苏科版九年级数学下册培优培优相似三角形的判定
相似三角形的判定和判定方法
相似三角形的判定和判定方法1.边长比较法:通过比较两个三角形的各个边长,可以判断它们是否相似。
如果两个三角形的对应边长成比例关系,即每对对应边长之比相等,那么这两个三角形是相似的。
比如,如果一个三角形的边长是另一个三角形的边长的两倍,那么这两个三角形就是相似的。
2.角度比较法:通过比较两个三角形的各个角度,可以判断它们是否相似。
如果两个三角形的对应角度相等(或互为对应角的补角),那么这两个三角形是相似的。
比如,如果一个三角形的一对内角是另一个三角形的一对内角的两倍,那么这两个三角形就是相似的。
3.角边比较法:通过比较两个三角形的一个角和对边的比值,可以判断它们是否相似。
如果两个三角形的一个角相等,并且对应边长之比相等,那么这两个三角形是相似的。
比如,如果一个三角形的一个角是60度,它的对边长是另一个三角形的一个角是30度,它的对边长的两倍,那么这两个三角形就是相似的。
4.比例关系法:通过使用相似三角形的比例关系,可以判断两个三角形是否相似。
根据数学原理,如果两个三角形的对应边长之比相等,那么它们是相似的。
这个比例关系可以表示为:AB/DE=BC/EF=AC/DF其中AB、BC、AC分别是一个三角形的三条边长,DE、EF、DF分别是另一个三角形的对应边长。
如果这个比例关系满足,那么这两个三角形就是相似的。
需要注意的是,相似三角形的判定必须满足两个条件:对应角度相等(或互为对应角的补角),以及对应边长成比例关系。
如果只满足其中一个条件,那么这两个三角形不是相似的。
此外,还可以根据相似三角形的性质解决一些图像类问题,比如计算物体在投影变换下的大小、角度等。
在计算机图形学和计算机视觉领域,相似三角形的概念被广泛应用于图像识别、图像重建等算法中。
总之,判定两个三角形是否相似有多种方法,包括比较边长、角度和使用比例关系。
通过这些方法,可以解决一些几何和图像问题,应用广泛。
九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)
①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ;知识点二、相似三角形的判定判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。
(2)顶角或底角对应相等的两个等腰三角形相似。
例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出AD AEBD CE=吗?请说明理由。
(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BD BC =⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BDBEAD AF =例题精讲AEDBCABCD吗?说说你的理由.例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C(1) 求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。
2分之3倍根号3 随练: 一、选择题1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )CADCBEF G F E DCBA。
相似三角形的判定(解析版) (1)
4.4相似三角形的判定相似三角形的判定定理1.(一)相似三角形判定的预备定理平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
2.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.3.判定定理2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定定理3:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.一、单选题1.如图,AD ,BC 相交于点O ,由下列条件仍不能判定△AOB 与△DOC 相似的是( )A .AB ∥CD B .∠C =∠B C .OA OBOD OC= D .OA ABOD CD= 【解答】D【提示】本题中已知∠AOB =∠DOC 是对顶角,应用两三角形相似的判定定理,即可作出判断. 【详解】解:A 、由AB ∥CD 能判定△AOB ∽△DOC ,故本选项不符合题意. B 、由∠AOB =∠DOC 、∠C =∠B 能判定△AOB ∽△DOC ,故本选项不符合题意.C 、由OA OBOD OC = 、∠AOB =∠DOC 能判定△AOB ∽△DOC ,故本选项不符合题意. D 、已知两组对应边的比相等:OA ABOD CD = ,但其夹角不一定对应相等,不能判定△AOB 与△DOC 相似,故本选项符合题意. 故选:DAB CDED EACB【点睛】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.2.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定△ABC 与△DBA 相似的是( )A .C BAD ∠=∠B .BAC BDA ∠=∠ C .AC ADBC AB = D .2AB BD BC =⋅【解答】C【提示】由相似三角形的判定定理即可得到答案.【详解】解:C BAD ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项A 不符合题意;BAC BDA ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项B 不符合题意;AC ADBC AB =,但无法确定ACB ∠与BAD ∠是否相等,所以无法判定两三角形相似,故选项C 符合题意;2AB BD BC =⨯即AB BCBD AB =,B B ∠=∠,ABC ∽DBA ,故选项D 不符合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键. 3.下列各种图形中,有可能不相似的是( ) A .有一个角是45的两个等腰三角形 B .有一个角是60的两个等腰三角形 C .有一个角是110的两个等腰三角形 D .两个等腰直角三角形【解答】A【提示】本题每一个选项都跟等腰三角形相似有关,注意的是一个角是一个角是45°,这个角可能是顶角或者底角,有一个角是60,这个三角形就是等边三角形,一个角是110,这个角一定是顶角,若是底角则不满足三角形内角和等于180°.等腰直角三角形的的底角是45°顶角是90°为固定值. 【详解】A .各有一个角是45°的两个等腰三角形,有可能是一个为顶角,另一个为底角,此时不相似,故此选项符合题意;B .各有一个角是60°的两个等腰三角形是等边三角形,两个等边三角形相似,故此选项不合题意;C .各有一个角是110°的两个等腰三角形,此角必为顶角,则底角都为35°,则这两个三角形必相似,故此选项不合题意;D .两个等腰直角三角形,底角是45°顶角是90°,为固定值,此三角形必相似,故此选项不合题意; 故选A .【点睛】本题解题关键在于,找准一个角是45,60,110的等腰三角形有几种情况,再就是等腰直角三角形的每个角的角度是固定的.4.下列条件,能使ABC 和111A B C △相似的是( )A .1111112.5,2,3;3,4,6AB BC AC A B B C AC ======B .11111192,3,4;3,6,2AB BC AC A B B C AC ======C.11111110,8;AB BC AC A B BCAC =====D.1111111,3;AB BC AC A B BCAC ====【解答】B【提示】根据相似三角形的判定定理进行判断.【详解】解:A 、11112.55213642AB BC A B B C ==≠==,不能使ABC ∆和△111A B C 相似,错误; B 、11111123242933632AB BC AC A B A C B C =======,能使ABC ∆和△111A B C 相似,正确;C、1111AB BC A B B C ≠=,不能使ABC ∆和△111A B C 相似,错误; D、1111AB BC A C B C =≠=ABC ∆和△111A B C 相似,错误; 故选B.【点睛】本题考查了相似三角形的判定.识别三角形相似,除了要掌握定义外,还要注意正确找出三角形的对应边、对应角.5.下列能判定ABC DEF ∽△△的条件是( ) A .AB AC DE DF = B .AB ACDE DF =,A F ∠=∠ C .AB AC DE DF =,B E ∠=∠ D .AB ACDE DF =,A D ∠=∠ 【解答】D【提示】利用相似三角形的判定定理:两边对应成比例且夹角相等的三角形相似,逐项判断即可得出答案.【详解】解:A.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; B. AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; C.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; D.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项正确; 故选:D .【点睛】本题考查的知识点是相似三角形的判定定理,熟记定理内容是解此题的关键. 6.如图,要使ACD ABC △△∽,需要具备的条件是( )A .AC ABAD BC = B .CD BCAD AC = C .2AC AD AB =⋅D .2CD AD BD =⋅【解答】C【提示】题目中隐含条件∠A =∠A ,根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件只能是AC ADAB AC =,根据比例性质即可推出答案. 【详解】解:∵在△ACD 和△ABC 中,∠A =∠A ,∴根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件是:AC ADAB AC =, ∴2AC AD AB ⋅= . 故选:C .【点睛】本题考查了相似三角形的判定,注意:有两边对应成比例,且夹角相等的两三角形相似. 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件不能满足△ADE ∽△ACB 的条件是( )A .∠AED=∠B B .AD AEAC AB = C .AD·BC= DE·AC D .DE//BC【解答】C【提示】根据相似三角形的判定定理去判断分析即可. 【详解】∵∠AED=∠B ,∠A=∠A , ∴△ADE ∽△ACB , 故A 不符合题意; ∵AD AEAC AB =,∠A=∠A , ∴△ADE ∽△ACB , 故B 不符合题意;∵AD·BC= DE·AC ,无夹角相等, ∴不能判定△ADE ∽△ACB , 故C 符合题意; ∵DE//BC , ∴△ADE ∽△ACB , 故D 不符合题意; 故选C .【点睛】本题考查了三角形相似的判定条件,熟练掌握判定三角形相似的基本方法是解题的关键. 8.如图,等边ABC 中,点E 是AB 的中点,点D 在AC 上,且2DC DA =,则( )A .AED BED ∽△△ B .AED CBD ∽△△ C .AED ABD ∽△△ D .BAD BCD ∽△△ 【解答】B【提示】由等边三角形的性质,中点的定义得到2BC AB AE ==,60A C ∠=∠=︒,结合2DC DA =,得到12AE AD CB CD ==,即可得到AED CBD ∽△△. 【详解】解:∵ABC 是等边三角形, ∴BC AB =,60A C ∠=∠=︒, ∵点E 是AB 的中点, ∴2BC AB AE ==, ∵2DC DA =, ∴12AE AD CB CD ==,∵60A C ∠=∠=︒,∴AED CBD ∽△△. 故选:B .【点睛】本题考查了相似三角形的判定,等边三角形的性质,解题的关键是掌握相似三角形的判定进行判断.9.如图,在ACB △中,90,ACB AF ∠=︒是BAC ∠的平分线,过点F 作FE AF ⊥,交AB 于点E ,交AC 的延长线于点D ,则下列说法正确的是( )A .CDF EBF ∽B .ADF ABF ∽C .ADF CFD ∽D .ACF AFE ∽【解答】D【提示】根据相似三角形的判定方法AA 解题. 【详解】解:EF AF ⊥90AFE ∴∠=︒90ACB AFE ∴∠=∠=︒AF 是BAC ∠的平分线,CAF FAE ∴∠=∠()ACFAFE AA ∴故选项D 符合题意,选项A 、B 、C 均不符合题意,故选:D .【点睛】本题考查相似三角形的判定方法,角平分线的性质等知识,是重要考点,掌握相关知识是解题关键.10.如图,四边形ABCD 的对角线,AC BD 相交于点O ,且将这个四边形分成四个三角形,若::OA OC OB OD =,则下列结论中正确的是( )A .△AOB ∽△AOD B .△AOD ∽△BOC C .△AOB ∽△BOCD .△AOB ∽△COD 【解答】D【提示】根据相似三角形的判定定理:两边对应成比例且夹角相等,即可判断△AOB ∽△COD . 【详解】解:∵四边形ABCD 的对角线,AC BD 相交于点O , ∴∠AOB=∠COD , 在△AOB 和△COD 中, =OA OBOC OD AOB COD ⎧⎪⎨⎪∠=∠⎩∴△AOB ∽△COD . 故选:D .【点睛】本题考查相似三角形的判定.熟练掌握两边对应成比例且夹角相等则这两个三角形相似是解题的关键.二、填空题11.如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.【解答】∠ADE=∠B (答案不唯一).【提示】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定. 【详解】解∶∵∠A=∠A ,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B 或∠AED=∠C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AEAB AC =证ADE ABC △△∽相似. 故答案为∶∠ADE =∠B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 12.图,在ABC 中,AB AC >,点D 在AB 上(点D 与A ,B 不重合),若再增加一个条件就能使ACD ABC △∽△,则这个条件是________(写出一个条件即可).【解答】ACD ABC ∠=∠(答案不唯一)【提示】两个三角形中如果有两组角对应相等,那么这两个三角形相似,据此添加条件即可. 【详解】解:添加ACD ABC ∠=∠,可以使两个三角形相似. ∵CAD BAC ∠=∠,ACD ABC ∠=∠, ∴ACD ABC △∽△.故答案为:ACD ABC ∠=∠(答案不唯一)【点睛】本题考查相似三角形的判定定理,两组角对应相等的两个三角形相似.理解和掌握三角形相似的判定是解题的关键.13.如图,∠1=∠2,请补充一个条件:________________,使△ABC ∽△ADE .【解答】∠C =∠E 或∠B =∠ADE(答案不唯一)【提示】再添加一组角可以利用有两组角对应相等的两个三角形相似来进行判定. 【详解】∵∠1=∠2 ∴∠1+∠DAC=∠DAC+∠2 ∴∠BAC =∠DAE又∵∠C =∠E (或∠B =∠ADE ) ∴△ABC ∽△ADE .故答案为:∠C =∠E 或∠B =∠ADE (答案不唯一).【点睛】本题考查了相似三角形的判定,熟悉相似三角形的几个判定定理是关键. 14.如图,在ABC 中,点D 为边AC 上的一点,选择下列条件:①2A ∠=∠;②1CBA ∠=∠;③BC CDAC AB =;④BC CD DB AC BC AB ==中的一个,不能得出ABC 和BCD △相似的是:__________(填序号).【解答】③【提示】根据相似三角形的判定定理可得结论.【详解】解:①2A ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故①不符合题意; ②1CBA ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故②不符合题意; ③BC CDAC AB =,C C ∠=∠时,不能推出ABC BDC ∆∆∽,故③符合题意; ④BC CD DBAC BC AB ==,C C ∠=∠时,ABC BDC ∆∆∽,故④不符合题意, 故答案为:③【点睛】本题考查了相似三角形的判定,解题的关键是掌握两组对应边对应成比例且夹角相等的两个三角形相似;有两角对应相等的两个三角形相似.15.如图,在ABC 中,DE BC ∥,DE 分别交AB 、AC 于点D 、E ,DC 、BE 交于点O ,则相似三角形有______.【解答】ADE∽ABC,DOE∽COB△【提示】根据DE BC∥,找出相等的角,进而得到相似三角形.【详解】解:∵DE BC∥,∴∠ADE=∠ABC,∠AED=∠ACB,∴ADE∽ABC,∵DE BC∥,∴∠EDO=∠BCO,∠DEO=∠CBO,∴DOE∽COB△,故答案为ADE∽ABC,DOE∽COB△.【点睛】本题考查了平行线的性质以及相似三角形的判定,解题的关键是掌握:一个三角形的两个角与另一个三角形的两个角对应相等,这两个三角形相似.16.如图,在△ABC中,AB=10,AC=5,AD是角平分线,CE是高,过点D作DF⊥AB,垂足为F,若DF=83,则线段CE的长是______.【解答】4【提示】延长AC,作DG⊥AC,根据根据角平分线的性质得到FD=GD,再根据三角形的面积公式即可求解.【详解】解:延长AC,作DG⊥AC,∵AD平方∠BAC,∴FD=DG,∴S△ABC= S△ABD+ S△ADC=12AB FD⨯⨯+12AC GD⨯⨯=12AB EC⨯⨯即111105883310222EC⨯⨯+⨯⨯=⨯⨯ 解得EC=4.【点睛】本题考查了角平分线的性质,角的平分线上的点到角的两边的距离相等与三角形的面积公式. 17.如图,在ABC 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么经过______秒时QBP △与ABC 相似.【解答】0.8或2##2或0.8【提示】设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQBA BC =时,BPQ BAC ∽,即824816t t -=;当BP BQ BCBA =时,BPQ BCA △∽△,即824168t t -=,然后解方程即可求出答案. 【详解】解:设经过t 秒时,QBP △与ABC 相似, 则2AP tcm =,(82)BP t cm =-,4BQ tcm =, ∵PBQ ABC ∠=∠,∴当BP BQBA BC =时,BPQ BAC ∽, 即824816t t -=, 解得:2t =;当BP BQ BC BA =时,BPQ BCA △∽△,即824168t t-=, 解得:0.8t =;综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似,【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角相等的两个三角形相似,解题的关键是准确分析题意列出方程求解.18.如图,正方形ABCD 的边长为2,连接BD ,点P 是线段AD 延长线上的一个动点,45PBQ ∠=︒,点Q 是BQ 与线段CD 延长线的交点,当BD 平分PBQ ∠时,PD ______QD (填“>”“<”或“=”):当BD 不平分PBQ ∠时,PD QD ⋅=__________.【解答】 = 8【提示】①先证明△ABP ≌△CBQ,再证明△QBD ≌△PBD,即可得出PD=QD;②证明△BQD ∽△PBD,即可利用对应边成比例求得PD·QD. 【详解】解:①当BD 平分∠PBQ 时, ∠PBQ=45°,∴∠QBD=∠PBD=22.5°, ∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠C=90°,∠ABD=∠CBD=45°, ∴∠ABP=∠CBQ=22.5°+45°=67.5°, 在△ABP 和△CBQ 中,A C AB BCABP CBQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABP ≌△CBQ (ASA ), ∴BP=BQ ,在△QBD 和△PBD 中,BQ BP QBD PBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴△QBD ≌△PBD (SAS ), ∴PD=QD;②当BD 不平分∠PBQ 时, ∵AB ∥CQ , ∴∠ABQ=∠CQB ,∵∠QBD+∠DBP=∠QBD+∠ABQ=45°, ∴∠DBP=∠ABQ=∠CQB ,∵∠BDQ=∠ADQ+∠ADB=90°+45°=135°,∠BDP=∠CDP+∠BDC=90°+45°=135°, ∴∠BDQ=∠BDP, ∴△BQD ∽△PBD ,∴BD QDPD BD =,∴PD·QD=BD2=22+22=8, 故答案为:=,8.【点睛】本题考查三角形的全等和相似,关键在于熟悉基础知识,利用条件找到对应三角形.三、解答题19.已知:D 、E 是△ABC 的边AB 、AC 上的点,AB =8,AD =3,AC =6,AE =4,求证:△ABC ∽△AED .【解答】见解析【提示】根据已知线段长度求出AB ACAE AD =,再根据∠A=∠A 推出相似即可. 【详解】证明:在△ABC 和△AED 中, ∵824AB AE ==,623AC AD ==,∴AB ACAE AD =, 又∵∠A =∠A ,∴△ABC ∽△AED .【点睛】本题考查了相似三角形的判定定理的应用,注意:有两边的对应成比例,且夹角相等的两三角形相似.20.已知:在△ABC 和△A′B′C′中, AB BC ACA B B C A C '''='''=.求证:△ABC ∽△A′B′C′.【解答】证明见解析【提示】先在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,然后证明△ABC ∽△ADE ,再△ADE ≌△A′B′C′即可.【详解】在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,连接DE . ∵AB ACA B A C ='''',AD=A′B′,AE=A′C′, ∴AB ACAD AE = 而∠BAC=∠DAE ,∴△ABC ∽△ADE (两边成比例且夹角相等的两个三角形相似). ∴AB BCAD DE = 又AB BCA B B C ='''',AD= A′B′, ∴ AB BCAD B C ='' ∴BC BCDE B C =''∴DE=B′C′,∴△ADE ≌△A′B′C′, ∴△ABC ∽△A′B′C′.【点睛】本题考查了相似三角形的判定,三边对应成比例的两个三角形相似,灵活运用两边对应成比例且夹角相等的两个三角形相似,全等三角形的判定是解决本题的关键. 21.已知:如图,在ABC 和A B C '''中,,A A B B ∠=∠∠=∠''. 求证:ABC A B C '''∽△△.【解答】见解析【提示】在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,过点D 作AC 的平行线,交BC 于点F ,容易得到ADE ABC △△∽,然后证明ADE A B C '''≌,从而即可得到ABC A B C '''∽△△.【详解】证明:在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,则,ADE B AED C ∠=∠∠=∠,AD AEAB AC =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).过点D 作AC 的平行线,交BC 于点F ,则AD CFAB CB =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB =. ∵//,//DE BC DF AC , ∴四边形DFCE 是平行四边形. ∴DE CF =.∴AEDEAC CB =. ∴ADAE DEAB AC BC ==.而,,ADE B DAE BAC AED C ∠=∠∠=∠∠=∠, ∴ADE ABC △△∽.∵,,A A ADE B B AD A B ∠=∠∠=∠=∠='''', ∴ADE A B C '''≌. ∴ABC A B C '''∽△△.【点睛】本题是教材上相似三角形的判定定理的证明,熟读教材是解题的关键. 22.如图,Rt ABC 中,CD 是斜边AB 上的高.求证:(1)ACD ABC △∽△; (2)CBD ABC ∽△△. 【解答】(1)见解析;(2)见解析【提示】(1)根据有两组角对应相等的两个三角形相似进行证明即可. (2)根据有两组角对应相等的两个三角形相似进行证明即可. 【详解】证明:(1)∵CD 是斜边AB 上的高, ∴∠ADC =90°,∴∠ADC =∠ACB =90°, ∵∠A =∠A , ∴△ACD ∽△ABC .(2)∵CD 是斜边AB 上的高, ∴∠BDC =90°,∴∠BDC =∠ACB =90°, ∵∠B =∠B , ∴△CBD ∽△ABC .【点睛】本题考查了相似三角形的判定定理;熟记有两组角对应相等的两个三角形相似是解决问题的关键.23.如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠ABC =∠DBE ,∠3=∠4. 求证:(1)△ABD ∽△CBE ; (2)△ABC ∽△DBE .【解答】(1)证明见解析;(2)证明见解析;【提示】(1)根据有两组角对应相等的两个三角形相似可判断△ABD∽△CBE;(2)先利用得到∠1=∠2得到∠ABC=∠DBE,再利用△ABD∽△CBE得AB BDBC BE=, 根据比例的性质得到AB BCBD BE=, 然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ABC与△DBE相似.【详解】(1)相似.理由如下:∵∠1=∠2,∠3=∠4.∴△ABD∽△CBE;(2)相似.理由如下:∵∠1=∠2,∴∠1+∠DBC=∠2+DBC,即∠ABC=∠DBE,∵△ABD∽△CBE,∴=,∴=,∴△ABC∽△DBE.【点睛】本题考查了三角形相似的判定,熟练掌握三角形相似的判定方法是解题关键.24.已知如图所示,AF⊥BC,CE⊥AB,垂足分别是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.【解答】(1)答案见解析;(2)答案见解析【提示】(1)根据两角相等,两个三角形相似即可得出结论;(2)根据(1)得到△BAF ∽△BCE ,再由相似三角形的对应边成比例,得到BF :BE=BA :BC ,由两边对应成比例,夹角相等两个三角形相似,即可得出结论. 【详解】(1)∵AF ⊥BC ,CE ⊥AB ,∴∠AFB=∠CEB=90°. ∵∠B=∠B ,∴△BAF ∽△BCE ;(2)∵△BAF ∽△BCE ,∴BF :BE=BA :BC . ∵∠B=∠B ,∴△BEF ∽△BCA .【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图,在△ABC 和△ADE 中,AB BC ACAD DE AE ==,点B 、D 、E 在一条直线上,求证:△ABD ∽△ACE .【解答】证明见解析;【提示】根据三边对应成比例的两个三角形相似可判定△ABC ∽△ADE ,根据相似三角形的性质可得∠BAC=∠DAE ,即可得∠BAD=∠CAE ,再由AB AC AD AE =可得AB ADAC AE =,根据两边对应成比例且夹角相等的两个三角形相似即可判定△ABD ∽△ACE .【详解】∵在△ABC 和△ADE 中,AB BC ACAD DE AE ==, ∴△ABC ∽△ADE , ∴∠BAC=∠DAE , ∴∠BAD=∠CAE , ∵AB ACAD AE =, ∴AB ADAC AE =, ∴△ABD ∽△ACE .【点睛】本题考查了相似三角形的判定与性质,熟知相似三角形的判定方法是解决本题的关键. 26.如图,△ABC 与 △ADE 中,∠ACB=∠AED=90°,连接BD 、CE ,∠EAC=∠DAB.(1)求证:△ABC ∽△ADE ; (2)求证:△BAD ∽△CAE ;(3)已知BC=4,AC=3,AE=32.将△AED 绕点A 旋转,当点E 落在线段CD 上时,求 BD 的长.【解答】(1)详见解析;(2)详见解析;(3)BD=53.【提示】(1)由已知可得∠CAB=∠EAD ,∠ACB=∠AED=90°,则结论得证; (2)由(1)知AC AEAB AD =,∠EAC=∠DAB ,则结论得证; (3)先证△ABC ∽△ADE ,求出AE 、AD 的长,则BD 可求. 【详解】证明:(1)∵∠EAC=∠DAB , ∴∠CAB=∠EAD , ∵∠ACB=∠AED=90°, ∴△ABC ∽△ADE ;(2)由(1)知△ABC ∽△ADE , ∴AC AEAB AD =, ∵∠EAC=∠BAD , ∴△BAD ∽△CAE ;(3)∵∠ACB=90°,BC=4,AC=3,∴2222=43BC AC ++,∵△ABC ∽△ADE , ∴AC AB AE AD =, ∴AD=5=•2AB AE AC , 如图,将△AED 绕点A 旋转,当点E 落在线段CD 上时,∠AEC=∠ADB=90°,∴222255=()=3225AB AD--【点睛】本题考查相似三角形的判定和性质、旋转的性质等知识,解题的关键是熟练掌握基本知识.。
九年级数学 相似三角形的判定
相似三角形的判定•相似三角形:•对应角相等,对应边成比例的两个三角形叫做相似三角形。
•互为相似形的三角形叫做相似三角形。
••例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'•相似三角形的判定:• 1.基本判定定理•(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
•(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)•(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)•(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
• 2.直角三角形判定定理•(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
•(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
• 3.一定相似:•(1).两个全等的三角形•(全等三角形是特殊的相似三角形,相似比为1:1)•(2).两个等腰三角形•(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。
)•(3).两个等边三角形•(两个等边三角形,三个内角都是60度,且边边相等,所以相似)•(4).直角三角形中由斜边的高形成的三个三角形。
•相似三角形判定方法:•证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。
如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
•一、(预备定理)•平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(精心整理)相似三角形的判定方法
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
第27章相似三角形培优(教案)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指两个三角形的对应角相等,对应边成比例。它在几何学中具有重要地位,广泛应用于解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相似三角形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调相似三角形的判定方法和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
二、核心素养目标
1.培养学。
-学生能够运用相似三角形的性质和判定方法,对几何图形进行有效分析。
2.培养学生的逻辑思维能力和问题解决能力,能够运用相似三角形知识进行论证和推理。
-学生能够通过严密的逻辑推理,解决复杂几何问题,形成解题策略。
我意识到,对于这类几何概念的教学,仅仅依靠理论讲解是不够的。下次我会尝试增加更多的互动环节,比如让学生自己动手画图,通过实际操作来感受相似三角形的性质。这样不仅能够提高他们的几何直观,还能加深对知识的理解。
在实践活动和小组讨论中,我发现学生们表现得相当积极。他们对于相似三角形在实际生活中的应用提出了很多有趣的想法。这让我感到很高兴,因为这说明学生们能够将所学知识应用到实际中去。不过,我也注意到有些小组在讨论时可能会偏离主题,今后我需要更好地引导他们的讨论方向,确保讨论内容与教学目标紧密相关。
-解决方法:通过案例分析,引导学生学会从实际问题中提炼出相似三角形的几何模型,并运用相关知识解决问题。
(4)几何直观和空间观念的培养。
-难点解析:学生在解决几何问题时,缺乏直观想象力和空间观念。
-解决方法:教师应注重培养学生的几何直观和空间观念,通过观察、分析、抽象和推理,帮助学生形成良好的几何直觉。
初三相似三角形的判定培优同步讲义
学科教师辅导讲义体系搭建一、知识框架二、知识概念(一)相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.1、相似三角形是相似多边形中的一种;2、应结合相似多边形的性质来理解相似三角形;3、相似三角形应满足形状一样,但大小可以不同;4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD .5、斜交型:如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)考点1:三角形相似判定方法的运用例1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,则图中相似三角形共有( ) A .1对 B .2对 C .3对 D .4对例2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCC .AB 2=AD•ACD .=典例分析ABCDABCD E12AABBCC DDEE12412EC ABD EABC (D )EADCB例3、已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.例4、如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.考点2:网格图中相似三角形的判定例1、下列四个三角形中,与图中的三角形相似的是()A.B.C.D.例2、在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对例3、如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)考点3:动态探究问题例1、如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)例2、在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,△APQ与△ABD相似?说明理由.P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似2、如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有()A.4对B.5对C.6对D.7对4、如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D、交AB于点M.下列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD.正确的有()个.A.4 B.3 C.2 D.15、如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A.1 B.2 C.3 D.46、如图,点C是线段AB上一点,△ACD和△BCE都是等边三角形,连结AE,BD,设AE交CD于点F.(1)求证:△ACE≌△DCB;(2)求证:△ADF∽△BAD.7、如图:已知AB⊥DB于B点,CD⊥DB于D点,AB=6,CD=4,BD=14,在DB上取一点P,使以CDP 为顶点的三角形与以PBA为顶点的三角形相似,则DP的长.➢课后反击1、下列命题中,真命题是()①同旁内角互补,两直线平行.②三角形任意两边之和不小于第三边;③两条对角线平分的四边形是平行四边形;④两边及其中一角对应相等的两个三角形全等;⑤两边对应成比例且夹角相等的两个三角形相似.A.①③⑤B.①④⑤C.②③④D.①②③④⑤2、如右图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是()A.∠APB=∠EPCB. ∠APE=90°C. P是BC的中点D. BP︰BC=2︰34、如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有()A.2对B.3对C.4对D.5对5、下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.6、如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误的是()A.四边形EDCN是菱形B.四边形MNCD是等腰梯形C.△AEM与△CBN相似D.△AEN与△EDM全等7、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论中正确的个数有()①∠EAF=45°;②△ABE∽△ACD;③AE平分∠CAF;④BE2+DC2=DE2.A.1个B.2个C.3个D.4个8、如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.9、已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.直击中考1、【2015•海南】如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对2、【2014•贵阳】如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1 B.P2C.P3 D.P43、【2011•深圳】如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.4、【2016•河北】如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.5、【2014•宿迁】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个6、【2013•贵阳】如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条B.2条C.3条D.4条S(Summary-Embedded)——归纳总结重点回顾1、相似三角形的概念及三种判定方法;2、常见三角形相似的类型有:平行线型、相交线型、旋转型、母子型、斜交型、垂直型名师点拨1、熟练掌握相似三角形三种判定方法的特征及条件是学好本部分内容的关键所在;2、本部分内容综合性较强,灵活度较高,是中考必考重点内容,具有不畏难、战胜困难的心态是前提;3、三角形相似是解答题压轴题必考知识点之一,也是选择题压轴题常考知识点之一,应引起足够重视。
相似三角形的五种判定方法
相似三角形的五种判定方法
1.两角分别对应相等的两个三角形相似;
2、两边成比例且夹角相等的两个三角形相似;
3、三边成比例的两个三角形相似;
4、一条直角边与斜边成比例的两个直角三角形相似;
5、用一个三角形的两边去比另一个三角形与之相对应的两边,分别对应成比例,如果三组对应边相比都相同,则三角形相似。
方法一:定理法,即平行于三角形一边的直线和其他俩边(或他的延长线)相交,所截得的三角形与原三角形相似,俗话来讲就是一个大的三角形包含一个小的三角形,小的三角形两边延长就成为了大三角形的两边;
方法二:俩角对应相等的三角形相似,俗话来讲先找到这两个三角形的对应
边,间接找出三角形三组对应角有俩组相等则相似;
方法三:两边对应成比例且夹角相等的三角形相似,俗话来讲:先找到各对应边对应角,一一对应后会很方便。
两边对应成比例:两组对应边之比相等,即按同一种比法相比。
夹角相等:即所成比例的两边之间的那个角相等;方法四:三边
对应成比例,俗话来讲:如上均先找到对应边对应角,将其一一对应。
三边对应成比例:就是三组对应边之比相等,比法均一致;
判定五:只适用于直角三角形:直角边和斜边对应成比例则这俩个三角形相
似,俗话来讲俗话来讲:某种意义上直角三角形一个直角边和一个斜边对应成比例也同时代表着另外一个直角边也对应成比例。
九年级数学相似三角形的判定知识讲解(含解析)
九年级数学相似三角形的判定知识讲解(含解析)1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力。
一、相似三角形的概念如图所示:在△ABC 和△A'B'C' 中,如果则△ABC 和△A'B'C' 相似,记作:△ABC ∽ △A'B'C' ,k 是相似比,“∽” 读作“相似于” 。
注:当相似比为1 时,两个三角形全等.(相似不一定全等,但全等一定相似!)。
二、相似三角形的判定方法(4种方法)1、平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似;2、如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3、如果两个三角形的两组对应边的比相等,并且对应边所包含的夹角相等,那么这两个三角形相似.;4、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
三、相似三角形的常见图形及其变换四、例题讲解例题1、下列说法错误的是( C )A、有一对锐角对应相等的两个直角三角形相似;B、全等的两个三角形一定相似;C、对应角相等的两个多边形相似;D、两条邻边对应成比例的两个矩形相似。
例题2、如图,在正方形 ABCD 中,E、F 分别是边 AD、CD上的点,AE = ED , DF = 1/4DC,连接 EF 并延长交 BC 的延长线于点G 。
① 求证:△ABE∽△DEF;② 若正方形的边长为 4,求线段 BG 的长。
注:此题考查了相似三角形的判定、正方形的性质、平行线分线段成比例定理等知识的综合应用。
例题3、如图,小正方形边长均为 1,则图中的三角形(阴影部分)与△ABC 相似的是哪一个?解题思路:图中的三角形为格点三角形,可根据勾股定理求出各边的长,然后根据三角形三边的长度的比是否相等来判断哪两个三角形相似。
苏科版九年级下册数学:6.5 相似三角形的性质
此时:
(1)△MNP与△ABC相似吗?为什么?
(2)这两个三角形的相似比是多少?
(3)这两个三角形的周长、面积有什么关系?
根据刚才的探究,你有什么猜想? 相似三角形周长的比等于相似比. 相似三角形面积的比等于相似比的平方.
怎样验证这样的猜想呢?
A′ A
B
C B′
C′
如果△ABC∽△A′B′C′,相似比为k.
(2)如果把一个三角形的面积扩大为原来的9
倍,那么它的三边也扩大为原来的9倍。(×)
2、判断题: (1)已知ΔABC与ΔA/B/C/ 的相似比为2:3, 则周长比为 2:3 ,面积之比为 4:9。
(2)已知ΔABC∽ΔA/B/C/,且面积之比为9:4,
则周长之比为 3: 2,相似比 3:2 。
3、解答题:
在比例尺为1:500的地图上,测得一个三角 形地块ABC的周长为12cm,面积为6cm2,求这个 地块的实际周长和面积.
如图,在△ABC中,D是AB的中点,
DE∥ BC,则:
(1)S △ADE : S △ABC =
1:4
(2)S △ADE: S 梯形DBCE = 1:3 A
D B
E C
你会解决生活中的问题吗?
在10倍的放大镜下看到的三角形 与原三角形相比,三角形的边长,周长, 面积,角,哪些放大为10倍?
A
F
E
B
D
C
如图,点D、E、F分别是△ABC各边的中点.
(1)△DEF与△ABC相似吗?为什么?
(2)这两个三角形的相似比是多少?
(3)这两个三角形的周长、面积有什么关系?
A
E MF
N
P
B
D
C
苏科版九年级下册数学相似三角形知识梳理与典例分析
学科教师辅导教案授课类型复习(相似三角形)教学目标1、了解相似形、相似三角形的定义和性质2、会判定三角形相似星级★★★★★(自由分配)进门测选择题:1、在相同时间的物高与影长成比例,如果物高为1.5米的测竿的影长为2.5米,那么影长为30米的旗竿的高度是()A 20mB 16mC 18mD 15m2、如图,三角形ABC中,D、E分别是AB、AC上的点,DE∥BC,DE=1,BC=3,AB=6则AD的长是()A 1B 1.5C 2D 2.53、如图在矩形ABCD中,AE=BF,EF与BD交于点G,则图中的相似三角形共有()对A 4B 5C 6D 84、如图,CD是Rt⊿ABC斜边上的高,AD=9,CD=6则BD=()A 4.5B 5C 3D 45、如图四边形ABCD是正方形,E是DC的中点,P是BC上的一点,下列条件:①∠APB=∠EPC;②∠BAP=∠CEP;③P是BC的中点;④BP:BC=2:3。
其中能得到⊿ABP与⊿ECP相似的有()个A 4B 3C 2D 1知识点归纳相似形 定义:形状相同的图形叫做相似形性质:相似多边形的对应角相等,对应边成比例相似比:相似多边形对应边的比叫做相似比相似三角形 对应角相等、对应边成比例的两个三角形是相似三角形相似三角形的对应角相等、对应边成比例判定:各角对应相等、各边对应相等成比例的两个多边形相似三角形的重心:三角形的三条中线交于一点,这点叫做三角形的重心。
黄金分割: 黄金比,0.618或者2分之 根号5 — 11.平行线分线段成比例的基本事实两条直线被一组平行线所截,所得的对应线段成比例2.三角形相似的条件1平行于三角形一边的直线与其它两边相交,所截得的三角形与原三角形相似3.三角形相似的条件2定理:两角分别相等的两个三角形相似4.三角形相似的条件3定理:两边成比例且夹角相等的两个三角形相似5.三角形相似的条件4定理:三边成比例的两个三角形相似判定两个三角形相似的基本思路(1)若已知一对 等角,则可找另一对 等角,或说明夹已知等角的两边或比例(2)若已知两边成比例,则可说明其夹角相等,或说明第三边也成比例(3)若出现平行线,则利用“平行于三角形一边的直线与其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似”来判定例一 在平行四边形ABCD 中,过点B 作BE ⊥CD 于E ,连结AE ,F 为AE 上的一点,且∠BFE=∠C(1) 求证:∆ABF ∽∆EAD(2) 若∠BAE=o30,AD=2,求BF 的长例二 已知在平行四边形ABCD 中,E 是AB 的中点,AF=31AD ,连结E 、F 交AC 于G 求:AG :AC 的值课堂练习 1、如图6,⊿ABC 中,D 为BC 边上的中点,E 是AD 的中点,BE 的延长线交AC 于F 则AF :FC=A 1:5B 1:4C 1:3D 1:22、如图7,⊿ABC 中,DE ∥BC ,和CD 交于F ,若AD :DB=2:3则BF :FE=( )A 5:2B 2:3C 5:3D 3:23、如图8,在四边形ABCD 中,E 是AB 上的一点,EC ∥AD ,DE ∥BC ,若===∆∆∆ECd ADE BEC s s s 则3,1( )A 2B 1.5C 3D 24、如图9,这是圆桌正上方的灯光照射桌面,在地面上形成的阴影示意图,已知桌面的直径是1.6m ,阴影的直径是2.4m ,那么灯泡距地面( )mA 2.5B 3C 3.6D 45、如图10,BD 、CE 是⊿ABC 的中线,P 、Q 分别为BD 、CD 的中点则PQ:BC=( )A 1:3B 1:4C 1:5D 1:6二、填空题:1、 已知:0543≠==z y x 则=+++-z y x z y x 2、 在平行四边形ABCD 中,E 是BC 上的一点,BE :EC=2:3,AE 交BD 于F ,则BF :FD=3、 如图,正方形ABCD 的边长是2,BE=EC ,MN=1,线段MN 的两端点在CD 、AD 上滑动,当DM= 时,⊿ABE 与⊿DMN 相似。
相似三角形判定定理
相似三角形判定定理三角形是几何学中最基本的几何图形之一,而相似三角形是几何学中常见且重要的概念之一。
在数学中,两个三角形被称为相似三角形,如果它们的对应角相等,并且对应边的比例相等。
相似三角形有着许多有趣的性质和定理,其中最基本也是最重要的之一就是相似三角形判定定理。
相似三角形判定定理对于两个三角形ABC和DEF,如果它们满足以下条件之一,则这两个三角形是相似的:1.三个对应角相等:∠A = ∠D,∠B = ∠E,∠C = ∠F2.两个角相等且夹在两个相等的边之间:∠A = ∠D,∠B = ∠E,且AB/DE = BC/EF相似三角形判定定理的证明方法主要基于几何学中的基本原理和引理。
其中重要的一点是对应角相等的性质,即如果两个角相等,则它们的对应边的比例也相等,这是相似三角形判定定理的关键。
相似三角形的应用相似三角形在解决实际问题中有着广泛的应用。
例如在测量高楼的高度时,可以利用相似三角形来计算。
另外,在地图绘制和图像处理中,也常常需要利用相似三角形的性质来实现缩放和变换。
常见的相似三角形相关题目1.已知两个三角形的三个顶点坐标,判定它们是否相似。
2.已知三角形的三个顶点,求出相似三角形的比例。
3.已知两个三角形的某一条边,以及与该边夹的两个角度,判定它们是否相似。
在解决这些问题时,相似三角形判定定理往往是一个非常有用的工具,并且可以帮助我们简化计算过程,快速得出结论。
总之,相似三角形判定定理是几何学中一个基础而重要的定理,它在几何学的研究和实际应用中都有着广泛的应用价值。
通过理解和掌握这一定理,我们可以更好地理解和运用相似三角形的性质,从而解决各种与相似三角形相关的问题。
苏科版九年级数学下册 相似三角形题型归纳(含隐圆、动点、最值、拓展、压轴)(无答案)
相似三角形(相似动点)分类涉及隐圆问题、最值问题、分类讨论题型、动点题型、压轴题、拓展题题型分类:一、相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。
二、相似三角形解题思路:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.2、常见的相似三角形的基本图形:三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:(1)“平行线型”相似三角形。
(2)“相交线型”相似三角形。
(3)“旋转型”相似三角形。
三、相似模型1.A字、8字模型。
2.共边共角模型(扭屁股模型)。
3.一线三等角模型。
4.倒数模型(较难)5.圆中的相似。
6.平行线分线段成比例。
类型一、线段比例问题1. (构造平行)如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.(1)求证:△ABF∽△COE;(2)当O为AC的中点,=2时,如图2,求的值;(3)当O为AC边中点,=n时,请直接写出的值.2.如图1 ,DE是⊙O的直径,点A、C是直径DE上方半圆上的两点,且AO⊥OC.连接AE,CD相交于点F.点B是直径DE下方半圆上的任意一点,连接AB交CD 于点G,连接CB交AE于点H.(1)求∠ABC的度数;(2)证明: △CFH∽△CBG;(3)若弧DB为半圆的三分之一,把∠AOC绕着点O旋转,使点C、O、B在一直线上时,如图2.①证明FH:BG=1:2;②若⊙O的半径为4,直接写出FH的长.3. 已知抛物线(3)(1)y a x x =+-(a ≠0),与x 轴从左至右依次相交于A 、B 两点,与y 轴相交于点C ,经过点A 的直线y=-x+b 与抛物线的另一个交点为D . (1)若点D 的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P ,使得以A 、B 、P 为顶点的三角形与△ABC 相似,求点P 的坐标;(3)在(1)的条件下,设点E 是线段AD 上的一点(不含端点),连接BE .一动点Q 从点B 出发,沿线段BE 以每秒1个单位的速度运动到点E ,再沿线段ED 以每秒 个单位的速度运动到点D 后停止,问当点E 的坐标是多少时,点Q 在整个运动过程中所用时间最少?二、相似比乘积处理方法(逆向和正向分析找解题思路)1.如果四边形ABCD 的对角线交于O ,过O 作直线OG ∥AB 交BC 于E ,交AD 于F ,交CD的延长线于G ,求证:OG 2=GE ·GF.2.如图,在平面直角坐标系中,函数(x>0,k 是常数)的图像经过A (2,6),B (m,n ),其中m>2.过点A 作X 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,AC 与BD 交于点E ,连结AD 、DC 、CB 。
相似三角形的判定
击
此
处
添
判 相 加
正 文
,
定 似 文
字 是
您
思 想 的
三
提
炼 , 请
角
言
简 意 赅
形
的
阐 述 您
的
的
观
点
。
学习目标
理解掌握相似三角形的判定定理 会应用判定定理
自 方 每 手 后 课 时 看 理 结 独 认
学 式 人 求 对 本 间 懂 解 结 立 真
:都助不或: 看 记 论完 自
12
口 答 与
要 有 自
要 求
明 白 的
参 考 工
分 钟
板学:同具
会 例
例
1
忆 判 定
演结端学书方
果正讨,法
6
。 检 测
坐 姿
论 或 举
分 钟
: 看
8
成学 指
P55-56
P55
“
导
试 一 试
内 容
”
总
口答
如果一个三角形的三个角分别与另一个三角 形的三个角对应相等,那么它们相似吗?
相似三角形的判定是什么? 如果两个三角形仅有一对角是对应相等的,
填一填
( 1 ) 如 图 3 , 点 D 在 AB 上 , 当AC∠D
B
时,
(或者∠ ACB=∠ ADB)
△ACD∽△ABC。
=∠
(2)如图4,DE已//知BC点E在AC上,若点D在AB上,则满足
条件 △AB(C或相者似∠。 B=∠ ADE)
, 就可 以使 △ADE与原 (或者∠ C=∠ ADE)
A
12
B
C
A
九年级数学相似三角形知识点
九年级数学相似三角形知识点相似三角形是九年级数学中的重要知识点之一,本文将详细介绍相似三角形的概念、判定方法及性质。
一、概念相似三角形是指具有相同形状但大小不同的三角形。
两个三角形相似的条件为对应角相等,并且对应边成比例。
记作△ABC∽△DEF。
二、判定方法1.角-角-角(AA)判定法若两个三角形的三个角分别相等,则它们一定相似。
2.角-边-角(ARJ)判定法若两个三角形的一个角相等,另一个角相等,且夹在已知边之间的两边成比例,则它们一定相似。
3.边-角-边(SAS)判定法若两个三角形的两边分别成比例,夹角相等,则它们一定相似。
注意:边-边-边(SSS)判定法不能判断两个三角形是否相似,因为只有边成比例不能保证角相等。
三、性质1.对应角相等性质相似三角形的对应角相等,即∠A=∠D,∠B=∠E,∠C=∠F。
2.对应边成比例性质相似三角形的对应边成比例,即AB/DE=BC/EF=AC/DF。
其中,k为比例因子,代表两个相似三角形的对应边之比。
3.周长比例性质相似三角形的周长之比等于任意一条对应边之比。
4.面积比例性质相似三角形的面积之比等于任意一条对应边平方的比。
5.高比例性质相似三角形的高之比等于任意一条对应边之比。
四、相似三角形的应用1.测量难以直接获取的长度利用相似三角形的边比例性质,可以通过测量一些直接长度,求解难以直接获取的长度,如高度、距离等。
2.解决图像与实物的相似问题在制图中,根据相似三角形的比例性质,可以将实物缩小或放大绘制,保持图像与实物相似,从而达到简化和便于研究的目的。
3.解决间接测量问题利用相似三角形的性质,可以通过测量一些已知长度和角度,间接计算出难以直接测量的距离或高度。
4.解决图形的包含和相似问题通过相似三角形的判定方法,可以判断一个三角形是否包含在另外一个三角形中,以及两个图形是否相似。
总结:相似三角形是九年级数学中的重要知识点,通过角-角-角、角-边-角和边-角-边三种判定方法,我们可以判断两个三角形是否相似。
苏科版九年级数学下册培优培优相似三角形的判定
第12讲相似三角形的判定【思维入门】1.如图4-12-1,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是()A.1B.2C.3D.4图4-12-1 图4-12-22.如图4-12-2,M是Rt△ABC的斜边BC上异于B,C的一定点,过点M作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条B.2条C.3条D.4条3.如图4-12-3,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶CF等于()A.3∶2 B.3∶1 C.1∶1 D.1∶2图4-12-3 图4-12-44.如图4-12-4,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形____.5.如图4-12-5,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为____.图4-12-56.如图4-12-6,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.图4-12-6【思维拓展】7.以下三角形中,与图4-12-7中的三角形相似的是()8.如图4-12-8①,在△ACB中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)如图②,连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.图4-12-89.如图4-12-9,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E.(1)求证:△ACD≌△CBE;(2)已知AD=4,DE=1,求EF的长.图4-12-910.如图4-12-10,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P.(1)若AE=CF,①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP·AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.图4-12-10【思维升华】11.如图4-12-11,在正方形ABCD中,E,G,F分别是AB,AD,BC边上的点,若BE=2AE,AG=1,BF=2,∠GEF=90°,则GF的长是____.图4-12-1112.如图4-12-12,已知AB⊥BD,CD⊥BD.(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;(2)若AB=9,CD=4,BD=12,请问在BD上存在多少图4-12-12个P点,使以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似?并求BP的长;(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似?并求BP的长;(4)若AB=m,CD=n,BD=l,请问在m,n,l满足什么关系时,存在以P,A,B 三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的一个P点?两个P点?三个P点?图4-12-12答案:第12讲相似三角形的判定【思维入门】1.如图4-12-1,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是(B)图4-12-1A.1B.2C.3D.42.如图4-12-2,M是Rt△ABC的斜边BC上异于B,C的一定点,过点M作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)图4-12-2A.1条B.2条C.3条D.4条3.如图4-12-3,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶CF等于(D)图4-12-3A .3∶2B .3∶1C .1∶1D .1∶2【解析】 ∵▱ABCD ,故AD ∥BC , ∴△DEF ∽△BCF ,∴DE BC =EFCF ,∵点E 是边AD 的中点, ∴AE =DE =12AD ,∴EF CF =12.4.如图4-12-4,在▱ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP ∥DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形__答案不唯一,如△DCF ∽△EBF __.图4-12-45.如图4-12-5,在△ABC 中,AB =2,AC =4,将△ABC 绕点C 按逆时针方向旋转得到△A ′B ′C ,使CB ′∥AB ,分别延长AB ,CA ′相交于点D ,则线段BD 的长为__6__.图4-12-5【解析】 ∵将△ABC 绕点C 按逆时针方向旋转得到△A ′B ′C , ∴AC =A ′C =4,AB =A ′B ′=2,∠A =∠CA ′B ′, ∵CB ′∥AB , ∴∠B ′CA ′=∠D ,∴△CAD∽△B′A′C,∴CAB′A′=ADA′C,∴42=AD4,解得AD=8,∴BD=AD-AB=8-2=6.6.如图4-12-6,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.图4-12-6解:(1)证明:∵AB∥FC,∴∠ADE=∠CFE.△ADE和△CFE中,∠ADE=∠CFE,DE=FE,∠AED=∠CEF,∴△ADE≌△CFE.(2)∵AB∥FC,∴△GBD∽△GCF,∴GBGC=BDCF.∵GB=2,BC=4,BD=1,∴22+4=1CF,∴CF=3,∵△ADE≌△CFE,∴AD=CF=3,∴AB=BD+AD=1+3=4.【思维拓展】7.以下三角形中,与图4-12-7中的三角形相似的是(C)8.如图4-12-8①,在△ACB中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)如图②,连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.图4-12-8证明:(1)∵DE∥BC,∴ADDB=AEEC,∵点D为边AB的中点,∴AE=EC,∵CF∥AB,∴DEEF=AEEC,∴DE=EF.(2)∵CF∥AB,∴∠A=∠ACG,∴∠A+∠DGC=∠ACG+∠DGC=∠DHC,∵∠ACB=90°,点D为边AB的中点,∴AD=DC,∴∠A=∠ACD,又∵∠ACB=∠CDG=90°,∴∠B=∠DHC,∴∠B=∠A+∠DGC.9.如图4-12-9,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E.(1)求证:△ACD≌△CBE;(2)已知AD=4,DE=1,求EF的长.图4-12-9解:(1)证明:∵AD⊥CE,∴∠2+∠3=90°.又∵∠1+∠2=90°,∴∠1=∠3.又∵BE⊥CE,AD⊥CE,∴∠E =∠ADC =90°,△ACD 和△CBE 中,⎩⎪⎨⎪⎧∠ADC =∠E ,∠3=∠1,AC =CB ,∴△ACD ≌△CBE .(2)∵△ACD ≌△CBE ,∴CE =AD =4,BE =CD .∴CD =CE -DE =4-1=3.∵∠E =∠ADF ,∠BFE =∠AFD ,∴△BEF ∽△ADF ,∴BE AD =EF DF. 设EF =x ,则DF =1-x ,∴34=x 1-x ,解得x =37, ∴EF =37. 10.如图4-12-10,等边三角形ABC 的边长为6,在AC ,BC 边上各取一点E ,F ,连结AF ,BE 相交于点P .(1)若AE =CF ,①求证:AF =BE ,并求∠APB 的度数;②若AE =2,试求AP ·AF 的值;(2)若AF =BE ,当点E 从点A 运动到点C 时,试求点P 经过的路径长.解:(1)①证明:∵三角形ABC 为等边三角形,∴AB =AC ,∠BAC =∠C =60°,∵AE =CF ,∴△BAE ≌△ACF (SAS ),图4-12-10∴AF =BE ,∠ABE =∠CAF ,∵∠BAF +∠CAF =60°.∴∠BAF +∠ABE =60°,∴∠APB =180°-(∠BAF +ABE )=180°-60°=120°.②∵∠AEB =∠AEP ,∠ABE =∠CAF ,∴△BAE ∽△APE ,AF =BE ,∴AP AB =AE BE, ∵AB =6,AE =2,∴AP 6=2AF, ∴AP ·AF =6×2=12.(2)此题分四种情况,第一种:如答图①,点P 经过的路径长为43π3;① ②第10题答图③ ④第10题答图第二种:如答图②,点P 经过的路径长为3+23π3; 第三种:如答图③,点P 经过的路径长为33; 第四种:如答图④,点P 经过的路径长为23+23π3.【思维升华】11.如图4-12-11,在正方形ABCD 中,E ,G ,F 分别是AB ,AD ,BC 边上的点,若BE =2AE ,AG =1,BF =2,∠GEF =90°,则GF 的长是.【解析】 ∵∠GEF =90°,∴△GAE ∽△EBF , ∴GA EB =AE BF,∴AE ·EB =2, ∴AE ·2AE =2,∴AE =1,BE =2,∴GE =2,EF =22,GF =(2)2+(22)2=10.12.如图4-12-12,已知AB ⊥BD ,CD ⊥BD .(1)若AB =9,CD =4,BD =10,请问在BD 上是否存在P 点,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;(2)若AB =9,CD =4,BD =12,请问在BD 上存在多少个P 点,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?并求BP 的长;(3)若AB =9,CD =4,BD =15,请问在BD 上存在多少个P 点,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?并求BP 的长;图4-12-11图4-12-12(4)若AB =m ,CD =n ,BD =l ,请问在m ,n ,l 满足什么关系时,存在以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似的一个P 点?两个P 点?三个P 点? 解:(1)设BP =x ,则DP =10-x .如果是△ABP ∽△CDP ,则AB CD =BP DP, 即94=x 10-x ,解得x =9013; 如果是△ABP ∽△PDC ,则AB PD =BP CD, 即910-x =x 4,得方程x 2-10x +36=0,方程无解. 所以BP =9013. (2)设BP =x ,则DP =12-x .如果是△ABP ∽△CDP ,则AB CD =BP DP ,即94=x 12-x ,解得x =10813; 如果是△ABP ∽△PDC ,则AB PD =BP CD ,即912-x =x 4,得方程x 2-12x +36=0,解得x =6. 所以BP =6或10813. (3)设BP =x ,则DP =15-x .如果是△ABP ∽△CDP ,则AB CD =BP DP ,即94=x 15-x ,解得x =13513; 如果是△ABP ∽△PDC ,则AB PD =BP CD ,即915-x =x 4,得方程x 2-15x +36=0,解得x =3或12. 所以BP =13513,3或12. (4)设BP =x ,则DP =l -x .如果是△ABP ∽△CDP ,则AB CD =BP DP ,即m n =x l -x ,解得x =ml m +n; 如果是△ABP ∽△PDC ,则AB PD =BP CD ,即m l -x =x n,得方程x 2-lx +mn =0,Δ=l 2-4mn .当Δ=l2-4mn<0时,存在以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的一个P点;当Δ=l2-4mn=0时,存在以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的两个P点;当Δ=l2-4mn>0时,存在以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的三个P点.。
九年级数学下册 6.3 相似图形 相似三角形的性质是什么
相似三角形的性质是什么?
难易度:★★★
关键词:相似三角形的性质
答案:
(1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比
【举一反三】
典例:如果两个相似三角形的相似比是,那么它们的面积比是()
A. B. C.
D.
思路导引:一般来讲,解决本题要把握相似三角形的性质即:(1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比
标准答案:B。
相似三角形的判定
可证DBFE是平行四边形 △ADE≌△EFC ∴DE= 1 AB AC BC 2
∴△ADE∽△ABC
D
F
结论:三角形的中位线截得的三角形与原三角形相似
A E C
2. 如图,DE//BC, △ADE与△ABC有什么关系?说明理由.
相似
证明:在△ADE与△ABC中 ∠A= ∠A
AB AC BC
=
=
AD AE DE
DE ∥ BC
D B
A E C
如图,DE//BC,且D是边AB的中点,DE交AC于E, △ADE与△ABC有什么关系?说明理由. 相似
证明:在△ADE与△ABC中 ∠A= ∠A
∵ DE//BC ∴∠ADE=∠B, ∠AED=∠C
AD AE 1 过E作EF//AB交BC于F AB AC 2
平行于三角形一边的直线与其它两边(或延长线)相交, 所得的三角形与原三角形___相__似___.
“A”型
“X”型
A
D
E
O
D
E
B (图1) C
B
(图2)
C
请写出它们的对应边的比例式
已知:如图,AB∥EF ∥CD,
图中共有__3__对相似三角形。
A
AB∥EF
△AOB∽ △FOE
AB∥CD △AOB ∽△DOC
小结
• 本节课你有哪些收获?说出来让大 家与你一同分享 !!!
• 你还有什么疑问?提出来让大家与 你一起解决 !!!
•不经历风雨,怎么见彩虹 •没有人能随随便便成功!
1. 对应角___相__等__, 对应边的——比—相——等—的两个
三角形, 叫做相似三角形
2. 相似三角形的—对—应——角—相——等, 对应边—的——比—相——等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲相似三角形的判定【思维入门】1.如图4-12-1,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是()A.1B.2C.3D.4图4-12-1 图4-12-22.如图4-12-2,M是Rt△ABC的斜边BC上异于B,C的一定点,过点M作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条B.2条C.3条D.4条3.如图4-12-3,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶CF等于()A.3∶2 B.3∶1 C.1∶1 D.1∶2图4-12-3 图4-12-44.如图4-12-4,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形____.5.如图4-12-5,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为____.图4-12-56.如图4-12-6,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.图4-12-6【思维拓展】7.以下三角形中,与图4-12-7中的三角形相似的是()8.如图4-12-8①,在△ACB中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)如图②,连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.图4-12-89.如图4-12-9,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E.(1)求证:△ACD≌△CBE;(2)已知AD=4,DE=1,求EF的长.图4-12-910.如图4-12-10,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P.(1)若AE=CF,①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP·AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.图4-12-10【思维升华】11.如图4-12-11,在正方形ABCD中,E,G,F分别是AB,AD,BC边上的点,若BE=2AE,AG=1,BF=2,∠GEF=90°,则GF的长是____.图4-12-1112.如图4-12-12,已知AB⊥BD,CD⊥BD.(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;(2)若AB=9,CD=4,BD=12,请问在BD上存在多少图4-12-12个P点,使以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似?并求BP的长;(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似?并求BP的长;(4)若AB=m,CD=n,BD=l,请问在m,n,l满足什么关系时,存在以P,A,B 三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的一个P点?两个P点?三个P点?图4-12-12答案:第12讲相似三角形的判定【思维入门】1.如图4-12-1,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是(B)图4-12-1A.1B.2C.3D.42.如图4-12-2,M是Rt△ABC的斜边BC上异于B,C的一定点,过点M作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)图4-12-2A.1条B.2条C.3条D.4条3.如图4-12-3,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶CF等于(D)图4-12-3A .3∶2B .3∶1C .1∶1D .1∶2【解析】 ∵▱ABCD ,故AD ∥BC , ∴△DEF ∽△BCF ,∴DE BC =EFCF ,∵点E 是边AD 的中点, ∴AE =DE =12AD ,∴EF CF =12.4.如图4-12-4,在▱ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP ∥DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形__答案不唯一,如△DCF ∽△EBF __.图4-12-45.如图4-12-5,在△ABC 中,AB =2,AC =4,将△ABC 绕点C 按逆时针方向旋转得到△A ′B ′C ,使CB ′∥AB ,分别延长AB ,CA ′相交于点D ,则线段BD 的长为__6__.图4-12-5【解析】 ∵将△ABC 绕点C 按逆时针方向旋转得到△A ′B ′C , ∴AC =A ′C =4,AB =A ′B ′=2,∠A =∠CA ′B ′, ∵CB ′∥AB , ∴∠B ′CA ′=∠D ,∴△CAD∽△B′A′C,∴CAB′A′=ADA′C,∴42=AD4,解得AD=8,∴BD=AD-AB=8-2=6.6.如图4-12-6,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.图4-12-6解:(1)证明:∵AB∥FC,∴∠ADE=∠CFE.△ADE和△CFE中,∠ADE=∠CFE,DE=FE,∠AED=∠CEF,∴△ADE≌△CFE.(2)∵AB∥FC,∴△GBD∽△GCF,∴GBGC=BDCF.∵GB=2,BC=4,BD=1,∴22+4=1CF,∴CF=3,∵△ADE≌△CFE,∴AD=CF=3,∴AB=BD+AD=1+3=4.【思维拓展】7.以下三角形中,与图4-12-7中的三角形相似的是(C)8.如图4-12-8①,在△ACB中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)如图②,连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.图4-12-8证明:(1)∵DE∥BC,∴ADDB=AEEC,∵点D为边AB的中点,∴AE=EC,∵CF∥AB,∴DEEF=AEEC,∴DE=EF.(2)∵CF∥AB,∴∠A=∠ACG,∴∠A+∠DGC=∠ACG+∠DGC=∠DHC,∵∠ACB=90°,点D为边AB的中点,∴AD=DC,∴∠A=∠ACD,又∵∠ACB=∠CDG=90°,∴∠B=∠DHC,∴∠B=∠A+∠DGC.9.如图4-12-9,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E.(1)求证:△ACD≌△CBE;(2)已知AD=4,DE=1,求EF的长.图4-12-9解:(1)证明:∵AD⊥CE,∴∠2+∠3=90°.又∵∠1+∠2=90°,∴∠1=∠3.又∵BE⊥CE,AD⊥CE,∴∠E =∠ADC =90°,△ACD 和△CBE 中,⎩⎪⎨⎪⎧∠ADC =∠E ,∠3=∠1,AC =CB ,∴△ACD ≌△CBE .(2)∵△ACD ≌△CBE ,∴CE =AD =4,BE =CD .∴CD =CE -DE =4-1=3.∵∠E =∠ADF ,∠BFE =∠AFD ,∴△BEF ∽△ADF ,∴BE AD =EF DF. 设EF =x ,则DF =1-x ,∴34=x 1-x ,解得x =37, ∴EF =37. 10.如图4-12-10,等边三角形ABC 的边长为6,在AC ,BC 边上各取一点E ,F ,连结AF ,BE 相交于点P .(1)若AE =CF ,①求证:AF =BE ,并求∠APB 的度数;②若AE =2,试求AP ·AF 的值;(2)若AF =BE ,当点E 从点A 运动到点C 时,试求点P 经过的路径长.解:(1)①证明:∵三角形ABC 为等边三角形,∴AB =AC ,∠BAC =∠C =60°,∵AE =CF ,∴△BAE ≌△ACF (SAS ),图4-12-10∴AF =BE ,∠ABE =∠CAF ,∵∠BAF +∠CAF =60°.∴∠BAF +∠ABE =60°,∴∠APB =180°-(∠BAF +ABE )=180°-60°=120°.②∵∠AEB =∠AEP ,∠ABE =∠CAF ,∴△BAE ∽△APE ,AF =BE ,∴AP AB =AE BE, ∵AB =6,AE =2,∴AP 6=2AF, ∴AP ·AF =6×2=12.(2)此题分四种情况,第一种:如答图①,点P 经过的路径长为43π3;① ②第10题答图③ ④第10题答图第二种:如答图②,点P 经过的路径长为3+23π3; 第三种:如答图③,点P 经过的路径长为33; 第四种:如答图④,点P 经过的路径长为23+23π3.【思维升华】11.如图4-12-11,在正方形ABCD 中,E ,G ,F 分别是AB ,AD ,BC 边上的点,若BE =2AE ,AG =1,BF =2,∠GEF =90°,则GF 的长是.【解析】 ∵∠GEF =90°,∴△GAE ∽△EBF , ∴GA EB =AE BF,∴AE ·EB =2, ∴AE ·2AE =2,∴AE =1,BE =2,∴GE =2,EF =22,GF =(2)2+(22)2=10.12.如图4-12-12,已知AB ⊥BD ,CD ⊥BD .(1)若AB =9,CD =4,BD =10,请问在BD 上是否存在P 点,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;(2)若AB =9,CD =4,BD =12,请问在BD 上存在多少个P 点,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?并求BP 的长;(3)若AB =9,CD =4,BD =15,请问在BD 上存在多少个P 点,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?并求BP 的长;图4-12-11图4-12-12(4)若AB =m ,CD =n ,BD =l ,请问在m ,n ,l 满足什么关系时,存在以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似的一个P 点?两个P 点?三个P 点? 解:(1)设BP =x ,则DP =10-x .如果是△ABP ∽△CDP ,则AB CD =BP DP, 即94=x 10-x ,解得x =9013; 如果是△ABP ∽△PDC ,则AB PD =BP CD, 即910-x =x 4,得方程x 2-10x +36=0,方程无解. 所以BP =9013. (2)设BP =x ,则DP =12-x .如果是△ABP ∽△CDP ,则AB CD =BP DP ,即94=x 12-x ,解得x =10813; 如果是△ABP ∽△PDC ,则AB PD =BP CD ,即912-x =x 4,得方程x 2-12x +36=0,解得x =6. 所以BP =6或10813. (3)设BP =x ,则DP =15-x .如果是△ABP ∽△CDP ,则AB CD =BP DP ,即94=x 15-x ,解得x =13513; 如果是△ABP ∽△PDC ,则AB PD =BP CD ,即915-x =x 4,得方程x 2-15x +36=0,解得x =3或12. 所以BP =13513,3或12. (4)设BP =x ,则DP =l -x .如果是△ABP ∽△CDP ,则AB CD =BP DP ,即m n =x l -x ,解得x =ml m +n; 如果是△ABP ∽△PDC ,则AB PD =BP CD ,即m l -x =x n,得方程x 2-lx +mn =0,Δ=l 2-4mn .当Δ=l2-4mn<0时,存在以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的一个P点;当Δ=l2-4mn=0时,存在以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的两个P点;当Δ=l2-4mn>0时,存在以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的三个P点.。