七年级几何题大题大全
七年级数学上册4.1几何图形难题拔高
多面体
项点数(V)
面数(F)
棱数(F)
四面体
长方体
正八面体
正十二面体
你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是__________________________.
(2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是20;
七年级上册4.1几何图形难题突破
一、单选题
1.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与 重合的数字是()
A. 和 B. 和 C. 和 D. 和
2.将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m等于( )
所以这一线路的路程为 ,
故蚂蚁从点 出发沿着圆柱体的表面爬行到点 的最短路程是 ,
故答案为: .
【点睛】
本题考查了平面展开,最短路径问题,将图形展开和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
4.5
【分析】
先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变换是一个循环,然后再求10被3整除后余数是1,从而确定第1次变换的第1步变换.
(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.
12.某种产品形状是长方形,长为8cm,它的展开图如图:
(1)求长方体的体积;
(2)请为厂家设计一种包装纸箱,使每箱能装10件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸箱的表面积尽可能小)
2024年数学七年级上册几何基础练习题(含答案)
2024年数学七年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形2. 下列哪个图形是一个矩形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形3. 下列哪个图形是一个菱形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形4. 下列哪个图形是一个正三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形5. 下列哪个图形是一个等腰三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,两个角是直角的三角形D. 三条边不等长,两个角是锐角的三角形6. 下列哪个图形是一个等边三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形7. 下列哪个图形是一个梯形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,两个角是直角的四边形D. 四条边不等长,两个角是锐角的四边形8. 下列哪个图形是一个平行四边形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形9. 下列哪个图形是一个圆形?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形10. 下列哪个图形是一个椭圆?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形二、判断题(每题2分,共10分)1. 正方形的对角线互相垂直且相等。
初一数学几何图形练习题及答案20题
初一数学几何图形练习题及答案20题1. 填空题:a. 正方形的对角线长度是________(1词)。
b. 两个互相垂直的角的和为________度(1词)。
2. 判断题(正确为T,错误为F):a. 直角三角形的两个直角边可以相等。
()b. 一个平行四边形的对角线相等。
()c. 所有的矩形都是正方形。
()d. 一个凸四边形的内角和为360度。
()3. 简答题:a. 请解释平行四边形的定义及性质。
(至少2句)b. 解释锐角、钝角和直角分别是什么角度范围。
(至少1句)4. 计算题:在下图中,ΔABC是个等边三角形,边长为4cm。
a. 请计算三角形ABC的周长。
(2词)b. 请计算三角形ABC的面积。
(2词)5. 应用题:桌子的形状为长方形,长为120cm,宽为80cm。
在桌子的边上画出一个同样形状的长方形,使得它的宽比原来的桌子短一半,长比原来的桌子长一半。
请计算这个新长方形的面积。
(2词)答案:1. a. 简答题b. 902. a. Fb. Tc. Fd. T3. a. 平行四边形是一个有四个边的四边形,且相对的两边是平行的。
其性质包括:对角线互相平分;相邻角互补;相对角相等。
b. 锐角是指小于90度的角;钝角是指大于90度小于180度的角;直角是指等于90度的角。
4. a. 12cmb. 4√3 cm²5. 1800 cm²通过以上20道初一数学几何图形练习题及答案的训练,可以帮助学生巩固和加深对于几何图形的理解和应用能力。
请同学们认真学习,并通过解答这些问题来提高自己的数学技能。
初一几何题
初一几何题第一篇:初一几何题初一几何试题一、选择题(每题2分,共52分)1.下列说法中,正确的是()A、棱柱的侧面可以是三角形BC、正方体的各条棱都相等D、棱柱的各条棱都相等2.用一个平面去截一个正方体,截面不可能是()A、梯形B、五边形C、六边形D、圆3.下列立体图形中,有五个面的是()A、四棱锥B、五棱锥C、四棱柱D、五棱柱4.一个正方体,六个面上分别写着六个连续的整数的一个数字,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为()A、51B、52C、57D、585.如图中是正方体的展开图的有()个A、2个B、3个C、4个D、5个6、下列说法中,正确的个数为()①两点确定一条直线②两条直线相交,只有一个交点③将一条线段分成两条相等线段的点叫线段的中点④用5倍放大镜看一个20º的角,看到的是100º的角A、4B、3C、2D、17、下列命题正确的是()A、射线是直线的一半;B、若线段AB=BC,则B是线段AC的中点;C、两点之间,只有线段最短;D、把角平分的直线是这角的平分线.8、已知BD为∠ABC的平分线,则∠ABD=A、∠ACB,B、∠BCD,C、∠DBC,D、以上都不对9、∠a的四等分线的条数为()A、2条B、3条C、4条D、无数条10、线段AB=9cm,C、D为AB的三等分点,则CD=()A、6cm2B、3cmC、92cm D、以上都不对 11.下列说法正确的是()A、若AP=AB,则P是AB的中点;B、若AB=2PB,则P是AB的中点;2ABC、若AP=PB,则P是AB的中点;D、若AP=PB=,则P是AB的中点;12、如果在一条直线上得到10条不同的线段,那么在这条直线上至少要选用()个不同的点A、20B、10C、7D、513.平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n=()A、12B、16C、20D、以上都不对14.已知x,y都是钝角的度数,甲、乙、丙、丁计算(x+y)的结果依次为500,260,720,900,其中只有61一个正确的结果,那么算得结果正确的是()A、甲B、乙C、丙D、丁 15.如图,已知A、B、C、D、E五点A D C E 在同一直线上,D点是线段AB的中点,点E是线段BC的中点,若线段AC=12,则线段DE等于()BA、10B、8C、6D、416.如右图所示,C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()DA2(a-b)B2a-bCa+bDa-b17.如图,∠1=15︒,∠AOC=90︒,点B、O、D在同一直线上,CB则∠2的度数为()A. 75︒B.15︒C.105︒D.165︒ D2OA18.在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()A 南偏西50度方向B南偏西40度方向C 北偏东50度方向D北偏东40度方向19、一个角的余角是它的补角的,则这个角为()31(A)22.5°(B)45°(C)50°(D)135°20、如果一个角的补角是150°,那么这个角的余角的度数是()A30° B60°C90°D120°21、已知∠1和∠2互补,且∠1>∠2,那么∠2与012(∠1—∠2)的关系是()A、互余B、互补C、和为45D、差为22.5022、五位老朋友a、b、c、d、e在公园聚会,见面时候握手致意问候,已知a握了4次,b握了1次,c 握了3次,d握了2次,到目前为止,e握了()次。
初中几何考试题型及答案
初中几何考试题型及答案一、选择题(每题2分,共10分)1. 以下哪个图形是轴对称图形?A. 平行四边形B. 等腰梯形C. 不规则多边形D. 矩形答案:B2. 已知一个三角形的两边长分别为3cm和4cm,且这两边的夹角为90度,那么这个三角形的周长是多少?A. 7cmB. 10cmC. 11cmD. 14cm答案:C3. 在一个圆中,直径的长度是半径的多少倍?A. 1倍B. 2倍C. 3倍D. 4倍答案:B4. 一个等边三角形的每个内角是多少度?A. 30度B. 60度C. 90度D. 120度答案:B5. 一个长方体的长、宽、高分别为2cm、3cm和4cm,那么这个长方体的体积是多少立方厘米?A. 24立方厘米B. 26立方厘米C. 12立方厘米D. 6立方厘米答案:A二、填空题(每题2分,共10分)1. 在一个直角三角形中,如果一个锐角是30度,那么另一个锐角是______度。
答案:602. 一个圆的周长是62.8厘米,那么这个圆的半径是______厘米。
答案:103. 如果一个多边形的内角和是900度,那么这个多边形有______条边。
答案:74. 一个长方体的长、宽、高分别为5cm、4cm和3cm,那么这个长方体的表面积是______平方厘米。
答案:945. 在一个等腰三角形中,如果底角是70度,那么顶角是______度。
答案:40三、解答题(每题10分,共20分)1. 已知一个直角三角形的两条直角边长分别为6cm和8cm,求这个三角形的斜边长。
答案:根据勾股定理,斜边长为\(\sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10\)cm。
2. 一个圆柱的底面半径为3cm,高为5cm,求这个圆柱的体积。
答案:圆柱体积的计算公式为\(V = \pi r^2 h\),代入数值得\(V = \pi \times 3^2 \times 5 = 45\pi\)立方厘米。
七年级上册几何题十道含过程答案
1、下列说法中,正确的是()A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形2、下列说法不正确的是()A、球的截面一定是圆B、组成长方体的各个面中不可能有正方形C、从三个不同的方向看正方体,得到的都是正方形D、圆锥的截面可能是圆3、下列图形中,是棱锥展开图的是()A、B、C、D、4、下面图形不能围成一个长方体的是()A、B、C、D、5、下列图形是四棱柱的侧面展开图的是()A、B、C、D、6、下列图形中,是正方体的表面展开图的是()A、B、C、D、7、将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A、B、C、D、8、如图是一个正方体的表面展开图,这个正方体可能是()A、B、C、D、9、一个几何体的展开图如图所示,这个几何体是()A、棱柱B、棱锥C、圆锥D、圆柱10、在下面的图形中,不可能是正方体的表面展开图的是()A、B、C、D、1、【答案】B【考点】认识立体图形,截一个几何体【解析】【解答】解:A、用一个平面去截一个圆锥,不可以是椭圆,故选项错误; B、根据棱柱的特征可知,棱柱的所有侧棱长都相等,故选项正确;C、用一个平面去截一个圆柱体,截面不可以是梯形,故选项错误;D、用一个平面去截一个长方体,截面可能是正方形,故选项错误.故选B.【分析】根据圆锥、棱柱、圆柱、长方体的形状特点判断即可.2、【答案】B【考点】认识立体图形,截一个几何体,简单几何体的三视图【解析】【解答】解:A、球体的截面一定是圆,故A正确,与要求不符; B、组成长方体的各面中可能有2个面是正方形,故B错误;C、从三个不同的方向看正方体,得到的都是正方形,故C正确,与要求不符;D、圆锥的截面可能是圆,正确,与要求不符.故选:B.【分析】根据球体、长方体、正方体、圆锥的形状判断即可.3、【答案】C【考点】几何体的展开图【解析】【解答】解:A、是三棱柱的展开图,故此选项错误; B、是一个平面图形,故此选项错误;C、是棱锥的展开图,故此选项正确;D、是圆柱的展开图,故此选项错误.故选:C.【分析】根据图形结合所学的几何体的形状得出即可.4、【答案】D【考点】几何体的展开图【解析】【解答】解:选项A,B,C折叠后,都可以围成一个长方体,而D折叠后,最下面一行的两个面重合,缺少一个底面,所以不能围成一个长方体.故选D.【分析】根据图示,进行折叠即可解题.5、【答案】A【考点】几何体的展开图【解析】【解答】解:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.6、【答案】C【考点】几何体的展开图【解析】【解答】解:A、折叠后不可以组成正方体; B、折叠后不可以组成正方体;C、折叠后可以组成正方体;D、折叠后不可以组成正方体;故选C.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.7、【答案】B【考点】几何体的展开图【解析】【解答】解:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.8、【答案】B【考点】几何体的展开图【解析】【解答】解:由题意,得四个小正方形组合成一个正方体的面,是阴影,是空白,故选:B.【分析】根据展开图折叠成几何体,四个小正方形组合成一个正方体的面,可得答案.9、【答案】B【考点】几何体的展开图【解析】【解答】解:圆锥的侧面展开图是扇形,底面是圆,故选:B.【分析】根据圆锥的展开图,可得答案.10、【答案】B【考点】几何体的展开图【解析】【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D 选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.【分析】由平面图形的折叠及正方体的展开图解题.。
初中几何100题--高难度版
初中竞赛几何必做100题第一题:已知:ABCAE⊥,ABCF⊥,AE、CF相交BAC,BC∆外接于⊙O,︒=∠60于点H,点D为弧BC的中点,连接HD、AD.∆为等腰三角形.求证:AHD第二题:如图,F为正方形ABCD边CD上一点,连接AC、AF,延长AF交AC的平行线DE于点E,连接CE,且AC=AE.CE .求证:CFE第三题:已知:ABC ∆中,AC AB =,︒=∠20BAC ,︒=∠30BDC . 求证:BC AD =.B第四题:已知:ABC ∆中,D 为AC 边的中点,C A ∠=∠3,︒=∠45ADB . 求证:BC AB ⊥.AC第五题:如图,四边形ABCD 的两条对角线AC 、BD 交于点E ,︒=∠50BAC ,︒=∠60ABD ,︒=∠20CBD ,︒=∠30CAD ,︒=∠40ADB ,求ACD ∠.BD第六题:已知,︒=∠30ABC ,︒=∠60ADC ,DC AD =,求证:222BD BC AB =+.DB第七题:如图,PC切⊙O于C,AC为圆的直径,PEF为⊙O的割线,AE、AF与直线PO相交于B、D.求证:四边形ABCD为平行四边形.第八题:已知:在ABC ∆中,AC AB =,︒=∠80A ,︒=∠10OBC ,︒=∠20OCA . 求证:OB AB =.CB第九题:已知:正方形ABCD 中,︒=∠=∠15ODA OAD ,求证:OBC ∆为正三角形.第十题:已知:正方形ABCD中,E、F为AD、DC的中点,连接BE、AF,相交于点P,连接PC.PC .求证:BC第十一题:如图,ACB ∆与ADE ∆都是等腰直角三角形,︒=∠=∠90ACB ADE ,︒=∠45CDF ,DF 交BE 于F ,求证:︒=∠90CFD .EB第十二题:已知:ABC ∆中,CAB CBA ∠=∠2,CBA ∠的角平分线BD 与CAB ∠的角平分线AD 相交于点D ,且AD BC =. 求证:︒=∠60ACB .第十三题:已知:在ABC ∆中,BC AC =,︒=∠100C ,AD 平分CAB ∠. 求证:AB CD AD =+.AB第十四题:已知:ABC ∆中,BC AB =,D 是AC 的中点,过D 作BC DE ⊥于E ,连接AE ,取DE 中点F ,连接BF . 求证:BF AE ⊥.A第十五题:已知:ABC ∆中,︒=∠24A ,︒=∠30C ,D 为AC 上一点,CD AB =,连接BD . 求证:AC BD BC AB ⋅=⋅.A第十六题:已知:ABCD 与1111D C B A 均为正方形,2A 、2B 、2C 、2D 分别为1AA 、1BB 、1CC 、1DD 的中点.求证:2222D C B A 为正方形.A第十七题:如图,在ABC ∆三边上,向外做三角形ABR 、BCP 、CAQ ,使︒=∠=∠45CAQ CBP ,︒=∠=∠30ACQ BCP ,︒=∠=∠15BAR ABR .求证:RQ 与RP 垂直且相等.Q第十八题:如图,已知AD是⊙O的直径,D是BC中点,AB、AC交⊙O于点E、F,EM、FM 是⊙O的切线,EM、FM相交于点M,连接DM.DM .求证:BCB第十九题:如图,三角形ABC 内接于⊙O ,两条高AD 、BE 交于点H ,连接AO 、OH 。
完整版)初一几何练习题及答案
完整版)初一几何练习题及答案初一几何:三角形一、选择题(本大题共24分)1.以下列各组数为三角形的三条边,其中能构成直角三角形的是()A。
17,15,8B。
1/3,1/4,1/5C。
4,5,6D。
3,7,112.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等腰三角形3.下列给出的各组线段中,能构成三角形的是()A。
5,12,13B。
5,12,7C。
8,18,7D。
3,4,84.如图已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,连接DE,则下列结论中,不正确的是()A。
DC=DEB。
∠___∠ADEC。
∠DEB=90°D。
∠___∠DAE5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为()A。
12B。
10C。
8D。
56.下列说法不正确的是()A。
全等三角形的对应角相等B。
全等三角形的对应角的平分线相等C。
角平分线相等的三角形一定全等D。
角平分线是到角的两边距离相等的所有点的集合7.两条边长分别为2和8,第三边长是整数的三角形一共有()A。
3个B。
4个C。
5个D。
无数个8.下列图形中,不是轴对称图形的是()A。
线段MNB。
等边三角形C。
直角三角形D。
钝角∠AOB9.如图已知:△ABC中,AB=AC,BE=CF,AD⊥BC于D,此图中全等的三角形共有()A。
2对B。
3对C。
4对D。
5对10.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°11.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°12.___已知:∠A=∠D,∠C=∠F,如果△ABC≌△DEF,那么还应给出的条件是()A。
AC=DEB。
AB=DFC。
七年级的几何题
七年级的几何题一、线段相关题目(5题)1. 已知线段AB = 8cm,点C在线段AB上,AC = 3cm,求BC的长。
- 解析:因为点C在线段AB上,BC = AB - AC。
已知AB = 8cm,AC = 3cm,所以BC = 8 - 3 = 5cm。
2. 线段AB被点C分成3:5两部分,若AC = 6cm,求AB的长。
- 解析:设AC = 3x,CB = 5x。
因为AC = 6cm,所以3x = 6,解得x = 2。
则AB=AC + CB = 3x+5x = 8x,把x = 2代入得AB = 8×2 = 16cm。
3. 已知线段AB = 12cm,在直线AB上有一点C,且BC = 4cm,求AC的长。
- 解析:分两种情况。
- 当点C在线段AB上时,AC = AB - BC。
因为AB = 12cm,BC = 4cm,所以AC = 12 - 4 = 8cm。
- 当点C在AB的延长线上时,AC = AB+BC。
所以AC = 12 + 4 = 16cm。
4. 点C是线段AB的中点,点D是线段BC的中点,若AB = 12cm,求AD的长。
- 解析:因为C是AB中点,所以AC = BC=(1)/(2)AB=(1)/(2)×12 = 6cm。
又因为D是BC中点,所以CD=(1)/(2)BC=(1)/(2)×6 = 3cm。
则AD = AC+CD = 6 + 3 =9cm。
5. 已知线段AB,延长AB到C,使BC=(1)/(3)AB,D为AC中点,若DC = 2cm,求AB的长。
- 解析:设AB = x,则BC=(1)/(3)x,AC = AB + BC=x+(1)/(3)x=(4)/(3)x。
因为D 为AC中点,DC=(1)/(2)AC,已知DC = 2cm,所以(1)/(2)×(4)/(3)x = 2,解得x = 3cm,即AB = 3cm。
二、角相关题目(5题)1. 已知∠AOB = 80°,∠BOC = 30°,求∠AOC的度数。
初一上几何试题大全及答案
初一上几何试题大全及答案一、选择题1. 一个点可以确定几条直线?A. 0条B. 1条C. 无数条D. 不确定答案:C2. 线段AB和线段CD是平行的,那么线段AB和线段CD的长度关系是?A. 相等B. 不相等C. 可能相等D. 无法确定答案:C3. 在平面内,不共线的三点可以确定几个平面?A. 1个B. 2个C. 3个D. 无数个答案:A4. 一个角的度数是30°,那么它的补角是?A. 30°B. 60°C. 90°D. 120°答案:B5. 直角三角形的两条直角边分别为3和4,那么它的斜边长是?A. 5B. 6C. 7D. 8答案:A二、填空题6. 如果一个三角形的内角和为180°,那么一个四边形的内角和为______。
答案:360°7. 一个圆的半径为5厘米,那么它的直径是______厘米。
答案:10厘米8. 如果两条直线相交,那么它们所形成的角中,最大的角是______。
答案:平角9. 一个正方体的棱长为2厘米,那么它的表面积是______平方厘米。
答案:24平方厘米10. 如果一个角是直角的一半,那么这个角是______。
答案:45°三、解答题11. 如图所示,点A、B、C在同一条直线上,点D不在直线AB上。
如果AB=5厘米,BC=3厘米,求线段AD的长度。
答案:由于点D不在直线AB上,根据题意,我们无法直接得出AD 的长度。
需要更多信息,例如点D的位置或与AB、BC的关系。
12. 一个正五边形的内角和是多少度?答案:正五边形的每个内角都是108°,因为正五边形的内角和=(n-2)×180°,其中n是边的数量。
对于五边形,n=5,所以内角和=(5-2)×180°=540°。
四、证明题13. 证明:如果两条直线平行,那么它们与第三条直线所形成的同位角相等。
(完整版)初中数学经典几何题及答案
经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A P C DB A FG CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1F1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典难1、已知:△ABC 是正三角形,P求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.经典难题(一)1.如下图做GH ⊥AB,连接EO 。
几何试题题目及答案初中
几何试题题目及答案初中
一、选择题
1. 下列哪个选项不是几何图形?
A. 圆形
B. 三角形
C. 正方形
D. 音乐符号
答案:D
2. 一个正方形的对角线长度是其边长的:
A. 1倍
B. 2倍
C. √2倍
D. √3倍
答案:C
3. 在一个等腰三角形中,如果底边长为6厘米,腰长为5厘米,那么这个三角形的高是多少厘米?
A. 4厘米
B. 5厘米
C. 6厘米
D. 7厘米
答案:A
二、填空题
1. 一个圆的周长是其直径的______倍。
答案:π
2. 如果一个矩形的长是10厘米,宽是5厘米,那么它的面积是
______平方厘米。
答案:50
3. 一个等边三角形的每个内角是______度。
答案:60
三、解答题
1. 已知一个直角三角形的两条直角边长分别为3厘米和4厘米,求斜边的长度。
答案:斜边的长度是5厘米。
2. 一个矩形的长是宽的两倍,如果宽是4厘米,求矩形的周长。
答案:矩形的周长是24厘米。
3. 一个圆的半径是7厘米,求圆的面积。
答案:圆的面积是153.94平方厘米。
立体几何经典大题(各个类型的典型题目)
1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点.(1)FD ∥平面ABC ;(2)AF ⊥平面EDB .2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。
(1)求证:MN //平面PAD ; (2)当∠PDA =45°时,求证:MN ⊥平面PCD ;F CBAEDA B C D EF 3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E ,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ; (2)平面⊥EFC 面BCD .4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证 AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证 截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由]立体几何大题训练(3)C15. 如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点. 求证:(1)MN//平面ABCD ; (2)MN ⊥平面B 1BG .6. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.立体几何大题训练(4)7、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,_ G_ M _ D_1_ C_1_ B_1_ A_1_ N_ D _ C_ B _ ABA 1FE、E1分别是棱AD、AA1的中点(1)设F是棱AB的中点,证明:直线EE1∥面FCC1;(2)证明:平面D1AC⊥面BB1C1C。
初一几何考试题及答案
初一几何考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是线段的属性?A. 可度量B. 可延伸C. 可弯曲D. 可旋转答案:A2. 一个角的度数是90度,这个角被称为:A. 锐角B. 直角C. 钝角D. 周角答案:B3. 在平面几何中,两条直线相交于一点,这个点被称为:A. 顶点B. 交点C. 端点D. 极点答案:B4. 一个三角形的三个内角之和是:A. 90度B. 180度C. 360度D. 720度答案:B5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A二、填空题(每题2分,共10分)1. 一个正方形的对角线长度是边长的______倍。
答案:√22. 一个等腰三角形的两个底角相等,如果一个底角是45度,那么顶角是______度。
答案:903. 一个圆的周长是62.8厘米,那么它的直径是______厘米。
答案:204. 如果一个角是30度,那么它的补角是______度。
答案:1505. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是______平方厘米。
答案:50三、解答题(每题10分,共20分)1. 一个三角形的三个内角分别是x度、y度和z度,已知x度是y度的两倍,z度是x度的三分之一。
求x、y和z的值。
答案:设y度为a,则x度为2a,z度为2/3a。
根据三角形内角和定理,我们有:x + y + z = 1802a + a + 2/3a = 1805/3a = 180a = 108所以,x = 216度,y = 108度,z = 72度。
2. 一个圆的半径是7厘米,求它的周长和面积。
答案:周长= 2πr = 2 × 3.14 × 7 = 43.96厘米面积= πr² = 3.14 × 7² = 153.86平方厘米。
初中初一几何试题及答案
初中初一几何试题及答案
一、选择题
1. 下列哪个图形是轴对称图形?
A. 圆
B. 正方形
C. 等腰三角形
D. 所有选项
答案:D
2. 一个等边三角形的内角和是多少度?
A. 90°
B. 180°
C. 360°
D. 540°
答案:B
3. 如果一个平行四边形的对角线互相垂直,那么这个平行四边形是什么?
A. 矩形
B. 菱形
C. 正方形
D. 梯形
答案:B
二、填空题
4. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是______厘米。
答案:30
5. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是______厘米。
答案:5
6. 一个等腰三角形的顶角是30°,那么它的底角是______°。
答案:75
三、解答题
7. 已知一个圆的直径是14厘米,求这个圆的周长和面积。
答案:周长:44π厘米,面积:77π平方厘米。
8. 一个等腰梯形的上底是6厘米,下底是10厘米,高是4厘米,求这个等腰梯形的面积。
答案:24平方厘米。
9. 一个正五边形的每个内角是多少度?
答案:108°。
初一上册几何试题及答案
初一上册几何试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是直线的性质?A. 直线是无限长的B. 直线可以弯曲C. 直线是封闭的D. 直线是可测量的答案:A2. 一个三角形的内角和是多少度?A. 180度B. 360度C. 90度D. 270度答案:A3. 一个圆的直径与半径的关系是什么?A. 直径是半径的两倍B. 直径是半径的一半C. 直径等于半径D. 直径是半径的四倍答案:A4. 一个正方形的对角线与边长的关系是什么?A. 对角线是边长的两倍B. 对角线是边长的一半C. 对角线等于边长D. 对角线是边长的根号二倍答案:D5. 一个正五边形有多少个内角?A. 5个B. 10个C. 15个D. 20个答案:A二、填空题(每题3分,共15分)1. 一个圆的周长是其直径的______倍。
答案:π2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。
答案:903. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是______平方厘米。
答案:504. 一个等腰三角形的两个底角相等,如果一个底角是60度,那么顶角是______度。
答案:605. 一个圆的半径是5厘米,那么它的直径是______厘米。
答案:10三、解答题(每题5分,共20分)1. 已知一个圆的半径是7厘米,求这个圆的直径和周长。
答案:直径是14厘米,周长是2πr = 2 × 3.14 × 7 = 43.96厘米。
2. 一个等边三角形的边长是8厘米,求它的高。
答案:高是4√3厘米。
3. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
答案:周长是(15 + 10) × 2 = 50厘米,面积是15 × 10 = 150平方厘米。
4. 一个圆的周长是62.8厘米,求这个圆的半径。
答案:半径是62.8 ÷ (2π) = 10厘米。
七年级几何题大全
七年级几何题大全(共21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--( )3.轮船航行到C处观测小岛A的方向是北偏西48°,那么从A同时观测轮船在C处的方向是( )A.南偏东48°B.东偏北48°C.东偏南48°D.南偏东42°°32′5″+______=180°.7.八时三十分,时针与分针夹角度数是_______.6.一个角的余角比它的补角的23还少40°,求这个角。
6.如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点。
(1)求线段MN的长;(2分)(2)若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,你能猜想MN的长度吗并说明理由。
你能用一句简洁的话描述你发现的结论吗(2分)(3)若C在线段AB的延长线上,且满足AC BC = b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?A BCM N4、61平角是度, 25º32ˊ×3= 。
6、已知;两个角互补,且角度之比为3∶2,那么这两个角分别是。
7、时钟指向5:30,则时针与分针所成较小的那个角的度数为__________度.6、如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC的度数为:()A.30º B.45º C.50º D.60º8、已知:线段AC和BC在同一条直线上,如果AC=cm,BC=cm,线段AC和BC中点间的距离是。
1、下列图形中,能够折叠成正方体的是( )A B C DCDBAO6、一个角的补角加上20º,恰好等于这个角的5倍,求这个角的度数。
1.下图是由一些相同的小正方体构成的几何体从不同方向看到的平面图形,则这些相同的小正方体的个数是 个。
初一几何体试题及答案
初一几何体试题及答案一、选择题(每题2分,共10分)1. 下列几何体中,属于多面体的是:A. 球体B. 圆柱C. 圆锥D. 立方体答案:D2. 如果一个几何体有8个顶点和12条棱,那么它可能是:A. 立方体B. 正四面体C. 正八面体D. 正十二面体答案:A3. 正方体的每个面都是:A. 圆形B. 椭圆形C. 长方形D. 正方形答案:D4. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是:A. abcB. a+b+cC. ab+bc+caD. a^2+b^2+c^2答案:A5. 一个正四面体的每个面都是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形答案:A二、填空题(每题2分,共10分)6. 一个长方体的长为5厘米,宽为3厘米,高为2厘米,它的表面积是______平方厘米。
答案:627. 一个正方体的棱长为4厘米,它的体积是______立方厘米。
答案:648. 如果一个几何体的底面是一个正方形,且边长为x厘米,高为y厘米,那么它的体积是______立方厘米。
答案:xy^29. 一个圆锥的底面半径为r厘米,高为h厘米,它的体积是______立方厘米。
答案:πrh^2/310. 一个圆柱的底面半径为r厘米,高为h厘米,它的体积是______立方厘米。
答案:πr^2h三、简答题(每题5分,共10分)11. 描述一个正方体的特征。
答案:正方体是一个有6个面,每个面都是正方形的立体图形。
它的12条棱的长度相等,每个顶点连接3条棱。
12. 解释为什么球体不属于多面体。
答案:球体是一个连续的曲面,没有平面的面和棱,因此它不属于多面体。
多面体是由多个平面多边形面、直线棱和顶点组成的立体图形。
结束语:通过本试题的练习,同学们应该对初一几何体的基本概念和计算方法有了更深入的理解。
希望同学们能够继续努力,掌握更多的几何知识,为今后的学习打下坚实的基础。
七年级几何题大题大全
1.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。
(1)求线段MN 的长;(2分)2、已知;两个角互补,且角度之比为3∶2,那么这两个角分别是多少度?3、如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC 的度数为:4、一个角的补角加上20º,恰好等于这个角的5倍,求这个角的度数。
5、如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC 的度数为CDBAO 第5题图C D BAOO A BC EFF ED CBOA6. 如图,∠AOB = 110°,∠COD = 70°,OA 平分∠EOC , OB 平分∠DOF , 求∠EOF 的大小。
6.如图3所示,︒=∠90AOB ,OE 、OF 分别平分AOB ∠、BOC ∠,如果︒∠=∠60EOF ,求∠AOC 的度数.(10分)(图3)17.如图,已知110AOC BOD ∠=∠=︒,75BOC ∠=︒ 求:AOD ∠的度数8.(1)已知,如图,点C 在线段AB 上,且6AC cm =,14BC cm =,点M 、N 分别是AC 、BC 的中点, 求线段MN 的长度;(2)在(1)中,如果AC acm =,BC bcm =,其他条件不变,你能猜测出MN 的长度吗?请说出你发现的结果,并说明理由。
9.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,则∠1=多少度 NA CB D O10.已知一个角的余角是这个角的补角的41,求这个角.11.一个角的余角比它的补角的23还少40°,求这个角。
ACDEFB12.如图,∵AB∥EF(已知)∴∠A + =1800()∵DE∥BC(已知)∴∠DEF= ()∠ADE= ()3已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.D EB CA第3题14. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.15. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数16直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.HG21FEDC BA17.(6分) 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.18、如图,已知:21∠∠=,50=D ∠,求B ∠的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。
(1)求线段MN 的长;(2分)2、已知;两个角互补,且角度之比为3∶2,那么这两个角分别是多少度?3、如图,已知∠AOC=∠BOD=90º,∠AOD=150º, 则∠BOC 的度数为:4、一个角的补角加上20º,恰好等于这个角的5倍,求这个角的度数。
5、如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC 的度数为F ED CBOA6. 如图,∠AOB = 110°,∠COD = 70°,OA 平分∠EOC , OB 平分∠DOF , 求∠EOF 的大小。
CDBAO 第5题图CD B A OO A BC EF6.如图3所示,︒=∠90AOB ,OE 、OF 分别平分AOB ∠、BOC ∠,如果︒∠=∠60EOF ,求∠AOC 的度数.(10分)(图3)17.如图,已知110AOC BOD ∠=∠=︒,75BOC ∠=︒ 求:AOD ∠的度数 8.(1)已知,如图,点C 在线段AB 上,且6AC cm =,14BC cm =,点M 、N 分别是AC 、BC 的中点, 求线段MN 的长度;(2)在(1)中,如果AC acm =,BC bcm =,其他条件不变,你能猜测出MN 的长度吗?请说出你发现的结果,并说明理由。
9.一副三角扳按如图方式摆放,且∠1的度数 比∠2的度数大50°,则∠1=多少度10.已知一个角的余角是这个角的补角的41,求这个角.11.一个角的余角比它的补角的23还少40°,求这个角。
ACDEFB12.如图,∵AB∥EF(已知)∴∠A + =1800()∵DE∥BC(已知)∴∠DEF= ()∠ADE= ()3已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.14.已知:如图,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC的度数.15. 已知:如图4, AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF 的平分线与∠DEF的平分线相交于点P.求∠P的度数16直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数.17.(6分)如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.HG21FEDC BA18、如图,已知:21∠∠=,50=D ∠,求B ∠的度数。
19.已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数20.如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370,求∠D 的度数.21.AB//CD,EF⊥AB于点E,EF交CD于点F,已知∠1=600.求∠2的度数.22.如图所示,把一长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度数.23.如图,已知:DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°求∠EDC和∠BDC的度数.AD EB C24.如图AB∥CD,∠NCM=90°,∠NCB=30°,CM平分∠BCE,求∠B的大小.第14题图25如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C.26如图,已知:在中,,AC=BC,BD平分CBA,于E,求证:AD+DE=BE.H G2 1FE DC BA27.如图,已知:AB //CD ,求证:B +D +BED =(至少用三种方法)EABCD28.(6分) 如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°.将求∠AGD 的过程填写完整.因为EF ∥AD ,所以 ∠2 = . 又因为 ∠1 = ∠2,所以 ∠1 = ∠3. 所以AB ∥ . 所以∠BAC + =180° 又因为∠BAC = 70°,所以∠AGD =29、如图,已知:21∠∠=,50=D ∠,求B ∠的度数。
30.所示,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.31.如图,∵AB ∥EF ( 已知 )∴∠A + =1800( ) ∵DE ∥BC ( 已知 )∴∠DEF= ( )∠ADE= ( ) 32.已知:如图,∠ADE =∠B ,∠DEC =115°. 求∠C 的度数.FEDCBA 图 11CE33.已知:如图,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC的度数.第3题34.已知AB∥CD,∠1=70°则∠2=_______,∠3=______,∠4=______ _35. 已知:如图4, AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF 的平分线与∠DEF的平分线相交于点P.求∠P的度数36直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数.HG2F EC A37.(6分) 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.38、如图,已知:21∠∠=,50=D ∠,求B ∠的度数。
39.已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数40.如图,AB//CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=370,求∠D的度数.41.AB//CD,EF⊥AB于点E,EF交CD于点F,已知∠1=600.求∠2的度数.42.如图所示,把一长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的数.43.如图,已知:DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠E 和∠BDC的度数.AD EB C44.如图AB∥CD,∠NCM=90°,∠NCB=30°,CM平分∠BCE,求∠B的大小.第14题45如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C.46如图,已知:在中,,AC=BC,BD平分CBA,于E,求证:AD+DE=BE.47.如图,已知:AB//CD,求证:B+D+BED=(至少用三种方法)A BEC D48.(6分)如图,EF∥AD,∠1 =∠2,∠BAC = 70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2 = .又因为∠1 = ∠2,所以∠1 = ∠3.所以AB∥.所以∠BAC + =180°又因为∠BAC = 70°,所以∠AGD =HG21FEDC BA49、如图,已知:21∠∠=,50=D ∠,求B ∠的度数。
50.所示,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.51、(8分)如图,AB ∥CD ,分别探讨下面四个图形中∠APC 与∠PAB 、∠PCD 的关系,请你从所得到的关系中任选一个加以说明........。
(适当添加辅助线,其实并不难)FE DCBA 图 11 P52证明:∵∠A=∠C (已知),∴AB ∥CD (_____________ ______)∴∠ABO=∠CDO (_________________________) 又∵DF 平分∠CDO ,BE 平分∠ABO (已知)∴∠1=21∠CDO ,∠2=21∠ABO (_________________________)∴∠1=∠2,∴DF ∥BEB BB AA AA C C CCPP P DDD(1) (2)(3)(4)(_____________________________________________) 53、已知,如图,在△ ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,若∠B=30°,∠C=50°求:(1),求∠DAE 的度数。
(2) 试写出 ∠DAE 与 ∠C - ∠B 有何关系?(不必证明)54、一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
CDA B55、如图,△ABC 中,D 在BC 的延长线上,过D 作DE ⊥AB 于E,交AC 于F. 已知∠A=30°,∠FCD=80°,求∠D 。
56、填空:如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E =∠1,可得AD 平分∠BAC 。
理由如下:∵AD ⊥BC 于D ,EG ⊥BC 于G ( ) ∴∠ADC =∠EGC = 90°( )∴AD ∥EG ( ) ∴∠1 = ( ) = ∠3 ( )BAD CE又∵∠E = ∠1()∴∠2 =∠3()∴AD平分∠BAC(角平分线的定义)。
EBA32157、如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.ACDEFB57、填空完成推理过程:[1] 如图,∵AB∥EF(已知)∴∠A + =1800()∵DE∥BC(已知)∴∠DEF= ()∠ADE= ()58.(6分)已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.59.已知:如图,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC的度数.第3题H G21EDC BA60.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______ _61. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数62. 直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.63.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.64. 如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.65. 如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。
ABCDE第19题66. 已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数67. 如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.68. 已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.69. 如图,AB//CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=370,求∠D的度数.70. AB//CD,EF⊥AB于点E,EF交CD于点F,已知∠1=600.求∠2的度数.71.如图所示,把一长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.72.探索发现:如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所的四个关系中任选一个加以说明.(1) (2) (3) (4)73. 如图,AB ∥CD ,BF ∥CE ,则∠B 与∠C 有什么关系?请说明理由.74.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.75.如图AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE ,求∠B 的大小.第17题图ABCDE第18题图76. 如图5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?77. 如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.78. 如图5-26,已知:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .B79. 如图5-27,已知:AB //CD ,AB =CD ,求证:AC 与BD 互相平分.80. 如图5-27,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2 ABECFD H G181. 如图5-28,已知:在∆A B C 中,∠=︒C 90,AC =BC ,BD 平分∠CBA ,D EA B ⊥于E ,求证:AD +DE =BE .A BCDEEABCD82. 如图5-29,已知:AB //CD ,求证:∠B +∠D +∠BED =360︒(至少用三种方法)EABCD83. 直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.84. 如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°.将求∠AGD 的过程填写完整.因为EF ∥AD ,所以 ∠2 = . 又因为 ∠1 = ∠2,所以 ∠1 = ∠3. 所以AB ∥ .所以∠BAC + = 180°. 又因为∠BAC = 70°,所以∠AGD = .85. 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.86. 如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°, ∠ACB =50°,求∠EDC 和∠BDC 的度数.H G21FEDC BA87. AD ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数88. 如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。