大物习题第5章 机械波

合集下载

大学物理机械波习题及答案解析

大学物理机械波习题及答案解析

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为(SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动(C) C 点向下运动(D) D 点振动速度小于零 [ ] 3.3411:若一平面简谐波的表达式为 ,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B [ ]4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) (B)(C) (D) [ ]5.3479:在简谐波传播过程中,沿传播方向相距为(λ 为波长)的两点的振动速度必定]2)42(2cos[10.0π+-π=x t y )cos(Cx Bt A y -=)cos(),(bt ax A t x f +=)cos(),(bt ax A t x f -=bt ax A t x f cos cos ),(⋅=bt ax A t x f sin sin ),(⋅=λ21 x u A y B C D Ox (m) O 2 0.1 0y (m) ( A ) x (m) O 2 0.1 0 y (m) ( B )x (m) O 2- 0.1 0 y (m) ( C ) x (m)O 2 y (m)( D ) - 0.1 0(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同 (D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

大学物理机械波习题附答案

大学物理机械波习题附答案

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) btax A t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C)大小不同,方向相同 (D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反y (m) y (m) - y (m) y (m)(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长(B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。

大学物理第五章机械振动习题解答和分析要点

大学物理第五章机械振动习题解答和分析要点

5-1 有一弹簧振子,振幅A=2.0⨯10-2m,周期T=1.0s,初相ϕ=3π/4.试写出它的振动位移、速度和加速度方程。

分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。

解:振动方程为:x=Acos[ωt+ϕ]=Acos[3π42πTt+ϕ] 代入有关数据得:x=0.02cos[2πt+振子的速度和加速度分别是:v=dx/dt=-0.04πsin[2πt+3π43π4](SI) ](SI) a=dx/dt=-0.08πcos[2πt+222](SI)5-2若简谐振动方程为x=0.1cos[20πt+π/4]m,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s时的位移、速度和加速度.分析通过与简谐振动标准方程对比,得出特征参量。

解:(1)可用比较法求解.根据x=Acos[ωt+ϕ]=0.1cos[20πt+π/4] 得:振幅A=0.1m,角频率ω=20πrad/s,频率ν=ω/2π=10s 周期T=1/ν=0.1s,ϕ=π/4rad(2)t=2s时,振动相位为:ϕ=20πt+π/4=(40π+π/4)rad22 由x=Acosϕ,ν=-Aωsi nϕ,a=-Aωcosϕ=-ωx得 -1,x=0.0707m,ν=-4.44m/s,a=-279m/s5-3质量为2kg的质点,按方程x=0.2sin[5t-(π/6)](SI)沿着x轴振动.求:(1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。

2解:(1)跟据f=ma=-mωx,x=0.2sin[5t-(π/6)] 2将t=0代入上式中,得:f=5.0N2 (2)由f=-mωx可知,当x=-A=-0.2m时,质点受力最大,为f=10.0N5-4为了测得一物体的质量m,将其挂到一弹簧上并让其自由振动,测得振动频率ν1=1.0Hz;而当将另一已知质量为m'的物体单独挂到该弹簧上时,测得频率为ν2=2.0Hz.设振动均在弹簧的弹性限度内进行,求被测物体的质量.分析根据简谐振动频率公式比较即可。

大物第五章课后习题答案

大物第五章课后习题答案

简答题5.1 什么是简谐运动?说明下列运动是否是简谐运动?(1)活塞的往复运动;(2)皮球在硬地上的跳动;(3)一小球在半径很大的光滑凹球面底部的来回滑动,且经过的弧线很短;(4)锥摆的运动。

答:质点的简谐振动一定要有平衡位置,以平衡位置作为坐标原点,如果以x 表示质点偏离平衡位置的位移,质点所受合外力一定具有F kx =-的形式。

(1)活塞的往复运动不是简谐运动,因为活塞受力的方向和它的位移是同一方向,任一时刻所受的合外力不具有F kx =-的形式,所以活塞的往复运动是简谐运动。

(2)皮球在硬地上的跳动不是简谐运动,因为忽略空气阻力,皮球在上升和下落阶段,始终受到竖直向下的重力的作用,任一时刻所受的合外力不具有F kx =-的形式,所以皮球的运动不是简谐运动。

(3)一小球在半径很大的光滑凹球面底部的来回滑动,且经过的弧线很短是简谐运动。

符合简谐运动的定义。

(4)锥摆的运动不是简谐运动,此时锥摆受到重力和绳的拉力的作用,这两个力的合力的大小为恒量,而方向在不断的改变,任一时刻所受的合外力不具有F kx =-的形式,所以锥摆的运动不是简谐运动。

5.2(1)试述相位和初相的意义,如何确定初相?(2)在简谐振动表达式)cos(ϕω+=t A x 中,t = 0是质点开始运动的时刻,还是开始观察的时刻?初相20/,πϕ=各表示从什么位置开始运动?答:1)相位是决定谐振动运动状态的物理量,初相是确定振动物体初始时刻运动状态的物理量。

由初始条件可以确定初相。

2)在简谐振动表达式)cos(ϕω+=t A x 中,t = 0是质点开始计时时刻的运动状态,是开始观察的时刻。

初相0ϕ=是物体处于正最大位移处开始运动,初相/2ϕπ=是物体处于平衡位置且向初相x 轴负向开始运动。

5.3 一质点沿x 轴按)cos(ϕω+=t A x 作简谐振动,其振幅为A ,角频率为ω,今在下述情况下开始计时,试分别求振动的初相:(1)质点在x = +A 处;(2)质点在平衡位置处、且向正方向运动;(3)质点在平衡位置处、且向负方向运动;(4)质点在x =A /2处、且向正方向运动;(5)质点的速度为零而加速度为正值。

5 机械波习题详解

5 机械波习题详解

习题五一、选择题1.已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 [ ](A )波的频率为a ; (B )波的传播速度为 b/a ; (C )波长为 π / b ; (D )波的周期为2π / a 。

答案:D解:由22cos()cos()2/2/y A at bx A t x a b ππππ=-=-,可知周期2T aπ=。

波长为b π2。

2.如图,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点.已知P 点的振动方程为cos y A t ω=,则 [ ](A )O 点的振动方程为 cos ()ly A t u ω=-;(B )波的表达式为 cos ()l xy A t u u ω=--;(C )波的表达式为 cos ()l xy A t u uω=+-;(D )C 点的振动方程为 3cos ()ly A t uω=-。

答案:C解:波向右传播,原O 的振动相位要超前P 点luω,所以原点O 的振动方程为cos ()ly A t uω=+,因而波方程为cos ()x l y A t u u ω=-+,可得答案为C 。

3.一平面简谐波以速度u 沿x 轴正方向传播,在t t '=时波形曲线如图所示.则坐标原点O 的振动方程为[ ](A )]2)(cos[π+'-=t t b u a y ; (B )]2)(2cos[π-'-π=t t b u a y ;(C )]2)(cos[π+'+π=t t b u a y ;(D )]2)(cos[π-'-π=t t b u a y 。

答案:D解:令波的表达式为 cos[2()]xy a t νϕλ=-+πxO u 2l lyC P当t t '=, cos[2()]xy a t νϕλ'=-+π由图知,此时0x =处的初相 22t νϕ'+=-ππ, 所以 22t ϕν'=--ππ,由图得 b 2=λ, buu2==λν故0x =处 cos[2]cos[()]2u y a t a t t b νϕ'=+=--πππ4.当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?[ ](A )媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同; (C )媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不等;(D )媒质质元在其平衡位置处弹性势能最大。

大学物理答案

大学物理答案

第5章 机械波5-1 一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A 、B 、C 各质点在该时刻的运动方向。

A ;B ;C 。

答: 下 上 上5-2 关于振动和波, 下面几句叙述中正确的是[ ](A) 有机械振动就一定有机械波;(B) 机械波的频率与波源的振动频率相同;(C) 机械波的波速与波源的振动速度相同;(D) 机械波的波速与波源的振动速度总是不相等的。

答: (B)5-3 一平面简谐波的表达式为)37.0125cos(25.0x t y -=(SI),其角频率 = ,波速u = ,波长 = 。

解: =125rad 1s -⋅ ; 37.0=u ω,u ==37.01253381s m -⋅=⨯===12533822πωπνλu u 17.0m5-4 频率为500Hz 的波,其波速为350m/s ,相位差为2π/3 的两点之间的距离为 _。

解: ∆λ∆πϕx 2=, πλϕ∆∆2⋅=x =0.233m5-5 一平面简谐波沿x 轴负方向传播。

已知在x =-1m 处质点的振动方程为cos()y A t ωϕ=+(SI),若波速为u ,则此波的表达式为 。

答: ])1(cos[ϕω+++=uxu t A y (SI)5-6 一平面简谐波沿Ox 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处介质质点的振动方程是[ ]。

(A) )314cos(10.0π+π=t y P (SI); (B) )314cos(10.0π-π=t y P (SI);(C) )312cos(10.0π+π=t y P (SI);yxA BC O uOPy (m )5mu =20m/s0.05 0.1(D) )612cos(10.0π+π=t y P (SI)。

解:答案为 (A)确定圆频率:由图知10=λm ,u =20m/s ,得πλππνω422===u确定初相:原点处质元t =0时,205.00A y P ==、00<v ,所以3πϕ= 5-7 一平面简谐波的表达式为)]/(cos[u x t A y -=ω,其中u x /-表示 ;u x /ω-表示 ;y 表示 。

《大学物理学》机械波练习题

《大学物理学》机械波练习题

《大学物理学》机械波部分自主学习材料(解答)一、选择题10-1.图(a )表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线,则图(a )中所表示的0x =处质点振动的初相位与图(b )所表示的振动的初相位分别为( C ) (A )均为2π; (B )均为π-; (C )π与π-; (D )2π-与2π。

【提示:图(b )为振动曲线,用旋转矢量考虑初相角为2π-,图(a )为波形图,可画出过一点时间的辅助波形,可见0x =处质点的振动为由平衡位置跑向负方向,则初相角为2π】10-2.机械波的表达式为0.05cos(60.06)y t x ππ=+,式中使用国际单位制,则( C ) (A )波长为5m ; (B )波速为110m s -⋅;(C )周期为13秒; (D )波沿x 正方向传播。

【提示:利用2k πλ=知波长为1003λ=m ,利用u k ω=知波速为1100u m s -=⋅,利用2T πω=知周期为13T =秒,机械波的表达式中的“+”号知波沿x 负方向传播】10-3.一平面简谐波沿x 轴负方向传播,角频率为ω,波速为u ,设4Tt =时刻的波形如图所示,则该波的表达式为( D )(A )cos[()]xy A t u ωπ=-+; (B )cos[()]2x y A t u πω=--;(C )cos[()]2x y A t u πω=+-;(D )cos[()]xy A t uωπ=++。

【提示:可画出过一点时间的辅助波形,可见在4Tt =时刻,0x =处质点的振动为由平衡位置向正方向振动,相位为2π-,那么回溯在0t=的时刻,相位应为π】10-4.如图所示,波长为λ的两相干平面简谐波在P 点相遇,波在点1S 振动的初相是1ϕ,到P 点的距离是1r 。

波在点2S 振动的初相是2ϕ,到P 点的距离是2r 。

以k 代表零或正、负整数,则点P 是干涉极大的条件为( D )OO1S 2S r(A )21r r k π-=; (B )212k ϕϕπ-=; (C )212122r r k ϕϕππλ--+=;(D )122122r r k ϕϕππλ--+=。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

大学物理课后习题答案第五章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示.[解答](1)与标准波动方程2cos()xy A t πωλ=-比较得:2π/λ = 0.6,因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1). 且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:cos[()]Ax x y A t uωϕ-=-+;即 0.050.03cos[4()]0.22x y t ππ-=--= 0.03cos[4π(t – 5x ) + π/2].(2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为20 6.010sin 2y t π-=⨯(m).求距波源5m处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:26.010sin ()2xy t u π-=⨯- 50.06sin()24t ππ=-,位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m . 由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2.原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:0.03cos[50()]2x y t u ππ=-+= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程; (3)画出O 点的振动曲线. [解答](1)设P 点的振动方程为 y P = A cos(ωt + φ),其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m), 所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程; (2)画出x = λ/2处质点的振动曲线; (3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为:图5.5cos[2()]t xy A T πϕλ=++,当t = T /4时的波形方程为:cos(2)2x y A ππϕλ=++sin(2)xA πϕλ=-+.在x = 0处y = 0,因此得sin φ = 0, 解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0.因此波动方程为:cos 2()t xy A T πλ=+.(2)在x = λ/2处质点的振动方程为:cos(2)cos 2t t y A A T Tπππ=+=-, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为 cos(2)2a t y A T ππ=+; x b = λ处的质点的振动方程为 cos(22)b t y A Tππ=+. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点( 2)画出t = 4.2s 时的波形曲线. [解答]波的波动方程可化为:y = A cos2π(2t – x ), 与标准方程cos[2()]t xy A T πϕλ=-+比较, 可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1.(1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…),各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示.(1)写出时x = 0处质点的振动方程; (2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1). (1)设x = 0处的质点的振动方程为y = A cos(ωt + φ),其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:cos[2()]t xy A T πϕλ=-+ cos[()]23t x ππ=-+. (3)t = 1s 时刻的波形方程为 5cos()26y x ππ=-,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:cos[2()]t xy A T πϕλ=-+,那么A 和B 两点的振动方程分别为:cos[2()]A A xt y A T πϕλ=-+,cos[2()]B B xt y A T πϕλ=-+.两点之间的位相差为:2(2)6B A x x πππλλ---=-,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程; (2)如以距A 点5m 处的B 点为坐标原点,写出波动方程;(3)写出传播方向上B ,C ,D 点的振动方程.[解答](1)以A 点为坐标原点,波动方程为3cos 4()3cos(4)5x xy t t u πππ=+=+.(2)以B 点为坐标原点,波动方程为3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-.(3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为3cos 4()3cos(4)B B xy t t u πππ=+=-,33cos 4()3cos(4)5C C x y t t u πππ=+=-,93cos 4()3cos(4)5D D x y t t u πππ=+=+.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1),波的平均能量密度为:2212w A ρω== 158(J·m -3),平均能流密度为:I wu == 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强此时声强相当于多少分贝已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),声波的平均能量密度为:2212w A ρω== 6.37×10-6(J·m -3),平均能流密度为:I wu == 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2),图5.10此声强的分贝数为:010lgIL I == 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为BB S Su u u u νν-=-,其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为33060033030B S S u u u νν==--= 660(Hz).火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为33060033030B S S u u u νν==-+= 550(Hz).(2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν-+==--= 680(Hz).当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν--==-+= 533(Hz).[注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m);在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m);在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为1033165108033130B S u u u u νν++==⨯--= 1421(Hz). 将反射面作为波源,其频率为ν1,反射声音的频率为`11331142133165B u u u νν==⨯--= 1768(Hz).反射声音的波长为`1111331651421B B uu u u λννν--=-===0.1872(m).或者 `1`13311768u λν=== 0.1872(m).[注意]如果用下式计算波长`111650.27871768B u λλν=-=-=0.2330(m),结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为 1cos[2()]t xy A T πϕλ=++, 那么S 2在S 1左侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为1cos[2()]t xy A T πϕλ=-+,那么S 2在其右侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为1 2121/2cos[2()]x l y A t u πνϕ+=-+ 5cos(2)24A t x πππνϕ=-+-,那么S 2在其左侧产生的波的波动方程为2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-.两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为1cos 2()t xy A T πλ=+,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为2cos 2()t xy A T πλ=-.(2)合成波为y = y 1 + y 2,将三角函数展开得222cos cos y A x t Tππλ=,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:1 6.0cos (0.028.0)2y x t π=-,2 6.0cos(0.028.0)2y x t π=+,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:1 6.0cos 2()0.5200t x y π=-,2 6.0cos 2()0.5200t xy π=+,可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).。

5大物机械波 习题及答案

5大物机械波 习题及答案

一、 选择题1、一简谐波波动方程为0.03cos6(0.01)()y t x SI π=+则 (A )其振幅为3m (B)周期为1/3s [ C ] (C )波速为10m/s (D)波沿X 轴正方向传播2、如图为0t =时刻沿X 负方向传播的平面全余弦简谐波的波形曲线,则O 点处质点振动的初相为: [ D] (A )0 (B)π (C)2π (D)32π3、一平面简谐波,沿x 轴负方向传播,角频率为ω,波速为u ,设4Tt =时刻的波形如图所示,则该波的波动方程为 [ D ](A);)(cos uxt A y -=ω(B) ;]2)(cos[πω+-=u x t A y(C) ;)(cos u xt A y +=ω(D) ].)(cos[πω++=uxt A y4、两列相干波沿同一直线反向传播形成驻波,则两相邻波节之间各点的相位及振幅的关系为 【C 】(A )振幅全相同,相位全相同; (B )振幅不全相同,相位全相同; (C )振幅全相同,相位不全相同; (D )振幅不全相同,相位不全相同。

5、一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到 最大位移处的过程中 [ D ](A )它的动能转换为势能; (B )它的势能转换为动能;(C )它从相邻的一段质元获得能量,其能量逐渐增加; (D )它的能量传给相邻的另一质元,其能量逐渐减小。

6、以平面余弦波波源得周期为s T 5.0=,它所激发得波得振幅为m 1.0,波长为m 10,取波源振动得位移恰好在正方向最大值时开始计时,波源所在处为原点,沿波传播方向为x 轴正方向,则2λ=x 处质点振动得表示式为[ A ] (A );)()4cos(1.0m t y ππ-= (B) ;)()22cos(1.0m t y ππ-=(C) ;)()(4cos 1.0m t y ππ-= (D) .)()2cos(1.0m t y ππ-=7、一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y(SI),该波在t = 0.5 s 时刻的波形图是 [ B ]8、横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻 [ D ] (A) A 点振动速度大于零. (B) B 点静止不动. (C) C 点向下运动. (D) D 点振动速度小于零.二、填空题(共18分,每题3分)。

大学物理机械波习题附答案

大学物理机械波习题附答案

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) bt axA t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反y (m) y (m) - y (m) y (m)[ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。

大学物理 第五章机械波 课后习题 参考答案

大学物理 第五章机械波 课后习题 参考答案

对于 O 点:∵ y O 0, vO 0 ,∴ O
对于 A 点:∵ y A A, v A 0 ,∴ A 0 对于 B 点:∵ y B 0, v B 0 ,∴ B
.k
2 3 对于 C 点:∵ y C 0, vC 0 ,∴ C 2 (取负值:表示 A、B、C 点位相,应落后于 O 点的位相) (2)波沿 x 轴负向传播,则在 t 时刻,有 0, vO 0 ,∴ O 对于 O 点:∵ y O
2
2 代入上式,即得 C

( x 2 x1 )
Cd .
2

v max A 10 0.05 0.5 m s 1
a max 2 A (10 ) 2 0.05 5 2 m s 2
.c
x)
B 2 ,波速 u , C C 1 2 波动周期 T . B (2)将 x l 代入波动方程即可得到该点的振动方程
如题 5-11(c)图所示. 5-12 如题5-12图所示,已知 t =0时和 t =0.5s时的波形曲线分别为图中曲线(a)和(b) ,波沿 x 轴正向传播,试根据图中绘出的条件求: (1)波动方程; (2) P 点的振动方程.
hd aw
题 5-11 图(c)
y 0.1cos(5t
5 0.5 3 ) 0.1cos(5t ) m 0.5 2
此介质中任一质元离开平衡位置的位移既是坐标位置 x , 又是时间 t 的函数, 即 y f ( x, t ) . (2)在谐振动方程 y f (t ) 中只有一个独立的变量时间 t ,它描述的是介质中一个质元偏离
平衡位置的位移随时间变化的规律;平面谐波方程 y f ( x, t ) 中有两个独立变量,即坐标

大物习题答案第5章机械波

大物习题答案第5章机械波

第5章机械波基本要求1.理解描述简谐波的各物理量的意义及相互间的关系.2.理解机械波产生的条件.掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法.理解波函数的物理意义.理解波的能量传播特征及能流、能流密度概念.3.了解惠更斯原理和波的叠加原理.理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件.4.理解驻波及其形成。

5.了解机械波的多普勒效应及其产生的原因.基本概念1.机械波机械振动在弹性介质中的传播称为机械波,机械波产生的条件首先要有作机械振动的物体,即波源;其次要有能够传播这种机械振动的弹性介质。

它可以分为横波和纵波。

2.波线与波面沿波的传播方向画一些带有箭头的线,叫波线。

介质中振动相位相同的各点所连成的面,叫波面或波阵面。

在某一时刻,最前方的波面叫波前。

3.波长λ在波传播方向上,相位差为2π的两个邻点之间的距离称为波长,它是波的空间周期性的反映。

4.周期T与频率ν一定的振动相位向前传播一个波长的距离所需的时间称为波的周期,它反映了波的时间周期性,波的周期与传播介质各质点的振动周期相同。

周期的倒数称为频率,波的频率也就是波源的振动频率。

5.波速u单位时间里振动状态(或波形)在介质中传播的距离。

它与波动的特性无关,仅取决于传播介质的性质。

6.平面简谐波的波动方程在无吸收的均匀介质中沿x轴传播的平面简谐波的波函数为()2cos y A tx ωϕπλ=+或s )co (x y A tu ωϕ⎡⎤=+⎢⎥⎣⎦其中,“-”表示波沿x 轴正方向传播;“+”表示波沿x 轴负方向传播。

波函数是x 和t 的函数。

给定x ,表示x 处质点的振动,即给出x 处质点任意时刻离开自己平衡位置的位移;给定t ,表示t 时刻的波形,即给出t 时刻质点离开自己平衡位置的位移。

7.波的能量 波动中的动能与势能之和,其特点是同体积元中的动能和势能相等。

任意体积元的222k 211d =d d d sin ()22P W W W VA t x πλρωωϕ==-+8.平均能量密度、能流密度 一周期内垂直通过某一面积能量的平均值是平均能量密度,用w 表示。

大学物理第5章习题解答

大学物理第5章习题解答

第五章 机械振动5-1一远洋货轮,质量为t M 4102⨯=,浮在水面对其水平截面积为23102m S ⨯=。

设在水面附近货轮的截面积与货轮高度无关,试证明此货轮在水中的铅直自由运动是简谐振动,并求其自由振动的周期。

解:取固定坐标xOy ,坐标原点O 在水面上(图题所示)设货轮静止不动时,货轮上的A 点恰在水面上,则浮力为S ρga .这时 ga s Mg ρ= 往下沉一点时,合力 )(y a g s Mg F +-=ρ gy s ρ-=. 又 22d d t yMMa F == 故0d d 22=+gy s t y M ρ022=+y M gs dt dy ρ 故作简谐振动 M gs ρω=2)(35.68.910102101022223334s g s M T =⨯⨯⨯⨯⨯===πρπωπ5-2 重物A 的质量M=1kg ,放在倾角030=θ的光滑斜面上,并用绳跨过定滑轮与劲度系数149-⋅=m N k 的轻弹簧连接,如习题5-2图所示,将物体由弹簧未形变的位置静止释放,并开始计时,试求:(1)不计滑轮质量,物体A 的运动方程;(2)滑轮为质量M ,半轻r 的均质圆盘,物体A 的运动方程。

解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:)(1.0sin 0m kmg l ==θ(1) 习题5-1图(1) A 物体共受三力;重mg, 支持力N, 张力T.不计滑轮质量时,有 T =kx列出A 在任一位置x 处的牛顿方程式220d d )(sin sin txm x l k mg T mg =+-=-θθ将(1)式代入上式,整理后得0d d 22=+x mkt x 故物体A 的运动是简谐振动,且)rad/s (7==mkω 由初始条件,000⎩⎨⎧=-=v l x 求得,1.00⎩⎨⎧===πϕml A 故物体A 的运动方程为x =(7t+π)m(2) 当考虑滑轮质量时,两段绳子中张力数值不等,如图所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221d d sin txm T mg =-θ (2)对滑轮列出转动方程为:22221d d 2121t x Mr r a Mr J r T r T =⎪⎭⎫ ⎝⎛==-β (3)式中,T 2=k (l 0+x ) (4)由式(3)、(4)知2201d d 21)(t xM x l k T ++=代入(2)式知22021)(sin dtxd m M x l k mg ⎪⎭⎫ ⎝⎛+=+-θ又由(1)式知0sin kl mg =θ故0d d )21(22=++kx txm M即0)2(d d 22=++x m M ktx 习题5-2图m M k +=22ω可见,物体A 仍作简谐振动,此时圆频率为:rad/s)(7.52=+=m M k ω由于初始条件:0,000=-=v l x可知,A 、ϕ不变,故物体A 的运动方程为:m t x )7.5cos(1.0π+=由以上可知:弹簧在斜面上的运动,仍为简谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率.5-3质点作简谐振动的振动曲线如习题5-3图所示,试根据图得出该质点的振动表达式。

大学物理机械波习题附答案

大学物理机械波习题附答案

曲 為 vi/mf ...... .............................................、选择题:1.3147: —平面简谐波沿Ox 正方向传播,波动表达式为y.cos (2 4) 2] (SI),该波在t= 0.5 s 时刻的波形图是:B 115. 3479:在简谐波传播过程中,沿传播方向相距为 2 (为波长)的两点的振动速度必定(A)大小相同,而方向相反 (B)大小和方向均相同2. 3407:横波以波速u 沿x 轴负方向传播。

(A) A 点振动速度大于零(B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零3. 3411:若一平面简谐波的表达式为 y 为正值常量,贝心(A)波速为C (B)周期为1/B (C)波长为2 /C 4. 3413:下列函数f (x t)可表示弹性介质中的一维波动,式中 的常量。

其中哪个函数表示沿 x 轴负向传播的行波?(A) f (x,t) Acos(ax bt) (C)f (x,t)A cosax cosbt(B) (D)f (x,t) Acos(ax bt) f (x,t) Asin ax sin btA 、a 禾口 b 是正: 1t 时刻波形曲线如图。

贝S 该时刻 (D)角频率为2 /B(C)大小不同,方向相同(D)大小不同,而方向相反: ]6. 3483: —简谐横波沿Ox 轴传播。

若Ox 轴上P i 和P 2两点相距/8 (其中 为 该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B)方向总是相反 (C)方向有时相同,有时相反 (D)大小总是不相等 : ]7. 3841 :把一根十分长的绳子拉成水平,用手握其一端 端在垂直于绳子的方向上作简谐振动,则 八 振动频率越高,波长越长 振动频率越低,波长越长 振动频率越高,波速越大 振动频率越低,波速越大 8. 3847:图为沿x 轴负方向传播的平面简谐波在 式以余弦函数表示,则0点处质点振动的初相为:13n(A) 0 (B) 2 (C)(D) 2 : ]9. 5193: 一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4 时刻x 轴上的1、2、3三点的振动位移分别是:(A) A , 0, -A (B) -A , 0, A (C) 0, A , 0 (D) 0, -A , 0.: ]10. 5513:频率为100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小1于波长的两点振动的相位差为 3 ,则此两点相距(A) 2.86 m (B) 2.19 m (C) 0.5 m (D) 0.25 m: ] 11. 3068:已知一平面简谐波的表达式为y Acos(at bx)( a 、b 为正值常量), 则(A)波的频率为a (B)波的传播速度为b/a (C)波长为 / b (D)波的周期为2 / a : ]12. 3071: 一平面简谐波以速度u 沿x 轴正方向传播,在t = t /时波形曲线如图 所示。

大学物理学教程第二(马文蔚)练习册答案5第五章 机械振动

大学物理学教程第二(马文蔚)练习册答案5第五章 机械振动

的速度射入并嵌在木块中,同时使弹簧压缩从而作简
谐运动。设木块的质量为 4.99kg ,弹簧的劲度系数为
8.00103 N/m。若以弹簧原长时物体所在处为坐标原
点,向左为 x 轴正向,求简谐运动方程。
解: 40(s1)
A 2.5102 (m)
v m1
m2 k
2
5-15 振动方程:
x 2.5102 cos(40t )(SI )
50 cos 3.13t

cos 3.13t
36
x/m
5-13
(3) j
d
dt
3.13sin 3.13t
36
30时 30 50 cos 3.13t
cos 3.13t 0.6
sin 3.13t 0.8 j 0.218s1
v = l 0.218m / s
10
第五章 习题分析
为 x1 0.05cos(10t 0.75 )(SI ), x2 0.06 cos(10t 0.25 )(SI ) 求:(1)合振动的振幅
及初相;(2)若有另一同方向同频率的简谐运动
x3 0.05cos(10t 3)(SI ), 则 3 为多少时,x1 x3 的 振幅最大?又 3 为多少时,x2 x3 的振幅最小。
曲线2 t 0时,x0
2
3
x2
2
cm
A 2
,
v0
0
10cos t
3
-0.10 -0.05
cm
0.10
0.05 x/m
17
第五章 习题分析
5-20 两个同频率简谐振动1和2的振动曲线如图所示,
求(1)两简谐运动的运动学方程;(2)在同一图中
画出两简谐运动的旋转矢量,并比较两简谐振动的相

大学物理习题_机械振动机械波

大学物理习题_机械振动机械波

机械振动机械波一、选择题1.对一个作简谐振动的物体,下面哪种说法是正确的(A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。

2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v-=; (D )φωcos A v =。

…3.一物体作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+=4cos πωt A x 。

在4T t =(T 为周期)时刻,物体的加速度为 (A )2221ωA -; (B )2221ωA ; (C )2321ωA -; (D )2321ωA 。

4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相(A )落后2π; (B )超前2π;(C )落后π; (D )超前π。

5.一质点沿x 轴作简谐振动,振动方程为⎪⎭⎫⎝⎛+⨯=-ππ312cos 1042t x (SI )。

从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 (A )s 8/1; (B )s 4/1;【第题图(C )s 2/1; (D )s 3/1。

6.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为;7.一个简谐振动的振动曲线如图所示。

此振动的周期为(A )s 12; (B )s 10;(C )s 14; (D )s 11。

8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是(A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。

大学物理机械波习题附问题详解

大学物理机械波习题附问题详解

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) bt axA t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反y (m) y (m) - y (m) y (m)[ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ = 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即 = 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt -π/2).5.3 已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为: , 位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin 2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(1)P 点的振动表达式; (2)波动方程;(3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为 y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少? [解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.5φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:, 那么A 和B 两点的振动方程分别为:,.两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),cos[2()]t xy A T πϕλ=-+cos[2()]A A xt y A T πϕλ=-+cos[2()]B B xt y A T πϕλ=-+2(2)6B A x x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =图5.10声波的平均能量密度为:= 6.37×10-6(J·m -3), 平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为2212w A ρω=I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--= 1768(Hz). 反射声音的波长为=0.1872(m).或者 = 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).`11331142133165B u u u νν==⨯--`1111331651421BBu u u u λννν--=-==`1`13311768u λν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-S 1 S 2S 125.17 设入射波的表达式为,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).1cos 2()t xy A T πλ=+2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。

大学物理机械波习题附答案

大学物理机械波习题附答案

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) btax A t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反y (m) y (m) - y (m) y (m)(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长(B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 机械波5.1基本要求1.理解描述简谐波的各物理量的意义及相互间的关系.2.理解机械波产生的条件.掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法.理解波函数的物理意义.理解波的能量传播特征及能流、能流密度概念.3.了解惠更斯原理和波的叠加原理.理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件. 4.理解驻波及其形成。

5.了解机械波的多普勒效应及其产生的原因.5.2基本概念 1.机械波机械振动在弹性介质中的传播称为机械波,机械波产生的条件首先要有作机械振动的物体,即波源;其次要有能够传播这种机械振动的弹性介质。

它可以分为横波和纵波。

2.波线与波面 沿波的传播方向画一些带有箭头的线,叫波线。

介质中振动相位相同的各点所连成的面,叫波面或波阵面。

在某一时刻,最前方的波面叫波前。

3.波长λ 在波传播方向上,相位差为2π的两个邻点之间的距离称为波长,它是波的空间周期性的反映。

4.周期T 与频率ν 一定的振动相位向前传播一个波长的距离所需的时间称为波的周期,它反映了波的时间周期性,波的周期与传播介质各质点的振动周期相同。

周期的倒数称为频率,波的频率也就是波源的振动频率。

5.波速u 单位时间里振动状态(或波形)在介质中传播的距离。

它与波动的特性无关,仅取决于传播介质的性质。

6.平面简谐波的波动方程 在无吸收的均匀介质中沿x 轴传播的平面简谐波的波函数为()2cos y A t x ωϕπλ=+m或s )co (x y A t u ωϕ⎡⎤=+⎢⎥⎣⎦m其中,“-”表示波沿x 轴正方向传播;“+”表示波沿x 轴负方向传播。

波函数是x 和t 的函数。

给定x ,表示x 处质点的振动,即给出x 处质点任意时刻离开自己平衡位置的位移;给定t ,表示t 时刻的波形,即给出t 时刻质点离开自己平衡位置的位移。

7.波的能量 波动中的动能与势能之和,其特点是同体积元中的动能和势能相等。

任意体积元的222k 211d =d d d sin ()22P W W W VA t x πλρωωϕ==-+8.平均能量密度、能流密度 一周期内垂直通过某一面积能量的平均值是平均能量密度,用w 表示。

单位时间内,通过垂直于波传播方向单位面积的平均能量,叫做波的能流密度,用I 表示。

其中22011d 2T w w t A T ρω==⎰,2212wuTS I wu A u TS ρω=== 9.波的衍射 波在传播过程中遇到障碍物时,其传播方向发生改变,并能绕过障碍物而继续向前传播,这种现象称为波的衍射(绕射)。

10.波的干涉 几列波叠加时产生强度稳定分布的现象称为波的干涉现象。

产生波的相干条件是:频率相同、振动方向相同、相位差恒定的两列波的叠加。

加强和减弱的条件,取决于两波在相干点的相位差21212πr r ϕϕϕλ-∆=--,()2π0,1,2,...k k ϕ∆=±= 时,合振幅达到极大max 12A A A =+,称为干涉相长()()21π1,2,3...k k ϕ∆=±-=振幅为极小,12A A A =-,称为干涉相消。

11.驻波 它由两列同振幅的相干波在同一直线上沿相反方向传播时叠加而成。

驻波方程:2π2coscos y A x t ωλ=。

12.半波损失 波由波疏介质行进到波密介质,在分界面反射时会形成波节,相当于反射波在反射点损失了半个波长的过程。

13.多普勒效应 因波源或观察者相对于介质运动,而使观察者接收到的波的频率与波源的振动频率不同的现象。

5.3基本规律1.惠更斯原理 介质中波动传到的各点均可看做能够发射子波的新波源,此后的任一时刻,这些子波的包迹就是该时刻的波前。

据此,只要知道了某一时刻的波面,就可用几何作图的方法决定下一时刻的波面。

因而惠更斯原理在很广泛的范围内解决了波的传播问题。

下面通过球面波的传播来说明惠更斯原理的应用。

如图5-1所示,t 时刻的波面是半径为R 1的球面 S 1,按惠更斯原理,S 1上的每一点都可以看成发射子波的点波源。

以 S 1面上各点为中心,以r u t =∆为半径作半球面,这些半球面就是这些新的子波的波前,它们的包络面S 2就是(t+Δt )时刻的波面。

2.多普勒效应 当观察者和波源之间有相对运动时,观察者所测到的频率R ν和波源的频率S ν不相同的现象称为多普勒效应。

当波源与观察者在同一直线上运动时,二者关系为RR S Su v u v νν±=m 。

u :机械波在介质中的传播速度S v :波源相对于介质的速度R v :观察者相对于介质的速度为观察者接近波源时,R v 前取“+”号,远离时,则取“-”号;波源朝向观察者运动时,S v 前取“-”号,远离时,则取“+”号。

5.4学习指导1重点解析下面将讨论本章的习题分类及解题方法:(1)已知波动表达式求有关的物理量,如振幅、周期、波长、质元间的相位差等.图5-1通常采用比较法,即将已知的波动表达式与标准的波动表达式进行比较,从而找出相应的物理量;也可以根据各物理量的关系,通过运算得到结果。

(2)已知波动的有关物理量,建立波动表达式基本步骤如下:(a )由题给条件写出波源或传播方向上某一点的振动表达式。

(b )在波线上建立坐标后,任取一点P ,距原点为x ,计算出p 点的振动比已知点的振动在时间上超前或落后。

设超前或落后的时间为t ’,将原振动表达式中t加上或减去t ’,即得该波的表达式。

也可计算出P 点振动相位比已知点超前或落后,设超前或落后相位为2x πλ,则将原振动表达式中的相位加上或减去2x πλ。

注意:超前为加,落后为减。

为方便起见,有时常把波线上的已知点选为坐标原点。

(3)已知波形曲线,建立波动表达式从波形曲线上确定有关的物理量。

如波长、振幅等,特别要注意从曲线上确定某点(如原点)的振动相位,这可用旋转矢量法或解析法确定,然后写出该点的振动表达式,再根据传播方向写出波动表达式。

例1 已知一平面波在t=0s 时的波形曲线如图5-2所示,波沿x 轴正向传播,已知波的周期3T s =.求(1)该波的波函数;(2)点P 处质元的振动方程。

分析:首先要选一个参考点,如坐标原点,求出该点处质元的振动方程,因此必须求出振动的特征量A 、ϕ、ω。

然后由图中信息求出波长或波速,再根据波的传播方向,写出波函数。

将P 点x 坐标值代入波函数即可求P 处质元的振动方程。

解:选坐标原点为参考点,由图可知振幅2410A m -=⨯,3T s=,则圆频率1223rad s T ππω-==⋅ 波沿x 轴正向传播,显然00v >,利用旋转矢量法,画出t=0时刻对应的旋转矢量图如图5-3所示,则3πϕ=-,于是原点处质元的振动方程为图5-222410cos()33y t m ππ-=⨯- 为求波函数,要求出波长λ或波速u 。

先设波函数为222410cos()33y t x m πππλ-=⨯-- 由波形曲线可知t=0时刻,x=0.4m 处,2410y m -=-⨯,代入波函数222410410cos(0.4)3ππλ---⨯=⨯-⨯- 得 1.2m λ=所以波函数为225410cos()333y t x m πππ-=⨯-- (2)P 点 x=0.8m 代入波函数即可求P 处质元的振动方程是22410cos()33y t m ππ-=⨯+(4)波的干涉和驻波波的干涉问题主要是计算相干波在空间各处相遇是增强还是减弱,这可通过二者相位差或波程差来确定。

驻波问题中,波腹和波节的位置是计算问题的重点,而写出反射波是关键。

例2 两波在一根很长的弦线上传播,其波动方程分别为2144.0010cos(8)3y x t ππ-=⨯- 2144.0010cos(8)3y x t ππ-=⨯+求(1)两波的频率、波长、波速 (2)两波节叠加后的节点位置 (3)叠加后振幅最大的那些点的位置 解:(1)与标准的波动方程()2cos y A t x ωϕπλ=+m比较可得:频率4Hz ν=、波长 1.50m λ=、波速16.00u m s λν-=⋅=⋅。

(2)节点位置4()32x k πππ=±+ 则有:31()(0,1,2,3)42x k k =±+=L(3)波腹位置:43x k ππ=±则有:3(0,1,2,3)4x kk =±=L(5)多普勒效应求解多普勒效应问题时,首先要分析波源和观察者的运动情况,以便应用不同公式进行处理。

应特别注意公式中符号规则。

对于有反射面的情况,反射面相当于一个“观察者”,分析反射波时相当于一个“波源”。

2难点释疑疑难点1. 如何理解驻波,“半波损失”。

两列振幅相同、振动方向相同、频率相同的相干波沿相反方向传播时,就叠加形成驻波。

其表达式为:2π2π2πcos()cos()2coscos y A t x A t x A x t ωωωλλλ=-++=波节位置:(21)(0,1,2,)4x k k λ=±+=L波腹位置:(0,1,2,)2k x k λ=±=L相邻两波节或波腹之间的距离为2λ,相邻波节间各点振动同相位,波节两侧2λ范围内媒质的振动相位差为π。

驻波没有能量和相位的传播,这就是驻波中“驻”字的含义。

但不断进行着动能和势能的相互转换,以及能量从波节到波腹和从波腹到波节的转移。

半波损失是指波由波疏介质进入波密介质时,在反射点处,反射波与入射波叠加形成波节。

相对于入射波,反射波相位突变π,相当于出现了半个波长的波程差。

疑难点2. 波动过程任一体积元的机械能不守恒。

理想的谐振动系统是一个孤立系统,在振动过程中,质点受保守力作用,系统的动能、势能相互转换,总机械能保持不变。

波动过程中,虽然质元也在做简谐振动,但质元振动的动能和势能却同时达到最大,同时减小变为零,和谐振动系统有着明显的不同。

在学习过程中,很多学生感到很困惑,这是学习中的一个难点。

问题的关键是要理解势能产生的原因:具有形变因而产生势能。

从图5-4中可明确看到,质元在最大位移处几乎没图5-4有形变,在平衡位置处形变最大,故势能最大。

5.5习题解答5.1 一平面简谐波在弹性媒质中传播时,某一时刻在传播方向上介质中某质元在负的最大位移处,则它的能量[ ] (A) 动能为零,势能最大 (B) 动能为零,势能为零 (C) 动能最大,势能最大 (D) 动能最大,势能为零 解析:正确答案(B )介质中某质元的动能表达式222k 1d d sin 2()2W V x A t ρωωπλϕ=-+,质元的弹性势能222p 1d d sin 2()2W V x A t ρωωπλϕ=-+,所以在波动传播的介质中,任一体积元的动能、势能均随,x t 作周期性变化,且变化是同相位的。

相关文档
最新文档