铁碳合金状态图

合集下载

铁碳合金与铁碳合金相图

铁碳合金与铁碳合金相图

铁碳合金与铁碳合金相图1 铁碳合金的基本组织1.1. 铁素体碳与α-Fe中形成的间隙固溶体称为铁素体,用F表示。

强度和硬度低,塑性和韧性好。

1.2. 奥氏体碳与γ-Fe中形成的间隙固溶体称为铁素体,用A表示。

高温组织,在大于727℃时存在。

塑性好,强度和硬度高于F,在锻造、轧制时常要加热到A,提高塑性,易于加工。

1.3. 渗碳体铁与碳形成的金属化合物,硬度高,脆性大。

用Fe3C1.4. 珠光体F与Fe3C混合物。

强度,硬度,塑性,韧性介于两者之间。

1.5. 莱氏体A与Fe3C混合物硬度高,塑性差。

2 铁碳合金状态图2.1 状态图主要点线主要点主要线:ABCD线液相线,液相冷却至此开始析出,加热至此全部转化。

AHJECF线固相线,液态合金至此线全部结晶为固相,加热至此开始转化GS线A3线,A开始析出F的转变线,加热时F全部溶入AES线Acm线,C在A中溶解度曲线ECF线共晶线,含C量2.11-6.69%至此发生共晶反应,结晶出A与Fe3C混合物,莱氏体。

PSK线共析线,含C量在0.0218-6.69%至此反生共析反应,产生出珠光体2.2 铁碳合金分类2.2.1 钢含C量0.0218~2.11%共析钢含C量0.77%亚共析钢0.0218-0.77%过共析钢0.77-2.11%2.2.2 白口铸铁 2.11-6.69%共晶白口铸铁 4.3%亚共晶白口铸铁 2.11-4.3%过共晶白口铸铁 4.3-6.69%2.3 铁碳合金相图的作用在铸造方面选择合适的浇铸温度,流动性好在煅造方面选择合适的温度区,奥氏体区在热处理方面退火,正火,淬火等2.4 碳对铁碳合金平衡组织和性能的影响一、含碳量对平衡组织的影响室温下,铁碳合金均由α+ Fe3C两相组成随含碳量不同,可分为七个典型组织区二、含碳量对机械性能的影响•珠光体P:为F + Fe3C的混合物,呈层片状,由于Fe3C的强化作用,珠光体性能较好;•亚共析钢:由F + P组成,随碳量增加,珠光体量增加,强度性能提高;•过共析钢:P+ Fe3C(II)组成,当含碳量<1%,Fe3C(II)断续分布在晶界处,强度提高;当含碳量>1%,Fe3C(II)呈网状分布在晶界处,强度性能下降。

铁碳合金的基本组织与状态图课件

铁碳合金的基本组织与状态图课件
54
n 3) 在压力加工成型方面
n 钢处于奥氏体状态时强度较低,塑性较 好,因此锻造或轧制选在单相奥氏体区进 行。一般始锻、始轧温度控制在固相线以 上100℃~200℃范围内。一般始锻温度为 1150℃~1250℃,终锻温度为750℃~ 850℃。
55
n 4) 在热处理工艺方面的应用
n Fe- Fe3C相图对于制订热处理工艺有着特 别重要的意义。一些热处理工艺如退火、 正火、淬火的加热温度都是依据Fe- Fe3C相 图确定的。这将在热处理中详细阐述。
溶体。由于晶格间的最大空隙比α—Fe大 , 溶碳能力较大11480C时为2.11%随温度 下降溶碳量逐渐减小7270C时为0.77%。
n 奥氏体存在于727~14950C的温度范围, 强度低,塑性好,伸长率为40%,硬度 (HB) 为170~220,无铁磁性。
6
奥氏体组织金相图
7
(三)渗碳体 (Fe3C) 铁与碳形成的具有复杂结构的金属化合物,含
n
n “二”指二个坐标: C/%、 T /0C;在画的 时候容易忘记这两坐标标注。
23
n “三”指三个单项:A (奥氏体) 、 P (珠 光体) 、 Ld (莱氏体) 。在铁碳合金相图 中,只有三个区域中是单项组织,其中在 7270C以下含碳量为0.77%时,其成分只有 P (珠光体) ,11480C以下含碳量为4.3% 时,其成分只有Ld (莱氏体) ,在这些地 方经常容易漏掉。
n 1-5-3 铁碳状态图上合金的分类及其组织 n 根据相变特征和室温组织不同,可将铁碳
状态图上的各种合金分为工业纯铁、钢和 白口铸铁三类: n 1、工业纯铁C<0.0218%的铁碳合金。
28
n 2、钢C 0.0218~2. 11%的铁碳合金。特点是 高温固态组织为塑性很好的奥氏体,常用 于热压力加工。根据相变特征和室温组织

2-5_铁碳合金的组织与状态图

2-5_铁碳合金的组织与状态图
共晶产物是A与Fe3C的机械混合 物,称作莱氏体, 用Le表示。为 蜂窝状, 以Fe3C为基,性能硬而 脆。
莱氏体
(二)铁碳合金的组织转变
工业纯铁 ( ingot iron )
共析钢
( eutectoid steel )
亚共析钢 ( hypoeutectoid steel )
过共析钢 ( hypereutectoid steel )
Ld+Fe3CⅠ
727℃ K
Ld’+Fe3CⅠ
0.0218%C 0.77%C 2.11%C Fe
4.3%C
6.69%C Fe3C
⒈ 特征点

⇄ ⇄
⇄ ⇄
J N
A
G
F +A
L+A
L
L+Fe3C
A +Fe3C
P +Fe3C
⒉ 特征线 ⑴ 液相线—ACD,
固相线—AECF
⑵ 水平线:
ECF:共晶线LC⇄ E+Fe3C
本章小结
三种典型的金属晶体结构 晶体缺陷:点、线、面 过冷度、结晶过程 晶粒大小对金属性能的影响、细化晶粒的方法 同素异构 合金的相结构、固溶强化 铁碳合金的基本组织、铁碳合金相图
共析钢组织金相图
3.亚共析钢 ( Wc = 0.45% )
亚共析钢组织金相图
4.过共析钢 ( Wc = 1.2% )
过共析钢组织金相图
5.共晶白口铁 ( Wc = 4.3% )
共晶白口铁组织金相图
6.亚共晶白口铁 ( Wc = 3.0% )
亚共晶白口铁组织金相图
7.过共晶白口铁 ( Wc = 5.0% )
过共晶白口铁组织金相图

铁碳合金状态图课件

铁碳合金状态图课件
根据铁碳合金中各元素的分布情况,在 图上绘制相应的曲线。
根据铁碳合金在不同温度下的状态,绘 制等温线。
根据铁碳合金在不同温度和成分下的状 态,在图上标记相应的区域,并注明相 应的名称。
04
铁碳合金状态图的应用
在铸造工业中的应用
铸造工艺设计
铁碳合金状态图是铸造工艺设计的重 要依据,通过分析合金的凝固温度范 围和液相线温度,可以确定合适的浇 注温度和时间。
确定比例尺
根据实际需要选择合适的比例 尺,以便在图纸上准确表示铁 碳合金的实际 状态,在图上绘制等温线。
绘制元素分布曲线
根据铁碳合金中各元素的分布 情况,在图上绘制相应的曲线。
绘制实例和演示
选择合适的比例尺,绘制坐标轴。
对绘制好的铁碳合金状态图进行演示和 讲解,以便更好地理解和掌握铁碳合金 的状态变化规律。
1 2 3
铁碳合金状态图的实验研究
当前,研究者通过实验手段深入探究铁碳合金的 相变规律和组织性能,为实际生产提供理论支持。
铁碳合金状态图的计算模拟研究
随着计算材料学的进步,研究者利用计算机模拟 手段预测和模拟铁碳合金的状态和性能,为新材 料的开发提供有力支持。
铁碳合金状态图的应用研究
在实际生产中,钢铁企业根据铁碳合金状态图选 择合适的材料和工艺,提高产品质量和降低成本。
适的锻造温度和变形量。
锻件质量控制
通过铁碳合金状态图,可以预测锻 件在不同温度和变形条件下的组织 和性能变化,从而控制锻件的质量。
锻造设备选择
根据铁碳合金状态图,可以确定不 同锻造条件下材料的变形行为和所 需设备吨位,从而选择合适的锻造 设备。
在焊接工业中的应用
焊接材料选择
铁碳合金状态图可以指导焊接材 料的选择,根据母材的成分和状

铁碳合金相图

铁碳合金相图

钢锭及其冶炼
冶炼工艺的主要任务 冶炼工艺的主要方法
钢锭的结构
钢锭是由冒口、锭 身、 底部组成
钢锭的内部缺陷
激冷结晶区(细小等轴结晶区) 没问题 柱状结晶区 没多大问题 树枝状结晶区 多产生负V型偏析,因此这部分多产生偏析线、夹渣、气泡等缺陷 自由结晶区(粗大等轴结晶区) 多产生V型偏析,常产生偏析线、夹渣、金属夹杂物、渣孔、气泡等缺陷,呈 所谓疏松组织 淀淀结晶区 常产生夹渣类缺陷
实例
Elliptical head Upper shell (Ⅰ、 Ⅱ) Conical shell Intermediate shell (lower) (Ⅰ、Ⅱ、Ⅲ) Tube sheet Primary head (channel head)
实例
Upper head Core shell Lower head
锻造生产的特点及其在国民经济中的作用
特点 地位
大型锻件主要应用于以下方面
1、轧钢设备 2、锻压设备 3、矿山设备 4、火力发电设备 5、水力发电设备 6、核能发电设备 7、石油、化工设备 8、船舶制造工业 9、军工产品制造:
实例(核反应堆中主要锻件M140)
Closure head(monobloc) Vessel flange Inlet(outlet) nozzle Nozzle shell Core shell Transition ring Lower dome
3. Fe—Fe3C相图分析
如图为Fe—Fe3C相图 全貌。根据分析围绕三条 水平线可把Fe—Fe3C相图 分解为三个部分考虑:左 上角的包晶部分,右边的 共晶部分,左下角的共析 部分。 分析点、线、区特 别是重要的点、三条水平 恒温转变线 、重要的相

第二章 铁碳合金 第三节 铁碳合金状态图

第二章 铁碳合金 第三节 铁碳合金状态图
L
6.67%
1538℃
A
铁碳合金状态图 2
D
Y
A+Y Y +Fe3CⅠ
C F 1148℃ 912℃ G
A
A3
F+A
P S
E
Fe3C
Acm
A+Fe3CⅡ A+Fe3CⅡ+L’ L’ L’ +Fe3CⅠ
K
727℃
F
F+P
Q
C% 0.218%
P
P+Fe3CⅡ
P+Fe3CⅡ+L’’
L’’
L’’ +Fe3CⅠ
2013-7-25
1-3 铁碳合金状态图
7
铁碳合金状态图的作用

铁碳合金状态图主要是用来分析铁碳合金的成 分、温度、组织三者之间的关系。
当含碳量增加时,铁素体的比例减少,珠光体比例
增大,故而碳钢的机械强度和硬度增大,塑性和韧 性降低; 当含碳量超过0.9%时,碳钢中C的含量增多,硬度 增加,强度、塑性、韧性均下降; 当温度一定时,控制了碳钢的含碳量就控制了碳钢 的组织和性能;碳钢的机械性能又决定了碳钢的用 途。
过共析钢结晶过程
液态金属冷却至点1时开始生成A晶核; 冷却至点2后,液体金属全部结晶为A; 冷却至点3后,在GS至PSK间随温度下降不 断析出Fe3CⅡ,同时剩余A中的含碳量沿ES 线不断减少而得到珠光体P。

2013-7-25
1-3 铁碳合金状态图
22
共晶生铁结晶过程
冷却至点1时发生共晶反应生成莱氏体Ld; 点1至点2间的莱氏体称为高温莱氏体L d ; 冷却至点3后则称为低温莱氏体L d’。

铁碳合金状态图(精)

铁碳合金状态图(精)



过共析钢: (0.77%<C<2.11%)
② ③ ① 合金III: P Fe3C A Fe3C 室温 ④
LL AΒιβλιοθήκη A共晶白口铸铁: (C=4.3%) L L 'd Ld ② 合金IV: ① 室温
铁碳合金状态图
铸钢件生产技术课程
铁碳合金状态图
用来表示在平衡状态下,不同含碳量的铁碳合金 在不同温度下所处的状态,晶体结构和显微组织 特征的图称为铁碳合金状态图(又叫铁碳平衡
图)。 利用合金状态图可以全面了解不同成分的铁碳合 金在不同温度下处于什么状态,组织结构等,它 是制定熔铸、锻造、热处理工艺的重要依据,也 是分析合金组织研究相变规律的工具。
2. 铁碳合金分类
钢 含C量0.0218~
2.11% 共析钢 含C量0.77% S点 P 亚共析钢0.0218≤0.77% S点以左 F+P 过共析钢0.77≥2.11% S点以右 Fe3c+P 3.2.2.2 白口铸铁 2.116.69% 共晶白口铸铁 4.3% 亚共晶白口铸铁 2.114.3% 过共晶白口铸铁 4.36.69%
3.铁碳合金相图的用途
1. 作为选用钢材料的依据:
如制造要求塑性、韧性好,而强度不太高
的构件,则应选用含碳量较低的钢;要求 强度、塑性和韧性等综合性较好的构件, 则选用含碳量适中的钢,各种工具要求硬 度高及耐性好,则应选用含碳量较高的钢。
2.定铸、锻和热处理等热加工工艺的依据
在铸造方面:


3. 典型铁碳合金的结晶过程
共析钢:(C=0.77%) L P L A A ③ 合金I: ① ② 室温 亚共析钢:(0.0218%<C<0.77%) A F L A A L ④ ② ③ 合金II: ① F P 室温

第四章铁碳合金状态图

第四章铁碳合金状态图

第四章铁碳相图与碳钢钢铁材料都属于铁碳合金,学习本章有助于了解铁碳合金的成分、组织和性能之间的关系,以便在生产中合理地使用。

本章包括以下内容:铁碳相图碳含量对合金组织性能的影响铁碳相图的应用与局限性碳钢4.1 铁碳相图4.1.1铁碳合金中的基本相不同温度时Fe 具有不同的晶体结构α-Fe γ-Fe δ-Fe C 可以溶解到Fe 的晶格中形成固溶体α:C 在α-Fe 中的间隙固溶体;铁素体,Fγ: C 在γ-Fe 中的间隙固溶体;奥氏体,A δ:C 在δ-Fe 中的间隙固溶体; 高温铁素体 当C 含量超过溶解度时,多余的C 形成化合物Fe 3C 或石墨1394o C 912o C4.1.2 Fe-FeC相图分析3简化铁碳相图4.1.3 铁碳合金的分类按照含碳量铁碳合金可以分为三大类(一)工业纯铁: C%≤0.0218%(二)钢: 含C%为0.0218%~2.11%1. 共析钢C%=0.77%2. 亚共析钢0.0218%< C%< 0.77%3.过共析钢0.77%< C%≤2.11%(三) 白口铸铁: 2.11%< C%< 6.69%1.共晶白口铁C%=4.3%2.亚共晶白口铁2.11%< C%< 4.3%3.过共晶白口铁4.3%< C%< 6.69%4.1.4 典型合金结晶过程1 工业纯铁室温组织为:α+Fe3C III2-1 共析钢室温组织为:珠光体P(F+Fe 3C)室温组织中组织组成物相对重量:W F = ×100% = 88% W Fe3C 共析= ×100%=12%0.026.690.776.69−−0.02-6.690.020.77−2-2 亚共析钢30钢的室温组织40钢的室温组织室温组织:F 初+P (F +Fe 3C )W P = ×100% = 51%W F 初= 1 -51% = 49%0.020.770.020.4−−2-3 过共析钢室温组织:Fe 3C Ⅱ+P (F +Fe 3C )1.2%C 钢的室温组织组成物相对重量为:Fe 3C Ⅱ%=×100%=7%,P %=1-7%=93%0.776.690.771.2−−3-1 共晶白口铸铁3-2 亚共晶白口铸铁3-3 过共晶白口铸铁Fe-Fe 3C组织组成物相图4.2 碳含量对组织性能的影响4.2.1 组织相:随着C %↑F ↓Fe 3C ↑组织:主要涉及碳化物的数量与形态: 少量Fe 3C III ,P ,二次Fe 3C II ,莱氏体基体4.2.2 含碳量对力学性能的影响F 为软相,Fe 3C 为硬脆相。

铁碳合金状态图

铁碳合金状态图

② 亚共析钢
③ 过共析钢
3)白口铸铁
2.11% < WC ≤ 6.69%
按室温组织不同,又可分为以下三种: ① 共晶白口铸铁 WC = 4.3% 室温组织:低温莱氏体 ② 亚共晶白口铸铁 2.11% < WC < 4.3% 室温组织:低温莱氏体 + 珠光体 + 二次渗碳体 ③过共晶白口铸铁 4.3% < WC ≤ 6.69% 室温组织:低温莱氏体 + 一次渗碳体。
渗碳体是强化相,其形状有条状、网状、
片状、粒状等,它的形状、大小和分布对 钢的性能起重要作用。
四、珠光体

珠光体(P)

定义:F与 Fe3C 所形成的机械混合物
(平均含碳量:0.77%)

性能组织:介于F 和 Fe3C之间具有良好的综合力学性能
层片状
颗粒状
五、莱氏体

莱氏体(Ld)

定义:A与 Fe3C 所形成的机械混合物
727
共晶相图
共析相图
0.0218
0.77
2.11
4.3
Fe — Fe3C状态图
第一节 铁碳合金的基本相
一、铁素体

铁素体(F 或α):碳溶于α-Fe中所形成的间隙固溶体

晶格结构:体心立方晶格


最大溶解度:0.0218%(727℃)
性能组织:强度低、硬度低而塑性好。
二、奥氏体
奥氏体(A

2、制定铸、锻、热处理工艺的重要依据
1)铸造方面: 浇注温度一般在液相线以上50~100°C 铸造生产中,共晶成分附近的铸铁应用最多在此范围的钢, 其结晶温度范围小,铸造性能好
2)锻造方面: 锻造时,将其温度加热到A体区域, 能获得良好的塑性,易于锻造成形 白口铸铁中有大量硬而脆的渗碳体, 故不能锻造

铁碳合金状态图

铁碳合金状态图
这种在一定温度下,由一定成分的液相同时结晶出一定成分的两个 固相的转变过程,称为共晶转变或共晶反应。共晶转变的产物 (αM+βN)是由两个固相组成的机械混合物,称为共晶组织
(2)合金的平衡结晶过程及其组织
1)固溶体合金(合金Ⅰ)
成分位于M点以左(即wSn≤19%)或N点以右(即wSn≥97.5%)的合金称为固溶体合金 液态合金缓冷至温度1,开始从L相中结果出α固溶体。随温度的降低,液相的数量不断减少,α固
由相图可知合金在固态加热和冷却过程中均有组织的变化,可以 进行热处理。并且可以正确选择加热温度。
讨论:
默画出铁碳相图,标明C、S、E、F点的成分及 ECF、PSK线的温度,标明各相区;
说明铁与碳在液态和固态的相互作用以及各相的 本质,指出α-Fe与F;γ-Fe与A的区别;
写出相图中C、S两点进行相变的反应式,指出各是 什么反应,说明其相变特点;说出ECF; PSK; ES; GS各线的意义;
两种不同晶体的转变。 GS——A冷却析出F开始线, 通常称为 A3线。 ES——C在A中溶解度曲线/ 冷却时A析出Fe3C开始线, 又称 Acm线。 PSK——共析线,又称A1线。wC>0.021 8% 的铁碳合金,缓冷至
727°C(PSK共析线)都发生共析转变。 S点:共析点 共析反应:AS←-→P(FP+ Fe3C) PQ——C在F中的溶解度曲线。
三个单相区和三个两相区:即L+α、L+β、α+β相区。 在三个两相区之间有一根水平线MEN,是L+α+β三相 并存区 。
2)共晶反应
成分位于(E)点的合金,在温度达到水平线MEN所对应的温度 (tE=183℃)时,将同时结晶出成分为M点的α相及成分为N点的β 相。其转变式为:

第四章铁碳合金的基本组织与状态图

第四章铁碳合金的基本组织与状态图

第四章铁碳合金的基本组织与状态图
n 共析转变:一定成分的固溶体在一定的恒
温下同时析出个新固体的转变。铁碳相图 中S点
n
7270C
n A0.77%C → P(F0.0218%C+Fe3C )
第四章铁碳合金的基本组织与状态图
Fe - Fe3C 相图
A T°
L+A
E
A
G
A+
A+F S Fe3CⅡ F P ( F+ Fe3C )
第四章铁碳合金的基本 组织与状态图
2020/11/29
第四章铁碳合金的基本组织与状态图
n 1-5 铁碳合金的基本组织与状态图 n 1-5-1铁碳合金的基本组织 n 液态:无限互溶 n 固态:碳能溶于铁的晶体中,形成间隙 固溶体,和固溶体与Fe3C构成机械混合物。
n (一)铁素体(F) n 碳溶于α—Fe(体心立方晶格)中形成间
第四章铁碳合金的基本组织与状态图
共晶白口铁组织金相图
第四章铁碳合金的基本组织与状态图
共晶合金组织形态
第四章铁碳合金的基本组织与状态图
n 3)过共晶白口铸铁 C 4.3~6.69%范围,室 温组织为一次渗碳体和低温莱氏体组成。 显微组织中亮白色的条状(板状)为初生 渗碳体(Fe3CⅠ),基体为低温莱氏体, 其中黑点为珠光体、白色部分为渗碳体。
第四章铁碳合金的基本组织与状态图
渗碳体组织金相图
第四章铁碳合金的基本组织与状态图
n Fe3C的结构决定了它极硬(可刻画玻璃)、 极脆,是铁碳合金中的硬组元。熔点为
12270C, 无同素异晶转变。
n
n 一定条件下(高温、长期保温)渗碳体可 分解:
n
Fe3C → 3Fe +C(石墨)

铁碳合金状态图

铁碳合金状态图

4.3
碳对铁碳合金组织和性能的影响
二、对铁碳合金力学性能的影响
4.4
铁碳合金状态图的应用
1、在选材方面的应用
Fe- Fe3C相图反映了铁碳合金组织和性能随成分的变化规律。这样, 就可以根据零件的工作条件和性能要求来合理的选择材料。例如, 桥梁、船舶、车辆及各种建筑材料,需要塑性、韧性好的材料, 可选用低碳钢(ωc =0.1%~0.25%);对工作中承受冲击载荷和 要求较高强度的各种机械零件,希望强度和韧性都比较好,可选 用中碳钢(ωc =0.25%~0.65%);制造各种切削工具、模具及 量具时,需要高的硬度、而耐磨性,可选用高碳钢(ωc =0.77%~1.44%)。对于形状复杂的箱体、机器底座等,可选用 熔点低、流动性好的铸铁材料。
G
A
E A+ Fe3CⅡ
Ld
A+Ld+Fe3CⅡ
S A+F F ( F+ Fe3C ) P Q P+F Fe
P
P+Fe3CⅡ
0.0218%C 0.77%C
2.11%C
4.2
1、特征点:
特性点 符号
铁碳合金状态图
二、 Fe - Fe3C 相图的分析
温度/℃ ωc/% 含义
A C D E G S P Q
4.4
铁碳合金状态图的应用
2、在铸造生产上的应用
由Fe- Fe3C相图可见,共晶成分 的铁碳合金熔点低,结晶 温度范围最小,具有良好的铸造 性能。因此,在铸造生产中, 经常选用接近共晶成分的铸铁。
铁碳相图与铸锻工艺间的关系
4.4
铁碳合金状态图的应用
3、在锻压生产上的应用
钢在室温时组织为两相混合物,塑性较差,变形困难。而奥氏 体的强度较低,塑性较好,便于塑性变形。因此在进行锻压和 热轧加工时,要把坯料加热到奥氏体状态。加热温度不宜过高, 以免钢材氧化烧损严重,但变形的终止温度也不宜过低,过低 的温度除了增加能量的消耗和设备的负担外,还会因塑性的降 低而导致开裂。所以,各种碳钢较合适的锻轧加热温度范围是: 始锻轧温度为固相线以下100~200℃;终锻轧温度为 750~850℃。对过共析钢,则选择在PSK线以上某一温度,以便 打碎网状二次渗碳体。

铁碳合金平衡图

铁碳合金平衡图

(Fe-C)铁-碳合金平衡状态图及分析 铁 碳合金平衡状态图及分析 简介: 简介: 钢和铸铁都是铁碳合金。

含碳量低于 2.11%的铁碳合金称为钢,含碳量 2.11%~6.67%的铁碳合金称为铸铁。

为了全面了解铁碳合金在不同含碳量和不同温度下所处的状态 及所具有的组织结构,可用 Fe-C 合金平衡状 ... 钢和铸铁都是铁碳合金。

含碳量低于 2.11%的铁碳合金称 为钢,含碳量 2.11%~6.67%的铁碳合金称为铸铁。

为了全 面了解铁碳合金在不同含碳量和不同温度下所处的状态及所具 有的组织结构,可用 Fe-C 合金平衡状态图来表示这种关系,见 图 1—6。

图上纵座标表示温度,横座标表示铁碳合金中碳的百 分含量。

例如,在横座标左端,含碳量为零,即为纯铁;在右端, 含碳量为 6.67%,全部为渗碳体(Fe3C)。

图 1—6 Fe-C 平衡状态图 — 图中 ACD 线为液相线,在 ACD 线以上的合金呈液态。

这条线 说明纯铁在 1535℃凝固,随碳含量的增加,合金凝固点降低。

C 点合金的凝固点最低,为 1147℃。

当含碳量大于 4.3%以后, 随含碳量的增加,凝固点增高。

AHJEF 线为固相线。

在 AHJEF 线以下的合金呈固态。

在液 相线和固相线之间的区域为两相(液相和固相)共存。

GS 线表示含碳量低于 0.8%的钢在缓慢冷却时由奥氏体开 始析出铁素体的温度。

ECF 水平线,1147℃,为共晶反应线。

液体合金缓慢冷却至该温度时,发生共晶反应,生成莱氏体组织。

PSK 水平线,723℃,为共析反应线,表示铁碳合金在缓慢 冷却时,奥氏体转变为珠光体的温度。

为了使用方便,PSK 线又称为 A1 线,GS 线称为 A3 线,ES 线为 Acm 线。

正点是碳在奥氏体中最大溶解度点, 也是区分钢与铸铁的分 界点,其温度为 1147℃,含碳量为 2.11%。

S 点为共析点,温度为 723℃,含碳量为 0.8%。

铁碳合金相位图1

铁碳合金相位图1

ห้องสมุดไป่ตู้
特性点符号
温度/℃
A C D E G S P
4.2 1538
1148 1227 1148 912 727 727
ωc/%
铁碳合金状态图 0 熔点:纯铁的熔点
熔点:渗碳体的熔点 0 同素异构转变点
含义
4.3 6.69 2.11 0.77 0.0218
共晶点:发生共晶转变L4.3—→Ld(A2.11%+Fe3C共晶) 碳在γ-Fe中的最大溶解度点 共析点:发生共析转变A0.77%—→p(F0.0218%+Fe3C共析) 碳在α-Fe中的最大溶解度点
Q 室温 0.0008 室温下碳在α-Fe中的溶解度 单相区:F、A、L和Fe3C四个单相区。两相区:有五个两相区,即 L+A、L+Fe3C、A+Fe3C、 A+F和F+ Fe3C.每个两相区都与相应的两个单相区相邻;两条三相共存线,即共晶线ECF,L、 A和Fe3C三相共存,共析线PSK,A、F和Fe3C三相共存。 (1)AC线 液体向奥氏体转变的开始线。即:L→A。 (2)CD线 液体向渗碳体转变的开始线。即:L→Fe3CⅠ。 ACD线统称为液相线,在此线之上合金全部处于液相状态,用符号L表示。 (3)AE线 液体向奥氏体转变的终了线。 (4)ECF水平线 共晶线。 AECF线统称为固相线,液体合金冷却至此线全部结晶为固体,此线以下为固相区。 (5)ES线 又称Acm线,是碳在奥氏体中的溶解度曲线。即:L→Fe3CⅡ。 (6)GS线 又称A3线, (7)GP线 奥氏体向铁素体转变的终了线。 (8)PSK水平线 共析线(727℃),又称A1线。 (9)PQ线 碳在α-Fe中的溶解度线。

第四章 铁碳合金的基本组织与状态图

第四章 铁碳合金的基本组织与状态图
变反应式。
二个重要温度: 1148 ℃ 、727 ℃ 。
一二三四五六巧记铁碳相图:
“一”指一种合金组织渗碳体( Fe3C ): 特别需要注意从金属液态直接结晶出渗碳 体称为一次渗碳体( Fe3C Ⅰ),而从A (奥氏体)中析出渗碳体称为二次渗碳体 ( Fe3C Ⅱ)。很易把两者混淆。
“二”指二个坐标:C/%、T/0C;在画 的时候容易忘记这两坐标标注。
(5)ECF共晶线:金属液态结晶出奥氏体和渗 碳体的机械混合物,莱氏体(Ld)。
(6)PSK、A1共析线:当合金组织冷却到 7270C以下奥氏体(A)全部转成珠光体 (P)。
共析反应(7270C)
结晶
A
P
析出
F
Fe3C
Fe3C
L
共晶反应(1148OC) Ld 727C
L'd
1-5-3 铁碳状态图上合金的分类及其组织
铸钢和铸铁的浇注温度,为铸造工艺提供 依据。
共晶成分的铸铁合金熔点最低,结晶温 度范围小,有良好的铸造性能。因此在铸 造生产中,经常选用接近共晶成分的铸铁。 同铸铁相比钢的熔化温度和浇注温度要高 的多,其铸造性能差,易产生收缩,因此 钢的铸造工艺比较复杂。
根据Fe- Fe3C相图可以确定合金的浇注温 度。浇注温度一般在液相线以上50℃~ 100℃。从相图上可看出,纯铁和共晶白口 铸铁的铸造性能最好,它们的凝固温度区 间最小,因而流动性好,分散缩孔少,可 以获得致密的铸件,所以铸铁在生产上总 是选在共晶成分附近。在铸钢生产中,碳 含量规定在0.15-0.6%之间,因为这个范围 内钢的结晶温度区间较小,铸造性能较好。
5.莱氏体 ( Ld )奥氏体和渗碳体组成的机械混合物。
1-5-2 Fe—Fe3C状态图 几个概念:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3-1 渗碳体的晶体结构第三章 铁碳合金状态图钢和铸铁是机械工业上广泛应用的金属材料,它主要由铁和碳两种元素组成,统称为铁碳合金。

铁碳合金状态图就是研究铁碳合金的成分、温度和组织之间变化关系的图解。

第一节 铁碳合金的基本组织铁碳合金在液态时,铁和碳可以无限互溶,在固态时碳能溶解于铁的晶格中,形成间隙固溶体。

当含量超过铁的溶解度时,多余的碳与铁形成化合物(Fe 3C)。

此外,还可以形成由固溶体与化合物组成机械混合物。

铁碳合金的基本组织有以下五种。

一、铁素体(F)铁素体是指碳溶于a-Fe 中而形成的间隙固溶体。

碳在a-Fe 中溶解度极小,在727℃时最大溶解度为0.0218%,而在室温时只有0.008%。

因此,铁素体强度、硬度较低(σb =l80~280MPa 。

50~80HBS),塑性,韧性较好(δ=30%~500%、αkU =160—200J /cm 2)。

铁索体组织适于压力加工。

二、奥氏体(A)奥氏体是指碳溶于γ-Fe 碳在γ—Fe 中而形成的间隙固溶体。

溶解度较大,在1148℃时最大溶碳量为2.11%,在727℃时最大溶碳量为0.77%。

因此,固溶强化效应较高,其强度、硬度较高(σb =400 MPa ,160—200HBS).而塑性、韧性也较好(δ=40%~50%)。

奥氏体组织也适用于压力加工。

三、渗碳体(Fe 3C)渗碳体是一种具有复杂晶体结构的间隙化合物,化学式近似于Fe 3C(碳化三铁)。

Fe 3C 的含碳量为6.69%,如图3—1所示。

它无同素异构转变,熔点约为1227℃。

其硬度极高(800HBW),塑性和韧性极低(δ≈0、αku ≈0),即硬而脆。

渗碳体不能单独使用,只能作为强化相存在于铁碳合金中。

它的数量、形态(片状、粒状、网状等)、大小和分布对合金的性能产生不同的影响。

四、珠光体(P)珠光体是指奥氏体从高温缓慢冷却时发生共析转变所形成的,其立体形状为铁索体薄层和碳化物(包括渗碳体)薄层交替重叠的层状复相物。

珠光体组织是由铁索体(软)和=770MPa)较高,硬度渗碳体(硬)复相组成的混合物,平均含碳量为0.77%。

其强度(ab≈40J/cm2),是一种综合(180HBS)适中,有一定的塑性(δ≈20%一35%)和韧性(αkU力学性能较好的组织。

珠光体适于压力加工及切削加工。

五、莱氏体(Ld和Ld')莱氏体是指高碳的铁基合金在凝固过程中发生共晶转变所形成的奥氏体和碳化物(或渗碳体)所组成的共晶体。

莱氏体分为:高温莱氏体(LD)和低温莱氏体(Ld`)。

高温莱氏体是指含碳量大于2.11%的铁碳合金,从液态缓冷至1148℃时,从液相中同时结晶出奥氏体和渗碳体呈均匀分布的复相组成的机械混合物。

低温莱氏体是指在727℃以下,由高温莱氏体中的奥氏体转变为珠光体,则由珠光体和渗碳体呈均匀分布的复相组成的机械混合物。

莱氏体组织由于含碳量高(Wc=4.3%), FeC相对量也较多(约占64%以上),故莱3氏体的性能与渗碳体相似,即硬而脆。

第二节铁碳合金状态图铁碳合金状态图是用热分析法通过实验而获得的,因为含碳量大于6.69%的铁碳合金在工业上无实用价值,并常用Fe-Fe3C状态图表示,如图3-2所示。

为了便于研究C状态图图3-2 Fe-Fe3分析,我们把Fe-FeC状态图进行简化,如图3-3所示。

铁碳合金状态图是研究钢3铁材料的理论依据。

因此,掌握铁碳合金状态图具有十分重要的意义。

C状态图分析一、Fe-Fe3(一)状态图上的主要特性点(如表3—1所示)表3-1 Fe-FeC状态图主要特性点3(二)状态图上的主要特性线 四条曲线:1.ACD 线 它是液相线,在此线以上所有铁碳合金处于液体状态,冷却时含碳量小图3-3 简化后的Fe-Fe 3C 状态图于4.3%的合金在AC 线开始结晶出奥氏体,大于4.3%的合金在CD 线开始结晶出Fe 3C ,称一次渗碳体,用Fe3C I 表示。

2.AE 线 它是固相线,钢液冷却到此曲线温度时,全部结晶为奥氏体。

3.CS(A 3)线 它是亚共析钢(W C <0.77%)冷却时从奥氏体中析出铁素体的开始线。

也是同素异构转变的开始线。

4.ES 线(Acm )线 它是碳在奥氏体中的溶解度曲线。

温度在1148℃时,奥氏体的溶碳能力最大为2.11%。

随着温度降低,溶解度沿此线降低,到727℃时,奥氏体的溶碳量为0.77%,大于0.77%的合金,冷却到此曲线时,析出二次渗碳体,用Fe 3C II 表示。

两条重要的水平(恒温)线:1. CF 线 它是固相线,又称共晶线,温度为1148℃。

并发生共晶转变,其共晶转变过程可用下式表达:C F A L e 311.211483.4+−−→←从上表达式可知:当含碳量为4.3%的液相合金,温度在1148℃时生成奥氏体与渗碳体的机械混合物,此共晶混合物称为高温莱氏体(Ld),在727℃以下时转变为低温莱氏体2.PSK 线(A 1线) 它是共析线,温度为727℃。

合金冷却到此温度时奥氏体向珠光体转变。

其共析转变过程可用下式表达:C F F A e C30218.072777.00+−−→←共析转变结果形成了铁索体与渗碳体的机械混合物,即珠光体(P)。

在A 1线以下,奥氏体将全部转变为珠光体。

(三)状态图上主要相区 由图3-3可知,主要相区有:1.钢部分 L 、A+L 、A 、F+A 、A+Fe 3C 2、F 、P 、F+P 、P+Fe 3C II 等相区。

2.白口生铁部分 L 、L+A 、L+Fe 3C I 、A+Fe 3C II +Ld 、Ld+Fe3C I 、P+Fe3C II +Ld ’ Ld 、Ld ’+Fe 3C l 相区。

二,铁碳合金结晶过程分析铁碳合金按其成分和组织不同,可分为以下类型:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=⎪⎩⎪⎨⎧=-><<%)69.6~%3.4(%)3.4(%3.4~%11.2(%)11.2~%77.0(%)77.0(%77.0~%0218.0(%11.2(%)11.2(%)0218.0(在过共晶白口生铁共晶白口生铁在亚共晶白口生铁在过共析钢共析钢在亚共析钢铁碳合金白口生铁钢工业纯铁Wc Wc Wc Wc Wc Wc Wc Wc Wc 其中Wc 表示含碳量(或碳的质量分数、溶碳量)。

(一)钢部分1.共析钢(如图3-41) 共析钢含碳量为0.77%,当液体金属从高温缓冷到AC 线1点时,开始从液体中结晶出奥氏体组织,随温度降低奥氏体量逐渐增加,液体量逐渐减少。

当温度降低到AE 线2点时,剩余的液体全部转变为奥氏体。

温度继续下降,在2—3点间奥氏体成分不变。

降到3点时,此时温度达到了共析温度(727℃),奥氏体向铁素体进行同素异晶转变,由于铁素体晶格溶碳能力极小,则同时析出FQC,即发生共析反应,生成铁素体与渗碳体层片相间的机械混合物,即共析组织为珠光体。

2.亚共析钢(如图3-4V) 现以含碳量为0.3%的白口生铁为例。

与上述同理,当液体缓冷至1一2点间,其组织为液体和奥氏体组织,2—3点间为单相奥氏体组织。

从3点开始析出铁索体,而随温度下降铁索体量逐渐增加,奥氏体的含碳量也随GS线逐渐增高。

当温度降到共析温度(727℃)4点时,奥氏体的碳含量增加到共析成分(Wc=0.77%),此时奥氏体发生共析反应,生成共析组织为珠光体,当温度降至共析温度Al线以下时,得到的平衡组织是铁素体和珠光体。

3.过共析钢(如图3-4Ⅲ) 现以含碳量为1.2%的钢为例。

与上述同理,当液体缓冷至1—2点间时为液体和奥氏体组织,2—3点间为单相奥氏体组织,在3点奥氏体中溶碳量达到饱和,在3点以下奥氏体开始析出Fe3CII,随温度下降Fe3CII量逐渐增加,奥氏体的含碳量也随ES线逐渐增高。

当缓冷至共析温度(727℃)4点时,奥氏体的含碳量增加到共析成分(Wc=0.77%),此时奥氏体发生共析反应,生成共析组织为珠光体,当温度降到共析温度线以下时,得到的平衡组织是珠光体和网状二次渗碳体。

图3-4 简化Fe-Fe3C状态图上几种典型合金的结晶过程(二)白口生铁部分1.共晶白口生铁(如图3-4Ⅳ) 共晶白口生铁含碳量为4.3%,当液体缓冷至共晶温度(1148℃)1点时,此时的液体将发生共晶反应生成共晶体组织为高温莱氏体(Ld),继续缓冷至共析温度(727℃)2点时,其中Ld中的奥氏体发生共析转变生成珠光体,此时LD转变为LD’。

一直缓冷至室温,得到的平衡组织是LD’。

2.亚共晶白口生铁(图34V)现以含碳量为3%的白口生铁为例。

与上述同理,当液体缓冷至1—2点间,其组织为液体和奥氏体。

当温度降至共晶温度(1148℃)2点时,剩余的液体成分达到共晶成分(Wc=4.3%),将发生共晶反应生成高温莱氏体。

继续缓冷至2—3点间,其组织为A+Fe3CII+Ld。

再继续缓冷至共析线3点以下时,得到的干衡组织是P+Fe3CII+Ld’。

3.过共晶白口生铁(如图3-4Ⅵ) 现以含碳量5%的白口生铁为例。

与上述同理,当液体合金缓冷至1一2点时,其组织为L+Fe3CI,,至共晶温度(1148℃)2点时,剩余液体成分达到共晶成分(Wc=4.3%)发生共晶反应生成高温莱氏体。

2—3点时,其组织为Ld+Fe3CI。

再继续缓冷至3点以下时,得到的平衡组织是Ld’+Fe3CI。

三、铁碳合金性能,成分与组织之间的关系室温下的铁碳合金成分、组织与性能有着密切的关系,铁碳合金的成分、组织及性能变化规律从图3-5中可以看出,铁碳合金的力学性能与成分大致为线性关系.硬度只受含碳量的影响,而受组织形态(片状、网状、条状)的影响不大。

强度不仅受含碳量的影响而且对组织形态比较敏感。

如当WC ≥0.77%时,由于Fe3CII沿晶界析出,使强度的增加趋势减缓,当Wc=0.9%时,Fe3CII沿晶界形成完整的网状形态,使强度呈迅速降低趋势,当Wc≥1.0%时,合金中大量出现网状渗碳体,强度很低。

总之,铁碳合金的组织与性能变化规律是:(1)铁碳合金的组织随着含碳量的增加,其铁素体相对量减少,珠光体相对量增多,渗碳体与莱氏体相对量增多;(2)铁碳合金的力学性能随着含碳量的增加,其强度、硬度增高,丽塑性、韧性降低。

但当Wc>1.0%时,因为有网状Fe3CII存在,所以强度下降。

图3-5 铁碳合金的成分、组织及性能的变化规律四、铁碳合金状态图的主要用途1.选材的重要理论依据。

根据合金的成分、组织与性能的变化规律,可按照零件或工具的性能要求,进行合理的选材。

2.制订热加工工艺规程的重要理论依据。

(1)铸造工艺根据液相线与固相线位置高低与距离判断合金的铸造性能,制订铸造工艺。

(2)锻造工艺根据不同成分的材料所对应的奥氏体区温度范围,确定锻造工艺的加热温度范围及锻造温度范围。

相关文档
最新文档