上海初一数学下册压轴题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海初一数学下册压轴题练习
1、如图,两副直角三角板满足AB =BC ,∠ABC=∠DEF=90°,∠A=∠C=45°。将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 。若点E 为AC 的中点,在旋转过程中,EP 与EQ 满足怎样的数量关系?并说明理由。
2、如图,有一块三角形菜地,若从顶点A 修一条笔直的小路交BC 于点D ,小路正好将菜地分成面积相等的两部分。
(1)画出D 点的位置并说明理由。
(2)假设在菜地中有一点E (如图2所示),BC 上是否存在点F ,使折线AEF 将三角形ABC 的面积分为面
积相等的两部分。若存在,请画出F 点的位置,并说明理由。
(图2)(图1)
A
B
C
C
B
Q P
D
E
F C B A
3、在等腰直角△ABC 中,∠C=90°,M 为AB 的中点,在AC 上任取一点P(与点A 、C 不重合),联结PM ,过M 作MQ⊥MP 交BC 于点Q,联结PQ 。
(1)画出点P 关于点M 的对称点N ,联结BN ,说明BN 与AC 所在直线的位置关系。 (2)问:以线段AP 、PQ 、QB 为边,能否构成直角三角形?请简要说明理由。 (3)设CQ=a ,BQ=b ,试用含有a 、b 的代数式表示△PMQ 的面积。
4、如图所示,△ABC 是等腰直角三角形,∠ACB=90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC=∠BDE.
5、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,说明:AD 平分∠BAE.
E D C
B
A
A
B
C D
E F
F E
D C B A 6、正方形ABCD 中,
E 为BC 上的一点,
F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.
7、在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
8. 直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠. (1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:
①如图1,若90,90BCA α∠=∠=,则EF
AF -(填“>”,“<”或“=”号); ②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ;
(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.
A B
C E F
D D A B C
E
F A D
F C E B
图1 图2 图3
9. 如图1,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形,且全等的理由为S.A.S.
请你参考这个作全等三角形的方法,解答下列问题:
(1)如图2,在△ABC 中,∠ACB 是直角,∠B=60°,AD 、CE 分别是∠BAC、∠BCA 的平分线,AD 、CE 相交于点F.请你判断并写出FE 与FD 之间的数量关系;
(2)如图3,在△ABC 中,如果∠ACB 不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
图1 图2 图3
M
P
O
N
A
E
D
F C
B
A
E
F
C
D
B
10. 如图,四边形ABCD是正方形(正方形的性质:四个内角都是直角,四条边长都相等),△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)说明:△AMB≌△ENB的理由;
(2)联结MN,判断△BMN的形状,并加以说明;
(3)当M点在何处时,AM+BM+CM的值最小,并说明理由;
.
A D
B C