纳氏试剂测定氨氮技巧

合集下载

纳氏试剂分光光度法测定水中氨氮标准

纳氏试剂分光光度法测定水中氨氮标准

纳氏试剂分光光度法测定水中氨氮标准
试剂和仪器:
纳氏试剂、蒸馏水、比色皿、分光光度计
操作流程:
1.取样:取一定量的待测水样,先进行前处理。

即用蒸馏水洗净比色皿后,加入待测水样,至刻度线。

2.添加试剂:用分度玻璃管向比色皿中加入纳氏试剂7.5ml,搅拌,室温放置10分钟。

3.进行分光测定:用分光光度计在680nm波长进行吸光度的测定,将比色皿放置在光路中,操作时注意比色皿中是否有气泡。

4.做样:将待测水样中的氨氮含量与纳氏试剂反应生成的产物的吸收光强度之间建立标准曲线,计算样品中的氨氮含量。

标准曲线与结果分析:
1.建立标准曲线:取一定量活水,分别加入0、0.7、1.4、
2.1、
3.5、7.0ml氨
标准溶液,并用蒸馏水配成100ml,加入纳氏试剂,操作3中所述的分光测定方法,得到吸光度值。

以吸光度为纵坐标,氨标准溶液中氨氮的质量浓度为横坐标,做出标准曲线。

2.计算结果:通过标准曲线找出待测水样的吸光度值,即可计算出含量。

样品中的氨氮含量,用公式计算:C=(S-A)/k,其中S为待测水样的吸光度,A为纯水的吸光度,k为标准曲线斜率,C为样品中氨氮的含量。

3.结果分析:根据计算出的样品中氨氮含量,判定水质是否合格。

若氨氮含量超标,则需在水处理工艺中加入相应的氨氮去除方法。

水中氨氮的测定纳氏试剂光度法

水中氨氮的测定纳氏试剂光度法

水中氨氮的测定纳氏试剂光度法一、水中氨氮的意义及测定方法介绍水中氨氮是指水中存在的游离氨和铵离子的总和,它是衡量水体富营养化程度的重要指标之一。

水中氨氮含量过高不仅会导致水体富营养化,还会对水生生物造成危害,甚至影响人类健康。

因此,测定水中氨氮含量对于保护环境、维护人类健康具有重要意义。

测定水中氨氮含量的方法较多,其中最常用的是纳氏试剂光度法。

该方法基于纳氏试剂与游离氨和铵离子反应生成深黄色络合物,并通过分光光度计测定其吸收值来计算出样品中的氨氮含量。

二、纳氏试剂原理及反应机理纳氏试剂为一种强还原性药剂,其主要成分为亚硫酸钠和碘化钾。

在碱性条件下,亚硫酸钠可以与碘化钾反应生成碘离子(I-),同时亚硫酸钠被还原成亚硫酸根离子(HSO3-)。

游离氨和铵离子可以与碘离子反应生成深黄色络合物,其反应方程式如下:NH3 + I2 + 4OH- → NHI2 + 4H2ONH4+ + I2 + 4OH- → NH4I2 + 4H2O其中,NHI2和NH4I2为络合物。

三、纳氏试剂光度法测定水中氨氮的步骤1. 样品处理:将待测样品过滤除杂质,并调节pH值至8.5-9.5之间。

2. 加入纳氏试剂:向样品中加入适量的纳氏试剂,并在室温下放置15分钟。

3. 分光光度计测定吸光度:使用分光光度计在波长为420nm处测定样品的吸光度。

4. 标准曲线绘制及计算:根据不同浓度的氨氮标准溶液分别进行上述步骤并绘制标准曲线,然后通过比对样品吸光度值与标准曲线来计算出样品中的氨氮含量。

四、纳氏试剂光度法测定水中氨氮的优缺点1. 优点:该方法操作简便、快速,且灵敏度高,可以测定极低浓度的氨氮;同时,纳氏试剂易于制备和保存,成本较低。

2. 缺点:该方法受到其他物质的干扰较大,如硝酸盐、亚硝酸盐等会干扰游离氨的测定;此外,在样品中含有大量有机物质时也会影响测定结果。

五、纳氏试剂光度法测定水中氨氮的注意事项1. 样品处理过程中要避免污染和挥发。

纳氏试剂分光光度法测定水中氨氮实验报告

纳氏试剂分光光度法测定水中氨氮实验报告

纳氏试剂分光光度法测定水中氨氮实验报告一、前言在环境保护领域,水体中的氨氮含量是一个重要的水质指标。

氨氮的过量排放会导致水体富营养化,进而引发一系列环境问题。

因此,对水体中氨氮含量的准确测定具有重要意义。

本文将介绍一种基于纳氏试剂分光光度法测定水中氨氮的方法,并对该方法进行理论分析。

二、纳氏试剂分光光度法原理1.1 纳氏试剂的制备纳氏试剂是一种含有亚硝酸钠和硫酸钠的混合溶液,用于与水样中的氨氮反应生成相应的络合物。

该络合物在紫外可见光谱区域具有特征吸收峰,可以利用分光光度法对其进行定量测定。

1.2 分光光度法原理分光光度法是利用物质对特定波长光线的吸收特性来确定其浓度的一种分析方法。

在本实验中,纳氏试剂与氨氮反应生成的络合物在紫外可见光谱区域具有特征吸收峰,其吸光度与氨氮浓度成正比。

通过测量样品溶液在此波长下的吸光度,可以间接计算出氨氮的浓度。

三、实验步骤与结果分析2.1 实验准备(1) 称取适量的纳氏试剂和硫酸钠,溶于去离子水中,制成纳氏试剂稀释液。

(2) 准备标准溶液:分别配制含氨氮质量分数为0%、1%、5%、10%、50%的氨氮标准溶液。

2.2 实验操作(1) 将待测水样倒入试管中,加入适量的纳氏试剂稀释液,使其与水样充分混合。

(2) 将混匀后的试管置于恒温水浴中,加热至沸点。

在此过程中,纳氏试剂会与水样中的氨氮反应生成络合物。

(3) 将反应体系冷却至室温,加入适量的硫酸钠溶液,使络合物沉淀析出。

用滤纸过滤,收集上清液。

(4) 将收集到的上清液转移到滴定瓶中,加入适量的酚酞指示剂,用氢氧化钠溶液滴定至溶液呈现粉红色。

记录滴定所需的氢氧化钠溶液体积。

2.3 结果分析根据实验步骤,可以得到以下关系式:氨氮浓度(mg/L)= 滴定氢氧化钠溶液体积(mL)× 标准溶液中氨氮质量分数(%)/1000 通过测定不同质量分数的标准溶液滴定所需氢氧化钠溶液体积,可以绘制出氨氮浓度与质量分数之间的关系曲线。

纳氏试剂分光光度法测定水中氨氮标准(一)

纳氏试剂分光光度法测定水中氨氮标准(一)

纳氏试剂分光光度法测定水中氨氮标准(一)纳氏试剂分光光度法测定水中氨氮标准什么是氨氮?氨氮是指水中含有的氨和氨的化合物的总量,一般都是以氨氮的浓度来表示。

氨氮是水中常见的一种污染物,它会破坏生态平衡,对人体健康和生态环境造成严重影响。

什么是纳氏试剂分光光度法?纳氏试剂分光光度法是一种测定水中氨氮浓度的方法。

它是以氨和氯仿反应生成烟酸盐,并利用分光光度计测定其光密度值,从而计算出水中氨氮的浓度。

标准方法下面介绍纳氏试剂分光光度法测定水中氨氮的标准方法:1.取一定量的样品,多用100ml。

2.将样品加入25ml的蒸馏水中,磁力搅拌10分钟,过滤。

3.取1ml滤液加入25ml量筒中,加入1ml硼酸溶液,4ml纳氏试剂(5%NaOH/0.05%MgSO4/0.01%NaCl/0.3%NaNO2/NaClO存储2小时后加入),摇匀,室温下放置20分钟左右。

4.在395nm处使用分光光度计测定纳氏试剂反应产生的光密度值。

5.使用空白对照样品重复操作,并将其光密度值减去待测样品的光密度值。

6.根据所做的标准曲线计算氨氮的浓度。

结论纳氏试剂分光光度法是一种准确、简单的测定水中氨氮浓度的方法。

在实际应用中,需要按照标准方法进行操作,以确保测量结果的准确性和可比性。

优缺点优点1.纳氏试剂分光光度法简单易懂,使用简便。

2.测定结果准确,误差小。

3.纳氏试剂分光光度法适用于水中相对较低浓度的氨氮测定。

缺点1.无法测定水中不同形态的氮含量,如亚硝酸盐、硝酸盐等。

2.纳氏试剂分光光度法对样品的处理和保养很关键,如果不注意则会影响测量结果的准确性。

应用范围纳氏试剂分光光度法是一种经典的测定水中氨氮的方法,其适用范围如下:1.工业废水、生活污水、农业污水等水体中氨氮的测定。

2.水产养殖过程中氨氮的监测。

3.其他需要测定水中氨氮浓度的研究。

注意事项在进行纳氏试剂分光光度法测定水中氨氮时,需要注意以下事项:1.样品应当完全清洁,以避免干扰测量结果。

纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施

纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施

纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施1. 引言1.1 纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施纳氏试剂分光光度法是一种常用的测定水中氨氮含量的方法,但在实际操作中需要注意一些问题和改进措施。

试剂的选取非常重要。

纳氏试剂是常用的测定氨氮的试剂,但需要确保试剂的新鲜度和纯度。

样品处理也是至关重要的步骤。

需要确保样品取样的准确性和完整性,避免外界污染和干扰。

在仪器操作方面,操作人员需要熟练掌握仪器的使用方法,避免操作失误导致数据不准确。

数据处理也是关键步骤,需要仔细核对数据,避免计算错误。

实验室条件也需要严格控制,避免温度、湿度等因素对实验结果产生影响。

要保证实验过程的准确性和可靠性,需要注意这些方面的问题和改进措施。

2. 正文2.1 试剂的选取试剂的选取是进行纳氏试剂分光光度法测定水中氨氮的重要步骤之一。

在选择试剂时,需要考虑试剂的纯度、稳定性和重现性。

要选择纯度较高的试剂,以确保测试结果准确可靠。

试剂的稳定性也是一个重要的考虑因素,试剂如果不稳定容易受到环境因素影响,会造成测试结果的偏差。

试剂的重现性也是需要考虑的因素,试剂的重现性越好,测试结果的可靠性就越高。

建议在选择试剂时,尽量选择经过认证的商业试剂,以确保试剂的质量能够满足测试需求。

在试剂的选取过程中还需要考虑试剂与样品的适配性,确认试剂与水样中氨氮的反应能够产生稳定的测定信号。

在进行试剂选取时,需要进行一系列的实验验证,确保选取的试剂能够准确、快速地测定水中氨氮的含量。

试剂的选取是纳氏试剂分光光度法测定水中氨氮过程中需要重点关注的环节之一,选取合适的试剂能够提高测试的准确性和可靠性。

2.2 样品处理样品处理是纳氏试剂分光光度法测定水中氨氮的一个关键步骤,其重要性不可忽视。

在进行样品处理时,需要注意以下几点:样品的采集应该严格按照规定的方法进行,避免外界污染和样品的变质。

采样时应尽量避开河流口、污水排放口等可能受到污染的地点。

氨氮国标测定方法纳氏试剂法

氨氮国标测定方法纳氏试剂法

氨氮国标测定方法纳氏试剂法氨氮国标测定方法纳氏试剂法,哇塞,这可真是个超重要的方法呢!
纳氏试剂法的步骤呢,首先要准备好各种试剂和仪器,然后取适量水样,加入纳氏试剂,经过一系列反应后,用分光光度计在特定波长下测定吸光度。

在这个过程中,那可得注意好多事儿呀!比如试剂的配制要准确无误,操作过程要严谨细致,不能有丝毫马虎。

水样的预处理也很关键,如果水样中有杂质,那可会大大影响测定结果哦!而且要严格控制反应时间和温度,不然得出的结果可能就不准确啦。

说到安全性和稳定性,这可是非常重要的呀!在整个实验过程中,要注意化学试剂的安全使用,避免接触到皮肤和眼睛。

同时,实验环境要稳定,不能有太大的干扰因素,不然结果怎么能可靠呢?只有保证了安全性和稳定性,我们才能放心大胆地进行实验呀!
纳氏试剂法的应用场景那可多了去了。

像在环境监测中,它可是大功臣呢!可以用来检测河水、湖水、污水等各种水体中的氨氮含量。

它的优势也很明显呀,操作相对简单,结果准确可靠。

就好像是一个贴心的小助手,能快速又准确地帮我们了解水体的情况。

我给你讲个实际案例吧。

有一次在一个污水处理厂,工作人员就用纳氏试剂法来检测污水中的氨氮含量,结果发现氨氮含量超标了。

哎呀呀,这可不得了,赶紧采取措施进行处理,不然会对环境造成多大的危害呀!经过一番努力,终于把氨氮含量降下来了,避免了一场潜在的环境危机。

你说,这纳氏试剂法是不是超厉害的?
氨氮国标测定方法纳氏试剂法真的是非常重要且实用的方法呀,我们一定要好好利用它,为保护环境和保障人们的健康贡献力量!。

水质氨氮的测定——纳氏试剂分光光度法

水质氨氮的测定——纳氏试剂分光光度法

水质氨氮的测定——纳氏试剂分光光度法
水质中的氨氮是环境质量监测中的重要参数之一。

氨氮含量过高会导致水体富营养化,引起水华、死亡井等环境问题,危害人体健康。

因此,精确测定水体中的氨氮含量是非常
重要的。

纳氏试剂是一种常用的氨氮测定方法。

它是利用纳氏试剂与水中的氨氮发生反应,生
成含有结构复杂的纳氏试剂氨络合物。

这个络合物可以通过分光光度计测定其吸光度来确
定水中氨氮的含量。

具体实验方法如下:
1.试剂准备:纳氏试剂为3%硫酸汞(II)溶液(以Hg计),加入过量的碳酸钠,得到碳
酸汞。

再将草酸二钠和氯化镁混合,得到纳氏试剂。

2. 样品的准备:取一定数量的零度水样,进行过滤、消毒处理和氨氮去除处理,制
成适宜浓度的试样。

3. 进行实验:取一定数量的样品,加入纳氏试剂溶液,进行温度控制,显色反应,
静置等步骤(具体步骤见纳氏试剂的使用说明书)。

4. 分光光度计测定:测定样品的吸光度,并根据标准曲线求得样品中氨氮的含量。

需要注意的是,分光光度法测定氨氮时注意以下问题:
(1)水样的去除氨氮方法必须合适,以保证测定结果的准确性。

(2)样品处理和实验的时间不能太长,以免纳氏试剂与其他化合物发生反应而导致
结果的偏差。

(3)纳氏试剂的制备和保管需要特别注意,以防止汞污染环境或者试剂的反应性受
到影响。

氨氮的测定——纳氏试剂光度法

氨氮的测定——纳氏试剂光度法

氨氮的测定——纳氏试剂光度法
GB7479-87
From:《水和废水标准检验法》(第15版),中国建筑工业出版社,1985年,宋仁元、张亚杰、王维一等中译。

Pp340-341.
一、方法原理
碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶体化合物。

本方法的检测范围为0.025mg/L-2.00mg/L。

二、试剂列表
①纳氏试剂:称取80g氢氧化钠,溶于250mL纯水中,充分冷却到室温。

另称取35g碘化钾和50g碘化汞溶于水,然后将该溶液在搅拌下加入氢氧
化钠溶液中,用水稀释到500mL。

储存于聚乙烯瓶中。

静置24h后取上清
液。

②酒石酸钾钠溶液:称取100g酒石酸钾钠溶于200mL水中,加热煮沸以去除氨,冷却到室温,定容到200mL。

③铵标准储备液(1.00mg/mL):称取3.819g经100℃干燥2h的氯化铵溶于水,并定容到1000mL。

④铵标准使用液(0.010mg/mL):移取5.00mL铵标准储备液于500mL容量瓶中,定容到标线。

临用前配制。

三、测定步骤
①取适量水样于50mL比色管,并稀释到标线,加1.0mL酒石酸钾钠溶液,混匀;加
1.5mL纳氏试剂,混匀。

显色10min,在420nm处比色。

②标准曲线的制作:配制0-2.00mg/L的氨氮系列。

即,移取0、0.50、1.00、3.00、5.00、
7.00、10.0mL铵标准使用液于50mL比色管中,稀释到标线。

即0、0.10、0.20、0.60、1.00、1.40、2.00mg/L。

纳氏试剂分光光度法测定水中氨氮实验报告

纳氏试剂分光光度法测定水中氨氮实验报告

纳氏试剂分光光度法测定水中氨氮实验报告一、前言随着社会的发展,人们对水资源的需求越来越大,水质问题也越来越受到关注。

而氨氮是衡量水体中氮含量的重要指标之一,对于水体的生态环境和人类健康具有重要意义。

因此,研究和掌握纳氏试剂分光光度法测定水中氨氮的方法具有重要的理论和实际意义。

本文将对纳氏试剂分光光度法测定水中氨氮的原理、方法、影响因素以及实验结果进行详细分析和讨论。

二、纳氏试剂分光光度法测定水中氨氮的原理纳氏试剂分光光度法测定水中氨氮的原理是基于纳氏试剂与氨氮在碱性条件下生成红色络合物的特性。

当纳氏试剂与氨氮反应生成红色络合物时,络合物吸收特定波长的光线,通过测量吸收光强度的变化来计算氨氮的浓度。

三、纳氏试剂分光光度法测定水中氨氮的方法1. 样品制备:将待测水样过滤,去除水中的悬浮物和杂质。

然后,将过滤后的水样与适量的纳氏试剂混合,使纳氏试剂充分溶解。

在此过程中,需要控制好纳氏试剂的用量,以保证反应的准确性和稳定性。

2. 比色测定:将反应好的水样转移到比色皿中,加入适量的氧化剂(如高锰酸钾),使红色络合物转化为无色的络合物。

此时,根据比色皿中溶液的颜色深浅,可以计算出水样中氨氮的浓度。

3. 数据处理:为了准确评价测定结果,需要对测定数据进行一定的处理。

要对不同时间点的测定值进行线性拟合,得到一条拟合曲线。

然后,根据已知的水样浓度范围,通过比较拟合曲线与标准曲线的交点位置,可以确定待测水样的氨氮浓度。

四、影响纳氏试剂分光光度法测定水中氨氮的因素1. 纳氏试剂用量:纳氏试剂用量的选择对测定结果具有重要影响。

过少的纳氏试剂会导致反应不充分,影响测定精度;过多的纳氏试剂则会使络合物过于稳定,难以分离,同样会影响测定结果。

因此,在实验过程中需要严格控制纳氏试剂的用量。

2. 氧化剂用量:氧化剂(如高锰酸钾)的用量也会影响测定结果。

过少的氧化剂会导致红色络合物无法完全转化为无色的络合物,影响测定精度;过多的氧化剂则会使溶液颜色过深,干扰比色过程。

纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施

纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施

纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施注意事项及改进措施:纳氏试剂分光光度法是一种常用的水质分析方法,可以快速准确地测定水中的氨氮含量。

然而在进行该方法时,需要注意一些关键的操作步骤,以确保实验结果的准确性和可靠性。

也可以通过改进措施来进一步提高测定的准确性和精确度。

一、注意事项:1. 样品污染:在进行氨氮测定时,要确保样品不受外部污染的影响。

样品采集时,应尽量避免外部空气的接触,以防止氨氮的挥发或吸附外部的氨氮。

同时在实验过程中,也要尽量避免其他物质的污染,以免影响测定结果。

2. 试剂准备:在进行分光光度法测定时,需要严格按照标准操作程序进行试剂的准备和稀释。

试剂的质量和浓度对于测定结果有着直接的影响,因此一定要确保试剂的纯度和浓度标准。

在使用试剂时也要避免受到其它污染,避免对测定结果产生影响。

3. 仪器校准:在测定过程中,需要对光度计进行校准,确保其测定结果的准确性。

校准包括对空白试剂进行测定,对标准品进行测定等步骤,以保证光度计的准确度和稳定性。

4. 样品处理:在进行氨氮测定前,有时需要对样品进行预处理,如过滤、加热、酸碱处理等。

这些预处理步骤的操作能力和操作方法对于样品的处理效果、测定结果的准确性都有着重要影响。

5. 实验环境:测定过程中需要保持实验室的干净整洁,避免灰尘和化学污染物对实验结果的影响。

同时要确保实验室的温度、湿度等环境条件符合要求,以保证实验结果的准确性。

二、改进措施:1. 采用内标法:对于样品处理过程中可能存在的误差和波动,可以采用内标法进行测定。

内标法是在样品中加入一个已知浓度的内标物质,通过内标物和目标物之间的相对浓度比来提高测定结果的准确性和精确度。

2. 使用新型分光光度计:现代的分光光度计具有更高的稳定性和准确性,可以大大提高氨氮测定的精度和可靠性。

使用新型分光光度计可以对试剂浓度进行更精确的校准,提高测定结果的准确性。

3. 自动化操作:采用自动化操作设备,如自动加样器、自动混合器等,可以大大减少人为误差和操作不稳定因素的影响,提高测定结果的准确性和重现性。

纳氏试剂分光光度法测氨氮

纳氏试剂分光光度法测氨氮

纳氏试剂分光光度法测氨氮纳氏试剂分光光度法测氨氮的原理是利用纳氏试剂与氨氮作用,生成黄色络合物。

该络合物在一定波长下具有最大吸光度,通过测量吸光度即可定量测定氨氮含量。

试剂组成及反应机理纳氏试剂由水杨酸、过二硫酸钾和EDTA等组成。

氨氮与水杨酸在碱性条件下反应,生成黄色的络合物。

过二硫酸钾主要起氧化剂的作用,EDTA主要起络合剂的作用,可以防止金属离子干扰反应。

操作步骤1. 取样和稀释:根据样品浓度,取适量样品于比色管中,并稀释至一定体积。

2. 加入纳氏试剂:向样品中加入一定量的纳氏试剂,充分混匀。

3. 反应显色:将比色管置于37℃水浴中反应显色一定时间(通常为30分钟)。

4. 分光光度测定:将显色后的样品转移至比色皿中,在570nm波长处测定吸光度。

5. 绘制标准曲线:利用已知浓度的氨氮标准溶液绘制标准曲线,以吸光度为纵轴,氨氮浓度为横轴。

6. 计算氨氮含量:根据样品的吸光度和标准曲线,计算出样品中的氨氮含量。

注意事项1. 样品应新鲜,若放置时间过长,氨氮可能挥发或被吸收。

2. 纳氏试剂应现配现用,放置时间过长会影响显色效果。

3. 反应显色温度和时间应严格控制,否则会影响反应速率和显色效果。

4. 样品中若含有较多有机物,可能会影响显色效果,需要预先进行有机物去除处理。

5. 样品中若含有较多金属离子,可能会干扰反应,需要采取适当的络合措施。

优点和局限性优点:灵敏度高,检测限低。

操作简单,易于掌握。

适用于各种水样和废水样品的测定。

局限性:受样品中其他物质的干扰较大,需要采取适当的预处理措施。

反应显色需要一定的时间,测定速率相对较慢。

络合物在酸性条件下不稳定,可能会影响测定的准确性。

纳氏试剂法测定污水中氨氮的方法及实验过程中的注意问题

纳氏试剂法测定污水中氨氮的方法及实验过程中的注意问题

(作者单位:徐州市沛县环境监测站)纳氏试剂法测定污水中氨氮的方法及实验过程中的注意问题◎孔婉婉水中氨氮主要来源于生活污水中含氮有机物受微生物作用的分解产物,来自化工、冶金、石油化工、油漆颜料、煤气、炼焦、鞣革、化肥等工业废水,以及农田排水等。

氨氮含量较高时,对鱼类呈现毒害作用,对人体也有不同程度的危害。

城市污水中氨氮浓度往往比较高,直接排放将会引起各种环境污染问题。

快速准确的测定污水中的氨氮可以减少甚至避免环境污染。

实验室测定氨氮的方法通常有纳氏试剂分光光度法、水杨酸—次氨酸盐光度法、苯酚—次氯酸盐比色法、气相分子吸收法、滴定法、电极法、离子色谱法等。

目前,水质监测中氨氮测定主要采用纳氏试剂比色法,纳氏试剂比色法是测定水中氨氮国家标准方法,也是测定水样中氨氮含量的最常用方法之一,具有操作简便、灵敏等特点。

本文主要介绍了纳氏试剂比色法测定污水中氨氮的方法,并提出了实验过程中应注意的事项。

一、实验原理碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm 范围内测其吸光度,计算其含量。

本法最低检出浓度为0.025mg/L (光度法),测定上限为2mg/L。

采用目视比色法,最低检出浓度为0.02mg/L。

二、水样的采集与保存水样要用聚乙烯瓶或玻璃瓶采集,并应尽快分析,必要时可加硫酸将水样酸化至pH<2,于2~5℃下保存。

三、主要试剂的配制1.纳氏试剂的正确配制。

了解纳氏反应机理,是正确配制纳氏试剂的关键,常用HgCl 2与KI 反应的方法配制,其反应过程如下:HgCl 2+2KI→HgI 2(红色)+2KCl 称取20g 碘化钾溶于约25mL 水中,边搅拌边分次少量加入二氯化汞(HgCl 2)结晶粉末(10g ),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。

另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。

纳氏分光光度法测氨氮

纳氏分光光度法测氨氮

纳氏分光光度法测氨氮
纳氏分光光度法是一种用于测定水中氨氮含量的常用方法。

它是将水
样中的氨氮与试剂(如磷酸)在酸性条件下反应生成非挥发性化合物,在紫外线下测定其吸光度,以计算出氨氮含量。

该方法操作简单、准确、快速,被广泛用于环境监测、水资源管理等领域。

测定氨氮时,首先要取一定数量的水样,加上适量的试剂和酸,使其
反应完全。

随后,将反应液通过滤纸过滤,得到澄清的液体。

最后,
使用分光光度计测定该液体在一定波长下的吸光度,通过与标准曲线
对比计算出氨氮的含量。

在使用纳氏分光光度法测定氨氮时,有一些注意事项需要注意。

首先,反应过程中酸度要严格控制,否则会影响反应的准确性。

其次,试剂
和水样的比例也需要保持一定的比例,过多或过少都会影响反应的结果。

最后,还需要严格实行标准操作程序,避免实验误差。

总之,纳氏分光光度法是一种准确可靠的测定氨氮含量的方法。

它的
操作简便,结果快速,被广泛应用于各种水质监测场合,并得到了良
好的效果。

然而,在使用过程中需要注意细节,以保证测定结果的准
确性和可靠性。

纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施

纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施

纳氏试剂分光光度法测定水中氨氮的注意事项及改进措施测定水中氨氮是环境监测和水质评价中非常重要的一项指标。

而纳氏试剂分光光度法是目前常用的测定水中氨氮的方法之一。

在进行测定水中氨氮时,我们需要注意一些事项,并且可以进行一些改进措施,以提高测定的准确性和可靠性。

一、注意事项:1. 样品处理:需要对采集的水样进行处理。

在进行测定前,需要用1M硫酸或者1M盐酸将样品中的无机氮转化成铵盐。

然后,利用钠氢氧化物和氢氧化钠混合溶液对样品进行还原处理,将硝酸盐还原成铵盐。

2. 试剂选择:在进行分光光度法测定水中氨氮时,需要选择合适的纳氏试剂。

纳氏试剂是用来与水中的铵离子发生化学反应,形成深黄色的复合物,并且这个反应是可见光吸收的。

选择合适的纳氏试剂对测定的准确性有着很大的影响。

3. 光路调试:在进行分光光度法测定水中氨氮时,需要对光路进行调试。

合理调整光路,使得样品在进入光度计前经过等长光程的导管,保证吸光度的测定准确。

4. 温度控制:水质评价中对氨氮的测定通常要求在一定的温度条件下进行。

在进行分光光度法测定水中氨氮时,需要对测定样品的温度进行控制,保证测定的准确性。

5. 校准曲线:在测定之前,需要根据标准溶液制备一组标准曲线。

通过一系列浓度的标准溶液测定吸光度,并建立标准曲线,以便后续对样品进行定量测定。

二、改进措施:1. 优化样品处理方法:可以尝试采用更快速、更高效的样品处理方法,以减少处理过程对样品中氨氮含量的影响,提高测定的准确性。

2. 选择高纯度的试剂:在选择纳氏试剂时,可以考虑选用高纯度的试剂,以减少杂质对测定的影响,提高测定的精确度。

3. 定期维护光度计:光度计是进行分光光度法测定的主要仪器,在使用过程中需要定期进行维护保养,以保证测定的准确性。

4. 使用恒温设备:为了保证测定的温度稳定,可以使用恒温设备进行样品处理和测定过程中的温度控制。

5. 定期校准:定期对光度计进行校准,以确保测定的准确性和可靠性。

纳氏试剂分光光度法测定水中氨氮实验报告

纳氏试剂分光光度法测定水中氨氮实验报告

纳氏试剂分光光度法测定水中氨氮实验报告一、前言随着人类对环境保护意识的不断提高,水质监测成为了一个重要的研究领域。

而在水质监测中,氨氮是一个非常重要的指标,它可以反映出水体中氨氮的含量,从而判断水体的污染程度。

纳氏试剂分光光度法是一种常用的测定氨氮的方法,本文将对这种方法进行详细的理论分析和实验研究。

二、纳氏试剂分光光度法的理论基础1.1 纳氏试剂的制备纳氏试剂是由硫酸铜、硼酸和柠檬酸钠等物质组成的混合溶液。

在制备过程中,需要将这些物质按照一定的比例加入到水中,然后进行搅拌和静置,使其充分反应。

反应完成后,即可得到纳氏试剂。

1.2 纳氏试剂分光光度法的基本原理纳氏试剂分光光度法的原理是基于氨氮与纳氏试剂反应生成蓝色络合物的特性。

在一定条件下,氨氮与纳氏试剂中的铜离子和硼酸根离子发生反应,生成一种蓝色络合物。

这种络合物的最大吸收波长为400 nm,可以通过分光光度计进行测量。

根据吸收光强度与氨氮浓度之间的关系,可以计算出氨氮的浓度。

三、实验研究2.1 实验材料和设备本次实验所用的材料包括:纳氏试剂、氨氮标准溶液、分光光度计等。

设备方面,主要有滴定管、烧杯、移液管等基本实验器具。

2.2 实验步骤(1)准备纳氏试剂:取适量的硫酸铜、硼酸和柠檬酸钠加入到水中,搅拌均匀后静置一段时间,使其充分反应。

注意控制好反应时间和比例,以保证试剂的质量。

(2)配制氨氮标准溶液:根据实际需要,将适量的氨氮标准溶液稀释至一定浓度。

一般来说,每升水中加入1毫克的氨氮标准溶液即可。

(3)测定样品中的氨氮含量:取一定量的待测水样,加入适量的纳氏试剂,然后进行滴定。

具体操作时,可以使用滴定管逐滴加入纳氏试剂,并记录下每一滴所需的时间。

当滴定到终点时,记录下消耗的标准溶液体积和滴定所需的总时间。

通过计算消耗的标准溶液体积与样品中氨氮含量之间的关系,可以得到样品中的氨氮含量。

2.3 结果分析与讨论通过实验数据可以看出,纳氏试剂分光光度法可以准确地测定出水中氨氮的含量。

简述纳氏试剂分光光度法测定水中氨氮的原理

简述纳氏试剂分光光度法测定水中氨氮的原理

简述纳氏试剂分光光度法测定水中氨氮的原理
纳氏试剂分光光度法是一种常用的测定水中氨氮的方法,其原理如下:
1. 原理
纳氏试剂分光光度法是利用纳氏试剂(琼脂糖、磷酸盐和氯化汞)与氨氮在弱碱性溶液中反应,产生黄色络合物,并通过分光光度计对这种化合物进行吸收光谱分析。

通过比较样品吸光度与标准曲线上各标准溶液对应吸光度的差异来计算出样品中氨氮的含量。

2. 操作步骤
- 根据实际需要取水样,加入适量的纳氏试剂,并加入少量酸调整pH值为9.6左右。

- 等待约10分钟,使纳氏试剂与氨氮在溶液中发生反应,形成黄色络合物。

- 使用分光光度计测量该溶液中黄色络合物的吸光度,并结合标准曲线计算出样品中氨氮的含量。

- 注意控制实验条件,避免外界因素干扰结果的准确性。

总之,纳氏试剂分光光度法通过检测水样中的氨氮,利用纳氏试剂与氨氮在溶液中发生的反应并使用分光光度计来测量产生的黄色络合物的吸光度。

这种方法操作简便,灵敏度高且准确性较高,因此在水质监测和环境保护等领域有广泛的应用。

水质氨氮的测定纳氏试剂法

水质氨氮的测定纳氏试剂法

水质氨氮的测定纳氏试剂法
纳氏试剂法是一种常用的水质氨氮测定方法,也被称为硫熏法。

该方法的原理是通过将水样中的氨氮与纳氏试剂(含有磷钼酸铵、硼酸和硫酸)反应生成明黄色的醇酸盐沉淀,然后通过比色法测定沉淀的光吸收浓度来确定水样中的氨氮浓度。

测定步骤如下:
1. 取一定体积的水样放入反应瓶中。

2. 加入适量的纳氏试剂,并迅速摇匀。

3. 放置一段时间,使沉淀充分析出。

4. 将沉淀离心沉淀下,倒掉上清液。

5. 加入硫酸溶解沉淀,使其完全溶解。

6. 使用分光光度计测定溶液的吸光度。

7. 通过氨氮标准曲线或计算公式,根据吸光度值得出水样中的氨氮浓度。

需要注意的是,纳氏试剂法是一种相对精确的测定方法,但在一些特殊情况下可能会受到干扰。

如过量溶液中的硫酸可能会对测定结果产生影响,而硫酸中的铁和铝离子也有可能干扰测定。

因此,在进行测定时需要注意样品的处理方法和设备的选择。

另外,由于该方法涉及到有毒试剂的使用,操作时需要注意安全。

氨氮测定方法——纳氏试剂光度法

氨氮测定方法——纳氏试剂光度法

氨氮测定方法——纳氏试剂光度法纳氏试剂光度法(纳氏试剂比色法)是一种常用的测定氨氮浓度的方法,基于氨氮和酚反应后形成稳定的红色化合物的原理。

以下是使用纳氏试剂光度法测定氨氮浓度的步骤:步骤1:样品准备首先,需要准备好一系列含有不同浓度氨氮的标准溶液。

这些标准溶液可以通过配制已知浓度的氨氮溶液或者购买商用标准溶液来获得。

同时,还需要准备好待测样品,并将其过滤以去除杂质。

步骤2:比色管设置在透明的玻璃比色管中加入一定体积的纳氏试剂,通常为2ml。

然后,使用移液管向比色管中加入一定体积的标准氨氮溶液或待测样品(一般为1ml),并充分混合。

步骤3:反应与煮沸将比色管放置在水浴中,并保持水浴温度为60-70摄氏度。

在反应开始后大约10-15分钟后,将比色管迅速煮沸,让溶液中的氨氮与纳氏试剂充分反应。

步骤4:冷却与实验测定将煮沸后的比色管立即置于冷水中冷却,并在冷却至室温后,使用分光光度计测量比色管中溶液的吸光度值。

吸光度与溶液中氨氮的浓度成正比,可以利用标准曲线进行定量测定。

步骤5:绘制标准曲线与测量样品根据已知浓度的标准氨氮溶液得到一系列吸光度值,绘制标准曲线。

然后,使用同样的方法测量待测样品的吸光度值,并使用标准曲线进行定量测定,得到待测样品中氨氮的浓度。

需要注意的是,在纳氏试剂光度法中,测定结果受到一些干扰因素的影响,如硝酸盐的存在。

因此,在测定过程中,需要对样品进行预处理以去除或转化干扰物。

总之,纳氏试剂光度法是一种简单、快速、准确的测定氨氮浓度的方法,广泛应用于环境监测、水质分析等领域。

但是在实际应用时需要注意方法的灵敏度、准确性以及干扰物的存在,以保证测定结果的可靠性和准确性。

氨氮测定方法——纳氏试剂光度法(纳氏试剂比色法)

氨氮测定方法——纳氏试剂光度法(纳氏试剂比色法)

氨氮测定方法——纳氏试剂光度法(纳氏试剂比色法)1.方法原理碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm 范围内测其吸光度,计算其含量。

2.干扰及消除脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁和硫等无机离子,因产生异色或混浊而引起干扰,水中颜色和混浊亦影响比色。

为此,须经絮凝沉淀过滤预处理,易挥发的还原性干扰物质,还可在酸性条件下加热以除去。

对金属离子的干扰,可加入适量的掩蔽剂加以消除。

3.方法的适用范围本法最低检出浓度为0.025mg/L (光度法),测定上限为2mg/L 。

采用目视比色法,最低检出浓度为0.02mg/L 。

水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水中氨氮的测定。

4.仪器(1) 分光光度计。

(2) pH 计。

5.试剂配制试剂用水均应为无氨水。

(1) 纳氏试剂:可选择下列方法之一制备:[1] 称取20g 碘化钾溶于约25mL 水中,边搅拌边分次少量加入二氯化汞(HgC l2)结晶粉末(约10g ),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。

另称取60g 氢氧化钾溶于水,并稀释至250mL ,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL ,混匀。

静置过夜,将上清液移入聚乙烯瓶中,密塞保存。

[2] 称取16g 氢氧化钠,溶于50mL 水中,充分冷却至室温。

另称取7g 碘化钾和碘化汞(HgI 2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中。

用水稀释至100mL ,贮于聚乙烯瓶中,密塞保存。

(2) 酒石酸钾钠溶液:称取50g 酒石酸钾钠(KNaC 4H 4O 6•4H 2O )溶于100mL 水中,加热煮沸以除去氨,放冷,定容至100mL 。

(3) 铵标准贮备溶液:称取3.819g经100℃干燥过的氯化铵(NHCl)溶于水中,移入1000mL容量4瓶中,稀释至标线。

纳氏试剂测定氨氮技巧

纳氏试剂测定氨氮技巧

纳氏试剂测定氨氮技巧纳氏试剂比色法测定水体中氨氮常见问题与解决办法纳氏试剂比色法是测定水中氨氮的国家标准方法,文献[2]介绍了纳氏试剂比色法的等效方法。

标准方法和等效方法对氨氮测定的介绍较为详细,但实际工作中情况复杂,很多问题需要分别深入探讨并加以解决。

不少专家学者和专业技术人员对纳氏试剂比色法测定氨氮作了研究,我们根据工作经验,对纳氏试剂比色法测定水体中氨氮常见问题进行了总结,以期更好的指导实际工作。

1实验原理1.1 纳氏试剂配制原理纳氏试剂的正确配制,影响方法的灵敏度。

了解纳氏反应机理,是正确配制纳氏试剂的关键。

纳氏试剂由Nessler于1856年发明,有2种配制方法,常用HgCl2与KI反应的方法配制,其反应过程如下:显色基团为[HgI4]2-,它的生成与I-浓度密切相关。

开始时,Hg2+与I-按反应(1)式生成红色沉淀HgI2,迅速与过量I-按反应(2)式生成[HgI4]2-淡黄色显色基团;当红色沉淀不再溶解时,表明I-不再过量,应立即停止加入HgCl2,此时可获得最大量的显色基团。

若继续加入HgCl2,反应(3)式和(4)式就会显著进行,促使显色基团不断分解,同时产生大量HgI2红色沉淀,从而引起纳氏试剂灵敏度的降低。

1 2 氨氮反应原理了解氨氮反应原理对我们理解反应过程,控制反应条件有重要意义。

纳氏试剂与氨氮反应的情况较为复杂,随反应物质含量不同而分别按方程式(5)~(9)进行。

一般情况,纳氏试剂主要用于微量氨氮测定,其反应式为(5)式和(8)式。

(9)式表明NH3与NH4+在水溶液中可相互转化,主要受溶液pH的影响。

1.3 酒石酸钾钠掩蔽原理水体中常见金属离子有Ca2+、Mg2+、Fe2+、Mn2+等,若含量较高,易与纳氏试剂中OH-或I-反应生成沉淀或浑浊,影响比色。

因而在加入纳氏试剂前,需先加入酒石酸钾钠,以掩蔽这些金属离子,其掩蔽原理如下:2 氨氮实验的影响因子及解决方法2.1 商品试剂纯度纳氏试剂比色法实验所用试剂主要有KNaC4H6O6・4H2O、KI、HgCl2、KOH。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳氏试剂比色法测定水体中氨氮常见问题与解决办法纳氏试剂比色法是测定水中氨氮的国家标准方法,文献[2]介绍了纳氏试剂比色法的等效方法。

标准方法和等效方法对氨氮测定的介绍较为详细,但实际工作中情况复杂,很多问题需要分别深入探讨并加以解决。

不少专家学者和专业技术人员对纳氏试剂比色法测定氨氮作了研究,我们根据工作经验,对纳氏试剂比色法测定水体中氨氮常见问题进行了总结,以期更好的指导实际工作。

1实验原理1.1纳氏试剂配制原理纳氏试剂的正确配制,影响方法的灵敏度。

了解纳氏反应机理,是正确配制纳氏试剂的关键。

纳氏试剂由Nessler于1856年发明,有2种配制方法,常用HgCl2与KI反应的方法配制,其反应过程如下:显色基团为[HgI4]2-,它的生成与I-浓度密切相关。

开始时,Hg2+与I-按反应(1)式生成红色沉淀HgI2,迅速与过量I-按反应(2)式生成[HgI4]2-淡黄色显色基团;当红色沉淀不再溶解时,表明I-不再过量,应立即停止加入HgCl2,此时可获得最大量的显色基团。

若继续加入HgCl2,反应(3)式和(4)式就会显著进行,促使显色基团不断分解,同时产生大量HgI2红色沉淀,从而引起纳氏试剂灵敏度的降低。

1 2氨氮反应原理了解氨氮反应原理对我们理解反应过程,控制反应条件有重要意义。

纳氏试剂与氨氮反应的情况较为复杂,随反应物质含量不同而分别按方程式(5)~(9)进行。

一般情况,纳氏试剂主要用于微量氨氮测定,其反应式为(5)式和(8)式。

(9)式表明NH3与NH4+在水溶液中可相互转化,主要受溶液pH的影响。

1.3酒石酸钾钠掩蔽原理水体中常见金属离子有Ca2+、Mg2+、Fe2+、Mn2+等,若含量较高,易与纳氏试剂中OH-或I-反应生成沉淀或浑浊,影响比色。

因而在加入纳氏试剂前,需先加入酒石酸钾钠,以掩蔽这些金属离子,其掩蔽原理如下:2氨氮实验的影响因子及解决方法2.1商品试剂纯度纳氏试剂比色法实验所用试剂主要有KNaC4H6O6·4H2O、KI、HgCl2、KOH。

某些市售分析纯试剂常达不到要求,从而给实验造成较大影响,据我们的经验,影响实验的试剂主要是KNaC4H6O6·4H2O和HgCl2。

不合格酒石酸钾钠会导致实验空白值高和引起实际水样浑浊,影响测定。

不纯试剂从外观上难以鉴别,只有通过预实验检验才能判定是否符合要求。

HgCl2为无色结晶体或白色颗粒粉末,变质的HgCl2试剂常见红色粉末夹杂其中。

据经验,试剂中含有少量红色粉末的试剂还可使用,但仍要避免称取红色粉末配制反应试剂。

2.2反应试剂配制纳氏试剂有2种配制方法[2],第一种方法利用KI、HgCl2和KOH配制,第二种方法利用KI、HgI2和KOH配制。

2种方法均可产生显色基团[HgI4]2-,一般常用第一种方法配制。

该方法关键在于把握HgCl2的加入量,这决定着获得显色基团含量的多少,进而影响方法的灵敏度。

但方法未给出HgCl2的确切用量,需要根据试剂配制过程中的现象加以判断,经验性强,因而较难把握。

有人据经验总结出HgCl2与KI的用量比为0.44∶1时(即8.8gHgCl2溶于20gKI溶液),效果很好。

我们依据上述纳氏试剂配制反应原理,根据反应方程(5)式和(6)式得出HgCl2与KI的最佳用量比为0.41∶1(即8 2gHgCl2溶于20gKI溶液),以此比例配制的纳氏试剂经多次实验检验,灵敏度均能达到实验要求。

配制过程中,HgCl2一般溶解较慢,为加快反应速度,节省反应时间,有人提出可在低温加热中进行配制,还可防止HgI2红色沉淀提前出现。

酒石酸钾钠配制方法较为简单,但对于不合格试剂,由于铵盐含量较大,只靠加热煮沸并不能完全除去,可采取以下2种方法1)向定容后的酒石酸钾钠溶液中加入5ml纳氏试剂,沉淀后取上层清液使用。

(2)向酒石酸钾钠溶液中加少量碱,煮沸蒸发至50ml左右后,冷却并定容至100ml。

我们认为,第二种方法优于第一种方法,即使铵盐含量很高的酒石酸钾钠,经处理后空白值也能满足实验要求。

2.3高空白实验值空白实验值可反映实验过程中各种因素对物质分析的综合影响,空白值高会影响实验的精密度和准确度,因而每个实验对空白值均有一定要求。

氨氮实验空白值一般要求吸光度A ≤0.030。

但有时空白值远高于此,影响因素主要有试剂空白高、实验用水氨含量高以及滤纸含有一定铵盐。

2.3.1试剂对实验空白值的影响实验表明,用2.2中第二种方法配制的纳氏试剂的空白实验,吸光度一般比按第一种方法配制的纳氏试剂的空白实验值高近一倍多,且大于0 030[5]。

虽然用第一种方法配制纳氏试剂较为麻烦,但因实验空白值较低,所以成为首选的方法。

市售分析纯酒石酸钾钠,有时铵盐含量较高,直接加热煮沸配制,往往造成空白实验值高。

所以要降低空白值,可按2 2中方法配制酒石酸钾钠溶液,效果很好。

2.3.2实验用水对空白值的影响氨氮实验用水要求为无氨水,若空气中氨溶于水或有铵盐通过其它途径进入实验用水中,含量达到方法检测限,则可导致实验空白值高,所以无氨水每次用后应注意密闭保存。

有实验研究用新鲜蒸馏水代替无氨水测氨氮,实验空白值和标准曲线与用无氨水的方法无显著差异,并具有较高的精密度和准确度。

可见只要实验用水不含氨或极低含量氨,不论蒸馏水是否重蒸,均可使用。

2.3.3滤纸对空白值的影响氨氮实验需将水样过滤后测定,所以实验还需做过滤空白对照实验,以扣除滤纸影响。

由于滤纸一般都含有铵盐,因而可引起过滤空白值升高。

有实验表明,不同滤纸或同种滤纸但不同张之间铵盐含量差别很大,有些含量较高的滤纸虽多次用水洗涤,但仍达不到实验要求。

因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次。

我们选用经稀HCl浸泡并洗净的0.45μm醋酸乙酯纤维滤膜过滤水样,解决了用滤纸过滤产生的高空白问题。

不仅过滤空白值低,而且重复性好,所以推荐使用滤膜过滤。

2.4反应条件控制2.4.1反应温度对实验的影响温度影响纳氏试剂与氨氮反应的速度,并显著影响溶液颜色。

实验表明,反应温度为25℃时,显色最完全;5~15℃吸光度无显著改变,但其显色不完全;当温度达30℃时,溶液褪色,吸光度出现明显偏低现象[4]。

因而实验显色温度应控制在20~25℃,以保证分析结果的可靠性。

2.4.2反应时间对实验的影响实验表明,反应时间在10min之前,溶液显色不完全;10~30min颜色较稳定;30~45min颜色有加深趋势;45~90min颜色逐渐减褪。

因而,用纳氏试剂光度法测定水中氨氮时,显色时间应控制在10~30min,以尽快的速度进行比色,达到分析的精密度和准确度。

2.4.3反应体系pH对实验的影响由氨氮反应原理可知,OH-浓度影响反应平衡。

实验表明,水样pH的变化对颜色的强度有明显影响,水样呈中性或碱性,得出的测定结果相对偏差符合分析要求,呈酸性的水样无可比性,所以对于废水样应特别注意调节体系的pH值,最好将溶液显色pH控制在11 8~12.4,以保证结果的精密度和准确度。

还有研究表明,pH太低时,显色不完全,过高时溶液会出现浑浊,当pH为13时显色较完全,且不产生浑浊,因此溶液pH值宜选为13。

2 5水体中物质干扰实际水样中除含待测组分外,还含有其它成分,特别对于废水样,所含物质更为复杂,因而水样中都不同程度的存在干扰物质,影响氨氮比色测定。

对于一般地表水,干扰物质主要为Ca2+、Mg2+等金属离子,一般通过过滤加掩蔽剂酒石酸钾钠即可消除。

但我们曾发现,向过滤后的实际水样中加入酒石酸钾钠出现浑浊,但标准曲线组却未出现浑浊的现象,从而使水样无法比色测定。

这与酒石酸钾钠试剂不合格有关,非水样干扰问题。

当酒石酸钾钠试剂中含有较多Ca2+、Mg2+杂质时,与实际水样中Ca2+、Mg2+共同反应,生成较多量的酒石酸钙或酒石酸镁,从而析出使过滤水样变浑浊;由于蒸馏水中Ca2+、Mg2+痕量,因此未出现浑浊现象。

此时应更换酒石酸钾钠试剂,重新测定。

2.6样品稀释纳氏试剂光度法测定氨氮,当水样氨氮浓度大于2.0mg/L时,则需将水样稀释后测定,称为“事前稀释”。

这种稀释方法相对准确,但测定前不好预料,不利于大批量样品的及时分析。

另一种稀释方法是直接将显色后的样品进行稀释比色,称为“事后稀释”。

有研究表明,对于难以预料的超出浓度测定线性范围含量的含氨氮废水样品,用2种稀释方法得到的对比实验结果,相对误差满足环境监测分析要求。

对比结果还表明,若用无氨水作稀释溶剂,事后稀释以负误差居多,但配制一定量的空白溶液作稀释溶剂可抵消一部分负误差。

3 小结由实验和讨论可知,纳氏试剂光度法测定氨氮应注意和解决6种常见问题:(1)应注意主要试剂性状,选购合格试剂。

(2)试剂的正确配制决定着方法灵敏度,特别要注意理解纳氏试剂配制原理,正确掌握纳氏试剂配制要领。

(3)降低空白实验值可提高实验精密度,对实验用水、试剂空白和过滤滤纸要注意检查。

(4)反应条件,如温度、时间、体系pH决定反应速度、反应平衡和反应生成物的稳定性,应控制反应在最佳条件下进行。

(5)水体中溶解态无机或有机物以及不溶态悬浮物对纳氏试剂光度法测定氨氮均有干扰,应根据不同情形选择不同方法加以消除,特别应注意酒石酸钾钠掩蔽失效现象。

(6)对于超过检测上限含量水样的稀释测定问题,因事前、事后稀释2种方法相对误差均满足分析要求,对于大批量测定情况,可采取事后稀释测定。

相关文档
最新文档