最新点火波形详解

合集下载

点火波形分析 ——点火正时及参考信号波形分析

点火波形分析 ——点火正时及参考信号波形分析

发动机控制电脑用来自点 火模块的PIP信号和一些其 他信号,如MAP、TPS等 产生SPOUT信号,然后将 SPOUT信号送回给TFI点 火模块去控制点火初级电 路(SPOUT信号是脉冲宽度 调制信号)。 而且发动机控制电脑经常 不断地会控制SPOUT信号 脉冲宽度调制成份(在波形 而且随发动机转速的变化, 上角的缺口),即频繁地改 变SPOUT信号的脉冲宽度, SPOUT信号的频率跟着PIP信号 以提供初级点火闭合角和 频率变化而变化,这也就是 点火提前角的参数。
五、福特分布型点火传感器PIP和点 火输出信号SPOUT双踪波形
右图是福特林肯和水星汽 车点火系统的双踪示波器 波形测试图。 它把相互有着重要联系的 波形同时显示在示波器上 用这个测试方法可以同时 诊断分布型点火传感器PIP 和点火输出信号SPOUT电 路及检查它们之间联系, 进而去诊断发动机控制电 脑或点火正时的故障。
许多通用汽车、欧洲 汽车,甚至亚洲生产 的轿车都使用相似的 点火线路设计。所不 同的是福特 PIP/SPOUT设计有其 独特之处。 用波形测试设备的双 通道功能可以同时观 察PIP和SPOUT两个信 号,如果两个信号完 全一样,则控制电脑 正用PIP信号代替 SPOUT信号,车辆进 入故障应急状态。
当启动发动机时看到一条平直的波形,也就是说 发动机实际上没有启动着,可能说明曲轴位置传 感器、点火模块、控制电脑、线路或插头出了故 障。可先找到点火参考信号的起源处——曲轴位置 传感器,用示波器测试曲轴位置传感器的信号, 接着检查点火初级电路或点火模块。 如果没有发现问题,则应检查点火模块和控制电 脑之间的通信信号,而后检查控制电脑返回点火 模块的信号,最后再检查从点火模块到点火线圈 的初级信号。 只有在少数例子中,控制电脑内部将电子点火正 时电路或点火参考电路接地,产生一平直线波形 (无信号)。

点火波形分析-new

点火波形分析-new

3、重叠波
把各缸点火波形的始端对齐,重叠在一个水平位置上, 这有利于比较各缸的点火周期、闭合区间及断开区间等差 异。
图 重叠波
初级阵列波形
如果一个缸的点 火峰值电压比其 它缸低,则表明 点火高压线短路 或火花塞间隙过 小、火花塞破裂 或污浊。
次级阵列波形(故障波形之一)
两 缸 点 火 电 压 相 差 太 大
(4)一缸信号夹,又称为转速传感器夹(感应式 电感探头,或电压式触发探头)
连接 CH3 通道,可以检测发动机转速,并认为被夹 高压线为第一缸高压线。
三、电子点火正时信号或点火控制信号
1、电子点火正时信号 (EST)
(Electronic Spark Timing) 点火系统需要知道什么时候该点火、点火线圈通电时间多 长以及点火正时(点火提前角)提前多少。 在早期点火装置中这些信息则是由传感器,分电器,真空 提前前点装置等来提供。 发动机控制电脑用来自点火模块的点火参号信号和其它输 入信号产生电子点火正时信号(EST)给点火模块或直接给 点火线圈,这个EST信号含有老式分电器,真空提前点火 装置的全部信息。
1、平列波
按点火顺序将各缸点火波形从左到右首尾相连排成一字 形,这种波形组合主要用于分析次级电压的故障,如各缸 次级电压是否均衡,火花电压是否有差异等。
图 平列波
把各缸点火波形的始端对齐,按点火顺序将各 缸点火波形从上到下分别排列,可以比较火花线 长度和一次电路闭头测试夹:夹高压绝缘导线上 黑鱼夹:接地 注意:需要同时测试几个缸波形时,因高压是顺序点火,因 此需要在第一缸高压线上安装一缸信号夹,以便在点 火示波器触发时确定第一缸在显示屏中的位置
3、次级单缸波形
DUR——闭合时间
3、次级单缸波形

点火波形分析

点火波形分析

部分缸点火电压过高实测波形
次级点火故障波形 车型:FORD LIATA 4缸
• 部分气缸高压过高原因 • 所有气缸高压过低原因 • 部分气缸高压过低原因:
火花塞积垢,引起部分火花塞提前跳火; 分电器盖破裂,部分气缸高压分线漏电; 火花塞绝缘体破裂,导致部分气缸高压漏电,点火 电压过低
9.点火闭合(导通)角分析
正常波形
所有缸点火 电压过高
所有缸点火 电压过低
所有缸点火电压过低实测波形
次级点火多缸并 列故障波形 车型:TOYOTA CORONA 2.0
部分缸点火电压过低实测波形
次级点火多缸 并列故障波形 车型:FORD LIAATA
部分缸点火电压过高实测波形
次级点火多缸并列故障波形 车型:JEEP CHEROKEE 7250E 2.5L 4缸
3.二次侧电压分析
• 4.波形分析 • 高压电路原因: • 火花塞高压线绝缘不好 • 分电器盖有漏电 • 点火线圈与分电器接线状况不好或有碰铁现象 • 点火线圈性能不佳,产生不了足够的高压 • 低压电路原因: • 蓄电池电压不足 • 触点闭合角太小 • 一次侧电路电阻过大 • 电容器性能不好或损坏
10.分电器与分电器盖间隙检查
• 分电器与分电器盖间隙大小直接影响火化塞点火 能量的大小,因此必须进行检查并使之符合要求。
• 应明显低于8kV(点火高压),否则说明有故障
11.断电器触点工作状态的检测
• 断电器触点的好坏直接影响到闭合角的大小及初 级电路充电状态的好坏。
• 正常波形在闭合段区域内没有杂波,触点刚闭合 时时有二次振荡3~5个,第一个振荡波应最长。
值电压偏低,触点闭合故障反映区有内光。
一次侧电路电阻 正常波形

现在汽车电子控制系统波形分析教程手册:第八章初级点火波形分析

现在汽车电子控制系统波形分析教程手册:第八章初级点火波形分析

第八章初级点火波形分析第一节初级点火波形的作用及分类初极点火波形是次级的感应波形,它的波形可反映点火线圈的好坏,及初级电容、白金或点火器的好坏。

通过电压变化波形,可以看到点火线圈的初级电流的导通时间,及导通时的电路压降,发现点火线圈,点火器的损坏及电路短路、断路、接触不良等故障一、初级点火波形的分类根据点火系统的组成可以分为常规点火系统和电子点火系统两类。

从波形的显示方式来区分,可以分为单缸点火初级波形和多缸平列及并列波形。

(一)单缸点火初级波形(常规点火系统)常规点火系统的单缸初级波形,在燃烧电压出现部分一般有大量的杂波产生。

见图8-1中箭头所示。

通过观察单缸点火初级波形,可以对单一气缸的初级电路进行分析。

图8-1 常规点火波形见图8-2,为使用博世FSA740发动机综合分析仪对初级点火系统进行全面测试得到的波形。

测试车辆为长安面包(化油器型)(二)单缸点火初级波形(电子点火)相对于常规点火,电子点火系统的初级波形,触点闭合部分、以及燃烧线比较干净。

见图8-3电子点火初级波形。

通过观察单缸点火初级波形,可以对单一气缸的初级电路进行分析。

(三)初级点火(平列波)图8-2 初级波形图8-3 电子点火初级波形在屏幕上从左至右按点火次序将各缸点火波形首尾相连排成一字形,称为多缸平列波。

见图8-4。

让发动机怠速运转、急加速或路试汽车,使行驶性能或点火不良等故障现象再现。

并确认各缸信号的幅值、频率、形状和脉冲宽度等判定性尺度是否一致。

图8-4 多缸平列波形(四)初级点火(并列波)在屏幕上从上到下按点火次序将各缸点火波形之首对齐并分别放置,称为多缸并列波。

如图8-5。

在并列波形图中,可以看到各缸并列波的全貌,便于分析各缸闭合角和开启角及各缸火花塞的工作状态。

从初级并列波上也很容易地测出各缸间的重叠角。

对于传统点火系统,发动机触点闭合角的标准值为:四缸发动机:40°—45°;六缸发动机:38°—42°;八缸发动机:29°—32°。

点火波形的类型

点火波形的类型

点火波形是用于控制火花塞跳火的关键电力波形。

根据发动机的工作状况,点火波形会在特定的时间间隔内发生连续的变化。

这种波形是由多种类型组成,主要分为脉冲式点火波形、准脉冲式点火波形、可变周期的脉冲式点火波形和正弦式点火波形四种类型。

首先是脉冲式点火波形,这种波形在发动机的每个工作周期内都会产生一系列高电压的脉冲,使火花塞在脉冲结束时跳火。

这种点火方式常见于传统点火线圈的工作方式,具有高电压和电流幅值的特点,适合于低转速的发动机。

准脉冲式点火波形与脉冲式相似,但在每个工作周期内会插入一个较小的非脉冲电压,使火花塞在非脉冲期间不跳火。

这种点火方式有助于降低发动机的噪音,对于追求噪音较低的车辆来说是一种不错的选择。

可变周期的脉冲式点火波形是一种更为先进的点火方式,其周期会随着发动机转速的变化而变化。

这种点火波形可以更好地利用火花能量,提高燃烧效率,同时降低油耗和排放。

这种点火方式常见于一些高端车型上,如电动汽车等。

最后是正弦式点火波形,这是目前最为常见的点火方式。

其周期与发动机转速呈正弦曲线关系,能够更加均匀地分布火花能量,使燃烧更加充分,同时降低了发动机的噪音和振动。

这种点火方式适用于各种类型的发动机,具有较高的稳定性和可靠性。

总之,点火波形是控制火花塞跳火的关键电力波形,根据发动机的工作状况和需求,会选择不同类型的点火波形。

脉冲式、准脉冲式、可变周期的脉冲式以及正弦式是常见的四种类型,每种类型都有其独特的优点和适用范围。

在实际应用中,需要根据车辆类型、发动机类型以及工作需求来选择合适的点火波形,以达到最佳的燃烧效率和性能表现。

点火波形分析

点火波形分析

第三章
发动机技术况检测
⑿与正常时相比,触点闭合阶段变短,说明 断电器触点间隙过大了。反之,若闭合阶 段变长,就说明触点间隙太小了。
第三章
发动机技术状况检测
⑧火花线中出现干扰“毛刺”,可能是分电 器盖或分火头松动。这样,在发动机高速 运转时,因分电器的振动会使火花塞上的 电压不稳定而出现抖动。
第三章
发动机技术状况检测
⑨完全没有高压击穿和火花线波形,说明火 花塞未被击穿,也就没有火花放电过程。 产生的原因可能是次级高压线接触不良或 断路,或者火花塞间隙过大。
第三章
发动机技术状况检测
4、单缸次级电压的故障波形分析:
①断电高压产生之前出现小的多余波形,说 明断电器触点接触面不平,在完全断开之 前有瞬间分离现象,引起电压抖动。
第三章
发动机技术状况检测
② 火花线变短,很快熄灭,说明点火系统储 能不足。可能是供电电压偏低,或初级电 路导线接触不良造成的。
第三章
第三章
发动机技术状况检测
⑩第一次振荡次数明显减少,可能的原因是 断电器触点并联的电容器漏电、电容器容 量不够或初级线路接触不良,导致线路上 电阻增大、耗能增加,火花熄灭后剩余能 量小,振荡衰减加快。
第三章
发动机技术状况检测
⑾ 整个次级电压波形上下颠倒,说明点火 线圈初级两端接反或将电源极性接反了。 从而初级电流、以至次级电压都改变了 方向。
第三章
发动机技术状况检测
⑥ 击穿电压过高,且火花线较为陡峭,这可 能是火花塞间隙太大,或次级电路开路等 所引起。火花间隙越大,所需击穿电压越 高,而且往往没有良好的放电过程。
第三章
发动机技术状况检测
⑦ 击穿电压和火花线都太低,且火花线变长, 这可能是火花塞间隙太小或积炭较严重。 在这种情况下,击穿电压就会很低,而火 花放电时间则较长。

现代内燃机点火波形分析与详解

现代内燃机点火波形分析与详解

现代内燃机点火波形分析与详解(图)汽车维修保养现代内燃机主要有两种,一种是压燃式(柴油机),另一种是点燃式(汽油机)。

这里我们要说的是汽油机。

对于内燃机来说,空气和燃油的混合气被吸入汽缸并在缸内被压缩。

当混合气被压缩时,其分子被迫进入一个很小的空间。

这就使得分子之间相互碰撞,从而产生了摩擦力和热。

燃油分子的分子链是由不同的原子组成的,将这些不同的原子结合在一起就需要能量。

为了释放燃油的能量,燃油分子就必须分裂并重新组成一种不同结构的低能量分子。

燃油分子一旦分裂,将不同原子结合在一起的能量就不再需要了。

这种被释放的能量就为内燃机提供了动力。

对于汽油机来说,单凭压缩还不能提供足够的能量使燃油分子分裂。

传入燃油分子的热能使其变得不稳定,但为了分开链接燃油分子的原子还需施加更大的力。

要将两个扭打在一起的人分开是件很不容易的事。

要把他们拉开,你所用的力要大于他们扭在一起的力。

采用电击枪可以使两个扭打在一起的人分开,因为电击枪放电时电压可达100kV。

电击枪的势能大于两个扭打在一起的人所用的能量,因此,那两人就会松手而分开。

尽管汽缸压缩产生了热能,但要将燃油的分子分裂并释放能量还需要更大的力。

点火系统所产生的高能电火花可以提供这个力。

点燃混合气需要高能量的电火花,为此人们采用了多种不同的点火系统。

升压变压器是当今较常用的一种点火系统。

这种变压器采用低电压、大电流的电极来产生高电压、小电流的电极。

它是由两个不同的线圈组成的。

第一个线圈叫初级线圈,第二个线圈叫次级线圈(见图1)。

为了增加磁场,初级线圈绕在一个铁芯上。

在新式的变压器上这个铁芯是由许多片叠加在一起的黑色金属(通常为软铁)片组成的。

相对于整块的铁芯,它的磁增强能力更好。

图一初级绕组的线较粗、匝数少,这就使得它的电阻值很低。

次级绕组的线较细、匝数多,从而电阻值较高。

车用点火线圈的匝数比通常约为1:100,也就是说,初级线圈绕1匝,次级线圈就绕100匝。

点火波形分析初级点火波形分析课件

点火波形分析初级点火波形分析课件

脉冲宽度
电压波形的脉冲宽度反映了点火系统的点火 持续时间,以及燃烧过程在气缸中的发展。
波形形状
电压波形的形状可以提供关于燃烧过程和气 缸状况的信息,例如燃烧室的压力和温度。
时间波形分析
01
02
03
点火时刻
时间波形分析可以确定点 火时刻,即火花塞在气缸 中的点火时间。
燃烧时间
燃烧时间是从点火时刻到 燃烧结束的时间,它反映 了燃烧过程的发展和气缸 中的压力变化。
故障原因
火花塞积碳严重,导致点火不良
解决方法
更换积碳严重的火花塞,提高点 火效果
案例三:调整点火时刻改善发动机燃油经济性
故障现象
发动机燃油经济性下降,油耗增加
故障原因
点火时刻过早或过晚,导致燃油燃烧不充分
解决方法
调整点火时刻,使燃油燃烧更加充分,提高燃油 经济性
感谢您的观看
THANKS
频谱分析
频谱分析是一种将频率成分分解成 独立频率的方法,它可以帮助我们 更好地理解发动机的运转状态和燃 烧过程。
04
点火波形异常分析
电压异常
总结词
点火电压过高、过低或波动大
详细描述
点火电压过高可能会导致发动机损坏,点火电压过低则可能导致发动机启动困难或无法启动。电压波 动大可能会影响发动机的稳定性和性能。
06
点火波形分析案例
案例一:点火系统故障导致发动机性能下降
故障现象
发动机启动困难,运转不 平稳,性能下降
故障原因
点火系统故障,导致点火 不均匀,火花塞跳火不良
解决方法
检查点火线圈、高压线、 火花塞等部件,确保正常 工作
案例二:更换火花塞后发动机性能提升
故障现象

点火波形检测讲解

点火波形检测讲解

2.二次电压击穿火花塞后,放电产生火花,电压降低形 成火花线CD。放电时间0.6-1.6ms。当点火线圈的能量消耗 到不足以维持火花放电时,火花终了,电压下降,残余能量 在电容与电感之间充放电形成4-8个振荡波DE。能量大,则 火花线高而宽。
3.触点闭合一次通电电流增加,产生互感,但感 应电压方向相反,在二次电路导致一个较小反向电 压 。既形成第二次震荡波的FA
点火波形上的故障反映区
A区为断电器触点故障反映区,B区为电容器、 点火线圈故障反映区,C区为电容器、断电器触点 故障反映区,D区为配电器、火花塞故障反映区。
学习任务二 用点火示波器检测点火波形
点火示波器是专门用来检测诊断汽油机点火系 技术状况的检测设备。 当点火示波器连接在运转的汽油机点火系电路 上时,示波器屏幕上将显示出点火系中电压随时 间变化的曲线,即点火波形。 示波器屏幕显示的波形,在垂直方向上表示 电压,在水平方向上表示时间,基线的上方为正 电压,下方为负电压。
⑵火花线:1000r/min时,火花时间为1.5ms。 火花过短,很快熄灭,说明点火系统储能 不足。可能是供电电压偏低,或初级电路 导线接触不良造成的。 过长:火花塞积碳,间隙小,短路。
⑶振荡区分析:4-8个波形,如少,说明点火线圈短 路,一次线圈接触不良。 ⑷波形倒置:点火线圈初级接反,电压波形倒置, 点火能量小。
4.闭合(导通)时间越长,电流越大,磁场能越大。
单缸标准二次电压波形
三、波形分析:
⑴发火线AB(击穿电压)电压1.5-2万伏. a) 过高:花塞间隙太大,或次级电路开路等所引 起。电阻过大;断线;接触不良;脏污。拔下高
压线与火花塞距离加大,击穿电压升高 b) 过低:可能是火花塞间隙太小或积炭较严重。

点火波形分析

点火波形分析

3.点火波形分析无论就是传统点火系统还就是电子点火系统或计算机控制得点火系统,都就是由点火线圈通过互感作用把低压电转变为高压电,通过火花塞跳火点燃混合气做功得。

点火系统低压、高压得变化过程就是有规律得,它可通过其点火波形予以反映。

点火系统正常工作时得点火线圈初、次级得电压波形,称为标准点火波形,它就是点火系统得诊断标准。

(1)传统点火波形图3—17所示就是传统点火系统单缸初、次级电压标准波形。

图中张开时间就是初级线圈断电时间,它对应于次级线圈得点火、放电及振荡阶段;闭合时间就是初级线圈通电时间,它对应于点火线圈得储能阶段,这两个阶段组成了一个完整得点火循环。

图中波形反映了从断电器触点张开、闭合、再张开得整个点火过程中,初、次级电压随时间变化得规律.1)初级电压波形.图3-17a就是单缸初级电压标准波形。

当断电器触点张开时,初级电压迅速提高(约为100~300V),从而导致次级电压急剧上升击穿火花塞间隙。

当火花塞两极火花放电时,由于初、次级间得变压器效应,初级电压下降且出现高频振荡。

火花放电完毕后,由于点火线圈与电容器中残余能量得释放,又出现低频振荡波,其波幅迅速衰减直至初级电压趋向于蓄电池电压。

当断电器触点闭合后,初级电压几乎为零,成一直线一直延续到触点得下一次张开.当下一缸点火时,点火循环又将复现.示波器上张开时间、闭合时问,通常用毫秒(ms)表示,也可用分电器凸轮轴转角表示,此时其张开时间、闭合时间则分别用张开角与闭合角表示。

2)次级电压波形。

因点火线圈初、次级间得变压器效应,其次级电压波形与初级电压波形具有一定得对应关系,图3-17b就是单缸次级电压标准波形.有关次级电压波形点线得含义说明如下。

①A点:断电器触点张开,点火线圈初级绕组突然断电,导致次级电压急剧上升。

②AB线:称为点火线,其幅值为火花塞击穿电压即点火电压。

击穿电压约为8~20kV,不同得车型或点火系统,其击穿电压可能不一样。

单缸机点火系统标准波形

单缸机点火系统标准波形

单缸机点火系统标准波形
单缸机点火系统标准波形是一种描述单缸发动机点火过程的波形。

以下是该标准波形的一般特征描述:
1. 点火前阶段:
- 波形呈现较为平缓的基准线,代表发动机处于未点火状态。

- 信号较为稳定,为等待点火状态。

2. 点火阶段:
- 信号突然增加并迅速达到峰值,代表点火信号的到来。

- 具有明显的高频成分,表明点火系统正在产生高压脉冲。

- 峰值电压的幅度和时间短,以保证点火系统达到最佳点火效果。

3. 火花时刻:
- 在点火阶段的峰值电压达到一定数值后,出现一个幅度较高的高压火花信号。

- 火花信号的时长通常很短,一般在1-2毫秒之间。

4. 熄火阶段:
- 火花信号完毕后,信号迅速回归到基准线水平。

- 表明点火系统已经完成点火过程,发动机即将进入下一个点火周期。

需要注意的是,单缸发动机的点火系统波形可能会因不同发动机类型、点火系统类型和点火过程调整而有所差异,上述波形仅为一般参考描述。

点火波形分析

点火波形分析

1.标准点火波形标准点火波形是指点火系统正常工作时点火线圈初、次级的电压波形,它是点火系统的诊断标准。

如图2-22所示为传统点火系统单缸初、次级电压标准波形。

图中的触点张开时间是初级线圈断电时间,它对应于次级线圈的放电阶段;图中的触点闭合时间是初级线圈通电时间,它对应于点火线圈的储能阶段,这两个阶段组成了一个完整的点火循环。

图中波形反映了从断电器触点张开、闭合、再张开的整个点火过程中,初、次级电压随时间变化的规律。

因点火线圈初、次级间的变压器效应,其初级电压波形与次级电压波形具有一定的对应关系。

b)图2-22单缸电压标准波形a)初级电压标准波形 b)次级电压标准波形(1)初级电压标准波形图2-22a是单缸初级电压标准波形。

当断电器触点张开时,初级电压迅速提高(约为100~300V),从而导致次级电压急剧上升击穿火花塞间隙。

当火花塞两极火花放电时,出现高频振荡波。

火花放电完毕后,由于点火线圈和电容器中残余能量的释放,又会出现低频振荡波,其波幅迅速衰减直至初级电压趋向于蓄电池电压。

当断电器触点闭合后,初级电压几乎为零,成一直线一直延续到触点的下一次张开。

当下一缸点火时,点火循环又将复现。

通常,示波器上触点的张开时间、闭合时间和各缸点火间隔时间用分电器凸轮轴转角表示,因此触点张开时间和闭合时间又可分别称为触点的张开角和闭合角,各缸点火间隔时间称为点火间隔角。

若上述角度数值用曲轴转角表示,则对于四冲程发动机来说须乘以2 0 (2)次级电压标准波形图2-22b是单缸次级电压标准波形,有关次级电压波形点线的含义说明如下。

1)A点:断电器触点张开,点火线圈初级绕组突然断电,导致次级电压急剧上升。

2)AB线:称为点火线,其幅值为火花塞击穿电压即点火电压。

击穿电压约为8—20kV,不同的车型或点火系统,其击穿电压可能不一样。

3)BC线:在火花塞间隙被击穿时,两电极之间会出现火花放电,同时次级电压骤然下降,BC为电压下降的幅值。

点火波形检测

点火波形检测

频闪法
光学法:利用光学传感器检 测火焰燃烧产生的光谱变化, 确定点火状态。
频闪法:通过快速开关光源, 观察点火波形的变化,确定 点火时间。
电学法:通过测量电信号的 变化,如电压、电流等,来
确定点火状态。
声学法:利用声学传感器检 测火焰燃烧产生的声音,确
定点火状态。
高速摄像法
原理:利用高 速摄像机拍摄 发动机工作过 程,捕捉点火 瞬间的燃烧情

实验验证:通过实验对比, 验证点火波形检测的准确性
和可靠性
点火波形检测的发展趋势
高精度点火波形检测技术
添加 标题
添加 标题
概述:高精度点火波形检测技术是点火 波形检测的重要发展方向,通过提高检 测精度和可靠性,有助于提高发动机性 能和燃油经济性。
应用前景:随着排放法规的日益严格和 燃油经济性的要求不断提高,高精度点 火波形检测技术在发动机控制、故障诊 断和优化等领域的应用前景广阔。

优点:能够直 观地观察到点 火瞬间的点:设备成 本较高,需要 专业人员操作
和维护
应用范围:适 用于科研和发 动机开发领域
相图法
定义:通过分析点火线圈的电压 和电流波形,确定发动机的点火 时刻和点火能量
适用范围:适用于各种类型的发 动机,包括汽油机和柴油机
优点:能够准确反映发动机的工 作状态和点火时刻,有助于提高 发动机的性能和燃油经济性
添加 标题
添加 标题
技术特点:采用高灵敏度传感器和先进 的信号处理技术,实现对点火波形的快 速、准确捕捉和分析,提供更准确的点 火时刻和能量分配信息。
发展趋势:未来,高精度点火波形检测 技术将进一步向智能化、集成化、实时 化方向发展,为发动机性能的提升和节 能减排提供有力支持。

2点火波形分析——点火初级波形分析

2点火波形分析——点火初级波形分析

现代发动机控制电脑含有最优化的点火控 制图,它对点火正时、闭合角等因素的控 制比传统的白金一电容系统要精确得多。 这一点对发动机性能和尾气排放则更有益。 但由于发动机控制电脑及其线路系统和点 火控制模块都可能出现故障,所以初级点 火闭合角测试仍然是有用的。 由于点火初级和次级线圈的互感作用,在 次级发生跳火会反馈给初级电路,因此初 级点火波形就显得非常有用。
2.波形分析
当电流开始流入点 火初级线圈时,由 于线圈特定的电阻 和电感特性,引起 波形以一定的斜率 上升(如图),波形 上升的斜率是关键 所在。 通常点火初级线圈 电流波形会以60° 角上升 (在10ms/格 时基下)。
大多数新式点火初级电路 会先提供5~6A电流给点火 线圈,当到达允许最大电 流时 (5~6A),点火模块中 的限流电路 (恒流控制)就 开始起作用。从而使得波 形顶部变平,并且在点火 初级线圈的“导通时 间”(或闭合角)内电流波形 的顶部一直应保持平直。 而当点火模块关断电流时, 电流波形几乎是垂直下降, 直到0A以上过程在每一个 点火循环中应重复出现。
点火初级陈列波主要用于查出造成点火不良的 主要原因,如火花塞、高压线的短路或断路故 障,或是受污损的火花塞。 当点火次级不易测试时(例如,无火花塞高压 线的汽车),测试点火初级波形比较容易。 同前几个试验一样,本试验亦可以提供关于各 缸燃烧质量非常有价值的资料。
因为点火初级波形同样是会受不同发动机、燃油系统 和点火条件影响,所以用它检测发动机机械部分和燃 油系统部件及点火系统部件的故障也是极有价值的。
六、电子点火初级单缸波形
电子点火初级波 形(见图)的测试对 查出电子点火线 圈的点火故障是 很有效的 由于点火燃烧的 过程可以通过次 级与初级点火线 圈的互感返回到 初级电路,所以 这个点火波形是 非常有用的。

发动机点火系实测波形

发动机点火系实测波形
12.分电器点火初级单缸波形
13.电子点火初级单缸波形
14.点火次波形含义
15.点火次级波形判断方法(1)
16.点火次级波形判断方法(2)
17.点火次级波形判断实例
电控发动机点火系实测波形及分析
1.磁电式曲轴位置和凸轮轴位置传感器
2. 霍尔式曲轴位置和凸轮轴位置传感器
3.点火次级多缸平列波形
4.传统点火次级单缸波形
5.电子点火次级单缸波形
6.点火触发波形
7.单线圈双火花塞点火次级波形
8.分电器点火初级波形
9.电子点火初级电流波形
10.分电器点火初级平列波
11.电子点火初级平列波
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 在火花间隙被击穿的同时,储存在次级电容C2(指分布电容,即点火线 圈匝间、火花塞中心电极与侧电极间、高压导线与机体间等所具有的电容量 总合)的能量迅速释放,故abc段被称为电容放电。其特点是放电时间极短 (1μs),放电电流很大(可达几十安培),所以a,c两点基本是在同一条 垂直线上。而电容放电时,伴有迅速消失的高频振荡,频率约为106Hz~ 107Hz。但电容放电只消耗磁场能的一部分,其余磁场能所维持的放电称为 “电感放电”。其特点是放电电压低,放电电流小,持续时间长,但振荡频
• 4)观察cd段的宽度,即看火花线的火花放电持续时间是否符合该车的技术参数。 火花放电持续时间表明气缸内混合气的浓与稀。火花放电持续时间过长(通常 超过2ms)表示混合气过浓;相反,火花放电持续时间过短(通常少于0.75ms) 表示混合气过稀。
• 5)观察efa段的低频振荡,点火线圈振荡波最少为两个,最好多于三个, 这表明点火线圈和电容器的工作正常。
• 3)观察cd段。即火花线是否近似水平,火花线的起点是否和火花放 电电压一致和稳定,以及火花线是否有杂波。如果火花线近似水平, 火花线的起点和火花放电电压一致且稳定,表明各缸的空燃比一致, 火花塞是正常的。如果火花线的起点比正常火花放电电压低一些,说 明混合比过稀;如果火化塞有污蚀或积炭,火花线的起点会上下跳动 且火花线明显倾斜;如果火花线有过多的杂波,表明气缸点火不良, 其原因为点火过早,喷油器损坏,火化塞污蚀或其他原因。
• 8)次级波形出现颠倒现象,其故障原因是点火线圈的初级绕组的两个接线 柱接反或电源极性接反,以致于初级电流反向,而次级信号与初级信号是通 过变压器耦合而得,故次级电流反向,次级信号得波形出现反置。
• 9)次级波形的火花线起点(c点)过低,远低于该车的技术指标值,且火花 线有抖动现象出和气的温度时,击穿电压将会下降约30%-50%;b气门漏气,同理, 气门漏气也会造成火花塞电级周围的混和气的密度变小,电极的击穿电压变 低且由于在做功冲程里气门漏气造成的混和气逐渐减小,使混和气的燃烧不 稳定而导致火花塞电极放电过程不稳定,火花线出现抖动。
• 4)次级波形的火花线向下倾斜且不稳定,有细小的多余波形出现,而火花 线的持续电压也不正常。其故障原因是火花塞上具有较多的积炭和油污。火 花塞积炭就相当于在火花塞上并联一个分路电阻,与次级电路闭合回路。当 触点打开时,次级电路内产生泄漏电流,使击穿电压下降,火花塞的放电过 程不稳定。
• 5)次级波形出现上下平移,其故障原因次级电路出现间歇性断电,导致次 级波形有上下波动。
(3)常见单缸次级故障波形
• 1)次级波形在触点断开时刻即出现击穿电压之前出现一个小平台且击穿电 压较低,其原因是断电器的电容漏电,使触点放电能量不足。
• 2)次级波形在触点闭合段的第二次振荡波小而少,其原因是点火线圈 的阻抗过大将触点闭合时产生的振荡波吸收。
• 3)次级波形的火花线倾斜且较陡峭(下降较快),而火花线的起点(c点) 也很高。其故障是分电器与该气缸之间的高压分线断路使次级电路电阻增大 或火花塞的间隙过大使击穿电压过高。
• fa段:触点闭合后,因初级电流接通而引起回路电压出现衰减振荡。称为第 二次振荡。逐渐变化到零。当至a点时,触点又打开,次级电路又产生点火 电压。
• 整个波形中,从a点至e点,对应于初级电流不导通、次级线圈放电阶段,对 于传统点火系为断电器触点张开阶段,即触点打开段;从e点至a点对应于初 级电流导通、线圈储能阶段,也是传统点火系的触点闭合时间,即触点闭合
• 6)次级波形在触点打开段的火花线与第一次振荡界限分不清,失去火花放 电过程,其故障原因是火花塞电极的间隙过大,击穿电压再高也无法击穿, 而失去了火花塞的放电过程,也就是去了火花线。
• 7)次级波形的火花线有上下波动的现象。其故障原因是电子燃油喷射系统 中的喷油嘴工作不良,喷油不均,引起气缸内混和气的混和雾化不均匀,在 做功冲程的燃烧不稳定,致使火花线的持续阶段电压不稳定,火花线出现缓 慢上下波动现象。
段。打开段加上闭合段等于一个完整的点火循环。
(2)分析次级点火波形的要点
• 1)观察efa段,即点火线圈在开始充电时,波形的下降沿是否与标准波形一致: 如果一致,表明闭合角正常,点火正时准确;如果不一致,表明闭合角出现问 题,即电容器,点火线圈和断电器触点出现故障。
• 2)观察ab段,即点火线。主要看点火线的高度是否符合该车技术参 数,点火线的中后段是否有杂讯。一般汽车在怠速时,次级点火电压 为10~15kV。如果点火电压过高,表明在次极线路中存在着高电阻, 如火花塞,高压线开路或损坏,火花塞的电极间隙过大。如果点火电 压过低表明次级线路的电阻低于正常值,如火花塞污蚀或损坏,火花 塞,高压线漏电等。
率仍然较高。所以整个abcd段波形称为高频振荡。
• de段:当保持火花塞持续放电的能量消耗完毕,电火花消失,点火线圈和电 容器中的残余能量在线路中维持一段衰减振荡。这段振荡也叫第一次振荡。
• ef点:断电器触点闭合或电子点火器晶体管导通,是点火线圈初级突然闭合, 初级电流开始增加,引起次级电压突然增大。值得注意的是:在a点,初级 电流是急剧减小的,而在e点电流是逐渐增加的,所以这两点感应次级电压 的方向相反,而且大小也不相同。
点火波形详解
次级点火电压标准波形
• a点:断电器的触点断开或电子点火器晶体管没导通,点火线圈初级突然断电, 使次级电压急剧上升。
• ab段:为火花塞的击穿电压,即在断电器打开的瞬间,由于初级电流下降至零, 磁通也迅速减小,于是次级产生的高压急剧上升,当次级电压还没有达到最大 值时,就将火花塞的间隙击穿。所以ab也称为点火线;(5000-8000v)
• bc段:当火花塞的间隙被击穿时,两电极之间要出现火花放电,同时次级电压 骤然下降,bc为此时的放电电压;(电容放电阶段电压)
• cd段:火花塞电极间隙被击穿后,通过电极间隙的电流迅速增加,致使两极间 隙中的可燃气体粒子发生电离,引起火花放电。cd的高度表示火花放电的电压, cd的宽度表示火花放电的持续时间。cd被称为火花线;(电感放电阶段电压)
相关文档
最新文档