘法计数原理知,共可建立25个映射.5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种【知识点:分步乘法原理】答案:C 解析:分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).6.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有()A.8种B.12种C.16种D.20种【知识点:分步乘法原理】答案:B 解析:分两步,第1步:先选不相邻的两个面,共有3种选法(都是相对面).第2步,再从余下的四个面中任选一个面,有4种选法,这样前后选出的三个面符合题目要求,所以共有3×4=12(种).7.电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生种不同的信息.【知识点:分步乘法原理】答案:256 解析:8个位置,每个穿孔或者不穿孔,有两个方法,总共有82个不同的信息.8.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员参加团体比赛,则入选的3名队员中至少有一名老队员的选法有种.(用数字作答)【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:9解析:分为两类完成,两名老队员、一名新队员时,有3种选法;两名新队员、一名老队员时,有2×3=6种选法,即共有9种不同选法.9.圆周上有2n个等分点(1n ),以其中三个点为顶点的直角三角形的个数为.【知识点:分步乘法原理】答案为:2n(n-1)解析: 由题意知,只有三角形的一条边过圆心,才能组成直角三角形,∵圆周上有2n个等分点∴共有n条直径,每条直径可以和除去本身的两个定点外的点组成直角三角形,∴可做2n-2个直角三角形,根据分步计数原理知共有n(2n-2)=2n(n-1)个.10.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】解:(1)由分类加法计数原理得,从中任取一个球共有8+7=15种取法.(2)由分步乘法计数原理得,从中任取两个不同颜色的球共有8×7=56种取法.11.有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步计数原理知共有方法36=729种.(2)每项限报一人,且每人至多限报一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步计数原理得共有报名方法6×5×4=120种.(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理得共有不同的报名方法63=216种.12. 关于正整数2160,求:(1)它有多少个不同的正因数?(2)它的所有正因数的和是多少?【知识点:分步乘法原理】αβγ,解:(1)∵N=2160=24×33×5,∴2160的正因数为P=235其中α=0,1,2,3,4,β=0,1,2,3,γ=0,1∴2160的正因数共有5×4×2=40个(2)式子(20+21+22+23+24)×(30+31+32+33)×(50+51)的展开式就是40个正因数∴正因数之和为31×40×6=7440。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案第一章:引言1.1 教学目标让学生理解分类加法计数原理和分步乘法计数原理的概念。
让学生掌握分类加法计数原理和分步乘法计数原理的运用方法。
1.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。
分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。
1.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。
1.4 教学步骤引入分类加法计数原理和分步乘法计数原理的概念。
通过示例讲解分类加法计数原理的运用方法。
通过示例讲解分步乘法计数原理的运用方法。
学生练习题:让学生运用分类加法计数原理和分步乘法计数原理解决问题。
小组讨论:让学生分享解题心得,互相学习和交流。
第二章:分类加法计数原理2.1 教学目标让学生掌握分类加法计数原理的概念和运用方法。
2.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。
2.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。
2.4 教学步骤复习分类加法计数原理的概念。
通过示例讲解分类加法计数原理的运用方法。
学生练习题:让学生运用分类加法计数原理解决问题。
小组讨论:让学生分享解题心得,互相学习和交流。
第三章:分步乘法计数原理3.1 教学目标让学生掌握分步乘法计数原理的概念和运用方法。
3.2 教学内容分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。
3.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。
3.4 教学步骤复习分步乘法计数原理的概念。
通过示例讲解分步乘法计数原理的运用方法。
学生练习题:让学生运用分步乘法计数原理解决问题。
小组讨论:让学生分享解题心得,互相学习和交流。
第四章:应用举例4.1 教学目标让学生能够运用分类加法计数原理和分步乘法计数原理解决实际问题。
《分类加法计数原理与分步乘法计数原理》教学设计
一、 本节课教学内容的本质、地位、作用分析 分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律, 它们不 仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本 章中是奠基性的知识。返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运 算的推广。从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别” , 然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤” ,先 对每个步骤进行细致分析,再整合为一个完整的过程。这样做的目的是为了分解问题、简化问题。可见, 理解和掌握两个计数原理,是学好本章内容的关键。 二、 教学目标分析 1、 知识目标: 使学生熟练掌握两个原理的内容、区别,能够灵活的应用两个原理解决常见的计数问题。 2、 能力目标: 在教学过程中,凸显两个原理发现的原始过程,使学生深刻理解由特殊到一般的归纳推理思维,在应 用原理解决问题时,体会一般到特殊的演绎推理思维,从而培养学生的抽象概括能力、逻辑思维能力以及 解决实际问题时主动应用数学知识的能力。 3、 德育渗透目标: 通过探索与发现的过程,使学生亲历数学研究的成功和快乐,感悟数学朴实无华的内在美,学会提出 问题、分析问题、解决问题、推广结论进而完善结论的数学应用意识,激发学生勇于探索、敢于创新的精 神,优化学生的思维品质。 三、教学过程 【引入】展示世界杯图片:2010 南非世界杯是今年全球的一大体育盛事。32 支球队齐聚南非,观众席上, 人山人海,彩旗飘飘;绿茵场上,群雄逐鹿,球技高超,真是一场难得的视觉盛宴啊!通过小组赛、十六 强赛,八强赛、四强赛、季军赛、决赛,最终决出冠亚季军,大家知道总共进行了多少场比赛吗? 生齐答:64 场。 正确!这个场数我们能否通过一一列举出所有的场次,逐个数出呢? 学生 1:我觉得应该可以,但是方法数较大,操作起来繁琐。 没错。其实,在生活中,我们还会遇到很多类似的方法数的计算问题,这种问题我们称之为计 数问题。 ( 板书 ) 一、计数问题:计算完成一件事的方法数的问题。 我们将通过本章的研究学习解决不通过逐个数来确定这种方法数的技巧方法。 【新课】今天我们先来研究解决计数问题的两种最基本、最重要的方法: 字幕: 1.1 分类加法计数原理与分步乘法计数原理
分类加法计数原理和分步乘法计数原理教学设计
分类加法计数原理和分步乘法计数原理教学设计教学设计:分类加法计数原理和分步乘法计数原理一、教学目标1.了解分类加法计数原理和分步乘法计数原理的概念和应用;2.能够运用分类加法计数原理和分步乘法计数原理解决实际问题;3.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1.分类加法计数原理的基本概念和应用;2.分步乘法计数原理的基本概念和应用;三、教学过程第一节:分类加法计数原理1.导入(5分钟)-引入生活中的例子,例如:一把铲子可以分为“红色”和“蓝色”两类,一双筷子可以分为“金属”和“木质”两类等。
-引出问题:如果有一个包里有3只红色的铲子和2只蓝色的铲子,这个包里一共有几只铲子?如何快速求解?2.概念解释(10分钟)-解释分类加法计数原理的概念:当一个集合可以分为若干互不相交的类别时,集合的元素个数等于各个类别元素的个数的和。
-通过教师提供的实例,进一步让学生理解概念。
3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分类加法计数原理的基本公式写出来,即:总数=类别1数目+类别2数目+类别3数目+...+类别n数目-以问题解决的方式,将公式的应用过程演示给学生。
4.练习应用(15分钟)-给学生发放习题册,让学生结合自己的实际情况完成其中的练习题。
-教师巡回指导,解答学生提出的问题。
第二节:分步乘法计数原理1.复习(5分钟)-复习分类加法计数原理的概念和应用,让学生回答一些与分类加法计数原理相关的问题。
-引出问题:如果有3件相同的红色上衣和2件相同的蓝色上衣,这些上衣一共有几种穿法?如何快速求解?2.概念解释(10分钟)-解释分步乘法计数原理的概念:当一个事件需要分为若干个步骤进行时,每一步的选择数目乘积等于总方案数。
-通过教师提供的实例,进一步让学生理解概念。
3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分步乘法计数原理的基本公式写出来,即:总方案数=第一步选择数目×第二步选择数目×第三步选择数目×...×第n步选择数目-以问题解决的方式,将公式的应用过程演示给学生。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 引导学生通过观察、分析、归纳和推理,形成数学概念。
二、教学内容1. 分类加法计数原理:通过实例让学生理解分类加法计数原理,即在计数时,将事物按照某种特征进行分类,将各类别的事物数量相加。
2. 分步乘法计数原理:通过实例让学生理解分步乘法计数原理,即在计数时,将一个复杂的问题分解成几个简单的步骤,将每一步的数量相乘。
三、教学重点与难点1. 教学重点:让学生掌握分类加法计数原理和分步乘法计数原理的概念及应用。
2. 教学难点:引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析、归纳和推理,形成数学概念。
2. 利用实例讲解,让学生在实际问题中体验和理解分类加法计数原理和分步乘法计数原理。
3. 设计练习题,让学生巩固所学知识,提高解决问题的能力。
五、教学准备1. 教学课件:制作课件,展示实例及练习题。
2. 教学素材:准备相关实例,如水果、动物等分类计数问题,以及需要分步解决的问题,如制作午餐、完成作业等。
3. 练习题:设计分类加法计数原理和分步乘法计数原理的练习题。
六、教学过程1. 导入新课:通过一个简单的实例,如计数教室里的学生,引出分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:展示实例,让学生观察并分析,引导学生归纳出分类加法计数原理。
3. 讲解分步乘法计数原理:展示实例,让学生观察并分析,引导学生归纳出分步乘法计数原理。
5. 总结:对本节课的内容进行总结,强调分类加法计数原理和分步乘法计数原理的应用。
七、课堂练习a) 班级里有男生20人,女生15人,一共有多少人?b) 水果店里有苹果、香蕉和橙子,苹果有10个,香蕉有5个,橙子有8个,一共有多少个水果?a) 小明做作业,一共需要完成3个任务,每个任务需要1小时,一共需要多少小时?b) 小华准备午餐,需要炒菜、煮饭和洗碗,炒菜需要10分钟,煮饭需要30分钟,洗碗需要15分钟,一共需要多少分钟?八、课后作业a) 学校里有小学生、初中生和高中生,小学生有180人,初中生有200人,高中生有150人,一共有多少人?b) 动物园里有鸟类、哺乳动物和爬行动物,鸟类有100只,哺乳动物有200只,爬行动物有50只,一共有多少只动物?a) 小红要做家务,需要打扫卫生、洗衣服和整理房间,打扫卫生需要30分钟,洗衣服需要1小时,整理房间需要45分钟,一共需要多少分钟?b) 小刚准备参加篮球比赛,一共需要进行3场比赛,每场比赛需要40分钟,一共需要多少分钟?九、教学反思1. 反思本节课的教学内容,是否清晰易懂,学生是否掌握分类加法计数原理和分步乘法计数原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校1.1 分类加法计数原理与分步乘法计数原理(第一课时)一.教学内容解析(一)教材的地位和作用“分类加法计数原理和分步乘法计数原理”(以下简称“两个计数原理”)是人教A版高中数学课标教材选修2-3“第一章计数原理”第1.1节的内容,教学需要安排4个课时,本节课为第1课时.两个计数原理是人类在大量的实践经验的基础上归纳出的基本规律,是解决计数问题的最基本、最重要的方法,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识.由于排列、组合及二项式定理的研究都是作为两个计数原理的典型应用而设置的,因此,理解和掌握两个计数原理,是学好本章内容的关键。
从认知基础的角度看,两个计数原理实际上是学生从小学就开始学习的加法运算与乘法运算的拓展应用,是体现加法与乘法运算相互转化的典型例证.从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂的计数问题分解为若干“类别”,再分类解决;运用分步乘法计数原理解决问题则是将一个复杂的计数问题分解为若干“步骤”,先对每个步骤分类处理,再分步完成.综合运用两个计数原理就是将综合问题分解为多个单一问题,再对每个单一问题各个击破.也就是说,两个计数原理的灵魂是化归与转化的思想、分类与整合的思想和特殊与一般的思想的具体化身.从数学本质的角度看,以退为进,以简驭繁,化难为易,化繁为简,是理解和掌握两个计数原理的关键,运用两个计数原理是知识转化为能力的催化剂.(二)教学目标1.知识与技能:(1)正确理解和掌握分类加法计数原理和分步乘法计数原理;(2)会利用两个原理分析和解决一些简单的应用问题;。
2.过程与方法:经历由实际问题推导出两个原理,再回归实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发现数学、运用数学的过程.3.情感、态度与价值观:培养主动探究的学习态度和协作学习的能力,进一步提高学习数学、研究数学的兴趣.(三)教学重点与难点重点:理解两个原理,并能运用它们来解决一些简单的问题.难点:正确地理解“完成一件事情”的含义;根据实际问题的特征,正确地区分“分类”或“分步”.二.学生学情分析1.认知基础:计数问题学生并不陌生,在不同的学段都有相应的接触,特别是在高中数学《必修2》中学习“古典概型”时,学生又学会了用树状图、列举法解决最简单的计数问题;同时在学习和生活中,学生已经不自觉地会使用“分类”和“分步”的方法来思考和解决问题.2.能力基础:高二学生有较强的观察能力和一定的数学抽象概括能力。
3.可能障碍:一是应用原理的意识淡薄,二是不能根据问题的特征,正确地选择原理解决问题。
两个计数原理虽简单朴素,易学好懂,但如何让学生借助已有的数学活动经验,抽象概括出两个计数原理,并领悟其中重要的数学思想方法,实现认知的飞跃,则是本课必须要突破的难点所在.为此,抓住以下两个要点尤为重要:一是要通过典型丰富的实例来帮助学生完成归纳提炼的过程,加强学生应用两个计数原理解决问题的意识——这是有效提升学生抽象概括能力的契机;二是要在解决问题的过程中,始终突出两个计数原理的核心要素,即弄清“完成一件事”的含义和区分“分步”与“分类”的特征——这是如何选择两个计数原理的关键.三.教学策略分析(一)教法分析对于两个计数原理,不仅仅在于规律本身,更在于学生从已有的方法中发现原理、归纳原理,进一步深刻认识原理,在发现的过程中学会学习,学会探究,提升思维的品质.拟定采取以退为进的教学策略,采用“情景引入—问题诱导—实例探究—抽象概括—原理应用—归纳总结—拓展铺垫”的探究发现式教学方法,紧紧围绕如何抽象、怎样概括、如何归纳和怎么应用等问题展开,通过典型丰富的实例引导学生归纳出两个计数原理,并能学会初步应用,加深对原理的区分和思想方法的理解.(二)学法指导学生已具备一定的计数能力(树状图、列举法等),能解决一些基本的计数问题,包括本节课所涉及的一些实际问题,只是还没有上升到理论的高度。
但是要由实际问题转变为数学知识,必须借助于老师的引导和帮助。
而当归纳总结得出分类加法计数原理之后,运用类比的方式得出分步乘法计数原理对学生来说就并不困难了。
同时,对于两个原理的应用,关键是能否根据具体问题的特征选择相应的原理,要指导学生感悟两个计数原理的区别与联系及其应用的前提条件、应用的注意点。
具体教学策略分成如下五个环节:第一环节:创设情境,提出问题.从“神十的身份证号码”出发,引出“人造天体的编号问题”,通过问题设疑,引导学生在不断思考中获取两个计数原理的发现过程;第二环节:实例探究,归纳原理.从以退为进的实例出发,通过先“两类”后“多类”,先“分类”后“分步”,先“加法”后“乘法”的逐步过渡,引导学生在加法与乘法相互转化的过程中提炼归纳两个计数原理;第三环节:演练反馈,巩固提升.从选择两个原理解决计数问题的关键出发,通过“各取”“任取”等关键词的辨别,引导学生真正弄清“完成一件事”的具体含义,领会准确区分“分步”和“分类”的操作要领;第四环节:归纳小结,认知升华.从放手让学生自主小结出发,通过提纲挈领的表格式小结,引导学生进一步加深对两个计数原理本质的认识;第五环节:课后检测,拓展铺垫.从引发学生进一步思考出发,通过设置有关涂色的思考题,为后继学习排列组合做好铺垫,激发学生进一步学习的欲望.四.教学基本流程五.教学手段采用多媒体辅助教学,营造愉悦的学习情境。
六.教学过程:(一)创设情境,提出问题中国梦,航天梦.近年来,我国科技发展突飞猛进,“神十”的发射更是让世人瞩目,下面我们就一起来回顾这令人激动的时刻.(视频:“神十”升天,飞入太空.)“神十”升天,国人欢呼,世界瞩目.你知道他的“身份证号码”吗?它的国际编号为2013-029A.人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文大写字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).按照这样的编号规则,2013年的人造天体所有可能的编码有多少种?欣赏完激动人心的视频,我们来看看这个问题的设问方式,“按照这样的编号规则,2013年的人造天体所有可能的编码有多少种?”这就是一个典型的计数问题.所谓计数就是数数.其实类似的问题有很多:幼儿园时我们数有多少只鸭子?我们班有多少同学?甚至我们穿校服上衣和裤子有多少种不同的搭配种数等等,我们将这种方法数的计算问题都称之为计数问题.计数问题:即计算完成一件事的方法数的问题.小时候,我们是怎么数的呀?当这个数很大时,列举的方法很难实施.比如,刚才这个问题“一个一个的去数”可以吗?比较复杂.看来我们有必要探究更有效的计数方法.今天我们先来学习计数问题中两种最基本、最重要的方法。
(板书课题:1.1分类加法计数原理与分步乘法计数原理)(二)实例探究,归纳原理这个问题研究四位编码比较复杂,怎么办?我们不妨先退回来研究一位、两位的情形,从中探索出规律,从而解决四位的情形.(1)师生共同探究,得出分类加法计数原理问题1:如果用一个大写的英文字母或一个阿拉伯数字给卫星编号,那么总共能够编出多少种不同的号码?问题2:从甲地到乙地,可以乘动车,也可以乘汽车.一天中,动车有5班,汽车有6班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?那这两个计数问题有什么共同特点呢?列成表格,将共性总结成一个命题,即如果完成一件事有两类不同方案,在第一类方案中有种不同的方法,在第二类方案中有种不同的方法,那么完成这件事共有N m n=+种不同的方法.根据特点给它起个名字,就叫分类加法计数原理.原理是在大量观察的基础上经过归纳、概括而得出的基本规律.同学们还要特别注意:这里的关键词是:完成一件事,分类,加法,每类中的任一种方法都能独立完成这件事.同学们试一试,能用自己得到的原理解决具体的问题吗?例1 在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?(5+4=9种)如果还有C大学呢?变式:在填写高考志愿时,一名高中毕业生了解到,A,B,C三所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学C大学生物学数学新闻学化学会计学金融学医学信息技术学人力资源学物理学 法 学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?(5+4+3=12种).看来加法原理不仅对完成一件事有两类不同方案适用,也对分三类方案适用,对分n 类同样适用.一般地,如果完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类中有2m 种不同的方法…,在第n 类中有n m 种不同的方法,那么完成这件事共有种12n N m m m =+++不同方法.下面,我们看大家能否用这个原理解决更复杂的问题!(2)类比转化探究,得出分步乘法计数原理问题3:如果用前六个大写英文字母中的一个和1~9九个阿拉伯数字中的一个,组成编码形如A 1,B 2的方式给卫星编号,那么总共能编出多少个不同的号码?问题4:从甲地到丙地,要从甲地先乘动车到乙地,再于次日从乙地乘汽车到丙地.一天中,动车有3班,汽车有2班,那么乘坐这些交通工具,从甲地到丙地共有多少种不同的走法?类比加法计数原理,归纳问题3和问题4的共同特点,我们可以得到什么结论?如果完成一件事需要两个步骤,做第一步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N m n =⨯种不同的方法.师:我们称它分步乘法计数原理.同学们还要特别注意:这里的关键词是完成一件事,分步,乘法,每步中的任一种方法都不能独立的完成这件事,只有各个步骤都完成才算做完这件事情.例2 我班有男生28名,女生21名,现要从中选出男、女生各一名代表班级参加公益活动,共有多少种不同的选法?变式:我班有男生28名,女生21名,任课老师10名,现要从中选出男、女生各一名代表班级参加公益活动,还要从中选派1名老师作领队,组成代表队,共有多少种不同选法?由此又可以得到什么结论呢?一般地,如果完成一件事要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法…,做第n 步有n m 种不同的方法,那么完成这件事共有种12n N m m m =⨯⨯⨯不同方法.我们已经归纳了两个计数原理,他们的共性是:为了计数.区别是:因为问题特征不同,有时需要分类,有时需要分步.希望以后用原理解决问题时,要清楚的用原理表达完成一件什么事,怎么完成,是分步还是分类呢?下面我们来做几个练习.(三)演练反馈,巩固提升练1书架的第1层放有4本不同的数学书,第2层放有3本不同的语文书,第3层放有2本不同的化学书.(1)从书架的第1,2,3层各取一本书,有多少种不同取法?(2)从书架中任取1本书,有多少种不同的取法?变式:从书架中取2本不同学科的书,有多少种不同的取法?还记得人造天体编号的问题吗?请同学们试一试,我们现在能解决了吗?练2 【引例回放】“神十”的国际编号为2013-029A.人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文大写字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).这样的编号规则,2013年的人造天体所有可能的编码有多少种?练3 【简单的综合应用】某座山,若从东侧通往山顶的道路有3条,从西侧通往山顶的道路有2条,那么游人从上山到下山共有多少种不同的走法?练4【应用访谈】你能举出生活中或其它学科中的运用两个原理的计数问题吗?(汽车牌照、身份证后4位,从综合楼1楼到4楼……)数学来自生活,又应用于生活,数学是有用的!生活丰富多彩,世界奥秘无穷,在知识的天空里,让我们借助数学的力量,像“神十”一样展翅飞翔吧!(四)归纳小结,认知升华我们今天探讨了一个问题就是如何计数?得出了计数方法的两个原理.这两个计数原理是怎么来的?是我们从实际生活中归纳出来的.那么应用这两个计数原理的关键是什么?就是关注它们的应用场合:有的要分类,有的要分步,有的既要分类又要分步.这两个计数原理的不同点是:分类加法原理中每类中的任一种方法都能独立的完成这件事;分步乘法计数原理中,每步中的任一种方法都不能独立的完成这件事,只有各个步骤都完成才算做完这件事情.它们的异同点如下表:立完成这件事情 步中的每一种方法不能独立完成这件事)注意点 类类独立,不重不漏 步步相依,缺一不可(五)课后检测,拓展铺垫(1)阅读作业:阅读教材第6页至第10页;(2)书面作业:教材第6页练习1,2,3;教材第10页练习1(3)(思考题)如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?如果颜色是2种、4种、5种,结果又如何呢?附:板书设计1.1 分类加法计数原理与分步乘法计数原理⎧⎪⎧⎨⎨⎪⎩⎩列举法计数问题分类加法计数原理两个计数原理分步乘法计数原理。