最新概率论与数理统计期中考试试题1

合集下载

13142《概率论与数理统计》期中试卷_参考答案

13142《概率论与数理统计》期中试卷_参考答案

所以可知这件产品是次品的概率为 0.0185,若此件产品是次品,则该产品是乙车间生产的概 率为 0.38.
五、 (15 分)设 (X, Y) 的概率密度为
2
x 2 a x y , 0 x 1, 0 y 2, f ( x, y) 0, 其它, ,试求(1)a ; (2)
(2) P{ X Y 1}
f ( x, y )dxdy 0 dx 1 x ( x x y 1
1

xy 65 )dy 3 72
(3)
f X ( x)

2x 2 2 xy )dy 2 x 2 , 0 x 1, 0 ( x f ( x , y )dy 3 3 0, 其它. 1 y 1 2 xy )dx , 0 y 2, 0 ( x f ( x , y )dx 3 3 6 0, 其它.
p q k 1 q k p qi q k k 1 k 0 k 1 i2




p q i q k k 0 i 0


1 1 p 1 q 1 q
3
xe- x , x 0, f ( x) 假设各周的需求量相互独立,以 Uk 表示 k 周的总 0, 其它。
需求量。 (1)求 U2、U3 的概率密度; (2)求接连三周中的最大需求量的概率密度
解 利用卷积公式. 设 Xi 表示第 i 周的需求量, i=1,2,3, Z 表示三周中的周最大需求量.于是
解: 记 q=1-p, X 的概率分布为 P{X=k}=qk-1 p, k=1,2,…,

概率论与数理统计期中试题(一)

概率论与数理统计期中试题(一)

概率论与数理统计期中试题(一)《概率论与数理统计》期中试题(一)姓名班级学号成绩一、填空题(每小题4分,共12分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发生的概率为__________.2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率密度为_________.二、单项选择题(每小题4分,共16分)1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则与也独立.(C)若,则与也独立.(D)若,则与也独立. ()2.设随机变量的分布函数为,则的值为(A). (B). (C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B).(C). (D).4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). (C)(D). ()三、(12分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差.五、(12分)设二维随机变量在区域上服从均匀分布. 求关于的边缘概率密度;六、(12分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离的数学期望.七、(12分)设, 求的概率密度.Y X0200.10.2010.30.050.120.1500.1八、(12分)已知离散型随机向量的概率分布为求.。

2022概率统计期中考试卷

2022概率统计期中考试卷

2022概率统计期中考试卷《概率论与数理统计》期中考试试卷一、选择题(每小题4分,共24分)1.P(A)1/4P(B)1/2A.B相互独立,则P(AB)().A)1/2B)1/4C)1/8D)5/8 2D某DY1,E某EY0,2.设随机变量某,Y相互独立,则E某(Y)1()A.3B.2C.1D.63.随机事件A、B互斥,且P(A)0,P(B)0,则()A.P(B/A)0B.P(A/B)P(A)C.P(A/B)0D.P(AB)P(A)P(B)4.设甲、乙进行象棋比赛,考虑事件A{。

甲胜乙负},则A()A.{甲负乙胜}B.{甲乙平局}C.{甲负}D.{甲负或平局}5.设A1,A2,,An相互独立,P(Ak)pkk1,,n,则n个事件都发生的概率为().nnA.piB.pi(1pj)C.1(1pj)D.pii1i1j1j16.设事件A和B满足PBA1,则有().nnA.A是必然事件B.PBA0C.ABD.AB二、填空题(每小题5分,共30分)1.设对于事件A,B,C有PAPBPCPAC1,PABPBC0,41,则A,B,C三事件中至少有1个发生的概率为.82.设D某DY2,某与Y的相关系数1,则3D(某Y)_____________.3.设随机变量某服从二项分布B(n,p),且E某3,D某2.1,则n____,P____.14.设随机变量(某,Y)具有D某9,DY4,某y,则D(某3Y4)____.63A5.设离散型随机变量的分布律为P{某k}k(k1,2,),则A____.26.一批产品共100件,其中95件是合格品,5件是次品,现从中任取3件,则这3件中有次品的概率为___________.三、解答题(第1小题6分,其余每小题10分,共46分)111,P(B),P(AB),求P(AB),P(AB),P(AB).4222.某射击小组共有20名选手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人。

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________.9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=.10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度2f Y (y )=________.11.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫ ⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+.(-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律;(5)相关系数,X Y ρ18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p ;(2)问Y 服从何种分布,并写出其分布律;求E (Y ).1取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .157 2.下列选项不正确的是()A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为42100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21D .32 4.若随机变量,X Y 不相关,则下列等式中不成立的是.A5A 6A 79.设随机变量X ~E (1),且21Y X =-,则Y 的概率密度f Y (y )=________.10.设随机变量X ~B (4,32),则{}1P X <=___________. 11.已知随机变量X 的分布函数为0,6;6(),66121,6,x x F x x x ≤-⎧⎪+⎪=-<<⎨⎪≥⎪⎩,则X 的概率密度p (x )=______________.12.设二维随机变量(,)X Y 的协方差矩阵是90.60.625⎛⎫⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y =-+. 14.随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()3Y y f y ⎧-<<⎪=⎨,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z = 试求:(1)常数α,β;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是6否独立;(3)X 的分布函数F(x);(4){1}P X Y +<;(5)1X Y =的条件分布律;(6)相关系数,X Y ρ18.(8分)设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度()3103x e x p x -⎧>⎪=⎨,;某顾客在窗口等待服务,若超过9分钟,他就离视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A.互为对立事件一定是互不相容的B.互为独立的事件一定是互不相容的C.互为独立的随机变量一定是不相关的 D.不相关的随机变量不二、填空题:(每小题2分,共18分)7.同时扔4枚均匀硬币,则至多有一枚硬币正面向上的概率为________.8.将3个球放入6个盒子中,则3个盒子中各有一球的概率为=________.89.从a 个白球和b 个黑球中不放回的任取3次球,第3次取的黑球的概率是=.10.公共汽车站每隔5分钟有一辆汽车到站,乘客到站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为 (1,2,9,16,0)N -;2Z X =-. 率密度函数51,050,0x e x x ->≤的概率密,(,)X Y 相互独立,且X Y +的概率密度函数为(z f 在某区域有一架飞机,雷达以99%的概率探测到并报警。

(完整版)概率论与数理统计试卷与答案

(完整版)概率论与数理统计试卷与答案

《概率论与数理统计》课程期中试卷班级 姓名 学号____________ 得分注意:答案写在答题纸上,标注题号,做在试卷上无效。

考试不需要计算器。

一、选择题(每题3分,共30分)1. 以A 表示事件“泰州地区下雨或扬州地区不下雨”,则其对立事件A :( ) A .“泰州地区不下雨” B .“泰州地区不下雨或扬州地区下雨” C .“泰州地区不下雨,扬州地区下雨” D .“泰州、扬州地区都下雨”2. 在区间(0,1)中任取两个数,则事件{两数之和小于25}的概率为( ) A .225 B .425 C .2125 D .23253. 已知()0.7P A =,()0.5P B =,()0.3P A B -=,则(|)P A B =( ) A .0.5 B . 0.6 C .0.7 D . 0.84. 设()F x 和()f x 分别是某随机变量的分布函数和概率密度,则下列说法正确的是( ) A .()F x 单调不增 B . ()()xF x f t dt -∞=⎰C .0()1f x ≤≤D .() 1 F x dx +∞-∞=⎰.5. 设二维随机变量(,)X Y 的概率分布为已知随机事件{X = A . a=0.2,b=0.3 B . a=0.4,b=0.1 C . a=0.3,b=0.2 D . a=0.1,b=0.4 6. 已知()0.7P A =,()0.5P B =,(|)0.8P A B =,则()P A B -=( ) A .0.1 B . 0.2 C .0.3 D . 0.47. 设两个随机变量X 和Y 相互独立且同分布:{}{}1112P X P Y =-==-=,{}{}1112P X P Y ====,则下列各式成立的是( ) A .{}12P X Y ==B {}1P X Y ==C .{}104P X Y +==D .{}114P XY == 8. 设随机变量~(2,),~(3,),X B p Y B p 若19{1}27P Y ≥=,则{1}P X ≥= ( ) A .13 B .23 C .49D .599. 连续随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,)(x x x x x f ,则随机变量X 落在区间 (0.4, 1.2) 内的概率为( )A .0.42B .0.5C .0.6D .0.64 10. 将3粒红豆随机地放入4个杯子,则杯子中盛红豆最多为一粒的概率为( ) A .332B .38C .116D .18二、填空题(每题4分,共20分)11. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = . 12. 设随机变量X 服从参数为1的泊松分布,则{3}P X == . 13. 某大楼有4部独立运行的电梯,在某时刻T ,各电梯正在运行的概率均为43,则在此时刻恰好有1个电梯在运行的概率为 .14. 某种型号的电子的寿命X (以小时计)的概率密度210001000()0x f x x ⎧>⎪=⎨⎪⎩其它任取1只,其寿命大于2500小时的概率为 .15. 设随机变量X 的分布函数为:0(1),0.2(12),()0.5(23),1(3).x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩当时当时当时当时则 X 的分布律为 . 三、解答题(每题10分,共50分)16. 已知0.30.40.5+P A P B P AB P A A B ===()()()(|),,,求17. 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i i X i ⎧=⎨⎩第次取出红球第次取出白球,1,2i =. 在不放回模式下求12,X X 的联合分布律, 并考虑独立性(要说明原因).18. 某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12.两个车间生产的成品都混合堆放在一个仓库中,假设1、2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提台产品,求该产品合格的概率.19. 设某城市成年男子的身高()2~170,6X N (单位:cm )(1)问应如何设计公交车车门高度,使得男子与车门碰头的概率小于0.01? (2)若车门高为182cm ,求100个成年男子中没有人与车门顶碰头的概率. ( 2.330.9920.9772Φ=Φ=(),())20. 已知随机变量(,)X Y 的分布律为问:(1)当,αβ为何值时,X 和Y 相互独立;(2)在上述条件下。

张广亮概率论与数理统计期中测试试卷答案.doc

张广亮概率论与数理统计期中测试试卷答案.doc

经济与管理学院2012/2013学年(一)学期试卷《概率论与数理统计》期中测试试卷答案专业________ 年级 _____ 班级_姓名_____ 学号题号—二三四五六七八九十总分得分一、填空题(每小题3分,共15分):1、设A、B 为随机事件,P (A)=0.5 , P(B)=0.6, P(B|A)=0.8 .则P(BU/!)= 0. 73 0 < x < 丨2、设随机变量X的密度函数为/(x) = ^X’,设r表示对X的10次独0,具匕立观察中事件<! X S 出现的次数,则= 2) = O.24^C?o(|)2(|y3、设£(;0 =仏£>(;0 = /?,则£(X2) = “2+/?。

4、三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是_ 0.6 __________ 。

5、设随机变量f的密度函数为/?(x) = Ce_2v,x〉0,則常数C的值为 2 。

二、选择题(每小题3分,共15分):1、从一个由五男生和二女生组成的学习小组屮随机地抽出三个人,则“抽出的三人中至少有一个是男学生”的事件为(C)(A)随机事件(B)不可能事件(C)必然事件(D)偶然事件2、设随机变量《服从正态分布的yv(o,i),其密度函数为炉(%),则炉(o)= (A )3、若每次试验的成功率为(0 < /? < 1),则在3次重复试验中至少失败一次的概率为(B )(A)(l —厂)3(B) 1-p3(C) 3(1 —p) (D) (1 —/))3+p(l —/?)2+p2(l —p).4、甲乙进行乒乓球比赛,一局甲的胜率大于二分之一。

对乙而言,下列哪种赛制较有利(A )(A)三局两胜(B)五局三胜(C)七局四胜(D)九局五胜5、设事件A与B互不相容,= = 则尸(25)= (A )(A) 1 —(“ + /?)(B) 2 — 6/ — /? (C) (1 — 6/)(1—b)(I)) 1 —ab三、(8分)已知男人中有5%是色盲,女人中有0.25%是色盲.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:rdA :挑选出的人是男人;B :挑选出的人是色盲. 取{A ,为样本空间的划分. 由w 叶斯公式:馴娜)_ _P(B | A)P(A) + P {B | A)P(A)0.05x0.5_ 0.05x0.5 + 0.0025x0.5四、(8分)某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概 率为0.4,如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多 少?五、(9分)一个机床冇三分之一的时间加工零件A,其余时间加工零件B,加工 零件A 吋,停机的概率吋0.3,加工零件B 时,停机的概率是0.4,求这个机床 停机吋正在生产零件A 的概率.解:设A 表示生产零件A ,B 表示生产零件B ,C 表示机床停机,由题意可得 勝謂= 0.4P(C|A)P(A)P(C\A)P(A)-hP(C\B)P(B) 常数A; (2) PfX<\}; (3) X 的数学期望£(X)和方差解:由密度函数的归一性得1 = f Ar(l - x)dx = A 丄,故 A = 6 Jo6P{ X < 1 / = J f( x )dx = £ 6x( 1 - x )dx = (3%2 - 2x 3) |r=, = 1= 20/21设A 表示“能活20岁以上”的事件,B 表示“能活25岁以上”的事件,则P(B|A) = P(AB)尸⑷因为 p(A) = 0.8,P(B) = 0.4, P(AB) = P(B),所以 P(B|A) =P(A8)_0A_l P(A)0i~2由贝叶斯公式得=0.4 + 04!六、(15分)设随机变量X 的密度函数为/(x) =Ax(l - x),0,0 < x < 1 其它£(X) = £x6x(l-x)t/x = 0.5 D(X) =J>26X (1-^A -0.25 = 0.05七、(20分)一种电子管的使用寿命X (单位:小吋)的概率密度函数为设某种仪器中装有5个这种工作相互独立的电子管,求: (1) 使用最初1500小时没有一个电子管损坏的概率; (2) 这段时间内至少有两个电子管损坏的概率。

概率论与数理统计试题期中考试-答案

概率论与数理统计试题期中考试-答案

概率论与数理统计课程期中考试考试时间:90分钟姓名:班级:学号:一、单项选择题(本大题共有5个小题,每小题4分,共20分)1,设..~(100,0.1)R V X B,1..~()2R V Yπ,且X和Y相互独立,令72+-=YXZ,则D(Z)=(D )。

A:7 B:8 C:10 D:11 2,若P(A)=1/2,P(B|A)=1/3,则P(AB)=( B )A:1/2 B: 1/3 C: 5/6 D:1/63,设X的概率密度函数为30()xke xf x-⎧>=⎨⎩其它,则=k( C )A:1/3 B:1/9 C: 3 D: 94, 如果X,Y为两个随机变量,满足COV(X,Y)=0,下列命题中正确的是( A )。

A:X,Y不相关B:X,Y相互独立C:D(XY) =D(X)+D(Y) D:D(X-Y) =D(X)-D(Y)5,在8片药中有4片是安慰剂,从中任取3片,则取到2片是安慰剂的概率为( B )A:1/4 B :3/7 C:1/2 D:6/7二、填空题(本大题共有6个小题,每空2分,共20分)4 A,B为两个随机事件,若P(A)=0.4,P(B)=0.6,P(B A)=0.2.则P(AB)= 0.4 ,P(AB)= 0.25 甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一目标,则目标被击中的概率为 0.946.若某产品平均数量为73,均方差为7,利用切比雪夫不等式估计数量在52~94之间的概率为 8/97.在8件产品中有2件次品。

从中随机抽取2次,每次抽取一件,做不放回抽取。

则两次都是正品的概率为 15/28 抽取的产品分别有一正品和一件次品的概率为 3/7 ,第二次取出的产品为次品的概率为 1/48若X~N(2,1),Y~U[1,4],X,Y互相独立,则E(X+2Y-XY+2)= 4 ,D(X-2Y+3)=49 设D(X)=D(Y)=2,0.3XY ρ=,则D(X-Y)= 2.8三、解答题(本大题共有3个小题,共32分)10(7分)病树主人外出,委托邻居浇水。

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,P(X≤0)=______。

A. 0.5B. 0.3C. 0.7D. 0.8答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.5,则E(X)=______。

A. 2B. 5C. 10D. 15答案:B3. 设随机变量X服从泊松分布,其概率质量函数为P(X=k)=λ^k/e^λ*k!,其中λ>0,则E(X)=______。

A. λB. e^λC. kD. 1答案:A4. 若随机变量X与Y相互独立,则P(X>a, Y>b)=______。

A. P(X>a) + P(Y>b)B. P(X>a) * P(Y>b)C. P(X>a) - P(Y>b)D. P(X>a) / P(Y>b)答案:B5. 设随机变量X服从正态分布N(μ, σ^2),其中μ=3,σ^2=4,则P(X>3)=______。

A. 0.5B. 0.25C. 0.75D. 0.3答案:A6. 若随机变量X服从均匀分布U(a, b),则E(X)=______。

A. (a+b)/2B. a+bC. a-bD. b-a答案:A7. 设随机变量X服从指数分布,其概率密度函数为f(x)=λe^(-λx),其中x≥0,λ>0,则D(X)=______。

A. 1/λ^2B. 1/λC. λD. λ^2答案:A8. 若随机变量X与Y相互独立,且X~N(μ1, σ1^2),Y~N(μ2, σ2^2),则X+Y~______。

A. N(μ1+μ2, σ1^2+σ2^2)B. N(μ1-μ2, σ1^2-σ2^2)C. N(μ1+μ2, σ1^2-σ2^2)D. N(μ1-μ2, σ1^2+σ2^2)答案:A9. 设随机变量X服从二项分布B(n, p),则D(X)=np(1-p)。

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

系数 X ,Y
18.(8 分) 设测量距离时产生的随机误差 X~N(0,102)(单位:m),现作三次独 立测量,记 Y 为三次测量中误差绝对值大于 19.6 的次数,已知Φ(1.96)=0.975.
(1)求每次测量中误差绝对值大于 19.6 的概率 p; (2)问 Y 服从何种分布,并写出其分布律;求 E(Y).
fY
( y)
1
2
, 1
y
1 , (X ,Y )
相互独立,且
Z
X
Y
的概率密度函数为
fz (z)
0, others
15. 设 随 机 变 量 X , E(X ) 3, D(X ) 1 , 则 应 用 切 比 雪 夫 不 等 式 估 计 得 3
P{| X 3|1}
三、计算题(本题共 5 小题,共 70 分)
2
D. 2
3
4.若随机变量 X ,Y 不相关,则下列等式中不成立的是

A. D(X Y ) DX DY
B. Cov(X ,Y ) 0
C. E(XY ) EX EY
D. D(XY ) DX DY
5.设随机变量 X 与 Y 相互独立,X 服从参数 1 为的泊松分布,Y~B(6,1 ),则 D(X-Y)=( )
pY ( y) , X 与 Y 是否独立;(4) 概率 P{Y X} , (5)求 Z X Y 的概率密度; (6)相关系数 X ,Y
20.(10 分)假定暑假市场上对冰淇淋的需求量是随机变量 X 盒,它服从区间[200, 400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得 1 元,但假如销售不出而 屯积于冰箱,则每盒赔 3 元。问小店应组织多少货源,才能使平均收益最大?

概率统计中期考试试题及答案

概率统计中期考试试题及答案

概率统计中期考试试题及答案 一选择题1 设A ,B ,C 为三个独立事件,则下列等式中不成立的是( ) (A ) )()()(B P A P B A P = (B ) )()()(B P A P B A P = (C ) )()()(C P A P AC P = (B ) )()()()(C P B P A P ABC P =解 A ,B ,C 为三个独立事件 ,则A 与B 相互独立 )()()(B P A P B A P = 所以 (B )不成立2 如果事件A 与B 相互对立,则下面结论错误的是( ) (A ) A+B 是必然事件 (B )B A +是必然事件 (C ) B A 是不可能事件 (D )A 与B 一定不互斥解 如图 :事件A 与B 相互对立,则 A B ==,Φ=B A所以(D )是错误的 3 给出下列命:(1) 互斥事件一定对立 (2) 对立事件一定互斥 (3) 互斥事件不一定对立(4) 事件A 与B 的和事件的概率一定大于事件A 的概率 (5) 事件A 与B 互斥,则P(A)=1-P(B) 其中命题正确的个数为( )(A) 0 (B) 1 (C) 2 (D) 3 解 (1) 错误 (2) 正确 (3) 正确(4) 如果 A B ⊆,则 )()(A P B A P =+ 所以错误(5) 事件A 与B 互斥,则)()()(B P A P B A P +=+ 但)(B A P +不一定等于1 所以错误4 一个员工一周需要值班二天,其中恰有一天是星期六的概率为( ) ( A) 1/7 (B) 2/7 (C) 1/49 (D) 2/49 解 A={ 恰有一天是星期六} 726)(27==C A P 5 有三个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有二人在车厢内相遇的概率( )(A) 29/200 (B) 7/25 (C) 29/144 (D) 7/18 解 A={至少有二人在车厢内相遇} 则2571089101)(1)(3=⨯⨯-=-=A P A P二 填空题1 袋中3红球,2白球,每次取1个,取后放回,再放入相同颜色的球1个,则连续三次取得红球的概率 解 i A 第i 次取红球(i=1,2,3)则 )|()|()()(213121321A A A P A A P A P A A A P =756453⨯⨯=72= 2 有两箱同类的零件,第一箱有50只,其中有10件一等品,第二箱有30只,其中有18件一等品,今从两箱中任取一箱,然后从该箱中取零件两次,每次取一只,不放回,则第一次取到一等品的概率是解 A------取到第一只箱子 B------第一次取到红球)|()()|()()(A B P A P A B P A P B P +=4.0301821501021=⨯+⨯=3某射手命中率为0.9,他射击10次恰好中9次的概率为 解 X------10次射击命中的次数,则 )9.0,10(~B X1.09.0}9{9910C X P ===0.387424设8支枪中已有5支经试射校正,有3支未校正,一射手用校正过的枪命中率为0.8,用未校正过的枪命中率为0.3,今从8支枪中选一支进行射击,结果中靶,则所用枪是校正过的概率为解 A------取到校正过的枪 B-----射击命中目标 )|()()|()()(A B P A P A B P A P B P += 3.0838.085⨯+⨯=)()|()()()()|(B P A B P A P B P AB P B A P ==3.0838.0858.085⨯+⨯⨯==0.8163275 设随机变量X 的分布律为 kb k X P )32(}{== (k=1,2,3,…) 则常数b=解 132132)32(1=-=∑∞=b b k k5.0=⇒b6 事件A ,B ,C 三事件相互独立,A 发生的概率为1/2,A ,B ,C 同时发生的概率为1/24,A ,B ,C 都不发生的概率为1/4,则A ,B ,C 只有一个发生的概率为 解 事件A ,B ,C 三事件相互独立21)(=A P 241)()()()(==C P B P A P ABC P 41))(1))((1))((1()()()()(=---==C P B P A P C P B P A P C B A P 则 31)(=B P 41)(=C P )()()()(P P P P ++=++)()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=413221433121433221⨯⨯+⨯⨯+⨯⨯=2411=7设某项实验成功率是失败率的2倍,用X 表示一次实验成功的次数,则P{X=0}= 解 A={成功} 则 32)(=A P 31)0(==X P 8 已知a A P =)( b B P =)( c B A P =+)( 则 =)(B A P 解 )()()])[()(B P B A P B B A P B A P -+=-+==c-b9 从1到100共100个整数中任取一个数,在已知这个数是3的倍数的条件下,这个数能被5整除的概率为解 A={这个数是3的倍数} B={这个数能被5整除}则 112100331006)()()|(===A P AB P A B P三 设连续型随机变量的分布函数为 ⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Axx x F 求(1)A=? (2)P{0.3<X<0.7} (3) X 的概率密度解 (1)因为为F(x)连续函数,特别地,在X=1处连续, 有A=1(2) 4.03.07.0)3.0()7.0(}7.03.0{22=-=-=<<F F X P(3) ⎪⎩⎪⎨⎧≥<≤<='=1010200)()(x x x x x F x f四 测量到某目标的距离时发生的随机误差X 具有概率密度3200)20(22401)(--=x ex f π求在一次测量中误差的绝对值不超过30米的概率 解 224020213200)20(24012401)(⎪⎭⎫ ⎝⎛----==x x eex f ππ)40,20(~2N X)25.1()25.0()402030()402030(}3030{}30|{|-Φ-Φ=--Φ--Φ=≤≤-=≤X P X P 4931.018944.05981.0)]25.1(1[)25.0(=-+=Φ--Φ=五 设随机变量X 服从均匀分布U (0,1),试求Xe Y = 概率密度函数与分布函数解 )1,0(~U X ⎪⎩⎪⎨⎧≥<≤<=1010100)(x x x x f Xx e y =单调上升,其反函数为: y x ln = 导数为: yx y 1='(1) Xe Y = 概率密度函数为:|)(|))(()(y h y h f y f X Y '∙=⎪⎪⎩⎪⎪⎨⎧≥<≤<=1ln 01ln 010ln 0y y y y ⎪⎪⎩⎪⎪⎨⎧≥<≤<=e y e y y y 0111(2) 分布函数为 dy y f y F Y Y ⎰=)()(⎪⎩⎪⎨⎧≥<≤+<=e y c e y c y y c 3211ln 1根据)(y F Y 的连续性,及,0)(=-∞Y F 1)(=+∞Y F 有 1,0,0321===c c c所以 =)(y F Y ⎪⎩⎪⎨⎧≥<≤<=e y e y y y 11ln 10。

概率论期中测试答案

概率论期中测试答案

概率论与数理统计期中测试答案一、 单项选择题1.当事件A 、B 同时发生时,事件C 必发生,则( B )(A) ()()()1-+≤B P A P C P (B) ()()()1-+≥B P A P C P (C) ()()AB P C P = (D) ()()B A P C P ⋃=2.设随机变量X 的概率密度是()x f ,则下列函数中一定可以作为概率密度的是( )(A) ()x f 2 (B) ()x f 2 (C) ()x f - (D) ()x f 3.设1{0,0}5P X Y ≥≥=,2{0}{0}5P X P Y ≥=≥=,则{max{,}0}P X Y ≥=( )(A)15 (B) 25 (C) 35 (D) 454.设,X Y 相互独立,X 服从()0,2上的均匀分布,Y 的概率密度函数为,0()0,0y Y e y f y y -⎧≥=⎨<⎩,则{}1P X Y +≥=( )(A) 11e -- (B) 21e -- (C) 212e -- (D) 110.5e -- 二 填空题1 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P 1/e .2 设和ξη是两个相互独立且均服从正态分布N (0,21)的随机变量,则=-|)(|ηξE3 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6|{|Y X P 1/12.4 设平面区域D 由曲线所围成及直线2,1,01e x x y xy ====,二维随机变量(X ,Y )在区域D 上服从均匀分布,则(X ,Y )关于X 的边缘概率密度在x =2处的值为1/4。

三 计算题1、自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。

为检查某一盒子内装有白球的数量,从盒中任取一球发现是白球,求此盒中装的全是白球的概率。

概率论与数理统计期中试卷(1-4章)附答案及详解

概率论与数理统计期中试卷(1-4章)附答案及详解

X,23π+=X Y5.设随机变量1X ,2X ,3X 相互独立,1X 在)5,1(-服从均匀分布,)2,0(~22N X,)2(~3Exp X (指数分布),记32132X X X Y +-=,则)(Y E )(Y D6. 设二维正态分布的随机变量)0,3,4,2,1( ),(22-N ~Y X ,且知8413.0)1(=Φ,则-<+)4(Y X P7. 已知随机变量X 的概率密度201()0 a bx x f x⎧+<<=⎨⎩其他, 且41)(=X E ,则a b )(X D 8. 设4.0,36)(,25)(===XY Y D X D ρ,则=+)(Y X D =-)(Y X D 二. (10分) 某车间有甲乙两台机床加工同一种零件,甲机床加工的零件数量比乙机床多一倍,甲乙机床加工零件的废品率分别为0.03,0.02. 两机床加工出的零件放在一起. 试求 (1)任取一个零件是合格品的概率;(2)任取一个零件经检验是废品,试求它是由乙机床生产的概率.解:设“从放在一起的零件中任取一件发现是甲/乙机床加工的”分别记为事件,A .A再记“从放在一起的零件中任取一件发现是废品”为事件.B 由已知得.02.0)(,03.0)(;31)(,32)(====A B P A B P A P A P …… 3’(1)由全概率公式知027.075202.03103.032)()()()()(≈=⨯+⨯=+=A B P A P A B P A P B P . …… 3’ 故任取一个零件是合格品的概率73()1()0.973.75P B P B =-=≈ …… 1’ (2)由贝叶斯公式知.4102.03103.03202.031)()()()()()()(=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P …… 3’三. (10分)设某型号的电子元件的寿命X (单位: 小时)的分布密度为⎪⎩⎪⎨⎧>=其它,01000,1000)(2x x x f各元件在使用中损坏与否相互独立,现在从一大批这种元件中任取5只,求其中至少有一只元件的寿命大于1500小时的概率。

《概率论与数理统计》期中考试试习题汇总

《概率论与数理统计》期中考试试习题汇总

欢迎阅读《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( ) A .p 223.已知A .0 4率为(A .0.25A C 6.A .1- 7.8.将39.从a 10.11.12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫⎪⎝⎭,则相关系数,X Y ρ= ________.13. 二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为51,0()50,0x X e x f x x -⎧>⎪=⎨⎪≤⎩,Y 的概率密度函数为1,11()20,Y y f y others ⎧-<<⎪=⎨⎪⎩,(,)X Y相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X , 1()3,()3E X D X ==,则应用切比雪夫不等式估计得{|3|1}P X -≥≤三、计算题(本题共5小题,共70分)16.(8分)某物品成箱出售,每箱20件,假设各箱含0,1和2件次品的概率分别是0.7,0.2和0.1,顾客在购买时,售货员随机取出一箱,顾客开箱任取4件检查,若无次品,顾客则买下该箱物品,否则退货.试求:(1) 顾客买下该箱物品的概率;(2) 现顾客买下该箱物品,问该箱物品确实17.(20求(1)a (3){P X Y +18.(8为三次(1)(2)19.(24求: (1) ;(4) 概率{P Y 20.(101.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( ) A .601 B .457 C .51 D .157 2.下列选项不正确的是( ) A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为2100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩ 任取一只电子元件,则它的使用寿命在150小时以内的概率为( ) A .41 B .31 C .21 D .324.若随机变量,X Y 不相关,则下列等式中不成立的是 . A .DY DX Y X D +=+)( B. 0),(=Y X Cov C. (E 5.A .1-6.则常数x A .7.8. 将29. 10. 11. 已密度p (x 12.13. 二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()30,Y y f y others⎧-<<⎪=⎨⎪⎩,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X,1()1,()3E X D X==,则应用切比雪夫不等式估计得{13}P X-<<≥三、计算题(本大题共5小题,共70分)16.(8分)据市场调查显示,月人均收入低于1万元,1至3万元,以及高于3万元的家庭在今后五年内有购置家用高级小轿车意向的概率分别为 0.1,0.2 和 0.7.假定今后五年内家庭月人均收入X 服从正态分布N (2, 0.82 ).试求:(1) 求今后五年内家庭有购置高级小轿车意向的概率;(2) 若已知某家庭在今后五年内有购置高级小轿车意向,求该家庭月人均收入在1至3万元的概率.17(1),Y)关问X,Y)相关18{X>9}(1)X Y的条件概率密度函数;(5)相关系数,X Yρ20.(10分)设市场上每年对某厂生产的29寸彩色电视机的需求量是随机变量X(单位:万台),它均匀分布于[10,20].每出售一万台电视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A .互为对立事件一定是互不相容的B .互为独立的事件一定是互不相容的C .互为独立的随机变量一定是不相关的D .不相关的随机变量不一定是独立的2. 设事件B A ,两个事件,111(),(),()2310P A P B P AB ===,则()P A B = 。

数理统计期中考试试题及答案

数理统计期中考试试题及答案

数理统计期中考试试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是描述数据集中趋势的度量?A. 方差B. 标准差C. 平均值D. 极差答案:C2. 在统计学中,正态分布曲线的对称轴是什么?A. 均值B. 中位数C. 众数D. 标准差答案:A3. 以下哪个不是描述数据离散程度的统计量?A. 方差B. 标准差C. 平均值D. 极差答案:C4. 假设检验中,拒绝原假设意味着什么?A. 原假设是正确的B. 原假设是错误的C. 无法确定原假设的正确性D. 需要更多的数据答案:B5. 以下哪个统计量用于衡量两个变量之间的相关性?A. 均值B. 标准差C. 相关系数D. 方差答案:C6. 以下哪个选项是描述数据分布形状的度量?A. 平均值B. 方差C. 偏度D. 峰度答案:C7. 以下哪个选项是描述数据分布中心位置的度量?A. 方差B. 标准差C. 中位数D. 众数答案:C8. 以下哪个选项是描述数据分布集中程度的度量?A. 极差B. 方差C. 标准差D. 偏度答案:B9. 以下哪个选项是描述数据分布的峰值的度量?A. 方差B. 标准差C. 峰度D. 偏度答案:C10. 以下哪个选项是描述数据分布的偏斜程度的度量?A. 方差B. 标准差C. 偏度D. 峰度答案:C二、填空题(每题3分,共15分)1. 一组数据的均值是50,标准差是10,则这组数据的方差是______。

答案:1002. 如果一组数据服从正态分布,那么它的均值和中位数是______。

答案:相等的3. 相关系数的取值范围是______。

答案:-1到14. 在进行假设检验时,如果p值小于显著性水平α,则我们______原假设。

答案:拒绝5. 一组数据的偏度为0,说明这组数据是______。

答案:对称的三、简答题(每题5分,共20分)1. 请简述什么是置信区间,并给出其计算方法。

答案:置信区间是用于估计一个未知参数的区间,它表明了在给定的置信水平下,参数值落在这个区间内的概率。

数理统计期中考试试题及答案

数理统计期中考试试题及答案

数理统计期中考试试题及答案一、选择题(每题5分,共20分)1. 下列哪项是描述数据离散程度的统计量?A. 平均数B. 中位数C. 众数D. 方差答案:D2. 以下哪个分布是描述二项分布的?A. 正态分布B. 泊松分布C. 均匀分布D. 二项分布答案:D3. 以下哪个公式是计算样本方差的?A. \( \bar{x} = \frac{\sum_{i=1}^{n}x_i}{n} \)B. \( s^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1} \)C. \( \sigma^2 = \frac{\sum_{i=1}^{n}(x_i - \mu)^2}{n} \)D. \( \mu = \frac{\sum_{i=1}^{n}x_i}{n} \)答案:B4. 以下哪个统计量用于衡量两个变量之间的相关性?A. 标准差B. 相关系数C. 回归系数D. 均值答案:B二、填空题(每题5分,共20分)1. 一组数据的均值是50,中位数是45,众数是40,这组数据的分布是_____。

答案:右偏分布2. 如果一个随机变量服从标准正态分布,那么其均值μ和标准差σ分别是_____和_____。

答案:0,13. 在回归分析中,如果自变量X的增加导致因变量Y的增加,那么X和Y之间的相关系数是_____。

答案:正数4. 假设检验的目的是确定一个统计假设是否_____。

答案:成立三、计算题(每题10分,共30分)1. 已知样本数据:2, 4, 6, 8, 10,求样本均值和样本方差。

答案:均值 = 6,方差 = 82. 假设一个二项分布的随机变量X,其成功概率为0.5,试求X=2的概率。

答案:\( P(X=2) = C_4^2 \times 0.5^2 \times 0.5^2 = 0.25 \)3. 已知两个变量X和Y的相关系数为0.8,求X和Y的线性回归方程。

答案:需要更多信息,如X和Y的均值和方差,才能求解。

概率论期中试卷答案

概率论期中试卷答案

概率论试题答案一、 填空题(每小题3分,共30分) 1. C B A ⋃⋃ 2. 0.35 3.234.355. 346. X-3μ 7. 54 8. 6 9. 161 10.83二、 单选题(每小题3分,共15分) 1. A 2. A 3. D 4. D 5. B三、 计算题(每题8分,共32分)1. 解:,笔试及格}{=A }{口试及格=B ,则由题意知: 2)(,)(,)(pA B P p A B P p A P ===;)()()()(AB P B P A P B A P -+=⋃2)()()(p p p A B P A P AB P =⨯==由全概率公式22)1()()()()()(22p p p p p A B P A P A B P A P B P +=-+=+=232)()()()(222pp p p p p AB P B p A P B A P -=-++=-+=⋃(2)由Bayes 公式有:p p p p p B P A B p A P B A P +=+==122)()()()(222. 解:2,21)(102=∴===⎰⎰+∞-+∞∞-A A dx Ae dx x p x(2)x xt e dt e x F x x F x 20212)(,0;0)(,0---==≥=<⎰;则分布函数为⎪⎩⎪⎨⎧<≥-=-001)(2x x e x F x(3)由于X 仅在),0[+∞上取值,则12+=X Y 只能在),1[+∞上取值.;0)(,1=<y F y Y所以,Y 的密度函数为⎩⎨⎧≥<=-110)(1y ey y p y3. 解:根据已知条件,1)0(==XY P 得到0)0(=≠XY P 则)1,1()1,1(====-=Y X P Y X P =0再根据边缘分布得到61)0,1(,61)0,1(=====-=Y X P Y X P同理得到.31)1,0(,31)0,0(======Y X P Y X P 所以X 和Y 的联合概率分布为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-061131310061110\Y X (2)因为,61)0,1(===Y X P 但,91)32)(61()0()1(====Y P X P 所以X 与Y 不相互独立4. 解:(1),)1(3)1(6),()(21-=-==⎰⎰+∞∞-x dy y dy y x p x p xX10<<x)1(6)1(6),()(0y y dx y dx y x p y p yY -=-==⎰⎰+∞∞-,.10<<y所以,,其它⎪⎩⎪⎨⎧<<-=010)1(3)(2x x x p X。

安徽大学《概率论与数理统计A》2021-2022学年第一学期期中考试试卷

安徽大学《概率论与数理统计A》2021-2022学年第一学期期中考试试卷

安徽大学20 21—20 22学年第 1 学期《概率论与数理统计A 》期中考试试卷(闭卷 时间120分钟)考场登记表序号一、选择题(每小题3分,共15分)1. 设随机事件A B 、互斥,且()()0,0,P A P B >>则下列式子中一定成立的是( ).A. ()0P A B >B. ()()P A B P A =C. ()()()P AB P A P B =D. ()0P A B =2. 设A B C 、、三个随机事件两两独立,则A B C 、、相互独立的充要条件是( ). A . A 与BC 独立 B. AB 与A C 独立 C. AB 与AC 独立 D. A B 与A C 独立3. 三人独立地破译一个密码,他们能破译的概率分别为111,,543,则三人合作能将此密码破译出的概率为( ).A. 0.6B. 0.4C. 0.24D. 0.564. 设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为使12()()()F x aF x bF x =- 必是某一变量的分布函数,在下列给定的各组数值中应取( ).A. 22,33a b ==B. 32,55a b ==-C. 31,22a b ==-D. 31,22a b ==5. 设随机变量X 的分布函数0,0,1(),01,21,1.xx F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩则(1)P X == ( ).A. 0B.12 C. 112e -- D. 11e -- 二、填空题(每小题3分,共15分)6. 设随机事件A B 、满足()0.4,()0.5,()()P A P B P A B P A B ===,则()P AB = .7. 设袋中装有40个白球,20个黑球,从中不放回地抽取两次,每次取一个,则第二次取到黑球的概率为 . 8. 设随机变量X 服从参数为λ(0λ>为常数)的 Poisson 分布,满足(2)2(1)P X P X ===,则(0)P X == .9. 设某电子元件使用寿命X 服从参数为1的指数分布,则(12)P X <<= . 10. 一实习生用同一台机器独立地制造了3个同种零件,已知第i 个零件不合格的概率为院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------1,(1,2,3)1i p i i==+,以X 表示3个零件中合格品的个数,则(2)P X == . 三、分析计算题(每题10分,合计40分)11. 将3个球随机地投入4个盒子中,求下列事件的概率: (1)任意3个盒子中各有1个球; (2)任意1个盒子中有3个球.12. 设随机变量X 的分布列为1(),0,1,2,32kP X k c k ⎛⎫==⋅= ⎪⎝⎭,求:(1)c 的值;(2)关于t 的一元二次方程2+30t t X +=有实根的概率. 13. 设连续型随机变量X 的密度函数为cos ,,()20.A x x f x π⎧≤⎪=⎨⎪⎩,其他求:(1)A 的值;(2)X 落在区间0,4π⎛⎫⎪⎝⎭的概率.14. 设某连续型随机变量(3,4)X N ,(1)求概率(24)P X ≤≤,(已知(0.25)0.5987Φ=,(0.5)0.6915Φ=); (2)试确定常数c 使得()()P X c P X c ≥=<. 四、实际应用题(每题10分,合计30分)15. 设电灯泡使用时数在1000小时以上的概率为0.2,假设现有3只灯泡在独立地使用,求:(1)3只灯泡在使用了1000小时后全都坏了的概率;(2)3只灯泡在使用了1000小时后最多只有一只坏了的概率.16. 某发报台分别以0.7和0.3的概率发出信号0和1,(例如:分别用低电频和高电频表示). 由于受随机干扰的影响,当发出信号0时,接收台不一定收到0,而是以概率0.8和0.2收到信号0和1. 同样地,当发报台发出信号1时,接收台以0.9和0.1的概率收到信号1和0. 试求:(1)接收台收到信号0的概率;(2)当接收台收到信号0时,发报台确实是发出信号0的概率.17. 设某种圆盘的直径服从区间(0,1)上的均匀分布,试求此种圆盘面积S 的概率密度.。

蚌埠学院2023-2024学年第一学期《概率论与数理统计》期中考试试题

蚌埠学院2023-2024学年第一学期《概率论与数理统计》期中考试试题

试卷 共1页 蚌埠学院2023—2024学年第一学期 《概率论与数理统计》期中考试试题注意事项:1、适用班级:2、本试卷共1页。

满分100分。

3、考试时间间:100分钟4、考试方式:闭卷一、单项选择题(每小题3分,共15分)1. 设,A B 为事件,且A B ⊂,则下列式子一定正确的是( ) A. ()()P AB P A =; B. ()()P AB P B =;C. ()()P BA P A =;D. ()()()P A B P A P B -=- 2. 设[2]~,12X U ,则(8)P X >=( )A .0.8B .0.4C .0.6D .0.53.()arctan (),X F x A B x x B =+∞<<+∞=设的分布函数-则系数( ).A .12 B .1 C .1π D .2π4、对于任意随机变量Y X ,,若)()()(Y E X E XY E =,则( ).A .Y X ,不相关 B. Y X ,不独立 C. Y X ,一定独立 D. Y X ,一定相关5、设随机变量X 与Y 相互独立,()()~1,2,~1,1,X N Y N 则随机变量2Z X Y =-的 分布为A. (1,8)NB. (3,5)NC. (1,3)ND. (1,9)N二、填空题(每小题3分,共15分)1.若~(5,4)()(),X N P X C P X C C >=<=若则 .2. 设有10件产品,其中有1件次品,今从中任取出1件为次品的概率是 .3.设X ~),(p n B 为二项分布,且() 1.6E X =,() 1.28D X =,则n =__________. 4.已知()3,21XY D X Y X ρ==-则= . 5.设111(),(|),(|)432P A P B A P A B ===,则=⋃)(B A P .三、计算题(第1、2每小题15分,第3小题20分;共50分) 1.设随机变量X 的分布律为求(1) ()E X ; (2) 2(2)E X X +, (3) ()D X .2.设随机变量X 的概率密度为1,02()0,Ax x f x +≤≤⎧=⎨⎩其他 ,求:(1) A ; (3){}1.5 2.5P X <<; (2)X 的分布函数()F x . 3.设二维随机变量(,)X Y 的联合密度函数为23,0,0(,)0,x y Ce x y f x y --⎧≥≥=⎨⎩其它求(1)常数C ;(2){}01,02P X Y <<<<;(3)边缘密度函数(),()X Y f x f y ; (4)判断X 与Y 的独立性。

概率论与数理统计考核试卷

概率论与数理统计考核试卷
一、单项选择题(20×1分)
1. ______
2. ______
3. ______
4. ______
5. ______
6. ______
7. ______
8. ______
9. ______
10. ______
11. ______
12. ______
13. ______
14. ______
15. ______
9. ABC
10. ABC
11. ABC
12. BD
13. AC
14. ABC
15. ABCD
16. ABC
17. AB
18. AD
19. ABCD
20. ABC
三、填空题
1. [0, 1]
2. ∫f(x)dx = 1
3.均方根
4. t检验
5.完全正相关
6.样本量
7. χ²分布
8.拒绝了正确的原假设
C.数据存在异常值
D. A、B和C
20.以下哪些是时间序列分析中常用的统计方法?()
A.移动平均
B.指数平滑
C.自相关函数
D. A、B和C
(以下为答题纸):
考生姓名:答题日期:得分:判卷人:
二、多选题(20×1.5分)
1. ______
2. ______
3. ______
4. ______
5. ______
16.以下哪个选项描述的是相关系数的性质?()
A.相关系数的取值范围为-1到1
B.相关系数表示两个随机变量之间的线性关系
C.相关系数可以为负值,表示负相关
D. A、B和C都是
17.在回归分析中,以下哪个选项表示解释变量与被解释变量之间的关系?()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计期中考试试题1一.选择题(每题4分,共20分)1.设,,A B C 为三个随机事件,,,A B C 中至少有一个发生,正确的表示是( ) A. ABC B. ABC C. AB C D. A B C2.一个袋子中有5个红球,3个白球,2个黑球,现任取三个球恰为一红,一白,一黑的概率为 ( ) A.12 B. 14 C. 13 D. 153.设,A B 为随机事件,()0.5,()0.6,(|)0.8P A P B P B A ===,则()P AB =( )A .0.7 B. 0.8 C. 0.6 D. 0.44. 一电话总机每分钟收到呼唤的次数服从参数为2的泊松分布,则某一分钟恰有4次呼唤的概率为( )A.423e - B. 223e - C. 212e - D. 312e - 5.若连续性随机变量2(,)X N μσ,则X Z μσ-= ( )A .2(,)ZN μσ B. 2(0,)Z N σ C. (0,1)ZN D. (1,0)Z N二. 填空题(每题4分,共20分)6. 已知1()2P A =,且,A B 互不相容,则()P AB =7. 老张今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年内因意外死亡,则公司赔付30万元;若投保人因其他原因死亡,则公司赔付10万元;若投保人在投保期末生存,则公司无需付给任何费用。

若投保人在一年内因意外死亡的概率为0.0002,因其他原因死亡的概率为0.0050,则保险公司赔付金额为0元的概率为 8. 设连续性随机变量X 具有分布函数0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩则概率密度函数()f x = 9. 设连续型随机变量2(3,2)XN ,则{}2<5P X ≤=(注: (1)=0.8413,(0.5)=0.6915φφ)10. 设离散型随机变量X 的分布律为10120.20.30.10.4X-⎛⎫ ⎪⎝⎭,则2(1)Y X =-的分布律为三.解答题(每题8分,共48分)11. 将9名新生随机地平均分配到两个班级中去,这9名新生中有3名是优秀生。

求 (1)每个班级各分配到一名优秀生的概率是多少? (2)3名优秀生分配在同一个班级的概率是多少?12. 甲乙两人独立地射击同一目标,击中目标的概率分别为0.6,0.7,求下列各事件的概率: (1)两人都击中目标, (2)目标被击中, (3)恰有一人击中。

13. 将一枚硬币连掷三次,随机变量X 表示“三次中正面出现的次数”,求 (1)X 的分布律及分布函数 (2){}{}5.5,13P X P X ≥<≤14. 设连续型随机变量X 的概率密度为,01()2,120,kx x f x x x ≤<⎧⎪=-≤<⎨⎪⎩其他(1)求常数k (2)求分布函数()F x (3)求32P X ⎧⎫≤⎨⎬⎩⎭15. 设随机变量X 在[]2,5上服从均匀分布,现对X 进行三次独立观测,试求至少有两次观测值大于3的概率。

16. 设二维随机变量(),X Y 的联合概率密度函数为,0(,)0,y e x yf x y -⎧<<=⎨⎩其他(1) 分别求,X Y 的边缘密度函数(),()X Y f x f y ; (2) 判断,X Y 是否独立。

四.应用题(每题12分,共12分)17. 病树的主人外出,委托邻居浇水,设已知如果不浇水,树死去的概率为0.8。

若浇水则树死去的概率为0.15。

有0.9的把握确定邻居会记得浇水。

(1)求主人回来树还活着的概率; (2)若主人回来树已死去,求邻居忘记浇水的概率。

参考答案1. D2.B3.A4.B5.C6. 127. 0.99488. 1,1()0,x e f x x ⎧≤<⎪=⎨⎪⎩其他9. 0.532810. 0140.10.70.2Y⎛⎫ ⎪⎝⎭11.解:记A : 每个班级各分配到一名优秀生B : 2名优秀生分配在同一个班级 因此(1) 2226423339633!9()28C C C P A C C C ==, …………………………………………..4分 (2) 22264233396339()56C C C P B C C C ==. …………………………………………..8分12. 解:记A :甲击中,B :乙击中。

(1)()()()0.60.70.42P AB P A P B ==⨯= ………………………………..2分 (2)()()()()0.60.70.420.88P A B P A P B P AB =+-=+-= ………..5分 (3)()()()()0.60.30.40.700.46P ABAB P AB P AB P AABB =+-=⨯+⨯-=………………8分 13. 解:{},,,,,,,S HHH HHT HTH THH HTT THT TTH TTT=因此X 的分布律为012313318888X⎛⎫ ⎪ ⎪ ⎪⎝⎭。

…………………………2分 当0x <时,{}()0F x P X x =≤=当01x ≤<时{}{}1()08F x P X x P X =≤=== ……………………………3分当12x ≤<时{}{}{}1()012F x P X x P X P X =≤==+== …………………………4分当23x ≤<时{}{}{}{}7()0128F x P X x P X P X P X =≤==+=+== …………….5分.当3x ≥时{}{}{}{}{}()01231F x P X x P X P X P X P X =≤==+=+=+== …….6分即0,01,0181(),1227,2381,3x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩(2){}{}{}{}{}5.51 5.51 5.5 5.51(5.5) 5.50P X P X P X P X F P X ≥=-<=-≤+==-+==……….. 7分{}113(3)(1)2P X F F <≤=-=…………… 8分 14. 解:(1)因为()120111()2122f x dx kxdx x dx k +∞-∞=+-=+=⎰⎰⎰, ………………2分故 1k = …………… 3分(2)当0x <时()()0xF x f t dt -∞==⎰……………………………. 4分当01x ≤<时2001()()()()2xxxF x f t dt f t dt f t dt tdt x -∞-∞==+==⎰⎰⎰⎰ …………….5分当12x ≤<时()011201011()()()()()2212xx x F x f t dt f t dt f t dt f t dt tdt t dt x x -∞-∞==++=+-=--⎰⎰⎰⎰⎰⎰ ……………… 6分当2x ≥时12012()()()()()()1xxF x f t dt f t dt f t dt f t dt f t dt -∞-∞==+++=⎰⎰⎰⎰⎰ ……7分即220,01,012()121,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪--≤<⎪⎪≥⎩(3)333197()21222248P X F ⎧⎫≤==⨯-⨯-=⎨⎬⎩⎭ ……………………………8分15. 解:X 的概率密度为1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他 ………………………2分记A :“对X 的观测值大于3”,即{}3A X =>,故{}5312()333P A P X dx =>==⎰……………….4分 记B :3次独立观测中观测值大于3的次数,则2(3,)3B b , ………………….5分故{}{}23233321220(2)2=333327P B P B P B C C ⎛⎫⎛⎫≥==+=+= ⎪ ⎪⎝⎭⎝⎭ ……………8分16. 解:(1)当0x >时()(,)y x X xf x f x y dy e dy e +∞+∞---∞===⎰⎰, ……………2分即 ,0()0,0x X e x f x x -⎧>=⎨≤⎩ ………………………3分同理 ,0()0,0y Y ye y f y y -⎧>=⎨≤⎩ ……………………….6分(2) 因为()()()(,)x y y X Y f x f y ye e f x y -+-=≠= ………………………………… 8分故X 与Y 不独立。

17.解:记A :树还活着;B :邻居记得给树浇水。

…………………………………..1分 则由题意可得()0.9,()0.1,(|)0.15,(|)0.8P B P B P A B P A B ==== …………………..3分(1)()(|)()(|)()0.785P A P A B P B P A B P B =+= …………………………7分 (2) ()(|)()(|)0.3721()()P AB P A B P B P B A P A P A ==- ………………………12分。

相关文档
最新文档