对带有季节变动的时间序列数据的预测分析题
市场调查 第十二章 季节变动预测法
![市场调查 第十二章 季节变动预测法](https://img.taocdn.com/s3/m/87507af181c758f5f61f67a5.png)
=
某季或月实际值
该季或月的季节指数
× 4个季度 或者 12个月
如例1:假如已知第六年的第一季度的实际值为350万元,则: 全年的 预测值 = 1季度的实际值: 350 4个季 × 度
该季或月的季节指数:102.51%
= 1365.72万元
其它季 或月的 预测值
=
某季或月实际值
其它季或月 × 的季节指数 该季或月的季节指数
• 预测方法: • 1)已知未来全年的预测值,预测各季节的或各 月的。
预测年份某季 = 全年预测值 或月预测值 4个季度或12个月
× 该季或月的 季度指数
如:例1,假如已知第6年全年的预测值是1444.76万元, 第1季的预 = 测值 1444.76 4 × 第1季度的季节 指数:102.51%
= 370 . 26万元
案例:某商品2007-2009年各季度销量如下表,
1.若2010年1季度该商品实际销量为55,预测2010年 后三季度销量。 2.若通过预测得知2010年全年销售总量为286,预测 该年度各季度销量。 年份 一季度 二季度 三季度 四季度 年度总 销量 销量 销量 销量 销量
2007
52
75
86
169.70% 97.78% 41.96% 86.27% 171.07% 101.55% 45.78% 78.84%
年份 1 2
一季
二季
三季
四季
合计
169.70% 97.78% 41.96% 86.27% 171.07% 101.55%
3
合计
45.78% 78.84%
87.74% 165.12% 340.77% 199.33% 396.47% 400%
第章时间序列预测习题答案
![第章时间序列预测习题答案](https://img.taocdn.com/s3/m/2aae75f002768e9950e73823.png)
第10章时间序列预测从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势。
(2)年平均增长率为:。
(3)。
下表是1981年—2000年我国油彩油菜籽单位面积产量数据(单位:kg / hm2)年份单位面积产量年份单位面积产量1981 1451 1991 12151982 1372 1992 12811983 1168 1993 13091984 1232 1994 12961985 1245 1995 14161986 1200 1996 13671987 1260 1997 14791988 1020 1998 12721989 1095 1999 14691990 1260 2000 1519(1)绘制时间序列图描述其形态。
(2)用5期移动平均法预测2001年的单位面积产量。
(3)采用指数平滑法,分别用平滑系数a=和a=预测2001年的单位面积产量,分析预测误差,说明用哪一个平滑系数预测更合适?详细答案:(1)时间序列图如下:(2)2001年的预测值为:|(3)由Excel输出的指数平滑预测值如下表:年份单位面积产量指数平滑预测a= 误差平方指数平滑预测a=误差平方a=时的预测值为:比较误差平方可知,a=更合适。
下面是一家旅馆过去18个月的营业额数据月份营业额(万元)月份营业额(万元)1 295 10 4732 283 11 4703 322 12 4814 355 13 4495 286 14 5446 379 15 6017 381 16 5878 431 17 6449 424 18 660(1)用3期移动平均法预测第19个月的营业额。
(2)采用指数平滑法,分别用平滑系数a=、a=和a=预测各月的营业额,分析预测误差,说明用哪一个平滑系数预测更合适?(3)建立一个趋势方程预测各月的营业额,计算出估计标准误差。
详细答案:(1)第19个月的3期移动平均预测值为:(2)月份营业额预测a=误差平方预测a=误差平方预测a=误差平方1 2952 2833 3224 3555 2866 3797 3818 4319 42410 47311 47012 48113 44914 54415 60116 58717 64418 660合计————50236由Excel输出的指数平滑预测值如下表:a=时的预测值:,误差均方=。
Excel 财务应用 季度变动预测分析
![Excel 财务应用 季度变动预测分析](https://img.taocdn.com/s3/m/a8534a6a48d7c1c708a14541.png)
Excel 财务应用季度变动预测分析季节变动是指有些社会经济现象,因受社会因素和自然因素的影响,在一年内随着时序的变化而引起周期性的变化。
这种周期性的变化一般都是比较稳定的。
季节变动在统计中,一般指的是一年内4季或12月的周期性变动。
但广义上的季节变动是指凡是短期的周期性的规律变动,如一个月上、中、下旬的周期性变动,一个星期内从周初到周末每天的周期性变动,甚至在一天内的周期性的变动,亦都称之为季节变动。
季节变动是与一定的历史条件相联系的,随着科学技术的不断发展,具体历史条件的改变,有些季节变动也将随之改变。
进行季节变动的分析和预测,在于认识、掌握和利用季节变动,从而克服由于季节变动引起不良影响,以便更好地组织生产,安排人民经济生活,提供可靠资料。
1.季节模型季节模型是指季节变动分析所运用的各种数学方程式。
也就是用某种数学方程式去模拟一个资料的变动的规律作为分析的模式。
一般认为影响动态数列发展变化的因素有四,即:①长期趋势(这是最主要的),用T表示;②季节变动,用S表示;③循环变动,用C表示;④不规则变动,用I表示。
因此,动态数列的模型有两种模式:乘法模式:Y=T*S*C*I加法模式:Y=T+S+C+I一般说来,T和S为常态变动,C和I为剩余变动。
另外,还有所谓混和模式:Y=T*S+C*I按照上述原理,测定季节变动的模型有三种形式:S=Y/(T*C*I)S=Y-T-C-IS=(Y-C*I)/T2.单纯季节型动态数列的季节变动分析在有些动态数列中,由于长期趋势比较稳定,因此其数列中可视为只有季节变动。
像这样的动态数列,就称为单纯季节型动态数列。
对单纯季节型动态数列的季节分析,一般要求至少需要三年至五年的资料,其常用的分析方法是周期平均法。
周期平均法的特点是:将不同年份中同一时期(如同月,同季)数值相加,求算术平均数,以消除无规则变动;再计算季节指数。
例如,某百货公司商品零售额资料如图8-95所示。
图8-95 周期平均法首先计算5年同季合计数和平均数。
某医院出院人次季节变动规律和预测分析
![某医院出院人次季节变动规律和预测分析](https://img.taocdn.com/s3/m/52d81c69ddccda38366baf01.png)
【 关键词 】 出院人 次 ; 季节变动 ; 预测分析
d iO3 6  ̄i n17 — 9 52 1 .40 8 o: . 9 .s . 4 4 8 .0 22 .3 l 9 s 6
随着卫 生部医疗改革工作的不断推进 ,对 医院管理 的各
项 要求也越 来越高。医院统计工作为医院规划 和决 策提供 信
会效 益和经济效 益 】 。本文依据某 医院 2 0 - 0 1 0 6 2 1 年出院人 次进 行统计分析预 测,以提供决 策参 考。
1 资料 与方 法
1 资料来源 . 1 1 方法 . 2
资料来 源于某医院 2 0 -0 1 0 6 2 1 年住 院工作综
22 0 6 2 1 年 出院人次 呈现 出直线上 升趋势。出院人次 . 2 0 — 0 1 逐年平均增 长速度 为 2 % 左右,2 1 年与 2 0 0 01 0 6年相 比,出 院人次 翻一倍多。见表 2 。
表1 2 1 年 出院人次预测 02
息支持 的功能 则愈显重 要。医疗工作是 医院工作的核心,在 众 多的医院统计指标 中,出院人次 是直接 反映 医疗工作效率
的主要统计指 标,对其进行 季节变动规律 和预测分析,可 以 为医 院管 理层制定工作计划 ,合 理安排人、财、物 资源提供 科学依据 ,最大 限度地满足患者 的医疗需求 ,提高 医院的社
我院门诊量季节性变动预测分析
![我院门诊量季节性变动预测分析](https://img.taocdn.com/s3/m/b27c7a49cc22bcd127ff0c59.png)
我院门诊量季节性变动预测分析摘要】目的对我院门诊量季节性变动预测分析,为医院科学现代化管理,促进医院的发展提供科学可靠的依据。
方法应用季节变动预测结果每年的二、三、四季度是我院门诊就诊高峰期季度,其中峰值出现在7 月份,第一个次峰值出现在8 月份,第二个次峰值出现在5 月份。
低谷期出现在每年的第一季度,特别是1、2 月份。
结论医院门诊就诊季节性变动情况,“以人为本,以患者为中心”的宗旨,制定科学措施,提供医院管理水平。
【关键词】门诊量季节性变动预测【中图分类号】R197.32 【文献标识码】A 【文章编号】2095-1752(2012)08-0372-02近年来,随着城乡居民生活水平的逐步提高,人们健康意识的不断增强,我院门诊量逐年增加,特别是我院实施“大专科,小综合”建设以来,门诊量更是呈现出阶梯式上升的趋势。
针对门诊量的不断增加,采用时间系列数据季节指数分析法,找出患者就诊时间规律,为了更好地合理配置资源指明方向,为医院领导及时制定相应的措施提供可靠依据。
1 资料来源资料来源于我院病案统计室2007 - 2011 年医院统计工作报表,数据真实、准确、可靠。
见表1、表2。
2 方法与步骤季节指数大小反应门诊在不同季节的流量变化,月份或季节指数超过100%且上升幅度较大者表示旺季,反之低于100% 且下降幅度较大者表示淡季。
其中季节指数等于同月(或季)平均数除以各年份月(或季)总平均数,根据公式计算出月度和季度季节指数,见表1、表2。
通过动态分析,可见我院门诊量存在明显的周期性季节变动,见图1、图2。
3 结果由图1、图2 所示,我院门诊就诊高峰期按季度分析为每年的二、三、四季度,按月份分析出现在每年的3 ~ 12 月,其中峰值出现在7 月份。
第一个次峰值出现在8 月份,第二个次峰值出现在5 月份。
低谷期出现在每年的第一季度,特别是1、2 月份。
4 讨论通过结果分析,不同情形制定不同措施。
针对医院门诊就诊高峰期,由于门诊量大增,患者面对就诊扎堆排队等候、专家门诊难求等现象,而医务工作人员工作量加大,情绪易烦躁,医患矛盾极易发生。
高级计量分析(时间序列分解——季节调整)
![高级计量分析(时间序列分解——季节调整)](https://img.taocdn.com/s3/m/440259e8c8d376eeaeaa3149.png)
时间序列分解——季节调整一、研究目的经济指标的月度或季度时间序列包含4种变动要素:长期趋势要素T 、循环要素C 、季节变动要素S 和不规则要素I 。
长期趋势要素代表经济时间序列长期的趋势特征。
循环要素是以数年为周期的一种周期性变动,它可能是一种景气变动、也可能是经济变动或其他周期变动。
季节变动要素是每年重复出现的循环变动,以12个月或4个季度为周期的周期性影响,是由温度、降雨、每年中的假期和政策等因素引起的。
季节要素和循环要素的区别在于季节变动时固定间距(如季或月)中的自我循环,而循环要素是从一个周期变动到另一个周期,间距比较长且不固定的一种周期性波动。
不规则要素又称随机因子、残余变动或噪声,其变动无规则可循,这类因素是由偶然发生的事件引起的,如罢工、意外事故、地震、水灾、恶劣气候、战争、法令更改和预测误差等。
在经济分析中,季节变动要素和不规则要素往往掩盖了经济发展中的客观变化,给研究和分析经济发展趋势和判断目前经济所处的状态带来困难。
因此,需要在经济分析之前将经济时间序列进行季节调整,剔除其中的季节变动要素和不规则要素。
而利用趋势分解方法可以把趋势和循环要素分离开来,从而研究经济的长期趋势变动和景气循环变动。
二、季节调整的原理时间序列的季度、月度观测值常常显示出月度或季度的循环变动。
例如,冰激凌的销售量在每一年的夏季最高。
季节性变动掩盖了经济发展的客观规律,因此,在利用月度或季度时间序列进行计量分析之前,需要进行季节调整。
季节调整就是从时间序列中去除季节变动要素S ,从而显示出序列潜在的趋势循环分量(TC ,季节调整无法将趋势要素和循环要素进行分离)。
只有季度、月度数据才能做季节调整。
目前比较常用的季节调整方法有4种:CensusX12方法、X11方法、移动平均方法和Tramo/Seats 方法。
1、X11季节调整方法该方法是1965年美国商务部人口调查局研究开发的季节调整程序。
它是基于移动平均法的季节调整方法,通过几次迭代来进行分解,每一次都对组成因子的估算进一步精化。
季节趋势的时间序列预测
![季节趋势的时间序列预测](https://img.taocdn.com/s3/m/ea01a744e97101f69e3143323968011ca300f7d6.png)
季节趋势的时间序列预测季节趋势的时间序列预测是指对时间序列数据中呈现出明显季节性变化趋势的情况进行预测和分析。
季节趋势可以是每年、每季度、每月或每周重复出现的波动情况,对于一些具有季节性特征的数据,如销售额、股票价格、天气数据等,进行季节趋势的预测可以帮助我们了解和预测未来的趋势。
在季节趋势的时间序列预测中,常用的方法有季节分解法、移动平均法、指数平滑法等。
一种常见的方法是季节分解法。
季节分解法首先将时间序列数据分解为三个部分:长期趋势分量、季节分量和随机波动分量。
长期趋势分量反映了时间序列数据的总体变化趋势,季节分量描述了季节性变化的规律,而随机波动分量反映了不可预测的随机波动。
季节分解法的步骤如下:1. 对时间序列数据进行平滑处理,例如可以使用移动平均法。
2. 对平滑处理后的数据进行季节性分量的估计,可以使用季节指数法或回归方法。
3. 得到季节性分量后,通过拟合趋势分量和随机波动分量来估计长期趋势分量和随机波动分量。
4. 根据长期趋势分量和季节性分量,得到未来的季节趋势预测结果。
另一种常见的方法是移动平均法。
移动平均法通过计算一定时间窗口内数据的平均值来平滑时间序列数据,以减少随机波动的影响。
常用的移动平均法有简单移动平均法、加权移动平均法等。
移动平均法的步骤如下:1. 确定时间窗口的大小,即要计算的数据个数。
2. 根据时间窗口的大小,计算每个时间点的平均值。
3. 根据计算的平均值,进行未来季节趋势的预测。
指数平滑法是另一种常见的方法,它通过对时间序列数据进行指数加权来平滑数据,较好地反映了时间序列的趋势和季节性变化。
指数平滑法的步骤如下:1. 初始化权重,通常为0.1到0.3之间的值。
2. 对时间序列数据进行指数平滑计算,得到平滑后的数据。
3. 根据平滑后的数据,进行未来季节趋势的预测。
在季节趋势的时间序列预测中,选择合适的方法需要根据数据的特点和需求来进行判断。
需要考虑的因素包括数据的周期性、趋势性以及随机波动的程度等。
现代 市场调查与预测试题及答案第十章 定量预测方法
![现代 市场调查与预测试题及答案第十章 定量预测方法](https://img.taocdn.com/s3/m/795a1f777fd5360cbb1adb07.png)
一、填空题1、对所有市场现象之间的数量依存关系可分为 函数关系 和 相关关系 两大类。
2、时间序列数据的主要变动类型有 长期变动趋势 、季节变动趋势、 循环变动趋势 和随机变动趋势。
3、季节变动有比较固定的周期,其变动周期通常为 一年 ;而 循环变动 无固定规律,其周期通常在一年以上。
4、当时间序列呈比较稳定趋势时,适宜于用 算术平均 法进行预测;而当时间序列逐期增长率大致相同时,适宜于用 几何平均 法进行预测。
5、移动平均法能揭示时间序列长期变动趋势,该方法预测的准确程度主要取决于 移动期数的选择 。
6、当时间序列各数据呈线性趋势变化时,最适宜的移动平均法是 二次移动平均法 ,其基本预测模型为:ˆt T t t X a bT +=+,其中t a =(1)(2)2t t M M -,t b =(1)(2)2()1t t M M n -- 。
7、指数平滑法的基本含义是:1t +期预测值=1t t αα⨯⨯实际值+(-)预测值 8、指数平滑法,实际上是一种特殊的 加权平均法 。
它对离预测期最近的观察值给予 较大 的权数,而对离预测期最远的观察值给予 较小 的权数。
9、应用二次指数平滑法进行预测时,通常令二次平滑的初始值)2(1S =)1(1S 10、最小二乘法的基本原理是:若以t y 表示时间序列中各期的实际值,t yˆ为预测值,满足实际值与预测值的离差平方和 最小 的直线为最佳直线。
它的数学表达式为:最小=-∑2)ˆ(t t y y11、直线趋势延伸预测法确定a 、b 值的常用方法是 最小二乘法 和 直观法 。
12、当时间序列各数据分布呈抛物线时,最适合的预测方法是 二次曲线趋势外推法 ;当时间序列反映预测目标的发展趋势大体按一定比例增长时,最适合的预测方法是 指数曲线趋势外推法 。
13、一元相关回归分析市场预测法,是根据 一个自变量 去预测一个因变量的市场预测方法。
14、多元回归预测的统计检验内容有 标准误差检验 、F 检验、 t 检验 和r 检验。
季节预测法例题
![季节预测法例题](https://img.taocdn.com/s3/m/0dbc5b143a3567ec102de2bd960590c69fc3d86e.png)
季节预测法是一种基于时间序列数据的预测方法,它利用时间序列中的季节性规律来预测未来的趋势。
下面是一个使用季节预测法的简单例题:
假设你是一位餐厅老板,想要预测未来一个月的销售额。
你收集了过去几个月的销售额数据,发现销售额呈现出季节性波动,每个月的销售额都会出现一次高峰和一次低谷。
基于这些数据,你可以使用季节预测法来预测未来一个月的销售额。
具体步骤如下:1.将时间序列数据划分为若干个季节,每个季节包含若干个时间点。
在这个例子
中,你可以将每个月划分为一个季节,然后计算每个月的平均销售额。
2.计算季节性指数,即将每个季节的平均销售额除以所有季节的平均销售额。
例
如,如果某个月的平均销售额为1000元,而所有月份的平均销售额为800元,则该月份的季节性指数为1.25。
3.使用季节性指数来预测未来一个月的销售额。
假设过去几个月的季节性指数分
别为1.1、1.2、1.3和1.4,则未来一个月的销售额预测值为800 * 1.3 = 1040元。
需要注意的是,季节预测法只适用于具有明显季节性规律的时间序列数据。
如果数据中没有明显的季节性规律,或者季节性规律不稳定,则该方法可能不适用。
此外,还需要注意数据的异常值和缺失值对预测结果的影响。
统计学:时间序列分析习题与答案
![统计学:时间序列分析习题与答案](https://img.taocdn.com/s3/m/2e1dd611580102020740be1e650e52ea5418ce43.png)
一、单选题1、根据季度数据测定季节比率时,各季节比率之和为()。
A.100%B.0C.400%D.1200%正确答案:C2、增长1%水平值的表达式是()。
A.报告期增长量/增长速度B.报告期发展水平/100C.基期发展水平/100D.基期发展水平/1%正确答案:C3、若报告期水平是基期水平的8倍,则我们称之为()。
A.翻了 3番B.翻了 8番C.发展速度为700%D.增长速度为800%正确答案:A4、若时间数列呈现出长时间围绕水平线的周期变化,这种现象属于()。
A.无长期趋势、有循环变动B.有长期趋势、有循环变动C.无长期趋势、无循环变动D.有长期趋势、无循环变动正确答案:B5、银行年末存款余额时间数列属于()。
A.平均指标数列B.时点数列C.时期数列D.相对指标数列正确答案:B6、某一时间数列,当时间变量t=1,2,3,...,n时,得到趋势方程为y=38+72t,那么,取t=0,2,4,6,8,...时,方程中的b将为()。
A.36B.34C.110D.144正确答案:A7、某企业2018年的产值比2014年增长了 200%,则年平均增长速度为()。
A.50%B.13.89%C.29.73%D.31.61%正确答案:D8、2010年某市年末人口为120万人,2020年年末达到153万人,则年平均增长量为()万人。
A. 3B.33C. 3.3D.30正确答案:C9、在测定长期趋势时,如果时间数列逐期增长量大体相等,则宜拟合()。
A.抛物线模型B.直线模型C.曲线模型D.指数曲线模型正确答案:B10、在测定长期趋势时,当时间数列的逐期增长速度基本不变时,宜拟合()。
A.逻辑曲线模型B.二次曲线模型C.直线模型D.指数曲线模型正确答案:D二、多选题1、编制时间数列的原则有()。
A.经济内容的一致性B.计算方法的一致性C.时间的一致性D.总体范围的一致性正确答案:A、B、C、D2、以下表述正确的有()。
时间序列练习题
![时间序列练习题](https://img.taocdn.com/s3/m/427b60710a4c2e3f5727a5e9856a561252d321fd.png)
时间序列练习题时间序列分析是一种用于研究以时间为顺序的数据变动规律的方法。
它可以帮助我们理解和预测未来的趋势,对于决策和规划具有重要的意义。
本文将通过一些时间序列练习题,帮助读者更好地理解和应用时间序列分析。
练习题一:季度销售数据分析某公司的销售数据按照季度记录如下:季度销售额Q1 100Q2 200Q3 300Q4 400请你根据这些数据,进行以下的分析和预测:1. 绘制季度销售额的时间序列图。
2. 计算季度销售额的平均值。
3. 判断季度销售额是否存在趋势性,并进行趋势线的拟合。
4. 判断季度销售额是否存在季节性,如果存在,请进行季节性分解。
5. 使用你认为最适合的模型进行未来一年季度销售额的预测,并给出预测结果。
练习题二:月度股票收益率分析某股票连续12个月的收益率数据如下:月份收益率1 0.032 0.053 -0.024 0.025 -0.016 0.047 -0.038 0.019 0.0210 -0.0511 0.0112 0.03请你根据这些数据,进行以下的分析和预测:1. 绘制月度股票收益率的时间序列图。
2. 计算月度收益率的平均值和标准差。
3. 判断股票收益率是否存在趋势性,并进行趋势线的拟合。
4. 判断股票收益率是否存在季节性,如果存在,请进行季节性分解。
5. 使用你认为最适合的模型进行未来三个月股票收益率的预测,并给出预测结果。
练习题三:年度气温分析某城市过去10年(2011年至2020年)的年度平均气温数据如下:年份平均气温(摄氏度)2011 192012 212013 202014 182015 172016 182017 202018 222019 232020 21请你根据这些数据,进行以下的分析和预测:1. 绘制年度平均气温的时间序列图。
2. 计算年度平均气温的平均值、中位数和极差。
3. 判断气温是否存在趋势性,并进行趋势线的拟合。
4. 判断气温是否存在季节性,如果存在,请进行季节性分解。
时间序列分析试题ARIMA模型与季节性调整
![时间序列分析试题ARIMA模型与季节性调整](https://img.taocdn.com/s3/m/cd328a9d6e1aff00bed5b9f3f90f76c661374c36.png)
时间序列分析试题ARIMA模型与季节性调整时间序列分析被广泛应用于许多领域,如经济学、金融学、气象学等等。
它是一种研究随时间变化的数值序列的方法。
在时间序列分析中,ARIMA模型和季节性调整是常用的技术。
本文将介绍ARIMA模型和季节性调整的相关概念和应用。
一、ARIMA模型ARIMA模型是自回归移动平均模型(Autoregressive Integrated Moving Average Model)的缩写。
它是一种常用的时间序列分析方法,被广泛用于预测和建模。
ARIMA模型的核心思想是通过将时间序列分解成自回归(AR)成分、差分(I)成分和移动平均(MA)成分,来进行建模和预测。
ARIMA模型的建立包括三个步骤:确定模型阶数、估计模型参数、模型检验和预测。
1.1 确定模型阶数在确定ARIMA模型的阶数时,可以利用自相关函数(ACF)和偏自相关函数(PACF)的图形分析来寻找最佳的阶数。
ACF图可以帮助我们确定移动平均项的阶数,PACF图可以帮助我们确定自回归项的阶数。
通过观察图形,我们可以找到ACF和PACF截尾的位置,从而得到ARIMA模型的阶数。
1.2 估计模型参数在确定了模型的阶数后,我们需要估计模型的参数。
最常用的估计方法是最大似然估计法,通过最大化似然函数来估计模型的参数。
根据模型的阶数,我们可以建立ARIMA模型的估计方程,并利用时间序列数据进行参数估计。
1.3 模型检验和预测在估计了模型的参数后,我们需要对模型进行检验。
常用的检验方法有残差分析、模型拟合度检验、预测准确度检验等。
通过这些检验,我们可以评估模型的拟合效果和预测能力。
二、季节性调整很多时间序列数据都具有季节性变动的特点,这对于建模和预测带来了一定的困难。
为了解决这个问题,我们可以对时间序列进行季节性调整。
季节性调整的目标是将数据的季节性成分从原始数据中分离出来,以便更好地进行预测和分析。
常用的季节性调整方法有移动平均法、指数平滑法和X-12-ARIMA等方法。
应用统计硕士(时间序列分析和预测)模拟试卷1(题后含答案及解析)
![应用统计硕士(时间序列分析和预测)模拟试卷1(题后含答案及解析)](https://img.taocdn.com/s3/m/fe008afe2f60ddccdb38a02a.png)
应用统计硕士(时间序列分析和预测)模拟试卷1(题后含答案及解析)题型有:1. 单选选择题 3. 简答题 4. 计算与分析题单选选择题1.2003年末某市人口为120万人,2013年末达到153万人,则人口的平均发展速度为( )。
A.2.46%B.2.23%C.102.23%D.102.46%正确答案:D解析:计算平均发展速度通常采用几何平均法。
若6表示平均发展速度,n 表示环比发展速度的时期数,则:b=,故人口的平均发展速度的计算公式为:b=≈102.46%知识模块:时间序列分析和预测2.时间序列编制的基本原则是( )。
A.无偏性B.及时性C.完整性D.可比性正确答案:D解析:编制时间序列的目的是为了通过对各时间的变量数值进行对比,研究现象发展变化的过程和规律。
因此,保证序列中各变量数值在所属时间、总体范围、经济内容、计算口径、计算方法等方面具有充分的可比性,是编制时间序列的基本原则。
知识模块:时间序列分析和预测3.时间序列在一年内重复出现的周期性波动称为( )。
A.趋势B.季节性C.周期性D.随机性正确答案:B解析:季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动。
A项趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动;C 项周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;D项随机性也称不规则波动,它是时间序列中除去趋势、周期性和季节性之后的偶然性波动。
知识模块:时间序列分析和预测4.下列关于时点时间序列特征的描述,错误的是( )。
A.时点时间序列具有可加性B.时点时间序列是一种基本时间序列C.时点时间序列的每一项数据都是绝对数D.时点时间序列的每一项数据都是采用间断统计方法获得的正确答案:A解析:时点指标是反映现象在某一时刻上的绝对数量,由时点指标构成的时间序列就是时点时间序列,它是一种基本时间序列。
时点时间序列主要特点有:①不可加性;②指标数值的大小与时点间隔的长短一般没有直接关系;③指标值采用间断统计的方式获得。
移动平均趋势剔除法计算季节指数例题
![移动平均趋势剔除法计算季节指数例题](https://img.taocdn.com/s3/m/aabf2d520a4e767f5acfa1c7aa00b52acec79c67.png)
移动平均趋势剔除法计算季节指数例题1. 引言在统计学和经济学中,移动平均趋势剔除法是一种常用的方法,用于计算和调整时间序列数据中的季节性因素。
通过该方法,我们可以分析并剔除数据中的季节性波动,从而更准确地判断趋势和周期性变化。
本文将以季节指数的计算为例,介绍移动平均趋势剔除法的具体应用过程。
2. 移动平均趋势剔除法概述移动平均趋势剔除法是一种时间序列分析方法,它通过多期数据的平均值来平滑时间序列数据,以剔除季节性因素和随机波动,从而更清晰地显示出趋势和周期性变化。
在计算季节指数时,移动平均趋势剔除法可以帮助我们准确地预测季节性变动,并据此做出有效的决策和规划。
3. 移动平均趋势剔除法计算季节指数例题假设某服装店要对某一服装品类每月销售额的季节性变化进行分析,并计算季节指数以便进行月度计划。
现有一年的销售数据如下:(这里请填入实际的数据)接下来,我们将按照移动平均趋势剔除法的步骤来计算季节指数。
第一步:计算季节调整因子我们需要确定移动平均的期数,通常选择12个月。
然后按照以下公式计算季节调整因子:\[季节调整因子 = \frac{实际销售额}{移动平均值}\]根据这个公式,我们可以得到每个月的季节调整因子。
第二步:计算季节指数接下来,我们将每个月的季节调整因子求平均值,作为对应月份的季节指数。
季节指数的计算公式如下:\[季节指数 = \frac{平均季节调整因子}{全年季节调整因子平均数}\times 100\]通过这一步骤,我们可以得到每个月的季节指数,用于反映每个月相对于全年的季节性变动情况。
4. 分析和结论借助移动平均趋势剔除法的计算过程,我们得到了某服装品类每月销售额的季节指数。
通过对季节指数的分析,我们发现(这里请填入你对季节指数数据的分析和结论)。
5. 个人观点和理解在时间序列分析中,移动平均趋势剔除法是一种非常有效的工具,它能够帮助我们更精确地把握数据的趋势和季节性变动。
而通过计算季节指数,我们可以更深入地了解时间序列数据中的季节性变化规律,从而为实际决策提供可靠的依据。
时间序列分析试题
![时间序列分析试题](https://img.taocdn.com/s3/m/65fb861b5a8102d276a22fc0.png)
第九章 时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。
这种模型将时间序列按构成分解为( ) 等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。
A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:C2、加法模型是分析时间序列的一种理论模型。
这种模型将时间序列按构成分解为( )等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。
A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:B3、利用最小二乘法求解趋势方程最基本的数学要求是( )。
A.∑=-任意值2)ˆ(t Y Y B. ∑=-min )ˆ(2t Y Y C. ∑=-max )ˆ(2t Y Y D. 0)ˆ(2∑=-t Y Y 答案:B4、从下列趋势方程t Y t86.0125ˆ-=可以得出( )。
A. 时间每增加一个单位,Y 增加0.86个单位B. 时间每增加一个单位,Y 减少0.86个单位C. 时间每增加一个单位,Y 平均增加0.86个单位D. 时间每增加一个单位,Y 平均减少0.86个单位答案:D.5、时间序列中的发展水平( )。
seasonality预测的例题
![seasonality预测的例题](https://img.taocdn.com/s3/m/8e3a66bcaff8941ea76e58fafab069dc502247d0.png)
标题:季节性预测的例题分析一、概述在日常生活和商业运营中,季节性变化是一种常见的现象。
对于零售业、农业和旅游业等行业来说,了解季节性趋势并进行准确的预测对于制定销售策略和生产计划至关重要。
在本文中,我们将以某零售企业销售数据为例,介绍季节性预测的方法和步骤。
二、收集数据我们需要收集相关的销售数据。
假设我们选择一家服装零售店为例,该店在过去几年的销售额数据。
我们需要获取每个月份或者季度的销售额数据,以便分析季节性变化的规律。
三、探索性数据分析在收集到数据之后,我们可以对数据进行探索性分析。
我们可以绘制每个月份的销售额折线图,观察是否存在季节性的波动。
我们也可以计算每年同一月份的销售额均值,观察是否存在明显的季节性趋势。
四、时间序列分解接下来,我们可以使用时间序列分解的方法,将原始数据分解为趋势、季节性和残差三个部分。
通过时间序列分解,我们可以更清晰地观察季节性的变化规律。
我们也可以通过拟合季节性模型,预测未来的季节性变化。
五、建立模型在时间序列分解的基础上,我们可以建立季节性预测模型。
常见的季节性模型包括季节性自回归移动平均模型(SARIMA)和季节性指数模型。
我们可以通过对历史数据进行拟合,选择最优的模型参数,并对模型进行诊断。
六、模型评估在建立模型之后,我们需要对模型进行评估。
我们可以使用历史数据的一部分作为训练集,另一部分作为测试集,对模型的预测精度进行评估。
常见的评估指标包括均方误差(MSE)和平均绝对误差(MAE)。
七、季节性预测我们可以利用已建立的季节性模型,对未来的销售额进行预测。
通过预测未来的季节性变化,企业可以及时调整销售策略和库存管理,以适应季节性需求的变化。
八、结论通过以上的分析和建模过程,我们可以得出对季节性预测的结论。
季节性预测可以帮助企业更好地了解市场的季节性变化规律,制定针对性的经营策略,提高销售额和效益。
结尾通过上述例题分析,我们了解了季节性预测的基本步骤和方法。
季节性预测是一种重要的商业分析工具,可以帮助企业把握市场的季节性变化规律,做出更加合理的经营决策。
对带有季节变动的时间序列数据的预测分析题
![对带有季节变动的时间序列数据的预测分析题](https://img.taocdn.com/s3/m/eafa47fd04a1b0717fd5dd1c.png)
对带有季节变动的时间序列数据的预测分析例题一:现有某地区某产品产量近三年的分月资料。
试测试该种产品2012年10月的产量解:(1)首先观察时间序列数据,具有哪些变动,进而确定选用哪种预测方法在给出的时间序列数据中我们可以明显判断出来,6月-8月销量比其他月份高出很多,而且每年都是这样,说明这列时间序列数据含有季节变动。
则应该用季节变动模型进行预测。
其次,判断整个时间序列数据是否具有趋势变动,是否是每年的平均销量均比上一年要多或者是少,第一年的均值为1y =11 第二年的均值为 2y =16 第三年的均值为3y =23 ,那么这列时间序列数据带有趋势变动。
则判断不能选用周期平均法。
最后判断是否随着年份的增加,时间序列数据的季节变动幅度在逐渐增大。
判断方法为:用每年的峰值减去均值,得到一个离差,如果每年的离差带有趋势变动,呈逐年增加或者减少,那么说明时间序列的季节变动幅度有变化。
第一年峰值为22,均值为11,离差为11.第二年峰值为29,均值为16,离差为13;第三年峰值为42,均值为23,离差为19。
判断离差在逐年增加。
说明季节变动的幅度在逐年增加。
则选择季节交乘预测模型。
也可画出散点图判断。
(2) 季节交乘预测模型为:()ˆt ya bt fi =+⨯其中fi 为季节指数;()a bt +为趋势值根据预测模型,知道预测值为预测期趋势值与预测期季节指数的乘积。
我们要预测的是2012年10月份的销售量,因此需要2012年10月份季节指数,和10月份的趋势值就可以知道10月份的销量。
而2012年10月份的季节指数是根据2011年2010年和2009年,前三年10月份的季节指数得出的。
所以首先需要求出前三年10月份的季节指数。
季节指数Ytfi Ft=; 其中Yt 代表的是观察值,Ft 代表的是趋势值。
因此首先求出,前三年10月份的趋势值。
趋势值即为,如果这列时间序列数据只有直线趋势变动,没有季节变动的时候的值。
第章时间序列预测习题答案完整版
![第章时间序列预测习题答案完整版](https://img.taocdn.com/s3/m/daa4e3955901020206409c1a.png)
第章时间序列预测习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第10章时间序列预测从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势。
(2)年平均增长率为:。
(3)。
下表是1981年—2000年我国油彩油菜籽单位面积产量数据(单位:kg / hm2)年份单位面积产量年份单位面积产量1981 1451 1991 12151982 1372 1992 12811983 1168 1993 13091984 1232 1994 12961985 1245 1995 14161986 1200 1996 13671987 1260 1997 14791988 1020 1998 12721989 1095 1999 14691990 1260 2000 1519(1)绘制时间序列图描述其形态。
(2)用5期移动平均法预测2001年的单位面积产量。
(3)采用指数平滑法,分别用平滑系数a=和a=预测2001年的单位面积产量,分析预测误差,明用哪一个平滑系数预测更合适?详细答案:(1)时间序列图如下:(2)2001年的预测值为:|(3)由Excel输出的指数平滑预测值如下表:年份单位面积产量指数平滑预测a=误差平方指数平滑预测a=误差平方19811451 19821372 19831168 19841232 19851245 19861200 1987126019881020198910951990126019911215199212811993130919941296199514161996136719971479199812721999146920001519合计———2001年a=时的预测值为:a=时的预测值为:比较误差平方可知,a=更合适。
下面是一家旅馆过去18个月的营业额数据月份营业额(万元)月份营业额(万元)1 295 10 4732 283 11 4703 322 12 4814 355 13 4495 286 14 5446 379 15 6017 381 16 5878 431 17 6449 424 18 660(1)用3期移动平均法预测第19个月的营业额。
具有季节性特点的时间序列的预测
![具有季节性特点的时间序列的预测](https://img.taocdn.com/s3/m/2543dee8172ded630b1cb68d.png)
3.2 具有季节性特点的时间序列的预测这里提到的季节,可以是自然季节,也可以是某种产品的销售季节等。
显然,在现实的经济活动中,表现为季节性的时间序列是非常多的。
比如,空调、取暖设备、季节性服装的生产与销售所产生的数据等。
对于季节性时间序列的预测,要从数学上完全拟合其变化曲线是非常困难的。
但预测的目的是为了找到时间序列的变化趋势,尽可能地做到精确。
从这个意义上来讲,可以有多种方法,下面介绍其中一种,即所谓季节系数法。
季节系数法的具体计算步骤如下:1.收集m 年的每年各季度或者各月份(每年n 个季度)的时间序列样本数据ij x 。
2.计算每年所有的季度或所有月份的算术平均值x ,即:mn k x k x m i nj ij ==∑∑==,1113.计算同季度或同月份数据的算术平均值n j xx mi ijj ,,2,1,1. ==∑=4.计算季节系数或月份系数x x j j /.=β。
其中n j ,,2,1 =为季度或者月份的序号。
5.预测计算。
当时间序列是按季度列出时,先求出预测年份(下一年)的年加权平均:mmm m w w w y w y w y w y ++++=+2122111式中,∑==nj iji xy 1为i 年份的年合计数:i w 为i 年份权数,按自然数列取值。
再计算预测年份的季度平均值4:111+++=m m m y y y 。
最后,预测年份第i 季度的预测值为:i m i m y y β⋅=++1,1季节系数法的Matlab 程序如下。
funjie.m%简单季节系数法,文件名funjie.mfunction JiJie=funjie(x) %输入m 年,每年n 个季节的历史数据 [m,n]=size(x);BarX=mean(mean(x)) %计算所有数据的算术平均值 BarXj=mean(x) %计算同季节的算术平均值 Betaj=BarXj./BarX %计算季节系数 y1=[1:m];y=y1*sum(x,2)/sum(y1) %计算预测下一年的年加权平均值 y2=y/n %计算预测年份的季节平均值 y3=y2*Betaj %预测年份的季节预测值 end【例3-11】某商店某类商品1999-2003年各季度的销售额如表3-6所示。