五年级下册数学竞赛试题-10讲列方程解应用题全国通用(含答案)
(完整版)五年级列方程解应用题100题(有答案)
(完整版)五年级列方程解应用题100题(有答案)五年级列方程解应用题100题(有答案)最近,五年级的小朋友们正在学习列方程解应用题。
今天,我们来看看一百个列方程解应用题,并附上了答案。
让我们一起来挑战这些问题吧!1. 爸爸有10个苹果,妈妈给了他5个苹果,爸爸一共有多少个苹果?答案:10+5=152. 小明有三个篮球,小强有两个篮球。
他们一共有多少个篮球?答案:3+2=53. 弟弟用10个小方块建了一个正方形,他想知道每边有几个小方块?答案:10÷4=24. 一个数加4等于15,这个数是多少?答案:15-4=115. 一个数减5等于12,这个数是多少?答案:12+5=176. 买了一本书花了15元,比买两本书多花了9元,一本书多少元?答案:15-9=67. 一袋米有8千克,买了两袋米一共多少千克?答案:8×2=168. 我有23块糖,送了小红5块,还剩下几块糖?答案:23-5=189. 某天,小明骑自行车去了学校,一共用了30分钟。
他上学用了20分钟,回家用了多少分钟?答案:30-20=1010. 妈妈给小明10元,买了一本书花了7元,还剩下多少元?答案:10-7=311. 一辆公交车上有40个人,下车的人比上车的人少24个。
下车的人有多少人?答案:40-24=1612. 小华有28本故事书,小明有比小华少5本故事书,小明有多少本故事书?答案:28-5=2313. 一个数减9等于13,这个数是多少?答案:13+9=2214. 一包草莓糖有6颗,小明买了5包草莓糖一共有多少颗?答案:6×5=3015. 一周有7天,这个月有多少天?答案:7×30=21016. 小明有3个橡皮,他想分给他的2个朋友。
每人可以分到几个橡皮?答案:3÷2=1.517. 在一家商店里,一瓶可乐7元,小明买了3瓶可乐,一共花了多少元?答案:7×3=2118. 小华的爸爸比他多25岁,小华现在8岁,他的爸爸多少岁?答案:8+25=3319. 一块巧克力有15块,小红买了2块巧克力,一共花了多少块?答案:15×2=3020. 小兔子买了5个胡萝卜,每个胡萝卜1元钱,一共花了多少元?答案:5×1=521. 小明妈妈给他50元,他花了20元买书,还剩下几元?答案:50-20=3022. 这个月有30天,小明想知道一共有几周?答案:30÷7=4余223. 一包糖有8颗,小明买了3包糖一共有多少颗?答案:8×3=2424. 一本书比另一本书多20页,一本书有多少页?答案:20+20=4025. 某天,小明放风筝用了1小时,其中飞行了45分钟,他使劲拉线用了多少分钟?答案:60-45=1526. 一张纸有10厘米,小华要剪成2段,每段多长?答案:10÷2=527. 小明喝了一瓶汽水,喝了三分之一,这是这瓶汽水的几分之一?答案:3×3=928. 小明有一些糖果,他先吃了5颗,还剩下的糖果有8颗,开始有多少颗糖果?答案:8+5=1329. 弟弟拿东西走了10步,还剩下的路程是全程的几分之一?答案:10×10=10030. 考试总共有20分,小红得了15分,得了总分的几分之几?答案:15÷20=0.7531. 一位老师有30支铅笔,她想把铅笔均分给15位学生。
小学五年级数学竞赛题及答案解析
五年级数学竞赛题一、填空:1、 小林家住在三楼,他每上一层楼要走14级台阶,小林从一楼走到三楼要走( )级台阶 。
2、 请你在算式: 1+2×3+4×5+6 中添上适当的一个小括号,使算式的得数最大,最大的得数是( )。
3、一件毛衣102元,比一副手套的5倍还多12元,一副手套( 18)元。
4、简算: 7.29×4.6+46×1.2715、小张有2元和5元的人民币共34张,总值110元,问2元的人民币有( )张;5元的人民币有( )张。
6、在爷爷是父亲现在的年龄时候,父亲才12岁。
等父亲到爷爷现在这么大的年龄时,爷爷84岁。
爷爷现在( )岁;父亲现在( )岁。
7、幼儿园的老师给小朋友发苹果,每位小朋友4个,就多出12个,每个小朋友6个,就少12个,共有苹果( )个.8、小英4次语文测验的平均成绩是89分,第5次测验得了94分。
她5次测验的平均成绩是( )分。
9、用5、5、5、1四个数字组成一个算式,使其结果为24。
算式是5×(5-1÷5)。
10、已知三个连续偶数的和比其中最大的一个偶数的2倍还多2,这三个偶数分别是 、 、 。
二、应用题:1、一架飞机从甲地到乙地,原计划每分钟飞行9千米,现在按每分钟12千米的速度飞行,结果比原计划提前半小时到达。
甲、乙两地相距多少千米?2、有若干个苹果和梨,苹果的个数是梨的个数的2倍。
如果每天吃2个梨和6个苹果,梨吃完时还缺20个苹果,梨有多少个?3、一辆汽车共载客50人,其中一部分人买A种票,每张0.8元,另一部分人买B种票,每张0.3元。
最后统计出:所卖的A 种票比B种票多收入18元。
多少人买A种票?4、一次数学测验,某班全班平均分为91分,男生平均89分,女生平均92.5分,这个班女生有24人,男生有多少人?5、学校买来3个排球和2个足球,共花去111元。
每个足球比每个排球贵3元。
每个排球和每个足球各多少元?答案解析:(仅供参考)一、填空:1、从一楼到三楼只需走两层:14×2=28级2、1+2×(3+4)×5+6=774、=0.729×46+1.271×46=46×(0.729+1.271)=925、假如都是5元的,就有170元,多出的170-110=60元则是2元的张数×3元而来的,所以有60÷3=20张2元的,那么5元的应该有(110-2×20)÷5=14张。
小学五年级数学思维能力训练(奥数)《列方程解应用题》(二)(含答案)
列方程解应用题(二)专题简析列方程解决问题,主要是看清条件和关系,然后根据数量关系列出方程例1 李大姐养了若干只鸡和兔,已知共有35个头和94只脚,你知道李大姐饲养了多少只鸡和兔吗?分析解答:因为“共有35个头”,说明一共有35只鸡和兔,我们假设一共有x只鸡,那么兔有(35-x)只,因此,鸡一共有2x脚,兔一共有4(35-x)只脚。
所以,我们可以运用这两种动物共有94只脚,列出方程。
解:设一共有x只鸡,(35-x)只兔.2x+4(35-x)=942x+140-4x=942x=46x=23……鸡的只数35-x=35-23=12……兔的只数答:鸡有23只,兔有12只。
随堂练习:鸡兔同笼,共有30个头,88只脚.求笼中鸡兔各有多少只?例2王老师到书店一共买了10本《科普知识》和《艺术欣赏》,共用去77元。
每本《科普知识》8元,每本《艺术欣赏》7元,王老师两种书各买了多少本?分析解答:我们假设买了x本《科普知识》,那么就买了(10-x)本《艺术欣赏》,根据“买《科普知识》的总价+买《艺术欣赏》的总价=一共花去的钱”可以列出方程解:设买了x本《科普知识》,买了(10-x)本《艺术欣赏》8x+7(10-x)=778x+70-7x=77x=710-7=3答:《科普知识》买了7本,《艺术欣赏》买了3本。
随堂练习:三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?例3 远航物流公司的王师傅运送1000只玻璃花瓶,双方商定,每只花瓶的运费是3元,如果打碎一只,不但没有运费,还得倒赔5元,他运完这批玻璃花瓶后得到2960元,你知道王师傅在运输中打碎多少只玻璃花瓶吗?分析解答:假设王师傅在运输中打碎了x只玻璃花瓶,那么有(1000-x)只没有打碎,根据“运输所得的钱-打碎花瓶倒赔的钱=实际所得的钱”,可以列出方程。
解:设王师傅打碎了x只玻璃花瓶,有(1000-x)只没有打碎,可列方程3(1000-x)-5x=29603000-3x-5x=29608x=40x=5答:王师傅在运输中打碎了5只玻璃花瓶。
数学竞赛试卷五年级下册【含答案】
数学竞赛试卷五年级下册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是多少厘米?A. 22厘米B. 32厘米C. 44厘米D. 52厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个长方体的长、宽、高分别是8厘米、6厘米、4厘米,那么这个长方体的体积是多少立方厘米?A. 192立方厘米B. 200立方厘米C. 216立方厘米D. 224立方厘米5. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何两个奇数相加的和都是偶数。
()3. 任何两个偶数相加的和都是偶数。
()4. 一个正方形的周长等于它的面积。
()5. 1是任何非0自然数的因数。
()三、填空题(每题1分,共5分)1. 36的因数有:1、2、3、4、6、12、18、______。
2. 一个等边三角形的周长是18厘米,那么它的边长是______厘米。
3. 0.25小时等于______分钟。
4. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,那么它的体积是______立方厘米。
5. 下列各数中,合数有:4、6、8、9、10、______。
四、简答题(每题2分,共10分)1. 请写出5个质数。
2. 请写出3个偶数。
3. 请写出3个奇数。
4. 请写出2个既是质数又是偶数的数。
5. 请写出2个既是奇数又是合数的数。
五、应用题(每题2分,共10分)1. 一个长方体的长是12厘米,宽是8厘米,高是6厘米,那么这个长方体的表面积是多少平方厘米?2. 一个等腰直角三角形的直角边长为10厘米,那么这个三角形的面积是多少平方厘米?3. 一个数加上它的2倍再加上它的3倍,结果是60,那么这个数是多少?4. 一个数的3倍减去它的2倍,结果是10,那么这个数是多少?5. 一个长方体的长、宽、高分别是10厘米、6厘米、4厘米,那么这个长方体的对角线长度是多少厘米?六、分析题(每题5分,共10分)1. 请分析一个长方体和一个正方体的相同点和不同点。
五年级下册数学试题-列方程解应用题专题练习(一)(含解析卷)全国通用【精品】
列方程解应用题(一)【精品】1、箱子里装有相同个数的网球和羽毛球,每次取出7个网球和4个羽毛球,取了若干次后,网球没有了,羽毛球还剩9个,那么一共取了几次?网球和羽毛球原来各有多少个?2、加工一批零件,师徒二人合作2小时可以加工34个,已知师傅加工3小时比徒弟加工4小时还多做2个。
师傅每小时加工多少个零件?3、甲乙两数的和是32,甲数的3倍与乙数的5倍的和是122。
求甲、乙两数各是多少?4、小青买4分和8分的贴画共100张,总值6元8角。
求4分和8分的贴画各买了多少张?5、东站油库原存油是西站油库的6倍,若两油库各增加30吨油后,则东站油库的存油量就将是西站油库存油量的3倍。
两油库原存油各多少吨?6、一个邮递员要在规定时间内把信送到某地,如果他以每小时行14千米的速度骑自行车,可以提前15分钟到达;如果以每小时10千米的速度行驶,则迟到15分钟。
问原定多长时间必须到达。
7、原计划用24个工人完成一批零件的加工任务。
按计划工作5天后,因工作需要调走6人,为如期完成任务,剩下的工人每人每天比原计划多加工1个。
问原计划每人每天加工零件多少个?8、有一群猴和一堆桃,每只猴分6个桃剩12个桃,如果每只猴分7个桃则少11个桃,一共有多少只猴子?一共有多少个桃?9、有甲、乙两块麦田,平均亩产420千克,甲块麦田有5亩,平均亩产450千克。
如果乙块麦田平均亩产400千克,那么乙块麦田有多少亩?10、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进,行人速度每小时3.6千米,骑车人每小时行10.8千米。
这时一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。
这列火车的车身总长多少米?11、一本书共有120页,已经看了80页,余下的要四天看完,平均每天看多少页?12、妈妈买了5米布,给小明做了两套同样的衣服,还剩下1.4米,小明的每套衣服用布多少米?13、加工一批零件,原计划每天做600个,15天完成,实际每天做900个,做完这批任务,实际用了多少天?14、苗苗服装厂为学生做一套校服原来用布2.1米,改进裁剪方法后,每套只需用布2米,原来做300套的校服所用的布,现在可以做多少套?15、一个长方形的周长是240米,长是宽的1.5倍,这个长方形的面积是多少?16、大桶装水是小桶的3倍,如果大桶倒出85千克,从小桶中倒出5千克,那么剩下的水正好是同样多。
小学五年级奥数第10课《列方程解应用题》试题附答案
小学五年级上册数学奥数知识点讲解第10课《列方程解应用题》试题附答案第十讲列方程解应用题列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.而找出等量关系又在于熟练运用数量之间的各种已知条件.掌握了这两点就能正确地列出方程。
列方程解应用题的一般步骤是:①弄清题意,找出已知条件和所求问题;②依题意确定等量关系,设未知数X;③根据等量关系列出方程;④解方程;⑤检验,写出答案。
例1列方程,并求出方程的解。
①与减去一个数,所得差与1.35加上苧的和相等,求这个数。
5O例2已知篮球、足球、排球平均每个36元.篮球比排球每个多10元,足球比排军每个多8元,每个足球多少元?例3妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个苹果,如果每天吃6个,则又少8个苹果.问:妈妈买回苹果多少个?计划吃多少天?例4甲、乙、丙、丁四人共做零件270个.如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等.问:丙实际做了多少个?(这是设间接未知数的例题)例6一块长方形的地,长和宽的比是5:3,长比宽多24米,这块地的面积是多少平方米?例7某县农机厂金工车间有77个工人.已知每个工人平均每天可以加工甲种零件5个或乙种零件4个,或丙种重件3个。
但加工3个甲种零件,1个乙种妻侔和9个丙种零件才恰好配成一套.问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套?答案例1列方程,并求出方程的解。
①?减去一个数,所得差与1.35加上;的和相等,求这个数。
5O解:设这个数为x∙则依题意有11 2713--X=——+一3 206112713X20^^T,3χβ20检验:把X=2代入原方程,左边=3,-京=32,与右边相等,所以X=220 32060 20 是原方程的解。
五年级下册数学-列方程解应用题精选练习(二)
答案:135km
试一试:小明家离学校3千米。他每天骑车以每分钟200米的速度上学,正好准时到。有一天他出发几分钟后因交通阻塞耽误4分钟。为了准时到校,后面的路必须每分钟多行100米。求小明是在离家多远的地方遇阻塞的?
教法:此题看上去是行程问题,本质上其实是盈亏问题,需要设规定时间为未知数,求出时间才能解决问题。需要教会学生用盈亏问题的思想解这种题目。
答案:12.5km
6.甲、乙两人生产同一种零件,甲每天生产30个,乙每天生产24个,当乙生产这种零件3天后,甲开始工作,求甲工作几天后产量可赶上乙?
答案:12天
答案:7小时
试一试:小明和小光从相距2100米的两地相向出发,小明每分钟走70米,小光每分钟走80米,那么他们几分钟后可以相遇?
答案:12分钟
例2. A、B两地相距960千米,甲、乙两辆汽车分别从两地同时出发,相向开出,6小时后两车相遇;已知甲车的速度是乙车的1.5倍。求甲、乙两车的速度各是多少?
答案:甲的速度是96km/h,乙车的速度是64km/h。
答案:甲车速度500km/h,乙车速度96km/h
4.姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?
答案:750米
5.骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。如果希望中午12点到,那么应以怎样的速度行进?
试一试:从甲地到乙地,公共汽车原来需行驶7小时,开通高速公路后,车速平均提高30km/h,只需4小时即可到达。求甲、乙两地间的距离。
小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)
小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)列方程解应用题(行程问题)相遇是行程问题的基本类型,在相遇问题中可以用速度×时间=路程的公式求解全程。
下面我们来看几个例子。
例1:AB两地相距352千米。
甲乙两辆汽车从A、B两地相对开出。
甲车每小时行36千米,乙车每小时行44千米。
乙车因有事,在甲车开出32千米后才出发。
求出两车相遇需要多少小时?分析解答:为了求出两车相遇的时间,需要找到速度和、时间和和总路程之间的关系式。
根据已知条件,可以设相遇时间为X小时,列出方程:36+44)×x+32=352解方程得到X=4,因此两车相遇需要4小时。
练题:甲乙两地相距300千米,客车从甲地开往乙地,每小时行40千米。
1小时后,货车从乙地开往甲地,每小时行60千米。
货车出发几小时后与客车相遇?例2:甲乙两人从A、B两地相向而行,甲每分钟行52米,乙每分钟行48米。
两人走了10分钟后交叉而过,且相距64米。
甲从A地到B地需要多少分钟?分析解答:为了求出甲从A地到B地需要的时间,需要知道A、B两地的路程和甲的速度。
设A、B两地相距X米,则可以列出方程:52+48)×10-X=64解方程得到X=936,因此甲从A地到B地需要18分钟。
练题:从A地到B地,水路比公路近40千米。
上午8时,一艘轮船从A地驶向B地,3小时后一辆汽车从A地到B地,它们同时到达B地。
轮船的速度是每小时24千米,汽车的速度是每小时40千米。
求A地到B地水路、公路是多少千米?例3:XXX和XXX分别从一座桥的两端同时相向出发,往返于两端之间。
XXX每分钟走60米,XXX每分钟走75米。
经过6分钟两人第二次相遇,这座桥长多少米?分析解答:第一次相遇就是行了一个全程,第二次相遇就是行了三个全程。
设这座桥长X米,则可以列出方程:3X=(60+75)×6解方程得到X=270,因此这座桥长270米。
小学数学列不定方程解应用题(含答案)
列不定方程解应用题知识框架一、知识点说明 历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。
重难点(1) 根据题目叙述找到等量关系列出方程 (2) 根据解不定方程方法解方程 (3) 找到符合条件的解例题精讲一、不定方程与数论【例 1】 把2001拆成两个正整数的和,一个是11的倍数(要尽量小),一个是13的倍数(要尽量大),求这两个数.【考点】列不定方程解应用题【解析】 这是一道整数分拆的常规题.可设拆成的两个数分别为11x 和13y ,则有:11132001x y +=,要让x 取最小值,y 取最大值. 可把式子变形为:2001111315312132122153131313x x x x y x -⨯+-++===-+,可见12213x+是整数,满足这一条件的x 最小为7,且当7x =时,148y =. 则拆成的两个数分别是71177⨯=和148131924⨯=.【答案】则拆成的两个数分别是77和1924.【巩固】 甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖.问:甲、乙二人谁搬的砖多?多几块?【考点】列不定方程解应用题【解析】 设甲搬的是18x 块,乙搬的是23y 块.那么1823300x y +=.观察发现18x 和300都是6的倍数,所以y 也是6的倍数.由于3002313y <÷≈,所以y 只能为6或12. 6y =时18162x =,得到9x =;12y =时1824x =,此时x 不是整数,矛盾.所以甲搬了162块,乙搬了138块,甲比乙搬得多,多24块.【答案】甲比乙搬得多,多24块【例 2】 用十进制表示的某些自然数,恰等于它的各位数字之和的16倍,则满足条件的所有自然数之和为___________________.【考点】列不定方程解应用题【解析】 若是四位数abcd ,则()161636<1000a b c d ⨯+++⨯≤,矛盾,四位以上的自然数也不可能。
五年级下册数学-列方程解应用题练习(含答案)
试一试:甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?
答案:10分钟
例5.小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。问:小明往返一趟共行了多少千米?
答案:12千米,本题设上山用时x小时,根据根据上下山路程相等列方程
答案:210米
追击问题如果学生理解不好,可以画线段图找等量关系
试一试:甲、乙两人驾车自A地出发同向而行,甲先出发,半小时后乙以 的速度追赶甲。若乙行进了 后追上甲,求甲车的速度。
答案:70km/h
例4.甲、乙两车自西向东行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出2小时后乙车开出,问几小时后乙车追上甲车?
教法:先分析是相遇问题还是追及问题,教学生找关键词“相遇”,引导学生画线段图分析,注意时间耽误1小时的处理。
答案:7小时
试一试:小明和小光从相距2100米的两地相向出发,小明每分钟走70米,小光每分钟走80米,那么他们几分钟后可以相遇?
答案:12分钟
例2. A、B两地相距960千米,甲、乙两辆汽车分别从两地同时出发,相向开出,6小时后两车相遇;已知甲车的速度是乙车的1.5倍。求甲、乙两车的速度各是多少?
答案:0.6小时
2.甲镇与乙镇相距138千米,张王二人骑自行车分别从两镇同时出发相向而行。张每小时行13千米,王每小时行12千米,王在途中因修车耽误1小时,然后继续行进。求从出发到相遇经过几小时?
答案:6小时
3.甲、乙两地相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多长时间与慢车相遇?
五年级数学数学竞赛试题答案及解析
五年级数学数学竞赛试题答案及解析1.小林和小军都到图书馆去借书,小林每6天去一次,小军每8天去一次,如果7月1日他们两人在图书馆相遇,那么下一次都到图书馆是几月几日?【答案】7月25日.【解析】由题意可知:要求下一次都到图书馆是几月几日,先求出6和8的最小公倍,因为6和8的最小公倍数是24,即7月1日再经24天两人都到图书馆,此题可解.解:6=2×3,8=2×2×2,6与8的最小公倍数是2×2×3=24,即再经24天两人都到图书馆,7月1日+24日=7月25日;答:下一次都到图书馆是7月25日.【点评】此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.2.所有的偶数都是合数。
()【答案】×【解析】偶数不一定是合数,例如,2是偶数,但2不是合数。
3. 3×9=27,是和的倍数,和是的因数.【答案】27,3,9,3,9,27.【解析】根据因数和倍数的意义:如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数;进行解答即可.解:因为27÷3=9,所以27是3和9的倍数,3和9是27的因数;故答案为:27,3,9,3,9,27.【点评】此题考查的是倍数和因数的关系,注意基础知识的积累.4.下列各组数中,()组中的第二个数是第一个数的因数.A.0.5和1 B.63和7 C.13和39【答案】B【解析】根据因数和倍数的意义:如果整数a能被整数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数;进行解答即可.解:A、0.5和1,0.5不是整数;B、63和7都是整数,且63÷7=9,又根据因数与倍数的意义,63是7的倍数,7中63的因数;C、13和39虽然都是整数,但第二个数(39)是第一个数(13)的倍数,不是第一个数的因数;故选:B.【点评】解答此题应根据因数和倍数的意义进行解答.5.在1﹣﹣100中,所有的偶数和比所有的奇数和小..(判断对错)【答案】×【解析】自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数;列出1~100中所有的偶数与所有的奇数,然后求出偶数之和、奇数之和即可进一步解答.解:2+4+6+8+…+100=(2+100)×50÷2=5100÷2=25501+3+5+7+…+99=(1+99)×50÷2=5000÷2=25002550>2500所以题干说法错误.故答案为:×.【点评】此题考查了偶数和奇数的含义,应注意知识的灵活运用.6.按要求填数.627 97 100 0 1 41 35 4 3 2奇数:.偶数:.质数:.合数:.【答案】627,97,1,41,35,3;100,0,4,2;97,41,3,2;627,100,35,4.【解析】根据质数与合数、奇数与偶数的意义,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数;一个自然数如果只有1和它本身两个因数,这样的数叫做质数;一个自然数如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.解:奇数:627,97,1,41,35,3.偶数:100,0,4,2.质数:97,41,3,2.合数:627,100,35,4.故答案为:627,97,1,41,35,3;100,0,4,2;97,41,3,2;627,100,35,4.【点评】解答本题主要明确自然数,合数、质数、奇数、偶数的概念.7.由3×4=12可知,3和4是的倍数,12是3和4的.【答案】12,倍数.【解析】根据因数和倍数的意义:如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数;进行解答即可.解:由3×4=12可知,12是3和4的倍数,3和4是12的因数;故答案为:12,倍数.【点评】此题考查了因数和倍数的意义,应明确因数和倍数的意义,注意基础知识的理解.8.五年级(1)班学生进行队列表演,每行12人或16人都正好整行,已知这个班的学生不到50人,这个班有多少人?【答案】48人.【解析】由题意得:要求这个班有多少人,因为这个班的学生不到50人,所以也就是求12和16的最小公倍数是多少,根据求两个数的最小公倍数的方法进行解答即可.解:12=2×2×3,16=2×2×2×2,因为这个班的学生不到50人,所以12和16的最小公倍数为:2×2×3×2×2=48;答:这个班有48人.【点评】此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.9.把12的因数按从大到小排列成一列,其中第5个因数是.【答案】2【解析】找一个数的因数,可以一对一对的找,把12写成两个数的乘积,那么每一个乘积中的因数都是12的因数,然后从小到大依次写出即可.解:12=1×12,12=2×6,12=3×4,12的因数有:1、2、3、4、6、12,从大到小排列成一列12、6、4、3、2、1,所以第5个因数是2.故答案为:2.【点评】此题主要考查找一个数的因数的方法,可把该数拆成两个数的乘积,一对一对的找.10.在下列各数中既是偶数,又是合数的有()A.72B.2C.39D.15【答案】A【解析】根据质数与合数、奇数与偶数的意义,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数;一个自然数如果只有1和它本身两个因数,这样的数叫做质数;一个自然数如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.解:根据质数与合数,偶数与奇数定义可知,72,2,39,15这些数中,只有72既是偶数,又是合数.故选:A.【点评】解答本题主要明确自然数,合数、质数、奇数、偶数的概念.11.一个数既是9的倍数,又是54的因数,这个数可能是多少?【答案】9、18、27、54【解析】一个数既是9的倍数又是54的因数,即求54以内的9的倍数,那就先求出54的因数和9的倍数,再找共同的数即可.解:54的因数:1、2、3、6、9、18、27、54;54以内的9的倍数有:9、18、27、36、45、54;既是9的倍数又是54的因数的是:9、18、27、54;答:这个数可能是9、18、27、54.【点评】解答此题应根据找一个数的因数的方法和找一个数倍数的方法进行分别列举,进而得出结论.12.五(2)班有男生32人,女生24人,男女生分别排队,要使各排人数相同,每排最多排几人?【答案】8人【解析】由男女生分别排队,要使每排的人数相同,可知每排的人数是男生和女生人数的公因数,要求每排最多有多少人,就是每排的人数是男生和女生人数的最大公因数.解:32=2×2×2×2×224=2×2×2×3所以32和24的最大公因数是:2×2×2=8.答:每排最多有8人.【点评】本题考查了公倍数和公因数应用题.解答本题关键是理解:每排的人数是男生和女生人数的公因数,要求每排最多有多少人,就是每排的人数是男生和女生人数的最大公因数.13.有一张长方形纸,长80cm,宽60cm,如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最大是几厘米?【答案】20【解析】用短除法求出80和60的最大公因数。
【竞赛题】人教版小学五年级下册数学第10讲《比例计算与列表分析》竞赛试题(含详解)
第十讲比例计算与列表分析比例是五年级的重要内容,之前我们已经学习过一些简单的比例问题,如按比例分配、化连比以及比例中的不变量.这一讲中,我们将继续比例的学习.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.学校组织体检,收费标准如下:老师每人3元,学生每人2元.已知老师和学生的人数比为2:9,共收得体检费3120元.那么老师、学生各有多少人?分析:老师、学生的人数比是多少?所有老师、所有学生支付的体检费之比又是多少?练习1.某高速公路收费站对于过往车辆每辆收费标准是:大客车10元,小客车6元.某日通过该收费站的大客车和小客车数量之比为5∶6,共收取过路费602元.求共有客车多少辆.例题2.徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋.现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋.如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?分析:巧克力糖与水果糖比较,每袋的糖数之比是多少?题中还告诉我们,巧克力糖的总块数与水果糖的总块数之比为7:10,由此能求出两种糖的袋数之比吗?练习2.花店有玫瑰花和康乃馨,一束玫瑰花有9支,一束康乃馨有6支.已知玫瑰花比康乃馨少50束,且玫瑰花与康乃馨的总支数之比为3:7,问:花店共有多少支玫瑰花?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -利用题目中的条件,我们可以将比例进行转化,比如例1中,题目告诉了我们人数比,然后我们要求出钱数之比;例2中,我们要通过块数比求出袋数的比.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.碧梨超市雇了一些卡车运输苹果、梨和香蕉,这三种水果的重量比是4:2:1.大型卡车专门运输苹果,中型卡车专门运输梨,小型卡车专门运输香蕉.这三种卡车的载重量之比是4:3:2.已知大型卡车比小型卡车多6辆,那么一共雇了多少辆卡车?分析:水果重量、卡车数量和卡车的载重量,这三个量之间有什么关系?练习3.三洋姥姥从超市买来了一些饮料有可乐、雪碧、冰红茶,三种饮料的瓶数比为4:5:9,大洋只喝可乐,二洋只喝雪碧,三洋只喝冰红茶,他们每人每天喝掉饮料的瓶数比是1:2:3,最终大洋比三洋晚10天就把自己的饮料喝完了,那么二洋的雪碧够他喝多少天?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -当题目条件非常多的时候,列出表格来整理题中条件,能够使问题更为清晰明了,容易入手.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题4.某俱乐部男、女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组中男、女会员人数之比.分析:题中条件较多,不好处理,我们不妨设出其中一个量的“份数”来进行求解.设出哪个量的份数合适,以及设成多少份较好呢?我们所选取的数量最好是能与较多的其他数量关联在一起,同时所设出的份数最好能使得其余数量的份数也“比较整”,这样才最有助于我们的解题.Array练习4.有个工厂有三个分厂,全厂男、女职工人数的比是9:5,三个分厂人数比是8:9:11,第一分厂男、女职工人数比为3:1,第二分厂男、女职工人数比是5:4,第三分厂男职工比女职工多150人.这个厂共有职工多少人?例题5.有三个筐装有苹果和梨,已知苹果和梨的总数之比为4:3,第一个筐中苹果和梨个数比为6:5,第二个筐中苹果和梨个数比为3:5,且第一、第二、第三个筐的水果个数之比为11:16:9,求第三个筐中苹果和梨的个数比.分析:在填份数时,有时会出现除不尽的情况.这时只要适当扩倍就可以解决问题.例题6.某次数学竞赛设一、二、三等奖,已知:①甲、乙两校获一等奖人数比为1:2,且两校获奖总人数之比是5:4;②甲、乙两校获二等奖人数占两校获奖人数总和的14,其中乙校是甲校的3.5倍;③甲校三等奖获奖人数占该校获奖人数的45.请问:乙校获三等奖人数占该校获奖人数的几分之几?分析:本题中除了有比例的条件,还有分数的条件,倍数的条件.这些条件也都可以转化成比例的条件.比例尺地图上的比例尺,表示图上距离比实际距离缩小的程度,因此也叫缩尺.用公式表示为:/ 比例尺图上距离实际距离.比例尺通常有三种表示方法. (1)数字式,用数字的比例式或分数式表示比例尺的大小.例如地图上1厘米代表实地距离500千米,可写成:1:50000000,,或写成:五千万分之一.(2)线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离.(3)文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,例如图上1厘米相当于地面距离10千米.三种表示方法可以互换. 根据地图上的比例尺,可以量算图上两地之间的实地距离;根据两地的实际距离和比例尺,可计算两地的图上距离;根据两地的图上距离和实际距离,可以计算比例尺.根据地图的用途,所表示地区范围的大小、图幅的大小和表示内容的详略等不同情况,制图选用的比例尺有大有小.地图比例尺中的分子通常为1,分母越大,比例尺就越小.通常比例尺大于二十万分之一的地图称为大比例尺地图;比例尺介于二十万分之一至一百万分之一之间的地图,称为中比例尺地图;比例尺小于一百万分之一的地图,称为小比例尺地图.在同样图幅上,比例尺越大,地图所表示的范围越小,图内表示的内容越详细,精度越高;比例尺越小,地图上所表示的范围越大,反映的内容越简略,精确度越低.1:2000000 1:4000001:100000 1:30000作业1. A 、B 两种商品的价格比是7:3.如果它们的价格分别上涨70元,它们的价格比就变成7:4.B 商品原来的价格是多少? 作业2. 某商店有桔子、苹果和梨出售.一斤桔子卖5元,一斤苹果卖4元,一斤梨卖3元,卡莉娅买了10斤水果,其中桔子和苹果的重量之比为5:9,苹果和梨的重量之比为3:2,那么她一共花了多少钱? 作业3. 某班同学去野外军训,他们在一起吃午餐,男生每人要吃3个馒头,女生每人要吃2个馒头,已知男生比女生多3人,且男生、女生吃的馒头总数之比为7:4,那么男生和女生各有多少人? 作业4. 碧丽小学的五年级有2个班,其中1班的男生和女生的人数比是2:3.全部五年级的学生中,男生和女生的人数比是3:4.又知道1班与2班的人数比是10:11,且1班的男生比2班的女生少10个.那么五年级一共有多少学生?作业5. 有两包糖,每包糖内都装有奶糖、水果糖和巧克力糖.已知:(1)第一包比第二包的奶糖少,且第一包与第二包糖的总数之比是1:2;(2)第一包和第二包中的水果糖总数占全部糖果总数的40%,其中第一包比第二包少; (3)第一包糖中巧克力糖与其它两种糖的总数之比为2:1. 那么,第一包与第二包的巧克力糖之比是多少?俗话说,兴趣是最好的老师。
小学五数下册100道列方程解应用题(含答案)
小学五数下册100道列方程解应用题(含答案)1.春天小学共有108人参加学校科技小组,其中男生人数是女生人数的1.4倍。
参加科技小组的男、女生各有多少人?2.春天小学体育组有40人,比书法组人数的3倍少5人,书法组有多少人?3.春天小学体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有多少人?4.某校四、五年级共植树385棵,五年级植树棵树是四年级的1.5倍。
两个年级各植树多少棵?5.龙城小学二年级有学生156人,其中女生人数比男生的2倍还多21人,男生有多少人?6.商场里,一支钢笔比一支圆珠笔贵6.8元。
钢笔的价钱是圆珠笔价钱的4.4倍。
7.学校食堂买来一些黄瓜和西红柿,黄瓜的质量是西红柿的1.2倍,黄瓜比西红柿多6.4千克。
买来黄瓜多少千克?8.一只麻雀的体重是81克,恰好是蜂鸟的40倍。
一只蜂鸟重多少克?9.友谊商店购进160台数码摄象机,比购进的数码照相机的2倍少40台,数码照相机有多少台?10.用一根长72厘米的铁丝围成一个长方形,要使长是宽的2倍,围成的长方形的长和宽各是多少?面积是多少?11.城南小学学校美术小组有75人,比航模小组人数的2倍还少5人,航模小组有多少人?12.学校食堂运来大米和面粉共48袋,其中大米的袋数是面粉的3倍,运来面粉多少袋?13.食堂里有两袋白糖,甲袋的重量是乙袋的1.4倍,如果乙袋增加8千克,两袋糖就一样重,原来每袋糖各多少千克?14.实验小学开展植树活动,六年级植树的棵树是四年级的3倍,六年级比四年级多植树98棵,两个年级各植树多少棵?15.三年前妈妈的岁数是儿子的6倍,今年妈妈33岁,儿子今年几岁?16.蓝天小学三年级共有学生110人,男生人数是女生的1.2倍,男女生各多少人?17.农场果园里种苹果树652棵,比梨树棵数的7.4倍少14棵,梨树有多少棵?18.张师傅每小时加工零件128个,比徒弟的1.6倍少8个。
小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)
列方程解应用题(行程问题)专题解析相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度×时间=路程。
今天,我们学习此类问题。
例1 AB两地相距352千米.甲乙两辆汽车从A、B两地相对开出.甲车每小时行36千米,乙车每小时行44千米.乙车因有事,在甲车开出32千米后才出发,再出多少小时两车相遇?分析解答:要想求出两车的相遇时间,必须找到速度和、时间和总路程的数量关系式。
速度和×时间+甲先行的路程=总路程,其中甲车的速度,乙车的速度,甲先行的路和总路程已知,所以只要设时间为X小时,就可以列出方程。
解:设X小时两车相遇。
(36+44)×x+32=35280x+32=35280x=320x=4答:4小时后两车相遇。
随堂练习:甲乙两地相距300千米,客车从甲地开往乙地,每小时行40千米。
1小时后,货车从乙地开往甲地,每小时行60千米。
货车出发几小时后与客车相遇?例2 甲乙两人从A、B两地相向而行,甲乙两人从AB两地同时出发相向而行,甲每分钟行52米,乙每分钟行48米,两人走了10分钟后交叉而过,且相距64米,甲从A地到B地需多少分钟?分析解答:这道题目要求甲从A地到B地需要的时间,就发必须知道A、B两地相距的路程和甲的速度,现在甲的速度已知,所以这道题目的键就在于通过列方程求出A、B两地的相距的路程。
解:设A、B两会相距x米(52+48)×10-x=641000-x=64x=936936÷52=18(分)答:甲从A地到B地需18分钟。
随堂练习从A地到B地,水路比公路近40千米。
上午8时,一艘轮船从A地驶向B地,3小时后一辆汽车从A地到B地,它们同时到达B 地,轮船的速度是每小时24千米,汽车的速度是每小时40千米,求A地到B地水路、公路是多少千米?例3 小明和小童分别从一座桥的两端同时相向出发,往返于两端之间小明每分钟走60米,小童每分钟走75米,经过6分钟两人第二次相遇,这座桥长多少米?分析解答:第一次相遇就是行了一个全程,第二次相遇就是行了三个全程。
部编版五年级数学下册看图列方程专项竞赛题
部编版五年级数学下册看图列方程专项竞赛题班级:__________ 姓名:__________
1. 看图列方程,并求出方程的解。
2. 求面积(单位厘米)
3. 看图列方程,并解答。
4. 看线段图列出方程,并解方程。
5. 如图是两个相同的直角三角形叠在一起,求阴影部分的面积.(单位:分米)
6. 如图是一个正方体的表面展开图,求原来正方体的表面积和体积。
7. 看图列算式(或方程)并解答。
8. 看图列式。
9. 看图列方程并解答
10. 看图列方程解答。
11. 求三角形的面积。
12. 求如图周长(单位:厘米)
13. 看图列方程并解答。
14. 求这个正方体的体积。
15. 找准所需条件,计算下列图形的面积.(单位:米)。
【精品奥数】五年级下册数学奥数讲义—第十讲 列方程解应用题 通用版(含答案)
列方程解应用题列方程解应用题就是用字母代替未知数,根据题目中的已知条件找出等量关系,列一个含有未知数的等式就是方程,然后要解出未知数的值,优点就是可以使未知数直接参与运算。
与算术法解应用题相比,列方程由于引进了字母表示数,解应用题思路会更加顺畅。
列方程解应用题的一般步骤如下:1. 找出题目中涉及到的各个量中的关键量,并能够使得这个量和其他量之间产生联系;2. 将关键量设为,并用含的式子表示其它的量;3. 找出本题中的等量关系,列方程;4. 解方程;5. 对的值进行检验或验算,写出答句。
列方程解应用题最重要的有两点,一是如何去设未知数,二是怎么去建立方程。
一、设未知数一般地,设未知数共有两种思路,一是直接设未知数,二是间接设未知数。
1、直接设未知数:题目中求什么,就设这个量为.例1:果园里有桃树198棵,比杏树的2倍多36棵,果园里杏树有多少棵?分析:这道题要求杏树的棵数,我们就可以直接设杏树有棵,杏树的2倍就是棵,2倍还多36棵就是棵,也就是说杏树棵数的2倍多36棵就等于桃树的棵数,所有我们可以列出方程,详细解题过程如下:解:设果园中有杏树棵,则答:果园中有杏树81棵.例2: 3年前爸爸的岁数是小强的5倍,今年爸爸43岁,小强今年多少岁?分析:题目中要求的是小强今年的年龄,我们就可以直接设小强今年岁,那么,三年前小强应该是岁,则爸爸的年龄是岁。
由“3年前爸爸的岁数是小强的5倍”列出方程并解答,详细解题过程如下:解:设小强今年岁,则答:小强今年11岁.2、间接设未知数例1:如图所示,平行四边形ABCD 的周长是80,以AD 边为底时,高为12;以AB 边为底时,高为20,求平行四边形ABCD 的面积?分析:平行四边形的周长是两条邻边的2倍,所以AB+AD =40. 解:设AB 的长为,AD 的长为,则答:平行四边形ABCD 的面积为300.例2:甲、乙、丙、丁四个人共有糖果270颗,如果甲多了10颗,乙少了10颗,丙的颗数乘以2,丁的颗数除以2,那么此时四人的糖果数量一样多,求甲、乙、丙、丁实际各有多少颗糖果?分析:变动后四人糖果数量相等,那么不妨设此时四人各有糖果颗,则变动之前甲有糖果颗,乙有糖果颗,丙有糖果颗,丁有糖果颗,加起来共有270颗,列方程解出的值,再分别代入即可,过程如下:解:设四人糖果相等时各有颗,则甲:,乙:,丙:,丁:.答:甲、乙、丙、丁四个人实际各有糖果70颗、50颗、30颗、120颗.二、建立方程1、以总量为等量关系建立方程例:甲、乙两数的和为148,甲数比乙数的2倍多4,求甲、乙两个数各是多少?分析:和倍问题在列方程时,通常设1倍数为,以两个数的和为等量关系.解:设乙数为,则甲数为.甲数:答:甲数是100,乙数是48.2、以相差量为等量关系建立方程例:甲、乙两数的差为100,甲数比乙数的3倍还多4,求甲、乙两数各是多少?解:设乙数为,则甲数为甲数:答:甲数是148,乙数是48.3、以不变量为等量关系建立方程例:将一部分糖果平均分给几个小朋友,如果每人分6颗,还剩14颗,如果每人分8颗,则正好分完,问有几个小朋友?糖果一共有几颗?解:设一共有个小朋友,则颗答:一共有7个小朋友,56颗糖果.4、以基本数量关系建立方程例:一家公司购买了18台新计算机、投影仪,共用去了76000元,其中每台计算机的价格是4000元,每台投影仪的价格是6000元,求购买的计算机和投影仪各有多少台?解:设购买了台计算机,则投影仪购买了台.投影仪:答:计算机购买了16台,投影仪购买了2台.练习题1、传闻唐代大诗人李白喝酒曾有一道数学趣题:李白好喝酒,提壶街上走。
五年级下册数学竞赛试题- 10讲 列方程解应用题 全国通用(含答案)
列方程解应用题【名师解析】一、列方程解应用题的基本步骤1.根据题目已知条件,找出关系较多的量与其他量的关系;2.利用题目已知条件,设出未知数,表示出其它量;3.根据等量关系式,列出方程;4.解方程;5.检验作答。
二、未知数的选取(将其中一个设为x,剩下的量用x表示)(1)基本原则——求谁设谁;(2)设小不设大(通用,尤其适用于含倍数关系的题目中);(3)设少不设多(设题目中不变量为x);(4)分数问题设“单位一”为x。
【例题精讲】例1、猴爸爸、猴妈妈和猴宝宝一共重78千克,猴爸爸的重量是猴宝宝的3倍,猴妈妈的重量比猴宝宝重13千克,猴宝宝的体重是多少?练习、甲乙丙3人的成绩加起来等于269。
甲比乙多2分,丙的成绩最差,比乙少3分。
问丙的成绩是多少?例2、幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个。
问苹果有多少个,小朋友共几组?练习、有一些作业本分给一个班的同学,如果每人分2本,那么还剩20本,如果每人分5本,那么将会缺10本。
那么,作业本有多少?学生人数有多少?例3、两年前,哥哥的年龄是妹妹的4倍;今年,哥哥的年龄是妹妹的3倍,那么哥哥今年多少岁?练习、今年小红的年龄是小梅的5倍,3年后小红的年龄是小梅的2倍。
今年小红和小梅各是多少岁?例4、34的分子分母同时乘以一个数x后,分子加上4,分母加上1,得到一个新的分数.已知新的分数化简后为45,求x的值.练习、某数的3倍与1的和的一半,比某数的2倍与1的差的13大5。
求这个数例5、丢番图的墓志铭:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两侧长起长长的胡子;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了”请你列出方程算一算,丢番图去世时的年龄?练习、一共要走315里路,最开始的时候走的还很快,但是由于旅途劳顿,每过一天,走的路程就只能达到前一天的一半.这样走下去,一共走6天可以走完.那么你能不能算出我每天走了多少路呢?例6、有甲、乙、丙三堆石子,从甲堆中取出8个给乙堆后,甲、乙两堆的石子数就相等了;再从乙堆中取出6个给丙堆,乙、丙两堆的石子数也相等;此时又从丙堆中取2个给甲堆,使甲堆石子数是丙堆石子数的2倍,问:原来甲堆有多少个石子?练习、今年父母的年龄和是78岁,兄弟的年龄和是17岁;四年后父亲的年龄是弟弟的年龄的4倍,母亲的年龄是哥哥的年龄的3倍,那么几年后父亲的年龄是哥哥年龄的3倍?【选讲题】商店里有大盒、中盒、小盒共27盒筷子,其中大盒中装有18双筷子,中盒中装有12双筷子,小盒中装有8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种包装的筷子各有多少盒?练习、下表显示了一次钓鱼比赛的结果:②钓到3条或3条以上的选手平均每人钓到了6条鱼;③钓到12条或者12条以下的选手平均每人钓到了5条鱼.请问:一共有多少名选手参赛?这些选手一共钓到了多少条鱼?【综合练习】1.一批水果一共重130kg,其中梨子的重量是苹果的3倍,猕猴桃比苹果多10kg,那么苹果有多少?2.爸爸的年龄比儿子小明大26岁,爷爷的年龄是小明的5倍,爸爸和爷爷的年龄和是98,小明今年多少岁?3.若干个矮人背金子。
2022五年级下学期数学专项看图列方程计算竞赛知识深入练习题北师大
2022五年级下学期数学专项看图列方程计算竞赛知识深入练习题北
师大
班级:________ 姓名:________ 时间:________
1. 看图列方程,并求出方程的解。
2. 看图列式并计算。
3. 看图列式计算。
4. 看图列方程,并求出方程的解。
5. 看图列式计算。
6. 求这个长方体的体积.(单位:分米)
7. 看图列方程,并解答:S=96平方厘米。
8. 看图列方程并解答。
9. 看图列方程并求解。
10. 看图列方程并解答。
11. 看图列方程,并求解。
12. 列方程解决问题。
13. 看图列式计算。
14. 看图列方程,不用计算,不用写答数。
15. 看图列式。
16. 看图写等式。
17. 看图列算式(或方程)并解答。
18. 看图列方程,并求解。
19. 看图列方程。
20. 看图列方程并求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解应用题【名师解析】一、列方程解应用题的基本步骤1.根据题目已知条件,找出关系较多的量与其他量的关系;2.利用题目已知条件,设出未知数,表示出其它量;3.根据等量关系式,列出方程;4.解方程;5.检验作答。
二、未知数的选取(将其中一个设为x,剩下的量用x表示)(1)基本原则——求谁设谁;(2)设小不设大(通用,尤其适用于含倍数关系的题目中);(3)设少不设多(设题目中不变量为x);(4)分数问题设“单位一”为x。
【例题精讲】例1、猴爸爸、猴妈妈和猴宝宝一共重78千克,猴爸爸的重量是猴宝宝的3倍,猴妈妈的重量比猴宝宝重13千克,猴宝宝的体重是多少?练习、甲乙丙3人的成绩加起等于269。
甲比乙多2分,丙的成绩最差,比乙少3分。
问丙的成绩是多少?例2、幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个。
问苹果有多少个,小朋友共几组?练习、有一些作业本分给一个班的同学,如果每人分2本,那么还剩20本,如果每人分5本,那么将会缺10本。
那么,作业本有多少?学生人数有多少?例3、两年前,哥哥的年龄是妹妹的4倍;今年,哥哥的年龄是妹妹的3倍,那么哥哥今年多少岁?练习、今年小红的年龄是小梅的5倍,3年后小红的年龄是小梅的2倍。
今年小红和小梅各是多少岁?例4、34的分子分母同时乘以一个数x后,分子加上4,分母加上1,得到一个新的分数.已知新的分数化简后为45,求x的值.练习、某数的3倍与1的和的一半,比某数的2倍与1的差的13大5。
求这个数例5、丢番图的墓志铭:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两侧长起长长的胡子;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了”请你列出方程算一算,丢番图去世时的年龄?练习、一共要走315里路,最开始的时候走的还很快,但是由于旅途劳顿,每过一天,走的路程就只能达到前一天的一半.这样走下去,一共走6天可以走完.那么你能不能算出我每天走了多少路呢?例6、有甲、乙、丙三堆石子,从甲堆中取出8个给乙堆后,甲、乙两堆的石子数就相等了;再从乙堆中取出6个给丙堆,乙、丙两堆的石子数也相等;此时又从丙堆中取2个给甲堆,使甲堆石子数是丙堆石子数的2倍,问:原甲堆有多少个石子?练习、今年父母的年龄和是78岁,兄弟的年龄和是17岁;四年后父亲的年龄是弟弟的年龄的4倍,母亲的年龄是哥哥的年龄的3倍,那么几年后父亲的年龄是哥哥年龄的3倍?【选讲题】商店里有大盒、中盒、小盒共27盒筷子,其中大盒中装有18双筷子,中盒中装有12双筷子,小盒中装有8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种包装的筷子各有多少盒?练习、下表显示了一次钓鱼比赛的结果:②钓到3条或3条以上的选手平均每人钓到了6条鱼;③钓到12条或者12条以下的选手平均每人钓到了5条鱼.请问:一共有多少名选手参赛?这些选手一共钓到了多少条鱼?【综合练习】1.一批水果一共重130kg,其中梨子的重量是苹果的3倍,猕猴桃比苹果多10kg,那么苹果有多少?2.爸爸的年龄比儿子小明大26岁,爷爷的年龄是小明的5倍,爸爸和爷爷的年龄和是98,小明今年多少岁?3.若干个矮人背金子。
如果每人背7袋,正好能够背上所有的金币。
如果其中有个矮人只背2袋,其余的每人背8袋,也能正好背上所有的金币。
一共有多少矮人?多少袋金币?4.有大小两个桶,刚开始大桶水是小桶水的2倍,如果从小桶倒8千克水到大桶,则大桶中水是小桶的3倍,求原大桶有水多少千克?5.兄弟二人共养鸭550只,当哥哥卖掉自己养鸭总数的一半,弟弟卖出70只时,两人余下的鸭只数相等,求兄弟两人原各养鸭多少只?6.某校有学生465人,其中女生的23比男生的45少20人,那么男生比女生少多少人?7.一个分数约分后是2.如果这个分数的分子减去18,分母减去22,约分后3.那么,原的分数在约分前是.就可以得到一个新的分数358.乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量?9.解放军某部快艇追及敌舰,追到A岛时敌舰已逃离该岛12分钟,敌舰每分钟行1000米,我军快艇每分钟行1360米。
如果距敌舰600米处可以开炮射击,解放军快艇从A岛出发经过多少分钟可以开炮射击敌舰?10.1年前,父母的年龄和是兄弟二人年龄和的7倍;4年后,父母的年龄和是兄弟二人年龄和的4倍。
已知爸爸比妈妈大2岁,妈妈今年多少岁?11.小明对小亮说:“当我的岁数是你现在的岁数时,你才6岁.”小亮对小明说:“当我的岁数是你现在的岁数时,你将18岁.”根据他们的对话,求小明与小亮现在的年龄.12.今年儿子的年龄是父亲年龄的14,15年后,儿子的年龄是父亲年龄的511.今年儿子多少岁?【挑战竞赛】有甲、乙、丙三个人,当甲的年龄是乙的2倍时;丙是22岁,当乙的年龄是丙的2倍,甲是31岁;当甲60岁时,丙是多少岁?列方程解应用题【名师解析】三、列方程解应用题的基本步骤6.根据题目已知条件,找出关系较多的量与其他量的关系;7.利用题目已知条件,设出未知数,表示出其它量;8.根据等量关系式,列出方程;9.解方程;10.检验作答。
四、未知数的选取(将其中一个设为x,剩下的量用x表示)(1)基本原则——求谁设谁;(2)设小不设大(通用,尤其适用于含倍数关系的题目中);(3)设少不设多(设题目中不变量为x);(4)分数问题设“单位一”为x。
【例题精讲】例1、猴爸爸、猴妈妈和猴宝宝一共重78千克,猴爸爸的重量是猴宝宝的3倍,猴妈妈的重量比猴宝宝重13千克,猴宝宝的体重是多少?答案:13练习、甲乙丙3人的成绩加起等于269。
甲比乙多2分,丙的成绩最差,比乙少3分。
问丙的成绩是多少?答案:87分例2、幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个。
问苹果有多少个,小朋友共几组?答案:7组;46个练习、有一些作业本分给一个班的同学,如果每人分2本,那么还剩20本,如果每人分5本,那么将会缺10本。
那么,作业本有多少?学生人数有多少?答案:10人;40本例3、两年前,哥哥的年龄是妹妹的4倍;今年,哥哥的年龄是妹妹的3倍,那么哥哥今年多少岁?答案:18岁练习、今年小红的年龄是小梅的5倍,3年后小红的年龄是小梅的2倍。
今年小红和小梅各是多少岁?答案:梅:1岁;红:5岁例4、34的分子分母同时乘以一个数x后,分子加上4,分母加上1,得到一个新的分数.已知新的分数化简后为45,求x的值.答案:16练习、某数的3倍与1的和的一半,比某数的2倍与1的差的13大5。
求这个数答案:5例5、丢番图的墓志铭:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两侧长起长长的胡子;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了”请你列出方程算一算,丢番图去世时的年龄?答案:84岁练习、一共要走315里路,最开始的时候走的还很快,但是由于旅途劳顿,每过一天,走的路程就只能达到前一天的一半.这样走下去,一共走6天可以走完.那么你能不能算出我每天走了多少路呢?答案:依次是160、80、40、20、10、5例7、有甲、乙、丙三堆石子,从甲堆中取出8个给乙堆后,甲、乙两堆的石子数就相等了;再从乙堆中取出6个给丙堆,乙、丙两堆的石子数也相等;此时又从丙堆中取2个给甲堆,使甲堆石子数是丙堆石子数的2倍,问:原甲堆有多少个石子?答案:46颗练习、今年父母的年龄和是78岁,兄弟的年龄和是17岁;四年后父亲的年龄是弟弟的年龄的4倍,母亲的年龄是哥哥的年龄的3倍,那么几年后父亲的年龄是哥哥年龄的3倍?答案:5年例7、商店里有大盒、中盒、小盒共27盒筷子,其中大盒中装有18双筷子,中盒中装有12双筷子,小盒中装有8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种包装的筷子各有多少盒?[分析]设有x个中盒,那么有2x个小盒,273x-个大盒.()x=⨯-++⨯=,解得,6182731282330x x x那么,大盒数9,中盒数6,小盒数12答:共有大盒9个,中盒6个,小盒12个.练习、下表显示了一次钓鱼比赛的结果:②钓到3条或3条以上的选手平均每人钓到了6条鱼;③钓到12条或者12条以下的选手平均每人钓到了5条鱼.请问:一共有多少名选手参赛?这些选手一共钓到了多少条鱼?[分析]设共有x人参加比赛,则钓到3条及以上的人数为95721---=-,掉x x到12条及以下的人数为5218---=-.x x依题意列方程:(21)61527(8)5135142151-⨯+⨯+⨯=-⨯+⨯+⨯+⨯x x解得175x=.则共钓鱼:(17521)61527943-⨯+⨯+⨯=条.答:一共有175名选手;一共钓上943条鱼.【选讲】用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?设白色皮块为x,则黑色皮块为32-x,黑色周围是5个白色,每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接,则:3x=5(32-x),解答即可.解答:解:设白色皮为x块,则黑色皮块为32-x块,3x=5(32-x)3x=160-5xx=20答:这个足球共有20块白色皮块.【综合练习】13.一批水果一共重130kg,其中梨子的重量是苹果的3倍,猕猴桃比苹果多10kg,那么苹果有多少?答案:24千克14.爸爸的年龄比儿子小明大26岁,爷爷的年龄是小明的5倍,爸爸和爷爷的年龄和是98,小明今年多少岁?答案:12岁15.若干个矮人背金子。
如果每人背7袋,正好能够背上所有的金币。
如果其中有个矮人只背2袋,其余的每人背8袋,也能正好背上所有的金币。
一共有多少矮人?多少袋金币?答案:6人;42袋16.有大小两个桶,刚开始大桶水是小桶水的2倍,如果从小桶倒8千克水到大桶,则大桶中水是小桶的3倍,求原大桶有水多少千克?答案:64千克17.兄弟二人共养鸭550只,当哥哥卖掉自己养鸭总数的一半,弟弟卖出70只时,两人余下的鸭只数相等,求兄弟两人原各养鸭多少只?答案:320;23018.某校有学生465人,其中女生的23比男生的45少20人,那么男生比女生少多少人?答案:15人19.一个分数约分后是23.如果这个分数的分子减去18,分母减去22,约分后就可以得到一个新的分数35.那么,原的分数在约分前是.答案:72分之4820.乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量?2人携带的行李,如果收费,需要8-4=4元每人携带的行李,如果收费,需要4÷2=2元三人超重的行李,相当于4÷2=2人免费的行李每人可免费携带150÷(3+2)=30千克21.解放军某部快艇追及敌舰,追到A岛时敌舰已逃离该岛12分钟,敌舰每分钟行1000米,我军快艇每分钟行1360米。