DFT信号频谱分析
用DFT对信号作频谱分析
![用DFT对信号作频谱分析](https://img.taocdn.com/s3/m/ea0ed07b58fafab069dc0220.png)
实验三 用DFT 对信号作频谱分析一、 实验原理计算机上实现信号的频谱分析及其他方面的处理对信号的要求是:在时域和频域都应该是离散的,而且都应该是有限长的。
各种形式的傅里叶级数与变换,只有离散傅里叶级数DFS 在时域和频域都是离散的,但是()xn 和()X k 都是无限长的周期序列,因此时域频域各取一个周期,即为离散傅里叶变换DFT ,是信号离散时间傅里叶变换DTFT 某种程度上的近似。
频域采样即对离散时间傅里叶变换的连续周期频谱离散化的过程,采样后的周期频谱序列对应时域的周期序列,该时域序列的周期恰好是频域中一个周期内的采样点数采样,因此频域采样不失真的条件为: 频域采样点数N 要大于或等于时域序列长度M 。
二、 实验目的(1)学习离散叶变换(即DFT )的计算方法及意义。
(2) 掌握实数序列的DFT 系数的对称特点。
(3) 利用MATLAB 编制DFT/IDFT 计算程序的方法。
(4)频域采样理论的验证三、实验内容(1)5()()x n R n ,求N 分别取8,16,32,64时的离散傅里叶变换DFT ()X k ,最后绘出图形。
程序代码:(2) 利用如下MATLAB程序生成三角波序列%x=[1,1,1,1,1,1,1,1];M=27;N=32;n=0:M;%产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0;x=[xa,xb];对该序列分别计算离散时间傅立叶变换DTFT,8点,16点,32点,64点和128点离散傅立叶变换频谱,并利用反变换求各个频谱对应的是与序列,比较这些频谱和序列。
生成的三角波图形:图1-1 长度为27的三角波其程序代码:对该序列分别计算离散时间傅立叶变换DTFT,8点,16点,32点,64点和128点离散傅立叶变换频谱。
其实验结果为图1-2所示。
图1-2 三角波计算离散时间福利叶变换其程序代码:利用反变换求各个频谱对应的是与序列,比较这些频谱和序列。
dft信号频谱的分析
![dft信号频谱的分析](https://img.taocdn.com/s3/m/770dfeb6294ac850ad02de80d4d8d15abe2300b3.png)
一,实验名称: DFT 的频谱分析 二,实验目的:1. 加深对 DFT 原理的理解,熟悉DFT 的性质。
2. 掌握离散傅里叶变换的有关性质,利用Matlab 实现DFT 变换3. 深刻理解利用 DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法三,实验原理:所谓信号的频谱分析就是计算信号的傅里叶变换。
连续信号与系统的傅里叶分析显然不便于直接用计算机进行计算,使其应用受到限制,而DFT 是一种时域和频域均离散化的变换,适合数值运算,成为分析离散信号和系统的有力工具。
工程实际中,经常遇到的连续信号Xa(t),其频谱函数Xa(jW)也是连续函数。
数字计算机难于处理,因而我们采用DFT 来对连续时间信号的傅里叶变换进行逼近,进而分析连续时间信号的频谱。
离散傅里叶变换是有限长序列的傅里叶变换,它相当于把信号的傅里叶变换进行等频率间隔采样,并且有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。
快速傅里叶变换(FFT )并不是一种新的变换,它是离散傅里叶变换的一种快速算法,并且主要是基于这样的思路而发展起来的:(1)把长度为N 的序列的DFT 逐次分解成长度较短的序列的DFT 来计算。
(2)利用WN(nk)的周期性和对称性,在DFT 运算中适当的分类,以提高运算速度。
(对称性nkNnk NW W N-=+2,12-=NN W ;周期性nk N nk N nrN N k rN n N W W W W ---==)(,r 为任意整数,1=nrNNW ) 离散傅里叶变换的推导:离散傅里叶级数定义为 nk j N k p p ek x Nn x N21)(1)(π∑-== (1-1) 将上式两端乘以nm j Ne π2-并对n 在0~N-1求和可得 ⎥⎦⎤⎢⎣⎡==∑∑∑∑∑-=---=-=-=---=-10)(110101)(10N2N2N2)()(1)(N n m k n j N N k p N n N k m k n j pN n nm j p e k X ek XNen x πππ 因为{m k 1mk 0)(N )(1)(N 2N2N2-1-1N 11=≠---=-==∑m k j m k j N n m k n je eeNπππ所以∑∑-=-=--=11)()()(N2N k p N n nm j p m k k X en x δπ 这样∑-=-=10N2)()(N n nm j p p en x m X π用k代替m 得 ∑-=-=10N2)()(N n nk j p P e n x k X π (1-2)令N2πj N eW -=,则(1-2)成为DFS []∑-===10)()()(N n nk N p p p W n x k X n x (1-3)(1-1)成为 IDFS []∑-=-==1)(1)()(N n nkNpp p W k XNn x k X (1-4) 式(1-3)、(1-4)式构成周期序列傅里叶级数变换关系。
DFT在信号频谱分析中的应用
![DFT在信号频谱分析中的应用](https://img.taocdn.com/s3/m/95c66afa524de518964b7d31.png)
DFT在信号频谱分析中的应用目录Ⅰ.设计题目 (1)Ⅱ.设计目的 (1)Ⅲ.设计原理 (1)Ⅳ.实现方法 (1)Ⅴ.设计内容及结果 (5)Ⅵ.改进及建议 (11)Ⅶ.思考题及解答 (14)Ⅷ.设计体会及心得 (15)Ⅸ.参考文献 (16)Ⅰ.设计题目DFT 在信号频谱分析中的应用Ⅱ.设计目的掌握离散傅里叶变换的有关性质,利用Matlab 实现DFT 变换。
了解DFT 应用,用DFT 对序列进行频谱分析,了解DFT 算法存在的问题及改进方法。
学习并掌握FFT 的应用。
Ⅲ.设计原理所谓信号的频谱分析就是计算信号的傅里叶变换。
连续信号与系统的傅里叶分析显然不便于直接用计算机进行计算,使其应用受到限制,而DFT 是一种时域和频域均离散化的变换,适合数值运算,成为分析离散信号和系统的有力工具。
工程实际中,经常遇到的连续信号Xa(t),其频谱函数Xa(jW)也是连续函数。
数字计算机难于处理,因而我们采用DFT 来对连续时间信号的傅里叶变换进行逼近,进而分析连续时间信号的频谱。
Ⅳ.实现方法离散傅里叶变换是有限长序列的傅里叶变换,它相当于把信号的傅里叶变换进行等频率间隔采样,并且有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。
快速傅里叶变换(FFT )并不是一种新的变换,它是离散傅里叶变换的一种快速算法,并且主要是基于这样的思路而发展起来的:(1)把长度为N 的序列的DFT 逐次分解成长度较短的序列的DFT 来计算。
(2)利用WN(nk)的周期性和对称性,在DFT 运算中适当的分类,以提高运算速度。
(对称性nkNnk NW W N-=+2,12-=NN W ;周期性nkN nk N nrN N k rN n NW W W W ---==)(,r 为任意整数,1=nrNN W )离散傅里叶变换的推导:离散傅里叶级数定义为nk j N k p p ek x Nn x N21)(1)(π∑-==(1-1) 将上式两端乘以nm j Neπ2-并对n在0~N-1求和可得⎥⎦⎤⎢⎣⎡==∑∑∑∑∑-=---=-=-=---=-10)(110101)(1N2N2N2)()(1)(N n m k n j N N k p N n N k m k n j pN n nm j pe k X ek XNen xπππ 因为{m k 1mk 0)(N )(1)(N 2N2N2-1-1N 11=≠---=-==∑m k j m k j N n m k n je eeNπππ所以∑∑-=-=--=110)()()(N2N k p N n nm j p m k k X en x δπ 这样∑-=-=10N2)()(N n nm j p p en x m X π用k 代替m 得∑-=-=1N2)()(N n nk j p P en x k X π(1-2)令N2πj N eW -=则(1-2)成为DFS []∑-===10)()()(N n nkN p p p W n x k X n x (1-3)(1-1)成为IDFS []∑-=-==1)(1)()(N n nkN pp p W k XNn x k X (1-4)式(1-3)、(1-4)式构成周期序列傅里叶级数变换关系。
DFT分析信号频谱
![DFT分析信号频谱](https://img.taocdn.com/s3/m/9582dbc8ce2f0066f5332294.png)
x[k ] X (e )
jw
x[k]
k
x[k ]e
jkw
X(ejw)
...
0 k
...
0
2 p p
p
2p
w
图3 离散非周期信号及其频谱
x[ k ] 4.离散时间周期信号 ~
~ ~ x [k ] X [m]
~ x [k ]
N 1 k 0
~ x [k ]e
窗函数一:
矩形窗
1 0 k N w[k ] 0 其它
1 0.8
时域波形
0.6 0.4 0.2 0 0 5 10 15 20 25 30 35
40 30
幅度频谱
20 10 0 -1
-0.5
0
0.5
1
矩形窗:
1 0 k N w[k ] 0 其它
sin( Nw / 2) WN (e ) DTFT{RN [k ]} e sin( w / 2)
j
2p mk N
~ X [m]
...
-N 0 N k
...
-N 0 N m
图4 离散周期信号及其频谱
问题提出: 如何利用数字方法分析信号的频谱?
x(t ) X ( j)
x(t )e
jt
dt
1 jn0t xT (t ) X (n0 ) xT (t )e dt T T
512点DFT幅频特性
10
150 100 50 0
0
-10
0
10
20
30
40
50
60
70
80
|X(k)|
用DFT对模拟信号作频谱分析课件
![用DFT对模拟信号作频谱分析课件](https://img.taocdn.com/s3/m/7d8a7367905f804d2b160b4e767f5acfa1c783c9.png)
通过DFT对正弦波信号进行频谱分析,可以观察到该信号在 频域中的表现,即其对应的频率分量。正弦波信号的频谱分 析展示了DFT在处理单一频率信号时的效果,能够准确地提 取出信号的频率信息。
实例二:方波信号的频谱分析
总结词
方波信号的频谱分析展示了DFT在处理复杂信号时的能力。
详细描述
方波信号是一种非单一频率的信号,其频谱分析需要使用DFT进行处理。通过对方波信号进行频谱分析,可以观 察到该信号在频域中的表现,即其包含的多个频率分量。这展示了DFT在处理复杂信号时的能力,能够准确地提 取出信号的频率信息。
假峰现象
01
DFT可能会出现假峰现象,即分析结果中出现一些不存在的频
率分量。
分辨率问题
02
DFT的分辨率有限,对于某些信号可能无法准确地区分相近的
频率分量。
对噪声敏感
03
DFT对噪声比较敏感,噪声可能会影响频谱分析的准确性。
DFT在频谱分析中的实现步骤
1. 采样
对模拟信号进行采样,得到离 散时间信号。
感谢观看
用DFT对模拟信 号作频谱分析课 件
contents
目录
• DFT基本原理 • 模拟信号的频谱分析 • DFT在频谱分析中的应用 • DFT在频谱分析中的实例 • DFT在频谱分析中的注意事项
01
CATALOGUE
DFT基本原理
DFT的定义
01
离散傅里叶变换(DFT):将离 散时间信号转换为频域表示的数 学工具。
DFT将信号分解为不同频率的正弦波 和余弦波的叠加。
通过DFT,可以分析信号中各个频率 分量的幅度和相位信息。
02
CATALOGUE
模拟信号的频谱分析
DFT分析连续时间信号频谱
![DFT分析连续时间信号频谱](https://img.taocdn.com/s3/m/4e231ded376baf1ffd4fadc0.png)
在matlab 中对信号111()cos()cos(2)s t t f t π=Ω进行采样,其中f1=1000Hz ,根据奈奎斯特采样定理,采样频率f>=2*f1,在此我们取f=3000Hz 在matlab 中仿真也好,实际中处理的信号也罢,一般都是数字信号。
而采样就是将信号数字化的一个过程,设将信号s1(t)数字化得到信号s1(n)=cos(2*pi*f1/f*n),其中n=[0…N -1],N 为采样点数。
为什么说s1(n)=cos(2*pi*f1/f*n)表示以采样率f 对频率为f1的信号进行采样的结果呢? 采样,顾名思义,就是对信号隔一段时间取一个值,而隔的这段时间就是采样间隔,取其倒数就是采样率了,那们我们看s1(n)=cos(2*pi*f1/f*n),将前面的参数代入,当n=0时,s1(0)=cos(0),当n=1时,s1(1)=cos(2*pi*1000/3000*1),当n=2时,s1(2)=cos(2*pi*1000/3000*2),当n=3时,s1(3)=cos(2*pi*1000/3000*3),这是不是想当于对信号s1(t)的一个周期内采了三个样点呢?对一个频率为1000Hz 的信号每周期采三个样点不就是相当于以3倍于频率的采样率进行采样呢?注意,当n=3时相当于下一个周期的起始了。
我们取采样点数N=64,即对64/3=21.3个周期,共计64/3/f1=21.3ms 时长。
我们在matlab 中输入以下命令:>> n=0:63;>> f1=1000;f=3000;>> s1=cos(2*pi*f1/f*n);>> plot(abs(fft(s1)));从理论上讲11()cos(2)s t f t π=应该在1000Hz 和-1000Hz 两个频点上有两根线,即应该图1可知,两个峰值大约对应横轴坐标为21和43=64-21两个点。
DFT分析信号频谱
![DFT分析信号频谱](https://img.taocdn.com/s3/m/9582dbc8ce2f0066f5332294.png)
2500
三、利用DFT分析连续非周期信号的频谱
x (t )
抽样 离散化
x[k ]
周期化
~ x[ k ]
DFT实现
~[ m ] X
A T
X ( j)
A
X (e )
A T
jw
m
m
2p 2p
w
N
m
假设连续信号持续时间有限,频带有限
讨论:
(1) x (t )无限长,其频带有限
加窗
DFT
x (t )
200 0
0
100
200
300
k
400
500
600
0
0
500
1000
k
1500
2000
2500
时域波形
10
x(n)
继续修改程序, 将时域信号取为 2048点,作2048 点DFT。
0
-10
0
500
1000
n 幅频特性
1500
2000
2500
1000
|X(k)|
500
0
0
500
1000
k
1500
2000
图1 连续非周期信号及其频谱
2. 连续时间周期信号 xT (t )
1 jn0t xT (t ) X (n0 ) xT (t )e dt T T
x (t ) T
X(nΩ0)
-T
0
T
t
0
Ω
图2 连续周期信号及其频谱
3.离散时间非周期信号 x[k ]
x[k ] X (e )
x(t)
X(jΩ)
利用DFT分析连续信号频谱
![利用DFT分析连续信号频谱](https://img.taocdn.com/s3/m/1c5217334b73f242336c5f4f.png)
实验三 利用DFT 分析连续信号频谱1. 利用FFT 分析信号的频谱。
(1) 确定DFT 计算的各参数(抽样间隔,截短长度,频谱分辨率等);(2) 比较理论值与计算值,分析误差原因,提出改善误差的措施。
答: (1)选取fm=25Hz 为近似的最高频率,抽样间隔T=1/(2fm)=0.02s; 选取Tp=6s 进行分析,则截短点数为N=Tp/T=300,采用矩形窗,确定作fft 的点数为N=512。
(2)计算程序如下:fsam=50;Tp=6;N=512;T=1/fsam;t=0:T:Tp;x=exp(-2*t);X1=T*fft(x,N);subplot(4,1,1)plot(t,x)title('时域波形')subplot(4,1,2)w=[-N/2:N/2-1]*(2*pi/N)/T;plot(w,abs(fftshift(X1)));title('幅度谱计算值')X2=1./(2+j*w);subplot(4,1,3)plot(w,abs(X2),'r');title('幅度谱理论值')error=abs(abs(fftshift(X1))-abs(X2));subplot(4,1,4)plot(w,error)title('理论值与计算值的误差')运行结果:)(e )(2t u t x t-=产生误差的原因:在整个计算过程中存在密集频点上的插值,插值就会存在精度问题。
改善措施:可以增加作fft 运算的点数N 来提高插值的精度,从而减小误差。
2. 分析周期信号的频谱时,如果分析长度不为整周期,利用 fft 函数计算并绘出其频谱,总结对周期信号进行频谱分析时,如何选取信号的分析长度。
答:周期信号x(t),若分析长度为其周期T=1s ,程序如下:T=1;fsm=19;Ts=1/fsm;t=0:Ts:1;N=fsm;x=cos(2*pi*5*t)+2*sin(2*pi*9*t);X=Ts*fft(x,N);f=(-(N-1)/2:(N-1)/2)/N/Ts;stem(f,abs(fftshift(X)));title('幅度谱')运行结果:时域波形幅度谱计算值幅度谱理论值理论值与计算值的误差)π18sin(2)π10cos()(t t t x +=若分析长度为其周期T=1.6s ,程序如下:T=1.6;fsm=19;Ts=1/fsm;t=0:Ts:1.6;N=length(t);x=cos(2*pi*5*t)+2*sin(2*pi*9*t);X=Ts*fft(x,N);f=(-(N-1)/2:(N-1)/2)/N/Ts;stem(f,abs(fftshift(X)));title('幅度谱')运行结果:幅度谱00.20.40.60.811.21.41.6幅度谱根据以上两图可以看出:分析周期信号频谱时,如果分析长度不为信号的整周期,其频谱图会发生改变,不再反映原周期信号的频谱结构。
用DFT对时域离散信号进行频谱分析
![用DFT对时域离散信号进行频谱分析](https://img.taocdn.com/s3/m/ffc154683069a45177232f60ddccda38376be1b3.png)
用DFT对时域离散信号进行频谱分析DFT(离散傅里叶变换)和FFT(快速傅里叶变换)是用于对时域离散信号进行频谱分析的常用方法之一、在本文中,我将介绍DFT和FFT的原理和应用,并探讨它们的优势和劣势。
频谱分析是一种研究信号频率成分的方法。
它可以用于分析信号的频域特征,例如信号频谱的幅度和相位信息。
频谱分析广泛应用于通信、声学、图像处理、金融等领域。
DFT是傅里叶变换在时域离散信号上的一种离散形式。
傅里叶变换将信号从时域转换到频域,使我们能够分析信号包含的不同频率的成分。
DFT计算离散信号的系数,这些系数表示了信号在不同频率上的幅度和相位信息。
DFT的计算复杂度为O(N^2),其中N是信号的长度。
这意味着DFT对于长时间序列的计算是非常昂贵的。
为了解决DFT计算复杂度高的问题,人们引入了FFT算法。
FFT是一种基于DFT的快速算法,可以大大提高计算效率。
FFT的计算复杂度为O(NlogN)。
当信号的长度是2的幂次时,FFT的计算速度尤为快速。
FFT算法利用了傅里叶变换中的对称和周期性特性,通过分治法将DFT计算分解成多个小规模的DFT计算,从而加快了计算速度。
FFT算法有多种变体,包括Cooley-Tukey算法、Gentleman-Sande算法等。
使用DFT和FFT进行频谱分析有很多应用。
其中一种常见的应用是信号滤波。
通过分析信号的频谱,我们可以确定信号中所包含的不同频率的成分,从而选择性地滤除或增强一些频率的信号成分。
另一种应用是频谱分析可用于频率识别。
通过观察信号频谱的峰值和分布情况,我们可以确定信号的主要频率成分,从而进行信号的识别和辨别。
尽管DFT和FFT在频谱分析中非常有用,但它们也存在一些局限性。
首先,这些方法假设信号是离散、周期且稳定的。
对于非周期信号和突发信号,DFT和FFT的结果可能会产生混淆或误导。
其次,DFT和FFT的分辨率取决于采样率和信号长度,这可能会导致频域分辨率较低。
实验四 利用DFT分析离散信号频谱
![实验四 利用DFT分析离散信号频谱](https://img.taocdn.com/s3/m/0ed4571b03d8ce2f00662373.png)
数字信号处理及实验实验报告实验题目利用DFT分析离散信号频谱姓名组别班级光电14 学号144320200206 【实验目的】应用离散傅里叶变换(DFT),分析离散信号的频谱。
深刻理解DFT分析离散信号频谱信号频谱的原理,掌握改善分析过程中产生的误差的方法。
【实验原理】根据信号傅里叶变化建立的时域与频域之间的对应关系,可以得到有限序列的离散傅里叶变换(DFT)与4种确定信号傅里叶变换之间的关系,实现由DFT分析其频谱。
【实验结果与数据处理】1、利用FFT分析信号x[k] = cos(3πk/8),k = 0,1,2……,31的频谱:(1)确定DFT计算的参数。
(2)进行理论值与计算值比较,讨论信号频谱分析过程中产生误差的原因及改善方法。
分析:信号的周期T = 16,角频率w=2π/N=π/8。
clc,clear,close allN = 16; k = 0 : N-1;x = cos(3*pi*k/8);X = fft(x,N);subplot(2,1,1);stem(k - N/2,abs(fftshift(X)));ylabel('幅度','fontsize',15);xlabel('频率(rad)','fontsize',15);subplot(2,1,2);stem(k - N/2,angle(fftshift(X)));ylabel('相位','fontsize',15);xlabel('频率(rad)','fontsize',15);2、有限长脉冲序列x[k]= [2,3,3,1,0,5;k = 0,1,2,3,4,5],利用FFT分析其频谱,并绘出其幅度谱与相位谱。
clc,clear,close allN = 6; k = 0 : N-1; w = k-3;x=[2,3,3,1,0,5];X=fft(x,N);subplot(2,1,1);stem(w,abs(fftshift(X)));ylabel('幅度','fontsize',15);xlabel('频率(rad)','fontsize',15);subplot(2,1,2);stem(w,angle(fftshift(X)));ylabel('相位','fontsize',15);xlabel('频率(rad)','fontsize',15);3、某周期序列由3个频率组成:x[k] = cos(7πk/16) + cos(9πk/16) + cos(πk/2),利用FFT分析其频谱。
用DFT(FFT)对连续信号进行频谱分析
![用DFT(FFT)对连续信号进行频谱分析](https://img.taocdn.com/s3/m/19efde1d55270722192ef7f0.png)
电子信息工程系实验报告课程名称:数字信号处理Array实验项目名称:用DFT(FFT)对连续信号进行频谱分析实验时间:班级:通信姓名: xxp 学号:一、实验目的:1.掌握用DFT(FFT)对模拟信号进行谱分析的方法,理解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
2.熟悉应用FFT实现两个序列的线性卷积的方法。
二、实验原理:1.用DFT(FFT)对连续信号进行频谱分析用DFT(FFT)对模拟信号做谱分析是一种近似的谱分析。
首先一般的模拟信号(周期信号除外)的频谱是连续谱,而用FFT做谱分析得到的是数字谱,因此应该取FFT的点数多一些,用它的包络作为模拟信号的近似谱。
另外,如果模拟信号不是严格的带限信号,会因为频谱混叠现象引起谱分析的误差,这种情况下可以预先将模拟信号进行预滤,或者尽量将采样频率取高一些。
最后要注意一般的模拟信号是无限长的,分析时要截断,截断的长度与对模拟信号进行频谱分析的分辨率有关。
如果要进行谱分析的模拟信号是周期信号,最好选择观测时间是信号周期的整数倍,如果不知道信号的周期,要尽量选择观测时间长一些,以减少截断效应的影响。
在运用DFT(FFT)对模拟信号进行谱分析的过程中主要可能产生以下三种误差:(1) 混叠现象对模拟信号进行谱分析时首先要对其采样,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原模拟信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
(2) 截断效应实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。
离散傅里叶变换DFT分析信号频谱
![离散傅里叶变换DFT分析信号频谱](https://img.taocdn.com/s3/m/05b7ccd1bb4cf7ec4afed09f.png)
1 X (e j ) X [ j ( nsam )] T n
综合两式,连续信号的频谱与DFT的关系为:
sam m 1 1 ~ ~ DFT{xN [k ]RN (k )} X [ j ( nsam )] X sam ( j ) T n T N
表明,DFT计算出的频谱是连续信号频谱周期化后的抽样值, 其抽样间隔为 sam / N
DFT分析信号频谱
利用DFT分析连续非周期信号的频谱
X ( j )
A
m
m
~[m ] X
A T
X[m]与X(jw)对应关系: sam 0m(N/21), N m m 0,1,, N / 2 1; sam sam m sam (m N ) N/2mN-1, N N m N / 2,N / 2 1 , ,N 1.
e
j
N 1 2
WN (e jΩ )
主瓣
N
Δ w 2 π / N
旁瓣
Δ 4 π / N
旁瓣
π
2π N
0
2π N
4π N
π
Ω
1 0 k N 矩形窗:w[k ] 0 其他
在主瓣处有一个峰值,表示其主要是由直流分量 组成。由于矩形窗函数在其两个端点的突然截断, 使得频谱中存在许多高频分量。
时域波形
20 15
幅度频谱
10 5 0 -1 -0.5 0 0.5 1
DFT分析信号频谱
混叠现象、泄漏现象、栅栏现象
2. 泄漏现象:选择合适的窗函数 窗函数三: 汉明窗(Hamming)
0.54 0.46 cos(2πk / N ) w[k ] 0
4DFT分析信号频谱
![4DFT分析信号频谱](https://img.taocdn.com/s3/m/7266cf215bcfa1c7aa00b52acfc789eb172d9ed6.png)
k 0
k 0
{10, 1 j, 0, 1 j}
X [m]
X (e
j
)
2
4
m
- j.3
e2
(4 cos
3 2
6 cos
1 2
)
m
2
{10, 1 j, 0, 1 j} ,m=0,1,2,3
7
X1(e j ) DTFT{x1[k]} x1[k] e-jk x1[k] e-jk
k
k 0
m
0
N1
四、混叠现象、泄漏现象、栅栏现象
(1)混叠现象:减小抽样间隔T,抗混滤波
X
(e
j )
1 T
n
X
( j(
nsam ))
1 T
n
X
(
j1 T
(
n
2
))
x(t)
抗混滤波 抽样间隔T
x0 (t )
抽样
x0[k ] DFT X [m]
X ( j) A
X0 ( j) A
X 0(e j ) A
N=50; %数据旳长度 L=512; %DFT旳点数 f1=100;f2=150; fs=600; %抽样频率 T=1/fs; %抽样间隔 ws=2*pi*fs; t=(0:N-1)*T; f=cos(2*pi*f1*t)+0.15*cos(2*pi*f2*t); wh=(hamming(N))'; f=f.*wh; F=fftshift(fft(f,L)); w=(-ws/2+(0:L-1)*ws/L)/(2*pi); plot(w,abs(F)); ylabel('幅度谱')
频率(Hz)
海明窗
实验四 利用离散傅立叶变换(DFT)分析信号的频谱
![实验四 利用离散傅立叶变换(DFT)分析信号的频谱](https://img.taocdn.com/s3/m/ebd724fb2cc58bd63186bdf9.png)
实验四 利用离散傅立叶变换(DFT )分析信号的频谱一、实验目的1、通过这一实验,能够熟练掌握快速离散傅里叶变换(FFT )的原理及其用FFT 进行频谱分析的基本方法。
2、在通过计算机上用软件实现FFT 及信号的频谱分析。
3、通过实验对离散傅里叶变换的主要性质及FFT 在数字信号处理中的重要作用有进一步的了解。
二、实验原理1、离散傅里叶变换(DFT )及其主要性质DFT 表示离散信号的离散频谱,DFT 的主要性质中有奇偶对称特性,虚实特性等。
通过实验可以加深理解。
例如:实序列的DFT 具有偶对称的实部和奇对称的虚部,这可以证明如下: 由定义∑-==10)()(N n kn NW n x k X ∑∑-=-=-=1010)2sin()()2cos()(N n N n kn N n x j kn N n x ππ ∑-=-=-10)()()(N n n k N N W n x k N X∑-=-=10)(N n kn N Nn W W n x ∑-=-=10)(N n kn N W n x ∑∑-=-=+=1010)2sin()()2cos()(N n N n kn N n x j kn N n x ππ )(*)(k N X k X -=∴实序列DFT 的这个特性,在本实验中可以通过实指数序列及三角序列看出来。
对于单一频率的三角序列来说它的DFT 谱线也是单一的,这个物理意义我们可以从实验中得到验证,在理论上可以推导如下: 设:)()2sin()(n R n N n x N π=,其DFT 为: ∑-=-=102)()(N n kn N j en x k X π kn Nj N n e n N ππ210)2sin(--=∑= kn N j N n n N j n N j e e e j πππ21022)(21--=-∑-= ∑-=+----=10)1(2)1(2)(21N n k n N j k n N j e e j ππ 从而∑-=-=-=10220)(21)0(N n n N j n N j e e j X ππ∑-=--==-=10422)1(21)1(N n n N j N j j N e j X π 0)2(=X0)2(=-N X22)(21)1(102)2(2N j j N e e j N X N n n j n N N j =-=-=-∑-=--ππ以上这串式中)0(X 反映了)(n x 的直流分量,)1(x 是)(n x 的一次谐波,又根据虚实特性)1()1(*X N X =-,而其它分量均为零。
利用DFT分析模拟信号频谱
![利用DFT分析模拟信号频谱](https://img.taocdn.com/s3/m/a061ea47df80d4d8d15abe23482fb4daa58d1d27.png)
利用DFT分析模拟信号频谱傅里叶变换(Fourier transform)是一种信号分析方法,可以将一个时域信号转换为频域表示。
信号的频谱分析对于数字信号处理和通信系统设计至关重要。
在数字频域分析中,离散傅里叶变换(DFT)是一种常用的方法,它将一个离散的时域序列转换为离散的频域序列。
DFT的原理是将输入序列分解成一系列复数的正弦和余弦函数,这些函数的频率从0到N-1,N是输入序列的长度。
每个频率的幅度和相位表示了在该频率上的信号能量和相对于其他频率的权重。
DFT的计算可以使用快速傅里叶变换(FFT)算法来实现,这是一种高效的计算方法,可以大大减少计算复杂度。
下面我们将详细介绍如何使用DFT分析信号频谱。
首先,我们需要定义信号,并将其表示为离散的时域序列。
可以通过采样连续信号或直接生成离散信号来获得时域序列。
假设我们有一个长度为N的信号x(n),n表示时域中的样本索引。
然后,我们可以使用以下公式计算信号的DFT:X(k) = Σ[x(n) * exp(-j * 2π * k * n / N)], n=0 to N-1其中,X(k)是频域中的样本,表示信号在频率k上的能量。
计算得到的频域样本X(k)是复数,其模值表示信号在该频率上的幅度,而相位表示信号在该频率上的相位关系。
为了可视化频谱,我们可以使用频谱图。
频谱图的横轴表示频率,纵轴表示幅度或能量。
可以将频率在0到N-1之间的频谱样本可视化为柱状图。
在实际应用中,我们经常需要将频谱转换为双边频谱或单边频谱来进行分析。
双边频谱包含了负频率和正频率的信息,而单边频谱只包含正频率的信息。
对于实数序列,频谱是对称的,只需要保留正频率即可。
另外,还有一些常见的频谱分析技术,如功率谱密度(PSD)估计和窗函数。
功率谱密度表示了信号在不同频率上的能量分布,窗函数可以改善DFT的频率分辨率和泄漏问题。
通过DFT分析信号频谱,我们可以了解信号在不同频率上的能量分布,从而更好地理解信号的特征和性质。
实验一 利用DFT分析信号频谱
![实验一 利用DFT分析信号频谱](https://img.taocdn.com/s3/m/03872d94cc1755270622080c.png)
实验一 利用DFT 分析信号频谱一、实验目的1、加深对DFT 原理的理解。
2、应用DFT 分析信号的频谱。
3、深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境。
三、实验基础理论1、DFT 与DTFT 的关系DFT 实际上就是DTFT 在单位圆上以k N j e zπ2=的抽样,数学公式表示为: ∑-=-===102)(|)()(2N n k N j e z e n x z X k X k N j ππ , 1,..1,0-=N k(2—1)2、利用DFT 求DTFT方法一:利用下列公式: )2()()(10∑-==-=N k k j Nk k X e X πωφω (2—2) 其中21)2/sin()2/sin()(--=N j e N N ωωωωφ为内插函数方法二:实际在MATLAB 计算中,上述插值运算不见得就是最好的办法。
由于DFT 就是DTFT 的取样值,其相邻两个频率样本点的间距为Nπ2,所以如果我们增加数据的长度N,使得到的 DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3、利用DFT 分析连续时间函数利用DFT 分析连续时间函数就是,主要有两个处理:①抽样,②截断对连续时间信号)(t x a 一时间T 进行抽样,截取长度为M,则nT j M n a t j a a e nT x T dt e t x j X Ω--=+∞∞-Ω-∑⎰==Ω)()()(10(2—3)再进行频域抽样可得 )()(|)(1022k TX enT x T j X M M n n N k j a NT k a ==Ω∑-=-=Ωππ(2—4)因此,利用DFT 分析连续时间信号的步骤如下:(1)、确定时间间隔,抽样得到离散时间序列)(n x 、(2)、选择合适的窗函数与合适长度M,得到M 点离散序列)()()(n w n x n x M =、(3)、确定频域采样点数N,要求N ≥M 。
数字信号处理实验五用DFT(FFT)对信号进行频谱分析
![数字信号处理实验五用DFT(FFT)对信号进行频谱分析](https://img.taocdn.com/s3/m/bde3577eb8f67c1cfad6b89b.png)
开课学院及实验室:电子楼3172018年 4月 29 日3()x n :用14()()x n R n =以8为周期进行周期性延拓形成地周期序列.(1> 分别以变换区间N =8,16,32,对14()()x n R n =进行DFT(FFT>,画出相应地幅频特性曲线;(2> 分别以变换区间N =4,8,16,对x 2(n >分别进行DFT(FFT>,画出相应地幅频特性曲线; (3> 对x 3(n >进行频谱分析,并选择变换区间,画出幅频特性曲线.<二)连续信号 1. 实验信号:1()()x t R t τ=选择 1.5ms τ=,式中()R t τ地波形以及幅度特性如图7.1所示.2()sin(2/8)x t ft ππ=+式中频率f 自己选择.3()cos8cos16cos 20x t t t t πππ=++2. 分别对三种模拟信号选择采样频率和采样点数.对1()x t ()R t τ=,选择采样频率4s f kHz =,8kHz ,16kHz ,采样点数用τ.s f 计算.对2()sin(2/8)x t ft ππ=+,周期1/T f =,频率f 自己选择,采样频率4s f f =,观测时间0.5p T T =,T ,2T ,采样点数用p s T f 计算.图5.1 R(t>地波形及其幅度特性对3()cos8cos16cos 20x t t t t πππ=++,选择采用频率64s f Hz =,采样点数为16,32,64. 3. 分别对它们转换成序列,按顺序用123(),(),()x n x n x n 表示.4. 分别对它们进行FFT.如果采样点数不满足2地整数幂,可以通过序列尾部加0满足.5. 计算幅度特性并进行打印.五、实验过程原始记录<数据、图表、计算等)(一> 离散信号%14()()x n R n = n=0:1:10。
数字信号处理--实验五-用DFT(FFT)对信号进行频谱分析
![数字信号处理--实验五-用DFT(FFT)对信号进行频谱分析](https://img.taocdn.com/s3/m/39023b40998fcc22bcd10dcf.png)
学生实验报告开课学院及实验室:电子楼3172013年4月29日、实验目的学习DFT 的基本性质及对时域离散信号进行频谱分析的方法,进一步加深对频域概念和数字频率的理解,掌握 MATLAB 函数中FFT 函数的应用。
二、实验原理离散傅里叶变换(DFT)对有限长时域离散信号的频谱进行等间隔采样,频域函数被离散化了, 便于信号的计算机处理。
设x(n)是一个长度为 M 的有限长序列,x(n)的N 点傅立叶变换:X(k)N 1j 三 knDFT[x(n)]N x(n)e N0 k N 1n 0其中WNe.2 jN,它的反变换定义为:1X(n)NkN 1nkX(k)W N0 令z W N k,X(zz WN k则有:N 1x( n)Wj kn 0可以得到,X(k)X(Z)Z WN kZ W N*是Z 平面单位圆上幅角为2kN 的点,就是将单位圆进行N 等分以后第 K 个点。
所以, X(K)是Z 变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。
时域采样在满足Nyquist 定理时,就不会发生频谱混叠。
DFT 是对序列傅立叶变换的等距采样,因此可以用于序列的频谱分析。
如果用FFT 对模拟信号进行谱分析,首先要把模拟信号转换成数字信号,转换时要求知道模拟 信号的最高截至频率,以便选择满足采样定理的采样频率。
般选择采样频率是模拟信号中最高频率的3~4倍。
另外要选择对模拟信号的观测时间,如果采样频率和观测时间确定,则采样点数也确定 了。
这里观测时间和对模拟信号进行谱分析的分辨率有关,最小的观测时间和分辨率成倒数关系。
最小的采样点数用教材相关公式确定。
要求选择的采样点数和观测时间大于它的最小值。
如果要进行谱分析的模拟信号是周期信号,最好选择观测时间是信号周期的整数倍。
如果不知道■ 厂1*1IE向i1A I1f Ii i 0r 1 疋0Jfb-4W0 70000图5.1 R(t)的波形及其幅度特性xn=[on es(1,4),zeros(1,7)];%输入时域序列向量 xn=R4( n)%计算xn 的8点DFTXk16=fft(x n,16);%计算xn 的16点DFTXk32=fft(x n,32); %计算xn 的32点DFTk=0:7;wk=2*k/8;对 x 3(t) cos8 t cos16 t cos20 t ,选择采用频率 f s 64Hz ,采样点数为 16 , 32 , 64。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,实验名称: DFT 的频谱分析 二,实验目的:1. 加深对 DFT 原理的理解,熟悉DFT 的性质。
2. 掌握离散傅里叶变换的有关性质,利用Matlab 实现DFT 变换3. 深刻理解利用 DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法三,实验原理:所谓信号的频谱分析就是计算信号的傅里叶变换。
连续信号与系统的傅里叶分析显然不便于直接用计算机进行计算,使其应用受到限制,而DFT 是一种时域和频域均离散化的变换,适合数值运算,成为分析离散信号和系统的有力工具。
工程实际中,经常遇到的连续信号Xa(t),其频谱函数Xa(jW)也是连续函数。
数字计算机难于处理,因而我们采用DFT 来对连续时间信号的傅里叶变换进行逼近,进而分析连续时间信号的频谱。
离散傅里叶变换是有限长序列的傅里叶变换,它相当于把信号的傅里叶变换进行等频率间隔采样,并且有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。
快速傅里叶变换(FFT )并不是一种新的变换,它是离散傅里叶变换的一种快速算法,并且主要是基于这样的思路而发展起来的:(1)把长度为N 的序列的DFT 逐次分解成长度较短的序列的DFT 来计算。
(2)利用WN(nk)的周期性和对称性,在DFT 运算中适当的分类,以提高运算速度。
(对称性nkNnk NW W N-=+2,12-=NN W ;周期性nk N nk N nrN N k rN n N W W W W ---==)(,r 为任意整数,1=nrNNW )离散傅里叶变换的推导:离散傅里叶级数定义为 nk j N k p p ek x Nn x N21)(1)(π∑-==(1-1) 将上式两端乘以nm j Ne π2-并对n 在0~N-1求和可得 ⎥⎦⎤⎢⎣⎡==∑∑∑∑∑-=---=-=-=---=-10)(110101)(10N2N2N2)()(1)(N n m k n j N N k p N n N k m k n j pN n nm j p e k X ek XNen x πππ 因为{mk 1mk 0)(N)(1)(N 2N2N2-1-1N 11=≠---=-==∑m k j m k j N n m k n jee eNπππ所以∑∑-=-=--=110)()()(N2N k p N n nm j p m k k X en x δπ 这样∑-=-=10N2)()(N n nm j p p en x m X π用k代替m 得 ∑-=-=10N2)()(N n nk j p P e n x k X π (1-2)令N2πj N eW -=,则(1-2)成为DFS []∑-===10)()()(N n nk N p p p W n x k X n x (1-3)(1-1)成为 IDFS []∑-=-==1)(1)()(N n nkN pp p W k XNn x k X (1-4)式(1-3)、(1-4)式构成周期序列傅里叶级数变换关系。
其中)()(k X n x p p 、都是周期为N 的周期序列,DFS[·]表示离散傅里叶级数正变换,IDFS[·]表示离散傅里叶级数反变换。
习惯上,对于长为N 的周期序列,把0≤n ≤N-1区间称为主值区,把)1(~)0(-N x x p p 称为)(n x p 的主值序列,同样也称)1(~)0(-N X X p p 为)(k X p 的主值序列。
由于)()()(n R n x n x N p =,对于周期序列)(n x p 仅有N个独立样值,对于任何一个周期进行研究就可以得到它的全部信息。
在主值区研究)(n x p 与)(n x 是等价的,因此在主值区计算DFS 和DFT 是相等的,所以DFT 计算公式形式与DFS 基本相同。
其关系为)()()(n R n x n x N p = )()()(k R k X k X N p =,所以离散傅里叶正变换()()[]()W nkN N n n x n x DFT k X ∑-===10≤k ≤N-1离散傅里叶变换(DFT)定义:设有限长序列x (n) 长为N (0≤n ≤N-1),其离散傅里叶变换是一个长为N 的频率有限长序列(0≤k ≤N-1),其正变换为()()[]()W nkN N n n x n x DFT k X ∑-===10 0≤k ≤N-1 (WeNjN π2-=)离散傅里叶变换的实质是:把有限长序列当做周期序列的主值序列进行DFS 变换,x(n)、X(k)的长度均为N ,都是N 个独立值,因此二者具有的信息量是相等的。
已知x(n)可以唯一确定X(k),已知X(k)可以唯一确定x(n)。
虽然离散傅里叶变换是两个有限长序列之间的变化,但它们是利用DFS 关系推导出来的,因而隐含着周期性四,实验内容与程序:1,对离散确定信号 ()cos(0.48)cos(0.52)x n n n ππ=+ 作如下谱分析: 截取()x n 使()x n 成为有限长序列N(0≤≤n N -1),(长度N 自己选)写程序计算出()x n 的N 点DFT ()X k ,画出时域序列图xn ~n 和相应的幅频图()~X k k 。
解:1)求x(n)的前10点数据对应的X(ejw)、X(k)。
MATLAB 程序: N=10; n=0:1:N-1;xn=cos(0.48*pi*n)+cos(0.52*pi*n);Xk=dft(xn,N);subplot(3,1,1)stem(n,xn,'.k');title('时域序列图xn');xlabel('n');axis([0,10,-2.5,2.5]);w=2*pi*(0:1:2047)/2048;Xw=xn*exp(-j*n'*w);subplot(3,1,2);plot(w/pi,abs(Xw));title('幅频特性曲线X(ejw)');xlabel('w');axis([0,1,0,10]);subplot(3,1,3)k1=0:1:9;w1=2*pi/10*k1;stem(w1/pi,abs(Xk),'.k');title('频域序列图Xk');xlabel('频率(单位:pi)');axis([0,1,0,10]);x(n)的前10点数据对应的x(n)、X(ejw)、X(k)如图1-1所示。
图1-1 x(n)的前10点数据对应的x(n)、X(ejw)、X(k) 2)将x(n)补零至100点,求N=100点的X(ejw)、X(k)。
MATLAB主要程序如下:N=10;n=0:N-1;xn=cos(0.48*pi*n)+cos(0.52*pi*n);N1=100;n1=0:N1-1;x1=[xn(1:10) zeros(1,90)];subplot(3,1,1)stem(n1,x1,'.k');title('时域序列图x1');xlabel('n');axis([0,100,-2.5,2.5]);w=2*pi*(0:2047)/2048;X1=x1*exp(-j*n1'*w);subplot(3,1,2);plot(w/pi,abs(X1));title('幅频特性曲线X(ejw)');xlabel('w');axis([0,1,0,10]);subplot(3,1,3)Xk=dft(x1,N1);k1=0:1:49;w1=2*pi/100*k1;stem(w1/pi,abs(Xk(1:1:50)),'.k');title('频域序列图Xk');xlabel('频率(单位:pi)');axis([0,1,0,10]);x(n)补零至100点对应的x(n)、X(ejw)、X(k)如图1-2所示。
图1-2 x(n)补零至100点对应的x(n)、X(ejw)、X(k)x(n)补零至100点对应的x(n)、X(ejw)、X(k)如图1-2所示。
由图可见,x(n)补零至100点,只是改变X(k)的密度,截断函数的频谱混叠作用没有改变,这时的物理分辨率使X(k)仍不能正确分辨w1=0.48π、w2=0.52π这两个频率分量。
这说明,补零仅仅是提高了计算分辨率,得到的是高密度频谱,而得不到高分辨率谱。
3)求x(n)的前100点数据,求N=100点的X(ejw)、X(k)。
MATLAB主要程序如下:N=100;n=0:1:N-1;xn=cos(0.48*pi*n)+cos(0.52*pi*n);Xk=dft(xn,N);subplot(3,1,1)stem(n,xn,'.k');title('时域序列图xn');xlabel('n');axis([0,100,-2.5,2.5]);w=2*pi*(0:1:2047)/2048;Xw=xn*exp(-j*n'*w);subplot(3,1,2);plot(w/pi,abs(Xw));title('幅频特性曲线X(ejw)');xlabel('w');axis([0,1,0,50]);subplot(3,1,3);k1=0:1:49;w1=2*pi/100*k1;stem(w1/pi,abs(Xk(1:1:50)),'.k');title('频域序列图Xk');xlabel('频率(单位:pi)');axis([0,1,0,50]);100点x(n)对应的x(n)、X(ejw)、X(k)如图1-3所示图1-3 100点x(n)对应的x(n)、X(ejw)、X(k)由图可见,截断函数的加宽且为周期序列的整数倍,改变了频谱混叠作用,提高了物理分辨率,使X(k)能正确分辨w1=0.48π、w2=0.52π这两个频率分量。
这说明通过增加数据的记录长度Tp来提高物理分辨率可以得到分辨率谱。
2,离散序列x (n ) = cos(0 .48πn ) + cos(0 .52πn )1)0 ≤ n ≤ 10时,用 DFT 估计 x (n )的频谱;将 x (n )补零加长到长度为 100点序列用 DFT估计 x (n )的频谱。
要求画出相应波形。
2)0 ≤ n ≤ 100时,用 DFT 估计 x (n )的频谱,并画出波形MATLAB 程序:n=[0:10];x=cos(0.48*pi*n)+cos(0.52*pi*n);y=fft(x);subplot(3,1,1);stem(n,y,'filled');xn=[x,zeros(1,90)];yn=fft(xn);hold on;nn=[0:100];subplot(3,1,2);stem(nn,yn,'filled');n1=[0:100];x1=cos(0.48*pi*n1)+cos(0.52*pi*n1); y1=fft(x1);subplot(3,1,3);stem(n1,y1,'filled');运行结果:五,实验结果思考分析:1,将实验内容的1中(1)(2) (3)的图,说明补零DFT的作用。