高分子材料及工程塑料

合集下载

高分子材料与工程专业简介

高分子材料与工程专业简介
纺织大学、湖北科技大学 武汉工程大学、长江大学、湖北汽车工业学院、孝感学院 【湖南省】中南林业科技大学 、南华大学、湖南工业大学、衡阳师范学院 【广东省】中山大学、广东石油化工学院、深圳大学、仲恺农业工程学院、 华南理工大学、广东工业大学、暨南大学 【广西壮族自治区】桂林理工大学 【海南省】海南大学 【四川省】四川大学、西南石油学院 【陕西省】西安工业大学、西北工业大学、西安工程大学 、陕西科技大学、西安科技大学、西安交通大学、延安大学 【甘肃省】兰州大学、兰州理工大学 【内蒙古自治区】内蒙古农业大学 【新疆维吾尔自治区】新疆大学
(3)高分子合成方向:
我校高分子合成以新型橡胶、涂料与粘合为主要方向。本专业方向培养能在高分子材料合成工业各部门从事高分子材料的合成、高分子材料改性、功能与特种高分子合成与表征等科学研究与产品开发的高级工程技术人才。学生主要学习以高分子材料合成、高分子化学与物理改性为主体的聚合物合成工艺、聚合反应工程、功能与特种高分子材料设计、聚合物改性原理与方法等专业知识。
专业咨询邮箱:gaofenzi@
高分子材料与工程专业培养具备高分子材料与工程等方面的知识,能在高分子材料的合成改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。
本专业学生主要学习高聚物化学与物理的基本理论和高分子材料的组成、结构与性能知识及高分子成型加工技术知识。
二、专业综合介绍
材料物理(Material Physics)专业,一般属于材料科学与工程系学院下辖的专业之一。所涉及到的方面主要是材料的宏观及微观结构,尤其是微观结构,材料的物理性能基本参数以及这些参数的物理本质。 材料物理专业是材料科学与工程里面不可或缺的重要组成部分。犹如支撑万丈高楼的基石,材料支撑着人类文明。很多人觉得新世纪是“信息技术”的世界,不过任何技术赖以实现的物质基础还是材料,这一重要地位在人类社会发展到任何阶段都无法改变,而且必将越来越重要。随着科学技术的发展,材料正朝着微型化、功能化、智能化的方向发展。现在颇为流行的纳米材料、环境材料、电子材料、信息材料,大部分都是材料的物理性能在各特殊领域的应用。比如纳米材料,可以说就是纳米尺度下的材料物理学。材料物理专业所研究的磁学及光学性质在信息材料领域有着巨大的应用空间,是现代半导体、微电子、光电子产业发展的理论及应用基础。因此,随着材料产业以及信息产业在新 高分子材料与工程专业人才的培养模式

三大工业基础材料

三大工业基础材料

绪论三大工业基础材料:高分子材料金属材料无机非金属材料高分子材料发展速度及应用的广泛性大大超过了传统的水泥、玻璃、陶瓷和钢铁等材料。

三大有机合成高分子材料:塑料橡胶合成纤维塑料的玻璃化温度(耐热温度)高于室温,室温下一般为刚性固体(少数具有柔性),力学性能范围宽且受温度影响较大。

橡胶的玻璃化温度(显示弹性的温度)低于室温,在室温下通常处于高弹态,呈现弹性;合成纤维分子间力大,具有较高的力学强度和耐热性,宏观上长径比较大。

实际上,随着高分子材料及其加工技术的发展,三者之间并无明显的区别,很多常用塑料也是制造合成纤维的好材料,有些塑料室温下也有一定弹性。

1、塑料的概念塑料——以高聚物为主要成分,一般含有添加剂、在加工过程中能流动成型的材料。

塑料材料由两种基本材料组成:塑料基体材料——树脂;塑料辅助材料——助剂。

制品性能的影响——材料的组成、各成分之间的配比;塑料材料的结构和成分决定了它的性质和性能。

2、塑料的分类塑料品种繁多,性能各异,由于出发点不同分类方法也各不相同,最常用的分类方法有以下三种:(1 )按塑料热行为分类热塑性塑料——在特定的温度范围能软化、熔融并可可进行各种成型加工,冷却硬化后能保持一定的形状而成为制品,而且在一定的条件下此过程可反复进行。

这类塑料成型加工方便,其制品丧失使用性能后可再生利用。

热塑性塑料占塑料总产量的70%以上,主要品种有聚乙烯、聚丙烯、聚氯乙烯、聚酰胺、热塑性聚酯等。

热固性塑料——通常是指特定温度下将单体原料加热使之流动,并交联生成不溶不熔的塑料制品的一类塑料材料。

热固性塑料受热后只能分解,不能再回复到可塑状态,因而难以再生利用。

常用热固性塑料:酚醛塑料、不饱和聚酯塑料、氨基塑料等。

这两类塑料在本质上有什么不同?(2 )根据塑料的用途分类通用塑料、工程塑料、功能塑料A、通用塑料特点:原料来源广,产量大、价格低、性能一般,用途广泛的塑料品种。

应用:非结构材料,如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等。

《高分子材料与工程专业毕业实习及毕业设计(论文)(塑料)》教学大纲

《高分子材料与工程专业毕业实习及毕业设计(论文)(塑料)》教学大纲

《毕业实习及毕业设计(论文)》实践环节教学大纲(塑料)实践环节名称:毕业实习及毕业设计(论文)英文名称:Graduation Practice and Graduation Design (Thesis)课程编号:B03990200周数:16周学分:16考核方式:依据《青岛科技大学本科毕业设计(论文)成绩评定的实施办法》。

开设学期:第8学期适用专业及层次:高分子材料与工程专业(橡胶、中韩、卓越),本科生相关课程:所有专业课程一、毕业设计(论文)课程目标毕业论文是培养学生工程能力、科研能力、实践能力和创新能力的重要课程环节。

作为学生毕业前的一次综合训练,要充分体现培养目标的要求,帮助学生掌握工程设计、科学研究和理论联系实际的基本方法,培养学生分析、解决本专业复杂工程问题的能力。

本课程要求学生完成能反映专业培养所获得的能力的、有一定系统性和符合规范性的毕业论文。

毕业论文环节为期16周,分为开题、中期检查、毕业答辩三个阶段。

通过毕业设计(论文)课程应达到如下目的要求:1.能够基于高分子材料与工程专业基础和专业知识的学习,针对课题进行文献调研,了解课题所在领域的国内外研究进展并得到有效结论。

2.能够就课题所要解决的复杂工程问题设计工艺流程、配方、结构等方面的解决方案,在设计方案时体现创新意识,综合考虑经济和管理成本并充分考虑设计方案对环境、社会、健康、安全等的影响。

3.能够围绕拟解决的问题开展实验,合理选择实验仪器和设备搭建实验平台,掌握实验仪器设备的使用,遵守实验规范,正确收集实验结果,保证实验安全。

4.能够能够采用现代工具和手段正确采集、整理、分析实验数据。

5.在文献调研、方案设计、结果分析及对复杂工程问题的预测与模拟时能够有效利用恰当的技术、资源、现代工程工具和信息技术工具,并对相关信息进行分析、判断、选择、应用。

6.能够客观评价复杂工程问题解决方案涉及的新技术、新工艺、新趋势,对社会、健康、安全、法律以及文化的影响。

高分子材料加工原理(1)(1)

高分子材料加工原理(1)(1)

高分子材料加工原理第一章化学纤维人造纤维再生纤维素:黏胶纤维、铜氨纤维、莱赛尔纤维纤维素纤维:二醋酯纤维、三醋酯纤维橡胶纤维其他:甲壳素纤维、海藻纤维合成纤维聚酰胺纤维芳族聚酰胺纤维聚酯纤维生物可降解聚酯纤维聚丙烯腈纤维改性聚丙烯腈纤维聚乙烯醇纤维聚氯乙烯纤维聚烯烃纤维聚氨酯纤维聚氟烯烃纤维二烯类弹性体纤维聚酰亚胺纤维2、工程塑料通用工程塑料聚酰胺()聚碳酸酯()聚甲醛聚苯醚丙烯腈丁二烯苯乙烯共聚物超高分子量聚乙烯()特种工程塑料聚砜芳香族聚酰胺()聚酰亚胺()聚苯硫醚聚芳酯聚苯酯聚醚酮氟塑料()简答及论述1、聚合物熔融有哪几种方式,各方式的主控因素是什么?答:(1)无熔体移走的传导熔融:熔融热=表面热传导,熔融速率仅由热传导决定。

(2)(主要)有强制熔体迁移(由拖拽或压力引起)的传导熔融:熔融热=接触表面的热传导+黏性耗散生热。

熔融效率由热传导率、熔体迁移及黏性耗散生热速率共同决定(3)耗散混合熔融:熔融热=整个体积内将机械能转化为聚合物内能。

耗散混合熔融速率由整个外壁面上和混合物固体-熔体界面上辅热传导决定。

(4)利用电、化学或其他能源的耗散熔融(5)压缩熔融(6)振动诱导挤出熔融过程:熔融的主要能量来源于单纯使用振动力场2、怎样利用溶度参数理论来选择溶剂?答:当溶剂的内聚能密度或溶度参数与聚合物的内聚能密度或溶度参数相等或相近时,溶解过程的混合热焓等于或趋近于零,这时溶解过程能够自发进行。

一般来说,当时,聚合物就不溶于该溶剂。

3、Brodkey的混合理论涉及的混合的基本运动形式有哪些?聚合物成型时熔融物料的混合以哪一种运动形式为主?为什么?答:分子扩散、涡旋扩散、体积扩散以体积扩散为主原因(1)在聚合物加工中,由于聚合物熔体粘度一般很高,熔体与熔体间分子扩散挤满,因而分子扩散无实际意义。

(2)在聚合物加工中,由于物料的运动速度达不到紊流,而且黏度又高,故很少发生涡旋扩散(3)聚合物加工中的混合与一般的混合不同,由于聚合物熔体的粘度通常高于100Pa*s,因此混合只能在层状领域产生层对流混合,即通过层流而使物料变形、包裹、分散,最终达到混合均匀。

高分子材料之塑料2

高分子材料之塑料2

Logo
聚乙烯(PE)
聚乙烯是稍具柔软性的部分结晶固体物。其结晶相区与 无定形相区的比例不同导致其密度有差异。 纯结晶聚乙烯其密度约为1.0g/cm3,而纯无定形的密度则 约为0.8558/cm3。工业产品的密度则在0.915~0.970范围之间。
ቤተ መጻሕፍቲ ባይዱ
Logo
(1)高压低密度聚乙烯(LDPE): 密度0.915~0.930g/cm3 (2)线型低密度和中等密度聚乙烯(LLDPE): 密度 0.915~0.940g/cm3 (3)高密度PE(HDPE):密度0.940~0.970g/cm3均聚 物和密度0.940~0.958g/cm3共聚物。 (4)超高分子量聚乙烯(HMWPE):分子量10倍 于HDPE (5)改性聚乙烯:交联PE,接枝水解PE,氯化PE 氯磺化PE。
n
Logo
3.混合聚酰胺,即由多种二元胺、二元酸 或内酰胺等制得的共缩聚物,则在原数字 后面列一个括弧,括号中注明各组分质量 比的数字。
如尼龙-66/6 (60:40),表示由60%的66盐和 40%的已内酰胺所制得;尼龙-66/610 (50:50) ,表示由等质量的66盐和610盐所得。
Logo
其中,x>y,613号树脂具有比372号树脂更好的强度和 硬度,透光率保持了聚甲基丙烯酸甲酯均聚物的水平。
Logo
聚四氟乙烯(PTTE)
聚四氟乙烯的结构特点:
(1)分子链以螺旋形排列。
(2)分子链高度规整(高度结晶、高耐热性和高熔点)。 (3)氟原子高度对称,非极性(优异的介电和电绝缘性能) (4)氟原子对骨架碳原子有屏蔽作用,C-F键键能大(高 度热稳定性)。 (5)优异的耐化学试剂性和耐溶剂性。 (6)分子链刚性大、且异常巨大(熔融粘度极高)。 (7)材料宏观上力学性能不佳,易出现冷流现象。

【高分子材料】工程塑料PC、POM、PTFE和PPO

【高分子材料】工程塑料PC、POM、PTFE和PPO
易燃environmentalstresscrackingesc在外界环境的作用下例如溶剂氧气等因为塑料材料加工过程中有残余应力存在使得材料在远远低于屈服应力值时就发生了开裂的现象称为环静应力开裂
工程塑料
*聚碳酸酯(PC) *聚甲醛(POM) *聚四氟乙烯(PTFE) *聚苯醚(PPO)
一、聚碳酸酯 (polycarbonate ,PC)
PC性能
HDPE PC
• 密度: 0.94 1.2
• 抗拉强度: 21~37 60
• 伸长: 60% 120%
• 压缩强度: 15
80
• 弯曲强度: 25
91
• 冲击强度: 0.08~1 5
• (缺口)
• 透光率: __ 90%
• 阻燃性: 易燃 自熄
GFPC 1.32 110 5% 105
140~170 0.17
•聚苯醚(PPO)应用
• 1.代替青铜,用作无声齿轮(耐磨,耐冲击); • 2.变电站绝缘支柱(电绝缘); • 3.防腐零件(耐酸碱); • 4.医疗热水储槽(耐水解)。 • 5热变形温度高:190℃
• POM • PA6 • PC • HDPE • PTFE
介电常数
3.7 3.4 2.92~2.93 2.25~2.35 2.0
介电损耗 介电强度 kv/mm
0.0048 0.5 0.03 0.01 23 0.0005 <0.00002 60
四、聚苯醚
poly(phenylene oxide) 简称:PPO
• PC=======2.92~2.93========0.01=====
• PA6
3.4
0.03
• PA610
3.5
0.04

高分子材料经典工程案例

高分子材料经典工程案例

高分子材料经典工程案例
高分子材料在许多工程领域都有广泛的应用,这里提供一些经典的高分子材料工程案例:
1. 塑料加工:塑料是高分子材料的重要应用领域。

例如,汽车制造业中,高分子材料被用于制造汽车零部件,如保险杠、发动机罩、车门等。

这些部件需要具有良好的耐久性和抗冲击性能,而高分子材料恰恰能满足这些要求。

2. 航空航天工业:在航空航天领域,高分子材料因其轻质、强度高和耐高温等特性而被广泛应用。

例如,飞机上的座椅、内饰和电线绝缘层等都使用高分子材料。

3. 医疗领域:高分子材料在医疗领域的应用也十分广泛,如医用导管、手术缝合线、人工关节等。

这些材料需要高度的生物相容性和耐久性,而高分子材料可以很好地满足这些要求。

4. 包装行业:高分子材料在包装行业的应用也十分广泛,如塑料袋、塑料瓶、塑料餐具等。

这些材料需要具有良好的阻隔性能、轻便性和美观性,而高分子材料恰恰能满足这些要求。

5. 电子行业:在电子行业中,高分子材料被用于制造电路板、绝缘层、电池隔膜等。

这些材料需要具有高度的电气性能和稳定性,而高分子材料可以很好地满足这些要求。

以上都是一些高分子材料的经典工程案例,它们展示了高分子材料的广泛应用和重要性。

随着科技的不断发展,高分子材料的应用领域也在不断扩大,未来将会有更多的工程案例涌现。

高分子材料与工程专业

高分子材料与工程专业

高分子材料与工程专业高分子材料与工程专业是一门涉及高分子材料的研究与应用的学科,它涉及到高分子材料的结构、性能、加工工艺等方面的知识。

高分子材料是一类具有特殊结构和性能的材料,广泛应用于塑料、橡胶、纤维等领域,对于现代工业和生活具有重要意义。

首先,高分子材料与工程专业涉及到高分子材料的结构与性能。

高分子材料是由大量重复单元构成的聚合物,其结构决定了材料的性能。

例如,聚乙烯具有线性结构,导致其具有良好的延展性和柔韧性;而聚丙烯具有分支结构,因此具有较高的熔点和耐热性。

在工程专业中,学生需要学习高分子材料的结构特点,了解不同结构对材料性能的影响,为材料的应用和改性提供理论基础。

其次,高分子材料与工程专业还涉及到高分子材料的加工工艺。

高分子材料的加工工艺包括塑料成型、橡胶加工、纤维制备等多个方面。

在塑料成型中,学生需要学习挤出、注射、吹塑等成型工艺,了解不同成型工艺对塑料制品性能的影响。

在橡胶加工中,学生需要学习硫化、压延、挤出等加工工艺,掌握橡胶制品的加工技术。

在纤维制备中,学生需要了解纺丝、织造、非织造等制备工艺,掌握不同纤维材料的制备方法。

通过学习加工工艺,学生能够掌握高分子材料的加工技术,为工程实践提供技术支持。

最后,高分子材料与工程专业还涉及到高分子材料的应用与改性。

高分子材料在汽车、电子、医疗、建筑等领域有着广泛的应用。

在汽车领域,高分子材料被用于制造车身、内饰、发动机零部件等;在电子领域,高分子材料被用于制造电缆、电子元件封装等;在医疗领域,高分子材料被用于制造医疗器械、医用塑料制品等;在建筑领域,高分子材料被用于制造隔热材料、防水材料等。

同时,高分子材料的改性也是工程专业的重要内容,通过改性可以改善材料的力学性能、耐热性能、耐化学性能等,扩大材料的应用范围。

总之,高分子材料与工程专业是一门涉及高分子材料结构、性能、加工工艺、应用与改性等多个方面知识的学科,它为培养高素质的高分子材料工程技术人才提供了理论基础和实践技能。

高分子材料按应用分类

高分子材料按应用分类

高分子材料按应用分类高分子材料按应用可以分为以下几类:1.塑料塑料是一种广泛使用的聚合物材料,具有可塑性、可重复利用性、轻便、价格便宜等优点。

根据不同的用途和性能要求,塑料可以分为通用塑料和工程塑料。

通用塑料主要用于包装、家居用品、建筑材料等领域,如聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等;工程塑料则被广泛应用于电子、汽车、航空航天等领域,如聚碳酸酯(PC)、尼龙(PA)等。

2.橡胶橡胶是一种具有高弹性、绝缘性、防水性和耐油性的高分子材料。

橡胶主要用于制造轮胎、橡胶管、橡胶鞋等制品,也可用于制造各种工业和家居用品。

根据不同的用途和性能要求,橡胶可以分为天然橡胶和合成橡胶。

天然橡胶来源于橡胶树等植物,具有良好的弹性和透气性;合成橡胶则是由人工合成的,具有更加优异的性能,如耐高温、耐油污等。

3.纤维纤维是一种具有高强度、高弹性、耐高温和耐化学腐蚀等特点的高分子材料。

纤维主要用于制造各种纺织品、复合材料、建筑材料等。

根据不同的用途和性能要求,纤维可以分为天然纤维和合成纤维。

天然纤维来源于植物和动物,如棉花、羊毛等;合成纤维则是由人工合成的,如尼龙(PA)、聚酯纤维(PET)等。

4.高分子粘合剂高分子粘合剂是一种以高分子材料为基础的粘合剂,具有粘合力强、防腐、耐高温、耐化学腐蚀等特点。

高分子粘合剂主要用于粘合各种材料,如金属、玻璃、陶瓷、塑料等,也可用于制造涂料、油漆等制品。

根据不同的用途和性能要求,高分子粘合剂可以分为热固性粘合剂和热塑性粘合剂。

热固性粘合剂在加热时会固化,成为不可逆的形态;热塑性粘合剂则可以反复加热和冷却,具有较好的加工性能和使用性能。

5.高分子涂料高分子涂料是一种以高分子材料为基础的涂料,具有防腐、耐磨、防水、美观等特点。

高分子涂料主要用于涂装各种材料表面,如金属、木材、塑料等,也可用于制造各种工业和家居用品。

根据不同的用途和性能要求,高分子涂料可以分为装饰性涂料和非装饰性涂料。

高分子材料的分类

高分子材料的分类

高分子材料的分类一、按照化学结构分类。

1. 链状高分子材料。

链状高分子材料是由线性排列的重复单元组成的,其分子链呈直线状排列。

这类高分子材料的分子链通常具有较高的柔韧性和延展性,如聚乙烯、聚丙烯等。

2. 支化高分子材料。

支化高分子材料的分子链中含有支链结构,使得分子链的空间结构更加复杂。

这类高分子材料通常具有较好的热稳定性和机械性能,如聚乙烯醇、聚苯乙烯等。

3. 交联高分子材料。

交联高分子材料的分子链通过交联作用形成网状结构,具有较高的硬度和强度。

这类高分子材料通常具有优异的耐热性和耐化学性能,如环氧树脂、硅橡胶等。

二、按照物理性质分类。

1. 热塑性高分子材料。

热塑性高分子材料在一定温度范围内具有良好的塑性和可加工性,可通过加热软化后成型,如聚乙烯、聚丙烯等。

2. 热固性高分子材料。

热固性高分子材料在加热固化后不会软化,具有良好的耐热性和耐化学性能,如酚醛树脂、环氧树脂等。

3. 弹性体。

弹性体具有良好的弹性和回复性能,可以在外力作用下发生形变,去除外力后能够恢复原状,如橡胶、弹性体等。

三、按照用途分类。

1. 工程塑料。

工程塑料具有较好的机械性能和耐热性能,广泛应用于机械、电子、汽车等领域,如聚酰胺、聚碳酸酯等。

2. 包装材料。

包装材料通常要求具有良好的透明性、耐热性和耐撕裂性能,如聚乙烯、聚丙烯等。

3. 功能性高分子材料。

功能性高分子材料具有特殊的功能性能,如导电性、光学性能、磁性等,如聚苯乙烯、聚丙烯腈等。

总结,高分子材料根据其化学结构、物理性质和用途的不同,可以被分为多种不同的分类。

这些分类不仅有助于我们更好地理解和应用高分子材料,也为高分子材料的研究和开发提供了重要的理论指导和实际指导。

希望本文对高分子材料的分类有所帮助,谢谢阅读。

高分子材料与工程介绍

高分子材料与工程介绍

高分子材料与工程介绍高分子材料是一类由大量重复单元构成的大分子化合物,具有较高的分子量和较高的可塑性。

它们在各个领域中都发挥着重要的作用,包括材料科学、化学工程、生物医学工程等。

本文将介绍高分子材料的基本概念、特点及其在工程领域中的应用。

高分子材料的基本概念和特点高分子材料通常由单体通过化学反应合成而成,其中最常见的单体包括乙烯、丙烯、苯乙烯等。

这些单体通过聚合反应形成长链状分子结构,具有较高的分子量和较高的可塑性。

高分子材料具有许多独特的特点,其中最重要的是其良好的可塑性和可加工性。

由于分子链的柔性和可塑性,高分子材料可以通过热塑性和热固性两种方式进行加工和成型。

热塑性高分子材料在加热后可以软化并重新塑形,而热固性高分子材料则在加热后会固化成不可逆的结构。

除了可塑性和可加工性,高分子材料还具有较高的强度和耐磨性。

这些特点使得高分子材料在工程领域中得到广泛应用,例如制造汽车零件、建筑材料、电子器件等。

高分子材料在工程领域中的应用高分子材料在工程领域中有广泛的应用,下面将介绍其中几个重要的应用领域。

1. 汽车工程:高分子材料在汽车制造中起到了关键的作用。

例如,聚合物复合材料可以用于制造轻量化的车身零件,以提高燃油效率和减少尾气排放。

此外,高分子材料还可以用于制造橡胶密封件、塑料管道等汽车零部件。

2. 建筑工程:高分子材料在建筑领域中也有广泛的应用。

例如,聚合物涂料和粘合剂可以用于涂装和粘接建筑材料,提供保护和装饰功能。

另外,高分子材料还可以用于制造隔热材料、防水材料等,提高建筑物的能效和耐久性。

3. 电子工程:高分子材料在电子领域中的应用越来越广泛。

例如,聚合物封装材料可以用于制造电子器件的外壳和封装,提供机械保护和电气绝缘。

此外,高分子材料还可以用于制造柔性电子设备、导电高分子材料等。

4. 医疗工程:高分子材料在医疗领域中有重要的应用。

例如,生物可降解高分子材料可以用于制造缝合线、人工骨骼和组织工程材料等,帮助修复和替代受损的组织和器官。

机械基础4-4非金属材料

机械基础4-4非金属材料

氧化铝陶瓷是一种以氧化铝(Al2O3) 为主体的陶瓷材料。氧化铝陶瓷有较好的 传导性、机械强度和耐高温性。需要注意 的是需用超声波进行洗涤。氧化铝陶瓷是 一种用途广泛的陶瓷,因为其优越的性能, 在现代社会的应用已经越来越广泛,满足 于日用和特殊性能的需要。
特点:硬度大、耐磨性能极好、重量轻等。
用途:用于厚膜集成电路和高频绝缘材料 等
聚氯乙烯是在光、热作用下按自由基聚合反应机 理聚合而成的聚合物
聚丙烯,是由丙烯聚合而制得的一种热 塑性树脂。
酚醛塑料俗称电木粉,是一种硬而脆的热固 性塑料。以酚醛树脂为基材的塑料总称为酚醛塑 料,是最重要的一类热固性塑料,广泛用作电绝 缘材料、家具零件、日用品、工艺品等。
②、工程塑料
在工程结构中用做结构材料的塑料。
③、特种塑料
是指具有特殊性能和特种用途的塑料, 如耐高温塑料、医用塑料等。
耐高温材料一般就是PPS,LCP和高温尼龙。
PPS(聚苯硫醚)是260度; LCP(液晶聚合物,是一种新型的高分子材 料)高的有300-350度的;
高温尼龙是260-290度;
聚酰亚胺(PI)(耐高温塑料)
长期工作温度在350℃以上,短期可达 450℃,是目前工程塑料中耐高温性最好的 工程塑料,另外它的综合性能也是其他特种 工程塑料无法比拟的,被世人誉为“解决问 题的能手”.
4-4非金属材料
非金属材料种类繁多,在机械工程中 常用的有工程塑料、橡胶、陶瓷、复合材 料和胶粘剂。
按照含碳的化合物来分为:
有机高分子材料:橡胶、塑料、胶 粘
润滑材
剂、涂料、
料等。
无机非金属材料:陶瓷、玻璃、石 棉、
一、工程塑料 工程塑料是一类以天然或合成树脂
为主要成分,在一定的温度和压力下塑制 成型,并在常温下保持其形状不变的材料。

高分子材料专业方向介绍-塑料

高分子材料专业方向介绍-塑料

1953年齐格勒在 低压条件下合成 出聚乙烯,随后 纳塔合成出聚丙 烯,1963齐格 勒、纳塔获得诺 贝尔化学奖。
高分子· 塑料 发展方向
•高功能化 •高性能化
功能高分子材料的发展
•功能高分子材料于20世纪60年代末开始 得到发展。 •功能高分子是指具有化学反应活性、催 化性、光敏性、导电性、磁性、生物相 容性、药理性、选择分离性,或具有转 换或贮存物质、能量和信息作用等功能 的高分子及其复合材料。
就业案例或可以选择的就业单位
广东生益科技股份有限公司(关迟记,12届,研发工程师) 国星光电股份有限公司(陈婷等,11、13届,研发、质量工程师) 富士康科技集团(陈桂文等,12、13、14届,质量、采购工程师) 宇龙计算机通信科技(深圳)有限公司 酷派手机(王宇飞等,14届) 中机集团桂林电器科学研究院 国家橡胶及橡胶制品质量监督检验中心 中橡集团桂林橡胶工业设计研究院 中国化学工业桂林工程公司 桂林啄木鸟医疗器械有限公司 桂林优利特医疗电子有限公司
高分子· 塑料就业前景
学生毕业后可以到高分子材料及高分子复合材料成型加工、高分子合 成、化学纤维、新型建筑装饰材料、现代喷涂与包装材料、汽车、家 用电器、电子电气、航天航空等企业从事设计、新产品开发、生产管 理、市场经营及贸易部门工作 也可以到高等学校、科研单位从事科学研究与教学工作
还可以到政府部门从事行政管理、质量监督等工作
功能高分子材料-隐形眼镜
1950年人们逐渐开始配戴 材质是聚甲基丙烯酸甲酯 (PMMA)的隐形眼镜,具有优 越的光学特性,又能矫正角膜 性散光。1960年捷克学者利用 十年的时间发明了软性隐形眼 镜的材料,就是一直延用至今 的聚甲基丙烯酸羟乙酯 (HEMA)。

建筑工程高分子材料介绍(塑料、橡胶、纤维)

建筑工程高分子材料介绍(塑料、橡胶、纤维)
47
4)增塑剂与增韧剂
提高固化后胶粘剂层的柔韧性。
5)填料
活性或惰性矿物粉末 降低收缩性,增加稠度和增大粘度,提 高强度和耐热性。
6)改性剂
改善某一性能,如放老化剂、防腐剂等
48
2、常用的胶粘剂
1)热塑性树脂胶粘剂
如:聚乙烯醇胶粘剂、聚醋酸乙烯胶粘剂、丙烯酸树脂胶 粘剂等
2)热固性树脂胶粘剂
如:环氧树脂胶粘剂、脲醛树脂胶粘剂、聚酯树脂胶粘剂
29
3)增强塑料
组成:树脂,纸、短切纤维或纤维织物、片状材料等增强 材料;填料和添加剂。常用树酯有环氧、酚醛、不饱和聚 酯等。 特点:机械强度高,稳定性好,各向异性,成形工艺多样
用途:轻质结构材料、屋顶膜、装饰材料和电绝缘材料, 混凝土的增强筋和修补材料等。
结构工程中,应用较多的是玻璃纤维(GRP,俗称玻璃钢) 或碳纤维增强塑料。
43
建筑物伸缩缝用橡胶止水带合密封条
44
橡胶隔震垫
45
第4节 胶 粘 剂
能在两个物体表面减形成薄膜,并能 将它们紧密粘结在一起的物质。又称 为粘合剂、粘结剂等
46
1、组 成
1) 基 料
也称粘料或胶料,一般是具有较强粘合性能的材料,如合成树 脂、合成橡胶等。它赋予胶粘剂粘结强度、耐久性及其它物理 力学性能。
30
玻璃纤维、芳纶纤维与碳纤维的FRP制品
31
玻璃纤维、芳纶纤维与碳纤维制品
32
纤维增强塑料棒作为混凝土的配筋
33
34
纤维增强材料作为桥面板配筋
35
纤维增强材料作为桥面板配筋
36
37
纤维增强材料储油设施
38
39
40

第三章 工程塑料(高分子材料)PPT课件

第三章  工程塑料(高分子材料)PPT课件
(b)混炼法是用乳液聚合的方法分别制得AS树脂(丙烯腈 与苯乙烯的共聚物)和BA(丁腈橡胶),然后两者进行机械混 拣,可得ABS。这种方法制得的ABS实际上是塑料与橡胶 的共混物。
(c)接枝混炼法,是由乳液接枝共聚制得的ABS树脂和另 一乳液制备的AS乳胶,将两种胶乳按不同比例混合、凝聚、 水洗、干燥,在混炼机上进行机械混炼,由于比例不同, 可得不同性质和型号的ABS。
⑤导热系数低;
⑥吸水性大(因酰胺基是亲水基团,其中PA6,PA66吸水性 最大)。
6.改性和新型聚酰胺 ①列增优强良② 单尼性体单龙能浇体③反,铸浇尼反应但尼铸龙④先应注与龙尼虽由芳注射金(龙有美以香射成属国(一下M族⑤结成型杜系材C简尼晶透邦型尼尼称公龙型明(龙龙R⑥抗M司聚尼。I()C开M冲高R。合龙芳I发)尼抗M尼香物。成⑦塑尼龙冲族龙,普功料电是龙尼尼的产。通主镀龙以龙)耐品尼是要尼高尼。呈龙2温为龙龙高0乳是世、A。纪耐B过S6辐0塑去年射料电代、,镀首耐 料相比尼,龙还)是是存尼在在龙腐M着6蚀C的强的尼一度尼龙白种龙较基色新,础品。所6种上要6不,或发获目尼展得前近龙起透主年6要明来为来有性基开聚,体间发必,苯了二电酰镀间尼苯龙二 , 小 、 刚同度的较是的低它,、采胺是由用和把吸了聚具湿碱对有须苯聚而高酰抑合胺反制法通两应晶,种过活体。与性的如其的生日他成尼本聚,东合使洋物其纺织公司的 引足因 ,此起 使开的加 胺 艺应发尺快单直用了寸了体接龙注液受玻变聚能在原入体到璃化合通模甲34料密注一纤较45速过具聚00酰于 闭 射~℃定维大度简内氯间3高的成6,限等、,便聚和0苯℃压模型脆生采化间二制使的合不石很化下具方成用法苯酰己聚成。快温二间瞬中法非主及结内合型共步新胺度苯间成。结链不晶酰工。通混提品二-7,反型目晶上同0过胺的高种℃晶应的前聚引单界(T同优方抗。体商,-一合入体较,面7的异熔名法冲杜可7缩物侧进种多再7点品外。在来强邦聚具。 链 行为N观尼2进度公法有o0一的共4m01,龙聚一的司℃与0e般支缩℃x得但电)连电,,,性镀续镀由分N能的使o间解Am更工B用苯温exS为艺二在。度相 棉 纤 维M、C尼碳龙的纤分是维N子采、om量用钛ex比尼耐金一聚辐龙属般射法6,作尼来最具龙为实有早R现优于IM。异原1尼透的9理7力明龙6是年学尼,性开龙能通发具和过电化性学能处,理抗 晶 须 等6增高一强倍原的左料品张右,种强,在,度达单在为3体有.很850熔高万~1点度~20成M之透7.功P0上明a ,,聚、抗(商浸合低压品蚀吸物强名)水度先为为性使3、制20M品P表a ,面抗粗压 大上维增程的强度不万 尼 工尼上足,龙设龙弥。因备6最高熔成N补其此及重-。型点乙了中各模要模的缘M。之酰尼以项具。材方量C反下基龙玻力简尼聚料法高应,己性璃对学单。制龙达过在内耐且优苯取4性,能纤成4程模酰酰薄热仍良0能可型0胺膜M以具胺水有力都直加Z度倍P(,商钾内为性一学ay比接。亦比。t名为助快及般强eN可l品一ZoS催催速耐尼度层ymK糙催后T般t化化e抓龙。聚ee压。xvl化化再尼通l制S剂剂伤所目合a其r,剂进T龙常)取由性 具前,,是抗再(行用层高对催,有主以冲铝压使化1氨化并的要0尼强片板基其学工浸,苯吸电艺为渍甲附镀H后)酸,-还和剥级或然原电离绝 尼龙用浇玻铸璃,纤反因维应而增对温特强苯度别二后在适甲力品酰1用5氯种0于℃与是大龙对以支件苯6上化6、二为。法胺气基与缩透电体聚明尼镀,而尼,成近龙。使年K铜ev、lar具镍有、高铬 学强度多、品耐种疲龙和劳6小相性强批、比度尼、尺,低龙寸RT密量IrMo度制g尼、a品m来耐龙i的d高日具-T温本和有等等开共更一金发系缩高属的列聚优在E法X异制透系性品能表,面主要形用成 稳都定有性明生和显产耐提。热高的性性。。结、以膜晶耐制和性超层候和高压性刚明强材性度料尼耐。、龙列高更P温A则小C纤以P的维-密层尼9,吸/实。6龙亦湿。、6可为用均基作匀体塑和料。导,电制成性薄薄

高分子材料

高分子材料

⏹一、高分子材料的基本概念●高分子材料是以高分子化合物为主要组分的材料。

常称聚合物或高聚物。

●高分子化合物的分子量一般>104 。

●高分子化合物有天然的,也有人工合成的。

工业用高分子材料主要是人工合成的。

第二节常用高分子工程材料高分子工程材料包括塑料、合成纤维、橡胶和胶粘剂等。

一、工程塑料塑料是在玻璃态下使用的高分子材料。

在一定温度、压力下可塑制成型,在常温下能保持其形状不变。

⑴塑料的组成塑料是以树脂为主要成分,加入各种添加剂。

树脂是塑料的主要成分,对塑料性能起决定性作用。

添加剂是为改善塑料某些性能而加入的物质。

填料主要起增强作用;增塑剂用于提高树脂的可塑性和柔软性;固化剂用于使热固性树脂由线型结构转变为体型结构;稳定剂用于防止塑料老化,延长其使用寿命;润滑剂用于防止塑料加工时粘在模具上, 使制品光亮;着色剂用于塑料制品着色。

其他的还有发泡剂、催化剂、阻燃剂、抗静电剂等。

⑵塑料的分类按树脂受热时行为可分为热塑性塑料和热固性塑料。

按使用范围可分为通用塑料、工程塑料和特种塑料。

通用塑料产量大、价格低、用途广。

工程塑料力学性能高,耐热、耐蚀性能好。

●特种塑料是指具有某些特殊性能如耐高温、耐腐蚀的塑料,这类塑料产量少,价格贵,只用于特殊需要的场合。

⑶塑料的性能特点塑料的优点:相对密度小(一般为0.9-2.3);耐蚀性、电绝缘性、减摩、耐磨性好;有消音吸振性能。

塑料的缺点:刚性差(为钢铁材料的1/100-1/10),强度低;耐热性差、热膨胀系数大(是钢铁的10倍)、导热系数小(只有金属的1/200-1/600);蠕变温度低、易老化。

(4)常用工程塑料①一般结构用塑料包括聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚丙烯(PP)和ABS塑料等。

聚丙烯具有优良的综合性能,可制造各种机械零件。

ABS塑料“坚韧、质硬、刚性” ,应用广泛。

③耐蚀用塑料主要有聚四氟乙烯、氯化聚醚(PENTON)、聚丙烯等。

高分子材料种类

高分子材料种类

高分子材料种类
高分子材料是一种重要的材料,它的种类有很多,根据性质和用途的不同可以分为以下几类。

第一类是热塑性高分子材料。

热塑性高分子材料的特点是可以在高温下塑形,而且在不断变形的过程中不会断裂。

这种材料广泛应用于电视机、电脑等电子设备的外壳、汽车的内饰和外壳、日常用品的塑料盒、玩具等等。

常见的热塑性高分子材料有聚乙烯、聚丙烯、聚氯乙烯、聚酯等等。

第二类是热固性高分子材料。

热固性高分子材料的特点是在加热的过程中会形成交联结构,从而无法再重新塑性。

这种材料使用在高压绝缘材料、船舶建筑中的防火材料、电子电器等领域。

常见的热固性高分子材料有酚醛树脂、环氧树脂等。

第三类是弹性体高分子材料。

这种材料的特点是具有良好的弹性,能够恢复原状。

广泛应用于橡胶轮胎、橡胶管、橡胶皮筋等领域。

常见的弹性体高分子材料有天然橡胶、合成橡胶等。

第四类是工程塑料高分子材料。

这种材料的特点是具有高强度、高耐热、高耐化学腐蚀等性质,广泛应用于机械、汽车、化学等领域。

常见的工程塑料高分子材料有聚酰亚胺、聚醚酮、聚酰胺等。

第五类是复合型高分子材料。

这种材料是由两种或多种不同的高分子材料组成,通过物理或化学方法相结合而成。

这种材料的特点是具有多种性质,广泛应用于防水材料、隔热材料、高桥建筑材料等领域。

常见的复合型高分子材料有聚氨酯、聚氨酯泡沫等。

高分子材料的种类多样,根据其特性和用途的不同可以分为热塑性、热固性、弹性体、工程塑料和复合型等多种类型。

随着科技的发展和工业的不断进步,高分子材料的应用领域也将不断拓展和深化。

汽车零件的高分子材料

汽车零件的高分子材料

汽车零件的高分子材料
汽车零件使用的高分子材料有很多种,下面列举了一些常见的高分子材料及其应用:
1. 工程塑料(Engineering plastics):如聚酰胺(尼龙)、聚甲基丙烯酸甲酯(PMMA)等,用于制造汽车内饰件、外观件、车身结构件等。

2. 聚丙烯(Polypropylene,简称PP):用于制造汽车仪表板、门板、储物箱等。

3. 聚氨酯(Polyurethane,简称PU):用于制造汽车座椅、护板、悬挂系统等。

4. 聚酯(Polyester):用于制造汽车座椅面料、车身涂料等。

5. 聚碳酸酯(Polycarbonate,简称PC):用于制造汽车车灯镜片、后视镜壳体等。

6. 聚苯乙烯(Polystyrene,简称PS):用于制造汽车内饰件、保险杠等。

7. 聚醚酮(Polyetherketone,简称PEEK):用于制造汽车发动机零件、涡轮叶片等。

8. 聚丙烯酸酯(Polyacrylic,简称PAC):用于制造汽车漆膜、涂料等。

以上只是一些常见的高分子材料,随着科技的发展,新型高分子材料的应用也在不断涌现,并且在汽车零部件中发挥越来越重要的作用。

工程塑料熔点

工程塑料熔点

工程塑料熔点1. 工程塑料简介工程塑料是一类具有优异性能的高分子材料,广泛应用于各个领域的工业制造中。

相比于传统的塑料材料,工程塑料具有较高的强度、耐热性、耐化学品腐蚀性和耐磨损性等特点。

其中,熔点是工程塑料性能中一个重要的指标之一。

2. 熔点对工程塑料性能的影响熔点是指在一定压力下,物质从固态转变为液态所需要的温度。

对于工程塑料而言,熔点直接影响着其加工、成型和使用温度范围。

通常情况下,工程塑料具有较高的熔点,使其能够在较高温度下保持稳定性能。

3. 常见工程塑料的熔点3.1 聚酰胺类(PA)聚酰胺类是一类常见的工程塑料,也被称为尼龙。

不同类型的聚酰胺具有不同的熔点范围。

例如:•尼龙6(聚己内酰胺)的熔点约为215-225°C;•尼龙66(聚六亚甲基二胺酸和己内酰胺的共聚物)的熔点约为260-270°C。

3.2 聚酯类(PET)聚酯类工程塑料具有较高的耐热性和耐化学品腐蚀性。

常见的聚酯类工程塑料包括PET(聚对苯二甲酸乙二醇酯)和PBT(聚对苯二甲酸丁二醇酯)。

它们的熔点范围分别为245-255°C和225-230°C。

3.3 聚碳酸酯类(PC)聚碳酸酯是一种透明、高强度、高耐热性的工程塑料,常用于制造光学器件、电子产品外壳等。

它的熔点通常在220-230°C之间。

3.4 聚丙烯类(PP)聚丙烯是一种常见的工程塑料,具有良好的机械性能和化学稳定性。

其熔点范围约为160-170°C。

3.5 聚乙烯类(PE)聚乙烯是一种广泛使用的工程塑料,常见于包装材料、管道等领域。

根据密度的不同,聚乙烯可分为高密度聚乙烯(HDPE)和低密度聚乙烯(LDPE)。

它们的熔点范围分别为120-130°C和105-115°C。

4. 影响工程塑料熔点的因素4.1 分子结构工程塑料的分子结构直接影响其熔点。

通常情况下,分子量较大、结晶性较强的工程塑料具有较高的熔点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、非金属材料的发展:
1.金属材料的优点及局限性: 使用性能:高强韧性;导电导热性;
优点
工艺性能:切削加工;铸、锻、焊;
柯垂尔:金属今后一段时间仍是主要的工程材料。
局限性:难以适用密度小、耐腐蚀、电绝缘、减
震、消音、耐高温等。
密度:钢7.8、铝 2.7、高分子 0.8-2.0; 耐腐蚀:金属难以与陶瓷相比; 耐高温:金属耐热钢<800℃、镍基合金<1000℃、
高分子化合物总是由不同大小的分子组成,这一现象 称为高分子化合物的分子量的多分散性。
例:聚苯乙烯: 分子量 10000~300000 聚丙烯脂: 分子量 60000~500000
分子量的分散性对性能产生影响。
材料科学与工程学院
③平均分子量 M
ⅰ、平均分子量用 M 表示,具有统计概念。
ⅱ、平均分子量和分布宽窄(分散性大小) 影响高聚物的物理、力学性能。
晶态
部分晶态
非晶态
材料科学与工程学院
结晶度越高,分子间作用力越强,因此高分子化合 物的强度、硬度、刚度和熔点越高,耐热性和化学稳 定性也越好;而与键运动有关的性能,如弹性、伸长 率、冲击韧性则降低。 (1)高聚物不存在完全晶态的高聚物,通常把结晶超过 50%的高聚物称为结晶 高聚物。 结晶高聚物中:晶区、 非晶区。结晶度一般 为50~90%
|x
g
CN
共聚
ⅰ、共聚反应表达式:n(xA yB) (Ax-By)n
ⅱ、注意:共聚物不能理解为混合物,而是主链中包 含两种或两种以上单体链节的新型聚合物。
ⅲ、共聚物中单体链节的排列方式:A、B表示两种单体 无规共聚:—A—B—A—A—B—A—B—B—B—
交替共聚:—A—B—A—B—A—B—A—B—A—
2. 大分子链形态:
1)线型分子链:
由许多链节组成的长链, 通常是卷曲成线团状。
这类结构高聚物的特点 是弹性、塑性好,硬度低, 是热塑性材料的典型结构。
2)支化型分子链:
在主链上带有支链。 这类结构高聚物的性能和加工都 接近线型分子链高聚物。
3)体型分子链 :
分子链之间由许多链节相互横向交联。 这类结构的高聚物硬度高、脆性大、无弹性和塑性,是热固性 材料的典型结构。
嵌散共聚:—A—A—B—B—A—A—B—B—A
接枝共聚:
ⅳ、共聚物的性能类似于合金,通过改变共聚物的单体 和比例,可以改善高聚物的性能。
例:ABS中,随 A , HB ; B ,韧性 .
2. 缩聚反应:
由一种单体或多种单体相互缩合生成聚合物, 同时析出其它低分子化合物(如水、氨、醇、 卤化物等)的反应称为缩聚反应。
ⅱ、大分子链的构象:
由于单链内旋转运动引起原子在空间位置的变化而 构成大分子链的各种形象称为大分子链的构象。
(2)、大分子链的柔顺性:
ⅰ、大分子链上单链的内旋转运动,造成整个大分子 链的形状及末端距离每一瞬间都不相同,大分子链 时而蜷曲,时而伸展,该特性称为大分子链的柔顺性。
柔顺性:大分子链构象变化而获得不同蜷曲程度的特性。
均缩聚反应:由一种单体进行的缩聚反应。
共缩聚反应:由两种或两种以上的单体进行
的缩聚反应。
特点: 官能团之间反应,缩聚物有特征结构官能团; 有低分子副产物; 缩聚物和单体分子量不成整数倍。
四、高分子材料的分类
①按来源: ⅰ、天然聚合物:天然橡胶,纤维素,蛋白质等。 ⅱ、人造聚合物:经人工改性的天然聚合物。
(2)影响结晶度的因素:
ⅰ、分子链的结构:结构简单、分子链短,利于结晶。 ⅱ、外力的影响:拉伸促进高聚物的结晶。
原因:沿拉伸方向伸展开,增加了分子链的接触面积和
减少距离,提高了分子间的作用力和结晶能力。 例如:尼龙绳、包装带越拉越强。 ⅲ、冷却速度:从熔融态缓慢冷却有利于结晶,快冷 不利于结晶。 ⅳ、温度:高聚物对应结晶速度最快的温度TK,在
High polymer Material
绪论
高分子结构 高分子性能 橡胶材料 工程塑料 纤维与涂料
绪论
一、非金属工程材料的定义:
金属材料之外的所有工程材料。 金属材料:钢铁、有色金属;
工程材料 高分子材料:塑料、橡胶、复合材料;
无机非金属材料:陶瓷,玻璃、水泥;
三大固体材料,称为材料的三大支柱。
M 越大,强度越高,硬度越高,但融熔粘度增
大,流动性差。分散性大;熔融温度范围变宽, 有利于加工成型,但抗撕裂性差。 ⅲ、生产中,通过控制产品的分子量大小和分布 情况,改善性能以满足不同的需要。
分子量过高部分使聚合物的强度增加,但加工成型时塑 化困难;低分子量部分使聚合物强度降低,但易于加工 不同用途的聚合物应有其合适的分子量分布:
三、高分子化合物的聚合:
1. 加聚反应: 加成聚合反应 定义:由一种或多种单体相互加成,或由环状化合物开环
相互结合成聚合物的反应称为加聚反应。
均聚物:由一种单体经过加聚反应生成的高分子化合物;
例如:聚乙烯、聚苯乙烯等。
均聚反应表达式:nA A A A A 或(A)n
特点:聚合物的结构单元与单体组成相同;
交联分子结构
三维空间分子结构
线型→体型的转化:(不可逆)
一定条件下,线形可以转化成体型。即固化或交联。 例:橡胶的硫化等。
结构转化带来很大的性能变化。例如: 低密度聚乙烯:有弹性,做薄膜、奶瓶等; 高密度聚乙烯:做较硬的水杯、工程塑料; 交联聚乙烯:做海底电缆的包皮,有出色的绝 缘性, 耐热性。
不同结构聚乙烯的性能
TK温度保温,结晶可充分进行。 例如:天然橡胶,TK=-24℃,若轮胎在低于TK温度 下工作,就会发生结晶而失去弹性。
功能材料:光导纤维;
的主力军。
(3)复合材料:高的比强度、高的刚度、低的密度 等,是单一材料和合金难以比拟的。
(4)非金属材料不是金属材料的代用品,而是具有 优越性能的不可缺少的材料。例如;
美国“哥伦比亚”号航天飞机,机身覆盖一万多 块隔热绝热陶瓷,以保护飞机。
三、非金属材料的发展趋势:
1、研制具有优良性能的新材料; 2、对现有材料进行改性;例如加入添加剂改性,是
①高聚物的分子量是M: M m n
m:链节分子量; n:聚合度 分子量不同,高聚物的性能和 物理状态不同。例:聚乙烯
分子量 n=8 M=224
n>50 M>1400
n>200~2000 M>5600~560000
室温状态 气+液
软态固体 固体
②高聚物分子量的多分散性:
低分子化合物有确定而均一的分子量。 例:H2O,18;CO2,44。
合成纤维:分子量分布宜窄; 塑料、橡胶:分子量分布可宽;
常用的聚合物的分子量(万)
其中氯乙烯
的单体.
就是聚氯乙烯
就是聚氯乙烯分子键的链节, n就是聚合度。聚合度反映了大分子链的长短和分子量的 大小,高分子化合物的分子量(M)是链节的分子量(M0)
与聚合度(n)的乘积。M= M0×n
材料科学与工程学院
其中C链这最多。
C链结构
大分子链的特点:
①一般为共价链连接,不易失去和获得电子。 ②比重小,都是轻元素:C、H、O、N。故高分子材料
比重小,0.29~2.0g/cm3。 ③组成元素不同,性能差别很大。如聚乙烯中的H被F
原子代替,即聚四氟乙烯,是耐王水腐蚀的塑料王。
聚乙烯: ( CH2 CH2 ) 四氟乙烯: ( CF2 CF2 )
(2)陶瓷材料:传统陶瓷指:陶器、瓷器、玻璃、水 泥,性能硬、脆; 现代陶瓷指:所有无机非金属材料的总称。
近三十年来,以氧化物(例Al3O2)、氮化物(例Si3N4) 和碳化物(例SiC)等高纯化合物为原料,经过传统陶 瓷生产工艺制成的无机多晶产品,已成为:
高温材料:例:火箭喷气口、高温电炉发热体;
万 万 百万
2、高分子材料:以高分子化合物为主要组分的材料。
主要包括:塑料、橡胶、化学纤维等。
二、高分子化合物的组成
高分子化合物的分子量虽很大,但其化学组成并不 复杂,通常由一种或几种低分子化合物聚合而成。
例:n(CH 2 CH 2) 聚乙烯
1、高分子化合物的单体、链节和聚合度:
①单体:
定义:组成高分子化合物的简单低分子化合物。
分子量是单体分子量的整数倍; 聚合过程无副产物生成。
共聚物: 由两种或两种以上的单体经过加聚反应生
成的高分子化合物。
例:ABS塑料。A:丙烯脂 B:丁二烯 S:苯乙烯
n[xCH=CH+gCH2 =CH-CH=CH2 +zCH=CH2 ]
|
A
B
S
CN
共聚
[ CH2 CH ) ( CH2 CH CH CH2 ) ( CH2 CH )z ]n
180-600 135
体型
4.大分子链的构象
——链的柔顺性及热运动特点:
(1)大分子链的构象:
ⅰ、大分子链的热运动:
b3
大分子链和其它的物质一样,
处于不停的热运动中,其运
b2
动方式是共价单链的内旋转。
b1
如图:分子链可以在保持链长
和链角不变的情况下自旋转。
大量的单链都随时进行着旋转。
材料科学与工程学院
工程材料的主要发展方向。 3、研制复合材料:传统的纤维增强树脂复合;
现在:金属基复合、陶瓷基复合、功能复合材料, 例建筑屋顶,集构件、发电、采暖于一体。 4、新型功能塑料的研制:例如:导电塑料、导磁塑 料、医用塑料、人工降解塑料等。
第一节
基本概念
Basic Concept
一、高分子材料的基本概念
低密度聚乙烯 高密度聚乙烯 交联聚乙烯
密 度 g/cm3 抗拉强度 MPa 断裂伸长率 % 工作温度 ℃
熔 点℃ 大分子链结构
相关文档
最新文档