一阶电路的全响应和三要素方法

合集下载

一阶电路的全响应——三要素公式【PPT课件】

一阶电路的全响应——三要素公式【PPT课件】

RLiL
L1uS
(a)
(b)
制 作
若用y(t)表示响应,用f (t)表示外加激励,上述方程统一表示为
ddy(tt)1y(t)bf(t)
τ为时常数,对RC电路, τ= RC; 对RL电路, τ= L/R。
第 5-2 页
前一页
下一页 返回本章目录
y(t) = yh(t) + yp(t)
特征根 s = - 1/τ, yh(t) = Ke- t/τ ,
3、举例
例1 如图 (a)所示电路, IS = 3A, US = 18V, R1 =
西
3Ω, R2 = 6Ω,L=2H,在t < 0时电路已处于稳态, 当t = 0时开关S闭合,求t≥0时的iL(t)、uL(t)和i (t)
。US
R1 uL
iL S L
i R2
IS


子 科 技 大
解 (1)求iL(0+) = iL(0-) = US / R1 = 6A (2)画0+等效电路,如图(b)。列节点方程
安 电 子
u L ( t) [ u L ( 0 ) u L ( )e ] t u L ( ) 6 e t( V ) t 0

技 大 学
i( t) [ i( 0 ) i( )e ] t i( ) e t(A ) t 0
电路与系统多媒




第 5-7 页
前一页
下一页 返回本章目录
第 5-8 页
前一页
下一页 返回本章目录
(3)求解零输入响应iLx(t)和ux(t) 。
零输入响应是令外加激励均为零,仅由初始状态所
西 安
引起的响应;故 iLx(0+) = iL(0+) =3A,电压源US短路,画

一阶电路的全响应和三要素方法

一阶电路的全响应和三要素方法

)
t
f (t) f (0 ) f () e f ()
(暂态响应)
(稳态响应)
5.一阶电路的三要素法
一阶电路的响应f(t),由初始值f(0+)、稳态值f(∞)和时间常数τ 三要素所确定,利用三要素公式可以简便地求解一阶电路在直流
电源作用下的电路响应。全响应表达式为:
f (t)
f () [ f(0)
1
2
2
3
2V
作t≥0时的电路如图(c)所示,则有:
u(L 0)
i(L 0
)(
R1R2 R1 R2
R3)
4V
(2)求稳态值:
画t=∞时的等效电路, 如图 (d)所示。
R1 R3
R2
2A
u(L ) 0
(c)
(3)求时间常数:
R1
R3
等效电阻为:
R
R1R2 R1 R2
R3
2
时间常数为: L 1 0.5s
可得:
+ 20 V 4kΩ
iC(0+) + 20 V
iC (0 ) 2.5m


(c)
(2)求稳态值uC(∞)、iC(∞) 。作t=∞时稳态等效电路如图(d)所 示,则有:
4kΩ
2kΩ
uC
()
4
4
4
20
10V
iC () 0
+ 20 V 4kΩ

iC(∞ ) + uC(∞ )

(d)
(3)求时间常数τ。将电容断开,电压源短路,求得等效电阻为:
注意:三要素法仅适用于一阶线性电路,对于二阶或高阶电路是不适用 的。

4-4一阶电路的全响应 三要素法

4-4一阶电路的全响应 三要素法


t

t r 1 e
t r r 0 r e
(t ≥0+)
电路原理
§4-4 一阶电路的全响应
r (t ) r () r (0 ) r () e

t

t 0
全响应的初始值、稳态解和电路的时间常数,称为一阶线性 电路全响应的三要素。求出初始值、稳态值和时间常数即可按上 式直接写出全响应的函数式。这种方法就叫做三要素法。
注意:
1)零输入响应、零状态响应和全响应都可采用三要 素法进行求解; 2)三要素法只能用于求解一阶电路的响应。
电路原理
§4-4 一阶电路的全响应∙ 求解步骤
作出t=0-时的等效电路,求出uC(0-)或iL(0-);
根据换路定则,求出uC(0+)或iL(0+); 根据t>0时的电路,求出L或C两端看进去的有源二端电
阻网络的戴维宁等效电路(一阶RC电路)或诺顿等效电 路(一阶RL电路);
根据一阶电路零状态响应的一般形式求出uC(t)或iL(t) ;
电容电压的稳态值uc(∞)即为得到的戴维宁等效电路中的 电压源电压,电感电流的稳态值iL(∞)即为诺顿等效中的 电流源的电流。根据Req可求出时间常数τ ;
根据t>0时的电路,将电容用电压为uC(t)的电压源代替,
i f 0.5 A
3) 求τ
uo 10 × io 10i0 40i0 3
Req
uo 40W io L 1 s Req 40
电路原理
§4-4 一阶电路的全响应∙ 例题
4) 写出i (t)
i ( t ) i f [i (0 ) i f ]e 0.5 0.7e

一阶动态电路的全响应及三要素法

一阶动态电路的全响应及三要素法

1 2
高阶动态电路的全响应研究
本文主要研究了一阶动态电路的全响应,未来可 以将研究扩展到高阶动态电路,探讨其全响应的 特点和求解方法。
复杂电路系统的分析方法研究
针对更复杂的电路系统,需要研究更为有效的分 析方法,以提高电路分析的准确性和效率。
3
非线性电路的动态响应研究
在实际应用中,非线性电路的动态响应也是一个 重要的问题,未来可以开展相关的研究工作。
结果讨论与误差分析
结果讨论
根据求解出的全响应表达式,分析电 路在不同时间点的响应情况,讨论电 路的工作特性。
误差来源
分析在求解过程中可能出现的误差来 源,如元件参数的测量误差、计算误 差等。
误差影响
讨论误差对求解结果的影响程度,以 及如何通过改进测量方法、提高计算 精度等方式来减小误差。
实际应用中的考虑
在实际应用中,还需要考虑其他因素 对电路响应的影响,如环境温度、电 磁干扰等。
05 实验验证与仿真模拟
实验方案设计
设计思路
基于一阶动态电路的基本原理,构建实验电路并确定测量参数。
电路搭建
选用合适的电阻、电容、电感等元件,搭建一阶动态电路。
测量方法
采用示波器、电压表、电流表等仪器,测量电路中的电压、电流 等参数。
03 三要素法原理及应用
三要素法基本概念
三要素法定义
一阶动态电路的全响应由初始值、 稳态值和时间常数三个要素决定,
通过求解这三个要素可快速得到 电路的全响应。
适用范围
适用于线性、时不变、一阶动态电 路的全响应分析。
优点
简化了电路分析过程,提高了求解 效率。
初始值、稳态值和时间常数求解方法
01
02

一阶电路的全响应

一阶电路的全响应
i(∞) 10 / 5A 2A
+ 10V
-
3
i(t) (2 2e5t ) A
S2(t=0.2s)
返回 上页 下页
t > 0.2s
i(0.2 ) (2 2e50.2 )A 1.26A
i(0.2 ) 1.26A
2 L / R 1/2s 0.5s
i(∞) 10/2A 5A
i(t) (5 3.74e2(t0.2) ) A
+ 10V
uC (∞) (10 1)V 11V –
+ uC

1A +
u

返回 上页 下页
RC (11) 1s 2s
全响应: uC (t) (11 Ae0.5t )V
1
1 1
uC (t) (11 10e0.5t )V
iC
(t
)
duC dt
5e0.5t A
+ 10V –
+ -uC
1A +
返回 上页 下页
或求出稳态分量 全响应
代入初值有
iL (∞) 24 /12A 2A
iL (t) (2 Ae20t )A
6=2+A
A=4
例4-2 t=0时 ,开关S闭合,求t >0后的iC、uC及电流 源两端的电压(uC(0-)=1V,C=1F)。
解 这是RC电路全响
应问题,有
1
1 1
稳态分量:
iL (t) [6 (2 6)e5t ]A (6 4e5t )A t 0
i1(t) [2 (0 2)e5t ]A (2 2e5t )A
i2 (t) [4 (2 4)e5t ]A (4 2e5t )A
返回 上页 下页

3-7 一阶电路的三要素法

3-7 一阶电路的三要素法
9.6 (9 9.6)e
t 4


t


t 4
9.6 0.6 e V , t 0+
X
求开关闭合后: 已知uC (0 ) 6V,开关闭合前电路处于稳态, 1)电容电压的全响应、稳态响应、暂态响应、 例题3 零输入响应、零状态响应,并画其波形图。
2) 24k 电阻上的电压uR (t )。
X
解(续) 求:2)电压表读数达到最大值的时间;
di2 (t ) u(t ) R1i1 (t ) L dt
1 t R1C R 2t L
i (t )
S (t 0)
R2
C
u (t )
V
s
U s (e e ), t 0 U du(t ) 当 0 时u(t ) 达到最大值,此时有 dt 1 1 R2 R t t t 2t R 1 L e R1C 2 e L e R1C R1 R2e L R1C L C
16 V

i 2
1
5i
1
5H
b
S ( t 0)
与电感相连的等效内阻为: Req 1 0.25 1.25 电路的时间常数为: L 5 = 4s Req 1.25
2
iab

i
1
5i
uab

X
解(续)
(5)写出uab (t ) 函数表达式。
uab (t ) uab () [uab (0 ) uab ()]e
暂态分量 稳态分量

t
X
例题1
已知RL电路中的电压源电压如图所示,且iL (0 ) 0, 求t 0时的i (t ) ,并绘出变化曲线。

(电路分析)一阶电路的全响应

(电路分析)一阶电路的全响应

一阶电路的全响应一阶电路的全响应一、全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。

图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。

时开关闭合,现讨论时电路响应的变化规律。

时,响应的初始值为时,响应的稳态值为用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。

图5.5-1(b)中,零输入响应为图5.5-1(c)中,零状态响应为根据叠加定理,图5.5-1(a)电路的全响应为用表示全响应,表示响应的初始值,表示稳态值。

全响应的变化规律1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。

2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。

3、当时,即初始值等于稳态值,则全响应。

电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。

二、全响应的三要素计算方法全响应的三要素初始值稳态值时间常数例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态,t=0时开关S闭合,求时的电容电流。

解:欲求电容电流,只要求出电容电压即可。

1、确定初始状态。

作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。

由换路定则得初始状态2、确定电容电压的稳态值。

作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压则电容电压的稳态值为3、求时间常数τ。

求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ所以,时间常数为4、求全响应。

一阶动态电路的全响应及三要素法

一阶动态电路的全响应及三要素法
释放出来消耗在电阻中,达到新稳态时,电感电流为 零,即
iL(∞)= 0
(3)求时间常数τ
R 20 (10 10) 10 k 20 10 10
L 10 3 10 7 s
R 10 103
根据三要素法,可写出电感电流的解析式为
iL(t)= 0 +(10×10-3–0)e107=t 10 e mA 107t
i
L
()
US R2
10 20
05A
1
L R2
2 20
0 1s
根据三要素公式得到
iL(t)= 0.5(1 - )e1A0t (0.1s≥t要素法,先求t = 0.1 s时刻的初始值。根 据前一段时间范围内电感电流的表达式可以求出在t = 0.1 s时刻前一瞬间的电感电流
2 10 20
0 0667 s
根据三要素公式得到:
t 01
iL (t) iL (0 1 ) e 2 0 316 e15(t01) A (t≥0.1 s)
电感电流iL(t)的波形曲 线如右图所示。在t=0时, 它从零开始,以时间常数 τ1=0.1 s确定的指数规律增 加到最大值0.316A后,就 以时间常数τ2=0.0667s确 定的指数规律衰减到零。
【例14-3】
下图(a)所示电路原处于稳定状态。t = 0时开关 闭合,求t ≥0的电容电压uC(t)和电流i(t)。
解:(1)计算初始值uC(0+)
开关闭合前,图(a)电路已经稳定,电容相当于 开路,电流源电流全部流入4Ω电阻中,此时电容电 压与电阻电压相同,可求得
uC(0+)= uC(0 -)= 4Ω×2 A = 8V
t ln iL (0 ) iL () 0 005 ln 0 75 1 5 0 002 s

一阶电路的全响应与三要素

一阶电路的全响应与三要素

§5.4 一阶电路的全响应与三要素在上两节中分别研究了一阶电路的零输入响应和零状态响应,电路要么只有外激励源的作用,要么只存在非零的初始状态,分析过程相对简单。

本节将讨论既有非零初始状态,又有外激励源共同作用的一阶电路的响应,称为一阶电路的全响应。

5.4.1 RC 电路的全响应电路如图5-9所示,将开关S 闭合前,电容已经充电且电容电压0)0(U u c =-,在t=0时将开关S 闭合,直流电压源S U 作用于一阶RC 电路。

根据KVL ,此时电路方程可表示为:C u图 5-19 一阶RC 电路的全响应S C CU u tu RC=+d d (5-19) 根据换路原则,可知方程(5-19)的初始条件为 0)0()0(U u u C C ==-+令方程(5-9)的通解为 C CC u u u ''+'= 与一阶RC 电路的零状态响应类似,取换路后的稳定状态为方程的特解,则S CU u =' 同样令方程(5-9)对应的齐次微分方程的通解为τtCAe u -=''。

其中RC =τ为电路的时间常数,所以有τtS C AeU u -+=将初始条件与通解代入原方程,得到积分常数为 S U U A +=0所以电容电压最终可表示为τtS S c e U U U u --+=)(0 (5-20)电容充电电流为etS C R U U t u C i τ--==0d d这就是一阶RC 电路的全响应。

图5-20分别描述了s U ,0U 均大于零时,在0U U s >、0=s U 、0U U s <三种情况下c u 与i 的波形。

(a) (b)图5-20C u ,i 的波形图将式(5-20)重新调整后,得)1(0ττtS tC e U eU u ---+=从上式可以看出,右端第一项正是电路的零输入响应,第二项则是电路的零状态响应。

显然,RC 电路的全响应是零输入响应与零状态响应的叠加,即 全响应 = 零输入响应 + 零状态响应研究表明,线性电路的叠加定理不仅适用于RC 电路,在RC 电路的分析过程中同样适用,同时,对于n 阶电路也可应用叠加定理进行分析。

一阶电路分析的三要素法

一阶电路分析的三要素法

一阶电路分析的三要素法采用“三要素法”分析一阶电路,可以省去建立和求解微分方程的复杂过程,使电路分析更为方便和高效。

适用于直流激励一阶电路的三要素法我们仍以简单一阶RC 电路为出发点。

图1 所示RC 电路的全响应结果如下:图1 一阶RC电路图( 1 )( 2 )由图1 容易知道,电容电压的初值为,电容电压的终值为;而电流的初值为,电流的终值为。

观察式( 1 ) 、式(2) 可见,一阶电路中任意电路变量的全响应具有如下的统一形式:( 3 )可见,为求解一阶电路中任一电路变量的全响应,我们仅须知道三个要素:电路变量的初值、电路变量的终值以及一阶电路的时间常数。

我们称式( 6-5-3 ) 为一阶电路分析的三要素法。

三要素法同样适用于一阶RL 电路,但是二阶以上动态电路不可采用此法。

推广的三要素法在前面分析一阶电路时,我们采用的独立源具有共同的特点,即所有独立源均为直流(直流电压源或直流电流源)。

对于直流激励电路,换路前电路变量为稳定的直流量,换路后经历一个动态过程,电路变量过渡到另外一个稳定的直流量。

我们容易根据电路的原始状态和电路结构确定电路变量的初值f(0+)、电路变量的终值f(∞)以及一阶电路的时间常数。

如果电路中激励源不是直流,而是符合一定变化规律的交流量(如正弦交流信号),则换路后电路经历一个动态过程再次进入稳态,此时的稳态响应不再是直流形式,而依赖于激励源的信号形式(如正弦交流信号)。

此时,我们无法确定电路变量的终值f(∞),故无法采用式( 3 ) “三要素法”确定一阶电路全响应。

对于这类一阶电路,我们可以采用推广的三要素法:〔4 )式中,为全响应的初值、为电路的稳态响应、τ为电路的时间常数,称为一阶线性电路全响应的三要素,为全响应稳态解的初始值。

“三要素”的计算与应用利用三要素法分析一阶电路的全响应时,必须首先计算出电路变量的初值、电路变量的终值以及一阶电路的时间常数。

假设激励源为直流电压源或电流源。

一阶电路的全响应

一阶电路的全响应

一阶电路的全响应一阶电路的全响应一.全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。

图5. 5-1 (a)所示的一阶RC电路,直流电压源Us是外加激励•时开关S处于断开状态.电容的初始电压叫2°时开关闭合.现讨论f上°时电路响应的变化规律。

2 °4时,响应的初始值为叫(―)二%时,响应的稳态值为叫(8)=°$1(8)= 0川亞丿川宦理计算全响应:开关闭合后,电容电压叫⑦的全响应•等于初始状态U0取独作用时产生的零输入响应叫购和电I W ' I'JU'r Hj时产生的零状态响应叫11⑦的代如II,如图5・5・1 (b) . (c)所示。

图5. 5-1 (b)中,零输入响应为= = (ao)图5. 5-1 (c)中.零状态响应为du''(f)dt(CO)1、、厂(°+)1(8)时川初始值大于稳态值.2、屮®J'%00)时川初始值小于稳态值. 则全响应由初始值开始按抬数规律逐渐増加到稳态值,这是电路对动8、当® Jr (8)时.电路换路后无过渡过程,直接进入稳态.动态根据叠加定理•图5. 5-1 (a)电路的全响应为◎(f) = Q(f) + 冬"(f)=弘五4■兀Q 一<码t i=,十(九一匚)「冠=十血Oh) - (C 0皿=1/(0 +y® =-譽尸+牛二=1(8)+哄4)-「(8护用‘①表示全响应,农示响应的初始值,心校示稳态值。

—阶电路全响应非零初始状态的一阶动态电路,包括RC电路和RL电路,在外加激励的作用下,电路中任何一条支路上的全响应为啲=r(0 十)E T+ F(CD)(1 - g『)全响应的变化规律则全响应由初始值开始按抬数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。

三元素法分析一阶电路的全响应

三元素法分析一阶电路的全响应

三元素法分析一阶电路的全响应电路论文学院:电子信息工程学院班级:电气091502班姓名:***学号:************三元素法分析一阶电路的全响应摘要:本文主要介绍用三元素法分析解决一阶电路问题。

用三元素法求一阶电路问题首先要求出三元素:初始值,稳态值,时间常数,用三元素法可以直接代入公式求解,求解过程简单。

关键词:一阶电路 三元素法一、 全响应定义当一个非零初始状态的一阶电路受到激励时,电路的响应称为一阶电路全响应。

全响应总是由初始值、特解和时间常数三个要素决定的。

二、 三元素法的基本原理一阶电路的数学模型是一阶线性微分方程: 其解答一般形式为:令 t = 0+ 全响应f (t )的三要素求解公式为f (t )=f (∞)+[f (0+)-f (∞)]e -t/τ其中,f (0+)为t=0+时刻的初始值,f (∞)为t →∞时的特解稳态值,τ为t ≥0时的时间常数。

f (0+)、f (∞)和τ称为三要素。

只要知道f (0+)、f (∞)和τ这三个要素,就可以根据上述公式直接写出直流激励下一阶电路的全响应,这种方法称为三要素法。

三、 三元素法的解题步骤⒈ 求初始值 ⑴ 初始值定义t=0+时电路中电压与电流的值称为初始值。

⑵ 初始值的求解① 由换路前电路(稳定状态)求u C (0-)和i L (0-); ② 由换路定律得 u C (0+) 和 i L (0+)。

③ 画0+等效电路。

c bf tfa=+d d τteA t f t f -+'=)()(a.换路后的电路b.电容(电感)用电压源(电流源)替代。

(取0+时刻值,方向与原假定的电容电压、电感电流方向相同)。

④由0+电路求所需各变量的0+值。

⒉求稳态值⑴稳态值的定义t=∞时电路中电压与电流的值称为稳态值。

⑵稳态值的求解稳态时,电容C视为开路,电感L视为短路,稳态值即求直流电阻性电路中的电压和电源。

⒊求时间常数τ⑴时间常数τ的定义当电阻的单位为Ω,电容的单位为F时,乘积RC的单位为s,称为RC电路的时间常数,用τ表示。

5.5 一阶电路的全响应和三要素法

5.5 一阶电路的全响应和三要素法

1)着眼于电路的两种工作状态
全响应 = 强制分量(稳态解)+自由分量(暂态解)
t
t
-
-
uC US Ae US (U0 - US )e t 0
强制分量 (稳态解)
自由分量 (暂态解)
第3 页
2)着眼于因果关系
全响应 = 零状态响应 + 零输入响应
t
t
-
-
uC US(1 - e ) U0e
0
-
- iL e
2
1 - e-5t
A
第 27 页
(3)叠加
iL
1H +
10V –
5
i
uR
S
uC
2 0.25F
uR = uC
i
t
iL
t
uR t
2
iL t uC t
2
2
1 - e-5t
5e-2t
A
第 28 页
例题 已知:电感无初始储能t = 0 时合S1 , t =0.2s时合S2 ,求 两次换路后的电感电流i(t)和电感电压u(t) 。
(t 0)
零状态响应
零输入响应
S(t=0) R
+
US
C

uC (0-)=U0
S(t=0) R
+
US
C
+

uC (0-)= 0
S(t=0) R C
uC (0-)=U0
第4 页
例题 t=0时开关S闭合,求t >0后的iC、uC及电流源两端的电压。 (uC (0- ) 1V,C 1F)
1
1
1
+

03-一阶电路暂态过程的三种响应知识点

03-一阶电路暂态过程的三种响应知识点

一阶暂态电路暂态过程三种响应
1、三种响应
电路的零输入响应、零状态响应和全响应。

全响应为零输入响应与零状态响应的叠加。

2、响应关系
(1)零输入响应是指无电源激励,输入信号为零,仅由初始值引起的响应,其实质是储能元件的放电过程。

即有
换路条件U S =0、f (0+)≠0;表达式()(0)τ
-+=t f t f e 。

(2)零状态响应是指换路前初始储能为零,仅由外加激励引起的响应,其实质是电源给储能元件的充电过程。

即有
换路条件U S ≠0、f (0+)=0;()()1τ-=∞-t
f t f e ()。

(3)全响应是指激励和初始储能共同作用的结果,将零输入和零状态响应叠加。

其数学表达式为
()(0)()(1)--ττ
+=+∞-t t
f t f e f e 全响应=零输入响应+零状态响应
τ
t e
f f f t f -∞-++∞=)]()0([)()(全响应=稳态分量+暂态分量式中,f (t )为待求量;f (∞)为稳态分量;f (0+)为初始值;τ为瞬间常数。

3、几种响应变化曲线
电路不同的响应所对应变化曲线,如图1所示。

图1电路响应的变化曲线。

一阶电路的全响应

一阶电路的全响应

t
0)
5 55
55
iL (t )=
6 5
(
6 5
6
)e
t 3
5
6 5
12
e
t 3
(
A)(
t
5
0)
【例2】如图(a)电路,uc(0-)=2V,t=0时K闭合, 试用三要素法求t≧0时uc(t)及i1(t)。
K i1(t) 2
K i1(0+) 26Biblioteka -+6
-
+
+
+
Us 12V
2i1 1F +
uc(t) -
令t=0+,则:
-0
y(0+ )=Ae y() A y(0+ )-y()
故:
-t
y(t)=y() [ y(0 ) y()]e
-t
y(t)=y() [ y(0 ) y()]e
三要素:
① 初始值y(0+)
② 终值y()
③ 时间常数=RC或
L R
2、三要素法的应用
i(t) 1
1
K
iL(t)
—— 电路的时间常数。
(c) t= 等效图
1
1
(3) 时间常数
L
R
(图d)
0
R0 2
5
R0 =1
(2//1)
3
等效内阻,从动态元件两端看出去
(d) 求时等效图
L = 5 3(s)
R0 5 / 3
-t
(4) 由 y(t)=y() [ y(0 ) y()]e
i(t )=
9
(1
9
)e

电分第5章-4节全响应三要素

电分第5章-4节全响应三要素

S1
4μF
S2
+ + uC - + 20V u 50kΩ - 50kΩ -
uC (0 − ) = 0 uC (0+ ) = uC (0 − ) = 0
② 0 ≤ t < 0.1s
uC (∞) = 20V
τ = RC = 50 ×10 × 4 ×10 = 0.2s
3 −6
− t
uC (t ) = uC (∞) + [uC (0 + ) − uC (∞)]e = 20 − 20e
− t
R1
+ US S

C + uC2 ×103 ×1000 ×10 −12 s = 2 μs
uC (t ) = 4 + (0 − 4)e u3 (t ) = 4 + (6 − 4)e
τ1
= 4(1− e = 4 + 2e
−5×105 t
) V 0 ≤ t < t1 V 0 ≤ t < t1
+ + uC - + 20V u 50kΩ - 50kΩ -
uC (t ) = 20 + (7.87 − 20)e
= 20 −12.13e −10(t −0.1) V
−10( t − 0.1)
u(t ) = 20 − uC (t ) = 12.13e
V
t ≥ 0.1s
例:图示电路,t<0时开关打 开已久,t=0时开关闭合, 1A + u(t) 求:u(t) 解:换路定理
- -

S(t = 0) R S(t = 0) R + uR-+ i (1) + uR-+ i ( 2 ) + ( ( 2) uC1) + uS uC

第14讲 一阶电路的三要素公式

第14讲 一阶电路的三要素公式
uL (∞)=0
i1(∞)= i2(∞)=0
(3)求
L1
R 2
(s)
t
(4)代入三要素公式求各响应 iL(t)= iL (∞)+[ iL(0+)- iL (∞) ]e i1(t)= i1 (∞)+[ i1(0+)- i1 (∞) ]e i2(t)= i2 (∞)+[ i2(0+)- i2 (∞) ]e
当t≥1.5s时,开关闭合于“3”,如图
uC (1.5-) =8-12e-1.5=5.32 u1 (1.5+) =0
uC (1.5+) = uC (1.5-) =5.32 V
显然,各电压稳态值均为零。
t=1.5+s等效电路
由图可见,从电容两端看去的等效电 阻为2Ω, 所以τ=RC=0.5s。
于是按三要素得t≥1.5s的电路响应为 uC (t)=5.32e2(t 1.5 ) (V) u1(t)=0 t≥1.5s t≥1.5s t>1.5s时的电路
t 0
t 0
t/ t/ = 8(1 e t ) = 8 4e t t0 t 0
(2) 在t=0时,开关S由“1”闭合到“2”,经过 1.5s后,开
关又由“2”闭合到“3”。 在0≤t<1.5s区间,开关位于“2”,仍有 uC(t)=8-12 e-t (V) u1(t)=8-6 e-t (V) 下面求t ≥1.5s时的响应: 0≤t<1.5 s 0≤t<1.5s t>1.5s时的电路 V
i (A) 5 2
i(0.2 ) 2 2e 50.2 1.26
i (0.2 ) 1.26 2 0.5 i ( ) 5 A
i (t ) 5 3.74e 2( t 0.2) A

电路原理5.4.1一阶电路的三要素法 - 一阶电路的三要素法2

电路原理5.4.1一阶电路的三要素法 - 一阶电路的三要素法2

i
L
t
动态电路的时域分析
t
iL (t ) iL () [iL (0+ ) iL ()]e τ = 3 5e0.5t A (t 0)
(3)由原电路图求出i。
i
S(t=0)
R
Us
IS

iL L
· b
i = IS iL = 5 5e0.5t A (t≥0)
动态电路的时域分析
例3. 已知US=10V, R1=R2=4, R3=2, C=1F,电容原未
动态电路的时域分析
t
y(t ) y() [ y(0 ) y()]e
三要素
y(0+)
y()
τ
初始解 稳态值 时间常数
三要素法——根据三要素,直接写出一阶电路在直流激
励下的全响应。
一般步骤:
1. 利用换路定则以及KCL、KVL求出y(0+) ; 2. 在换路后的稳态电路中求出稳态分量y() ; 3. 利用戴维宁定理计算RC或RL串联电路的时间常数τ。
充电,求开关S闭合后uC(t)。
· S(t=0) R1
R3
US U1 R2 2U1
解: 电容原未充电
·a
C uC(t)
·
b
uC (0 ) = uC (0 ) = 0V
动态电路的时域分析
移去电容,求一端口a、b的戴维宁等效电路:
· R1
R3
·a
C
C
US U1 R2
2U1
·b
·a
Req uoc
·b
动态电路的时域分析
并画波形图。
补充:
当换路时间发生在t=0时刻, 则根据三要素法可得:
t

5.3.4一阶电路的动态响应 - 一阶电路的动态响应3一阶电路的三要素法1

5.3.4一阶电路的动态响应 - 一阶电路的动态响应3一阶电路的三要素法1

R2 u2(t) L i1(t) -
动态电路的时域分析
解:t<0时电路已处于稳态,iL(0- ) 0。
因此,换路后所求响应为零状态响应。求得稳态时的
电感电流:
iL()
R1
US R2 R3
R2 R3
R2 R2 R3
0.5 A
换路后,从电感两端看进去的戴维宁等效电阻为
Req
R3 R1 // R2
换路后,电路中有激励。
注意:由于输入不为零,所以电路方程仍为非齐次微分
方程,分析求解过程与零状态输入一样,所不同的是电 路的初始状态不为零,即初始条件不同,因而确定的积 分常数A也不同。
动态电路的时域分析
引例: S(t=0) R
i
US
+ uR – C
解:
+
uC
RC
duC dt
uC
US
– (非齐次微分方程)
uC (0-)=U0 (不为零)
解答为:uC =uC' uC'' 特解 : uC' = US
-t
通解: uC = Ae τ
-t
全解: uC = US + Ae τ
其中 = RC
由初始值来确定A: uC (0+)=A+US=U0 A=U0 – US
动态电路的时域分析
所以:
稳态解
暂态解
-t
uC uC uC US (U0 - US )e τ t 0
励下的全响应。
一般步骤:
1. 利用换路定则以及KCL、KVL求出y(0+) ; 2. 在换路后的稳态电路中求出稳态分量y() ; 3. 利用戴维宁定理计算RC或RL串联电路的时间常数τ。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故又有 : 全响应=零状态响应 零输入响应 全响应 零状态响应+零输入响应 零状态响应
二、一阶电路的三要素法
稳态值,初始值和时间常数称为一阶电路的三要素, 稳态值,初始值和时间常数称为一阶电路的三要素, 通过三要素可以直接写出一阶电路的全响应。 通过三要素可以直接写出一阶电路的全响应 。 这种方法 称为三要素法。 称为三要素法。 若全响应变量用f(t)表示,则全响应可按下式求出: 若全响应变量用 表示,则全响应可按下式求出: 表示

(b )
等效电路如图( ) 所示。列出网孔电流方程: 作 t=0+ 等效电路如图 ( c)所示 。 列出网孔电流方程 :
8i (0 + ) − 4iC (0 + ) = 20 − 4i (0 + ) + 6iC (0 + ) = −20
可得: 可得:
+
4kΩ i(0 ) +
2kΩ iC(0+)
+ 20 V
− t
稳态分量 全响应 t
uC = U + [U 0 − U ]e τ
上式的全响应还可以写成: 上式的全响应还可以写成:
− t − t
-
t
uC = U s (1 − e τ ) + U 0e
τ
上式中 U s (1 − e τ ) 是电容初始值电压为零时的零状态 响应, 响应
U 0e

t
τ
是电容初始值电压为U 时的零输入响应。 是电容初始值电压为 0时的零输入响应。
2 i(0 +) i(0 −) = L = × 3 = 2V L 1+ 2
时的电路如图( )所示,则有: 作t≥0时的电路如图(c)所示,则有: 时的电路如图
R1 R2
R3
u(0 +) −i(0 +) = L × ( L
(2)求稳态值: )求稳态值:
R1 R2 + R3) −4V = R1 + R2
f (t ) = f (0 + )e

t
τ
式中, 是响应的初始值, 是电路的时间常数。 式中,f(0+)是响应的初始值,τ是电路的时间常数。 是响应的初始值 是电路的时间常数
3. 一阶电路的零状态响应
零状态响应就是电路初始状态为零时由输入激励产生的响应。 零状态响应就是电路初始状态为零时由输入激励产生的响应。 其形式为 : t
时开关S闭合 例1:如图所示电路原已稳定,t=0时开关 闭合, :如图所示电路原已稳定, 时开关 闭合, 试求电感电压uL。
2Ω Ω R1 IS R2 Ω t=0 2Ω
(a)
1Ω Ω R3 L 1H
2Ω
3A
2Ω
(b)
1Ω
S
uL
L
iL
3A
解(1)求初始值:作t=0–等效电路如图(b)所示。则 )求初始值: 等效电路如图( )所示。 有:
uC = U + [U 0 − U ]e τ
式中 : U 0 = u(0 +) C
可见, 可见,电路的全响应可分解为稳态分量和暂态分量 之和。 之和。即: 全响应=稳态分量 暂态分量 稳态分量+暂态分量 全响应 稳态分量 暂态分量
下图给出了U 下图给出了 >U0时,uC随时间变化的曲线。
uC U U0 0 暂态分量 U0-U
2.稳态值 f(∞)。作换路后 稳态值 时的稳态等效电路, 。作换路后t=∞时的稳态等效电路,求 时的稳态等效电路 取稳态下响应电流或电压的稳态值 i(∞)或u(∞), 即f(∞) 。 或 电路时,电容相当于开路 电感相当于短路。 作t=∞电路时 电容相当于开路 电感相当于短路。 电路时 电容相当于开路;电感相当于短路 3.时间常数 。τ=RC或L/R,其中 值是换路后断开储 时间常数τ。 时间常数 或 ,其中R值是换路后断开储 能元件C或 由储能元件两端看进去, 能元件 或L, 由储能元件两端看进去 用戴维南等效电 路求得的等效内阻。 路求得的等效内阻。 注意:三要素法仅适用于一阶线性电路, 注意:三要素法仅适用于一阶线性电路,对于二阶或 高阶电路是不适用的。 高阶电路是不适用的。

f (t ) = f (∞)(1 − e τ )
式中, 是响应的稳态值。 式中, f(∞)是响应的稳态值。 是响应的稳态值 4.一阶电路的全响应 全响应就是初始状态不为零的电路在输入恒定直流激励下产生 的响应。其两种分解为: 的响应。其两种分解为:
t
f (t ) = f (0 + )e

τ
+ f (∞)(1 − e )
− t
f (t ) = f (∞) + [ f (0 + ) − f (∞)]e
τ
三要素的计算: 三要素的计算: 1.初始值 +)。 初始值f(0 。 初始值 (1)求出电容电压 C(0-)或电感电流 L(0-) )求出电容电压u )或电感电流i (2)根据换路定律,求出响应电流或电压的初始值 )根据换路定律, i(0+)或u(0+), 即f(0+)。 或 。
uC (t ) = 10 + (20 − 10)e −125t = 10(1 + e −125t )V
iC (t ) = −2.5e
−125 t

小 结
1.换路定理 换路定理
在电路理论中, 通常把电路状态的改变(如通电、断电、 在电路理论中, 通常把电路状态的改变(如通电、断电、短 电信号突变、电路参数的变化等) 统称为换路。 路、电信号突变、电路参数的变化等), 统称为换路。换路前后瞬 电感电流、电容电压不能突变,称为换路定律。 间,电感电流、电容电压不能突变,称为换路定律。即:
i L ( 0 + ) = iL ( 0 − ) uC (0+ ) = uC (0− )
利用换路定律和0 等效电路,可求得电路中各电流、电压的初始值。 利用换路定律和 +等效电路,可求得电路中各电流、电压的初始值。
2.一阶电路的零输入响应
零输入响应就是无电源一阶线性电路, 零输入响应就是无电源一阶线性电路,在初始储能作用下产 生的响应。其形式为: 生的响应。其形式为:

20 V 4kΩ

iC ( 0 + ) = − 2 . 5 m Α
(c)
时稳态等效电路如图( ) (2)求稳态值 C(∞)、iC(∞) 。作t=∞时稳态等效电路如图(d)所 )求稳态值u 、 时稳态等效电路如图 则有: 示,则有:
4kΩ 2kΩ iC(∞ ) + 20 V 4kΩ

4 uC (∞ ) = × 20 = 10V 4+4 iC (∞) = 0
f (t ) = f (∞) + [ f(0 +) f (∞)]e −

t
τ
计算响应变量的初始值f(0+)和稳态值 和稳态值f(∞),分别用 +时的电路 计算响应变量的初始值 和稳态值 ,分别用t=0 时的电路解出。 时的电路, 和t=∞时的电路解出。作t=0+时的电路,将uC(0+)和iL(0+)分别视为电 时的电路解出 和 分别视为电 压源和电流源。 时的电路, 压源和电流源。作t=∞时的电路,电容相当于开路、电感相当于短 时的电路 电容相当于开路、 时间常数τ中的电阻 中的电阻R, 路。时间常数 中的电阻 ,是动态元件两端电路的戴维南等效电 路电阻。 路电阻。
§ 7-6 一阶电路的全响应和三要素方法
全响应:当一个非零初始状态的一阶电路受到激励时 全响应:当一个非零初始状态的一阶电路受到激励时, S(t=0) 电路中所产生的响应。 电路中所产生的响应。 R
一、全响应的两种分解 duC + uC = U 如图有 : RC dt
则全响应为 :
t
+ U - C
+ uC -
− t

t
τ
f (t ) = [ f (0 + ) − f (∞) ]e + f (∞)
τ
(暂态响应)
(稳态响应)
5.一阶电路的三要素法 一阶电路的三要素法
一阶电路的响应f(t),由初始值 +)、稳态值 由初始值f(0 、稳态值f(∞)和时间常数 和时间常数τ 一阶电路的响应 由初始值 和时间常数 三要素所确定, 三要素所确定,利用三要素公式可以简便地求解一阶电路在直流 电源作用下的电路响应。全响应表达式为: 电源作用下的电路响应。全响应表达式为:
画t=∞时的等效电路 如图 (d)所示。 时的等效电路, 所示。 时的等效电路 所示
2A (c) ) R1 R3
uL
u(∞) 0 = L
(3)求时间常数: )求时间常数:
R1 R2 + R3 = 2Ω R1 + R2 时间常数为: 时间常数为: τ = L = 1 = 0.5s R′ 2
等效电阻为: 等效电阻为: R′ = 所以,全响应为: 所以,全响应为:
R2
uL
− 2t
u(t) u(∞) [u(0 +) u(∞) = C + C − C ]e C

t
(d)
τ
= −4e V
时开关S闭合 例2:如图(a)所示电路,在t=0时开关 闭合,S :如图( )所示电路, 时开关 闭合, 闭合前电路已达稳态。求t≥0时uC(t) 和iC (t) 。 闭合前电路已达稳态。 时
解:(1)求初始值 C(0+) 。作 )求初始值u t=0—时的等效电路如图(b)所 时的等效电路如图( ) 则有: 示。则有:
4kΩ 2kΩ iC 20 V
-+ S(t=0) 4kΩ(a )+
相关文档
最新文档