一元二次方程易错题

合集下载

一元二次方程易错题大全

一元二次方程易错题大全

2.设 x1, x2 是一元二次方程 ax2 bx c 0 的两个根,则代数式 a(x13 x23 ) b(x12 x22 ) c(x1 x2 ) 0 的 值为___________.
3. a 是整数,已知关于 x 的一元二次方程 ax2 (2a 1)x a 1 0 只有整数根,则 a =__________. 4.已知方程 3x2 2x 1 4 ,则代数式12x2 8x 3 _____________.
A (x+3)(x﹣ B.(x﹣3) C.(x﹣3)(x﹣D.(x+3)(x+4)
. 4)
(x+4)
4)
16.关于 x 的一元二次方程 (a 1)x2 x a2 1 0 的一个根是 0 ,则 a 的值为( )
A. 1
B. 1
C.1或 1
D. 1
2
二.填空题
1.写出一个既能直接开方法解,又能用因式分解法解的一元二次方程是_______________.
13.若(a2+b2﹣3)2=25,则 a2+b2=( )
A 8 或﹣2
B.﹣2
C.8

D.2 或﹣8
14.设 a,b 是方程 x2+x﹣2011=0 的两个实数根,则 a2+2a+b 的值为( )
A 2009
B.2010
C.2011
D.2012

15.一元二次方程 x2+px+q=0 的两根为 3、4,那么二次三项式 x2+px+q 可分解为( )
4.某批发商以每件 50 元的价格购进 800 件 T 恤,第一个月以单价 80 元销售,售出
了 200 件;第二个月如果单价不变,预计仍可售出 200 件,批发商为增加销售量,决

人教版九年级上册数学一元二次方程(学生易错题)

人教版九年级上册数学一元二次方程(学生易错题)

人教版2021-2022年九年级上册数学一元二次方程(学生易错题)一.选择题(共5小题)1.下列方程中,属于一元二次方程的是( )A .x 2﹣3x +2=0B .x 2﹣xy =2C .x 2+x 1=2D .2(x ﹣1)=x2.将一元二次方程﹣3x 2﹣2=﹣x 化成一般形式ax 2+bx +c =0(a >0)后,一次项和常数项分别是( )A .﹣1,2B .x ,﹣2C .﹣x ,2D .3x 2,23.已知关于x 的一元二次方程x 2+mx +n =0有一个非零根﹣n ,则m ﹣n 的值为( )A .1B .﹣1C .0D .﹣24.已知a 是一元二次方程x 2﹣x ﹣1=0较大的根,则下面对a 的估计正确的是( )A .0<a <1B .1<a <1.5C .1.5<a <2D .2<a <35.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足α1+β1=﹣1,则m 的值是( )A .3B .1C .3或﹣1D .﹣3或1 二.填空题(共6小题)6.一次会议上,每两个参加会议的人都互相握手一次,有人统计一共是握了66次手,则这次会议到会人数是 人.7.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请 队参赛.8.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染 了 个人.9.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 .10.已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn +3m +n = .11.关于x 的方程kx 2﹣4x ﹣32=0有实数根,则k 的取值范围是 . 三.解答题(共14小题)12.用你喜欢的方法解方程:2x 2﹣4x =15.13.解关于x 的方程:a 2x 2﹣1=﹣x 2.14.用配方法说明:﹣9x2+8x﹣2的值小于0.15.已知关于x的方程x2+(a﹣2)x﹣a=0.(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若此方程两个实数根都是正实数,求a取值范围.16.已知一元二次方程﹣x2+(2a﹣2)x﹣a2+2a=0.(1)求证:方程有两个不等的实数根;(2)若方程只有一个实数根小于1,求a的取值范围.17.已知关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为满足条件的最大的整数,求此时方程的解.18.已知关于x的一元二次方程x2+2mx+m2+m=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根分别为x1、x2,且x12+x22=12,求m的值.19.已知关于x的一元二次方程x2﹣(2k+4)x+k2+4k+3=0.(1)求证:不论k取何值,此一元二次方程总有两个不相等的实数根;(2)若此一元二次方程的两根是Rt△ABC两直角边AB、AC的长,斜边BC的长为10,求k的值.20.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.21.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?23.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:(1)未降价之前,某商场衬衫的总盈利为元;(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利元,平均每天可售出件(用含x的代数式进行表示);(3)请列出方程,求出x的值.24.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.25.等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.。

方程与不等式之一元二次方程易错题汇编含答案

方程与不等式之一元二次方程易错题汇编含答案

方程与不等式之一元二次方程易错题汇编含答案一、选择题1.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为( )A .7B .8C .9D .10【答案】C【解析】试题分析:设这个小组的人数为x 个,则每个人要送其他(x ﹣1)个人贺卡,则共有(x ﹣1)x 张贺卡,等于72张,由此可列方程.解:设这个小组有x 人,则根据题意可列方程为:(x ﹣1)x =72,解得:x 1=9,x 2=﹣8(舍去).故选C .2.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .()250170x -=B .()250170x += C .()270150x -=D .()270150x += 【答案】B【解析】【分析】根据2019年的产量=2017年的产量×(1+年平均增长率)2,即可列出方程.【详解】解:根据题意可得,2018年的产量为50(1+x ),2019年的产量为50(1+x )(1+x )=50(1+x )2,即所列的方程为:50(1+x )2=70.故选:B .【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程.3.若代数式226(3)1x x m x ++=+-,则m =( )A .-8B .9C .8D .-9【答案】C【解析】【分析】已知等式右边利用完全平方公式化简,利用多项式相等的条件求出m 的值即可.226(3)1x x m x ++=+-=x 2+6x+8,可得m=8,故选:C.【点睛】此题考查配方法的应用,解题关键在于掌握计算公式.4.某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x ,那么x 应满足的方程是( )A .40%10%2x +=B .100(140%)(110%)(1)x ++=+C .2(140%)(110%)(1)x ++=+D .2(10040%)(10010%)100(1)x ++=+ 【答案】C【解析】【分析】设平均每次增长的百分数为x ,根据“某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%”,得到商品现在的价格,根据“某商品原价为100元,经过两次涨价,平均每次增长的百分数为x ”,得到商品现在关于x 的价格,整理后即可得到答案.【详解】解:设平均每次增长的百分数为x ,∵某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%, ∴商品现在的价格为:100(140%)(110%)++,∵某商品原价为100元,经过两次涨价,平均每次增长的百分数为x ,∴商品现在的价格为:2(1)x +,∴2100(140%)(110%)100(1)++=+x ,整理得:2(140%)(110%)(1)x ++=+,故选:C .【点睛】本题主要考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.5.若关于x 的一元二次方程240x x k -+=有两个不相等的实数根,那么k 的取值范围是( )A .k ≠0B .k >4C .k <4D .k <4且k ≠0【答案】C【解析】【分析】根据判别式的意义得到△=(-4)2-4k >0,然后解不等式即可.∵关于x 的一元二次方程2x 4x k 0-+=有两个不相等的实数根,∴2=(-4)40k ∆->解得:k <4.故答案为:C .【点睛】本题考查的知识点是一元二次方程根的情况与判别式△的关系,解题关键是熟记一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.6.为执行“均衡教育"政策,某县2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元.若每年投人教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .()225001 1.2x +=B .()22500112000x += C .()()225002********* 1.2x x++++= D .()()22500250012500112000x x ++++=【答案】D【解析】【分析】设每年投入教育经费的年平均增长百分率为x ,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.【详解】设每年投入教育经费的年平均增长百分率为x ,由题意得,2500+2500×(1+x )+2500(1+x )2=12000.故选:D .【点睛】此题考查由实际问题抽象出一元二次方程,解题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.下列方程中,属于一元二次方程的是( )A .21130x x +-=B .ax 2+bx +c =0C .x 2+5x =x 2﹣3D .x 2﹣3x +2=0【解析】【分析】根据一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为0,可得答案.【详解】解:A 、是分式方程,故A 错误;B 、a =0时是一元一次方程,故B 错误;C 、是一元一次方程,故C 错误;D 、是一元二次方程,故D 正确.故选:D .【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a ≠0).特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.8.已知,,m n 是一元二次方程2320x x -+=的两个实数根,则2246m mn m --的值为( )A .8B .10C .8-D .12-【答案】D【解析】【分析】先根据一元二次方程的解的定义得到m 2-3m=-2,则2m 2-4mn-6m=2(m 2-3m )-4mn=-4-4mn ,再根据根与系数的关系得到mn=2,然后利用整体代入的方法计算.【详解】∵m 是一元二次方程x 2-3x+2=0的实数根,∴m 2-3m+2=0,∴m 2-3m=-2,∴2m 2-4mn-6m=2(m 2-3m )-4mn=-4-4mn ,∵m ,n 是一元二次方程x 2-3x+2=0的两个实数根,∴mn=2,∴2m 2-4mn-6m=-4-4×2=-12.故选:D .【点睛】此题考查根与系数的关系,解题关键在于掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-12b c x x a a =,.9.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是( )A .m <1B .m >﹣1C .m >1D .m <﹣1【答案】C【解析】 试题解析:关于x 的一元二次方程2x 2x m 0-+=没有实数根,()224241440b ac m m ∆=-=--⨯⨯=-<,解得: 1.m >故选C .10.我市郊区大力发展全域旅游产业,打造了大来岗风景区、敖其湾赫哲族风景区等精品旅游 项目,郊区全年旅游人数逐年增加,据统计,2016年为30万人次,2018年为43.2万人次.设旅游人次的年平均增长率为x ,则可列方程为( )A .()30143.2x +=B .()30110.8x -=C .()230143.2x +=D .()()2301143.2x x ⎡⎤+++=⎣⎦【答案】C【解析】【分析】关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),旅游人次的年平均增长率为x ,然后根据已知可以得出方程.【详解】设旅游人次的年平均增长率为x ,那么根据题意得:()230143.2x +=.故选:C .【点睛】此题考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.11.若关于x 的一元二次方程2304kx x --=有实数根,则实数k 的取值范围是( ) A .0k =B .13k ≥-C .13k ≥-且0k ≠D .13k >- 【答案】C【解析】【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k 的不等式,解得即可,同时还应注意二次项系数不能为0.【详解】∵关于x的一元二次方程230 4kx x--=有实数根,∴△=b2-4ac≥0,即:1+3k≥0,解得:13 k≥-,∵关于x的一元二次方程kx2-2x+1=0中k≠0,故选:C.【点睛】本题考查了一元二次方程根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.12.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.13.关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,那么a的取值范围是( ) A.a>1 B.a=1 C.a<1 D.a<1且a≠0【答案】D【解析】【分析】由于原方程是一元二次方程,首先应该确定的是a≠0;然后再根据原方程根的情况,利用根的判别式建立关于a的不等式,求出a的取值范围.【详解】解:由于原方程是二次方程,所以a≠0;∵原方程有两个不相等的实数根,∴△=b2-4ac=4-4a>0,解得a<1;综上,可得a≠0,且a<1;故选D.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0【答案】A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.已知关于x的一元二次方程230 4x x a--+=有两个不相等的实数根,则满足条件的最小整数a的值为( )A.-1 B.0 C.2 D.1【答案】D【解析】【分析】根据根的判别式即可求出a的范围.【详解】由题意可知:△>0,∴1﹣4(﹣a +34)>0, 解得:a >12故满足条件的最小整数a 的值是1,故选D .【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.16.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为100m 2的矩形小花园(墙长为15m ),则与墙垂直的边x 为( )A .10m 或5mB .5m 或8mC .10mD .5m 【答案】C【解析】【分析】设与墙垂直的边长x 米,则与墙平行的边长为(30﹣2x )米,根据矩形的面积公式结合矩形小花园的面积为100m 2,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】设与墙垂直的边长x 米,则与墙平行的边长为(30﹣2x )米,根据题意得:(30﹣2x )x =100,整理得:x 2﹣15x +50=0,解得:x 1=5,x 2=10.当x =5时,30﹣2x =20>15,∴x =5舍去.故选:C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.两个不相等的实数m ,n 满足2265,65m m n n +=+=,则mn 的值为( ) A .6B .-6C .5D .-5【答案】D【解析】【分析】根据题意得到m ,n 可看作方程x 2-6x-5=0的两根,然后根据根与系数的关系求解即可.【详解】∵两个不相等的实数m ,n 满足22650, 650m m n n +-=+-=,∴m ,n 可看作方程x 2-6x-5=0的两根,∴mn=-5故选:D.【点睛】此题考查了一元二次方程的根与系数的关系:x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,12b x x a +=-,12c x x a=.18.某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .()2100181x +=B .()2811100x +=C .()2811100x -=D .()2100181x -=【答案】D【解析】【分析】此题利用基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【详解】由题意可列方程是:()2100181x -=.故选:D.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于列出方程19.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数 y kx b =+的图象可能是:A .B .C .D .【答案】B【解析】【分析】【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.20.关于x 的方程x 2+2kx+k ﹣1=0的根的情况描述正确的是( )A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数拫C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【答案】B【解析】∵关于x 的方程x 2+2kx+k ﹣1=0中△=(2k )2﹣4×(k ﹣1)=4k 2﹣4k+4=(2k ﹣1)2+3>0∴k 为任何实数,方程都有两个不相等的实数根故选B .。

一元二次方程难题、易错题

一元二次方程难题、易错题

一元二次方程难题、易错题1.一元二次方程已知关于x的方程mx^2-3(m-1)x+2m-3=0,求证:m取任何实数时,方程总有实数根。

解析:根据一元二次方程的判别式,当判别式大于等于0时,方程有实数根。

将方程化简得到 mx^2-(3m-3)x+2m-3=0,判别式为 (3m-3)^2-8m(m-1) = m^2-2m+1 = (m-1)^2 ≥ 0,因此对于任何实数m,方程都有实数根。

已知关于x的一元二次方程ax^2+bx+1=0有两个相等的实数根,求ab^2-22(a-2)+b-4的值。

解析:由于方程有两个相等的实数根,根据一元二次方程的求根公式,可得到 b^2-4ac=0,即 b^2-4a=0.将b^2-4a代入ab^2-22(a-2)+b-4中,得到 ab^2-22(a-2)+b-4 = ab^2-22b+44+b-4 = ab^2-21b+40 = (ab-16)(b-5)。

因此,要求的值为(ab-16)(b-5)。

2.方程的实数根1)已知关于x的方程2x^2+kx-1=0,求证:方程有两个不相等的实数根。

解析:对于一元二次方程ax^2+bx+c=0,当判别式b^2-4ac>0时,方程有两个不相等的实数根。

将2x^2+kx-1=0的判别式代入得到k^2+8 ≥ 0,即对于任何实数k,方程都有两个不相等的实数根。

2)若方程2x^2+3x+1=0的一个根是-1,求另一个根及k 值。

解析:由于方程的一个根是-1,则另一个根为 -1/2.将-1和-1/2代入方程得到两个方程:2-3+k=0和4+3/2+k=0,解得k=-11/2.3.三角形形状已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x^2-4x+b=0有两个相等的实数根,试判断△XXX的形状。

解析:根据三角形两边之和大于第三边的性质,可知bc,b+c>a,a+c>b,因此△ABC是一个等腰三角形。

方程与不等式之一元二次方程易错题汇编及答案解析

方程与不等式之一元二次方程易错题汇编及答案解析

方程与不等式之一元二次方程易错题汇编及答案解析一、选择题1.已知关于X 的方程x 2 +bx+a=0有一个根是-a (a ≠0),则a-b 的值为( ) A .1B .2C .-1D .0 【答案】C【解析】【分析】由一元二次方程的根与系数的关系x 1•x 2=c a、以及已知条件求出方程的另一根是-1,然后将-1代入原方程,求a-b 的值即可.【详解】∵关于x 的方程x 2+bx+a=0的一个根是-a (a≠0),∴x 1•(-a )=a ,即x 1=-1,把x 1=-1代入原方程,得:1-b+a=0,∴a-b=-1.故选C .【点睛】本题主要考查了一元二次方程的解.解题关键是根据一元二次方程的根与系数的关系确定方程的一个根.2.若代数式226(3)1x x m x ++=+-,则m =( )A .-8B .9C .8D .-9【答案】C【解析】【分析】已知等式右边利用完全平方公式化简,利用多项式相等的条件求出m 的值即可.【详解】 226(3)1x x m x ++=+-=x 2+6x+8,可得m=8,故选:C.【点睛】此题考查配方法的应用,解题关键在于掌握计算公式.3.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①若b =ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则方程x 2﹣bx +ac =0也一定有两个不等的实数根;③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;④若x 0是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中正确的( )A .只有①②③B .只有①②④C .①②③④D .只有③④【答案】B【解析】【分析】判断上述方程的根的情况,只要看根的判别式△=-24b ac 的值的符号就可以了.④难度较大,用到了求根公式表示0x .【详解】解:①若2b ac =,方程两边平方得b 2=4ac ,即b 2﹣4ac =0,所以方程ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则b 2﹣4ac >0方程x 2﹣bx +ac =0中根的判别式也是b 2﹣4ac >0,所以也一定有两个不等的实数根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac 2+bc +c =0成立,当c ≠0时ac +b +1=0成立;当c =0时ac +b +1=0不成立; ④若x 0是一元二次方程ax 2+bx +c =0的根,可得204b b ac x -±-=, 把x 0的值代入(2ax 0+b )2,可得b 2﹣4ac =(2ax 0+b )2,综上所述其中正确的①②④.故选:B .【点睛】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示0x ,整体代入求2204(2)b ac ax b -=+.总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.4.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【解析】【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.5.用配方法解方程2640x x ++=时,原方程变形为( )A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x +=【答案】C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x 2+6x+5+4-5=0,即(x+3)2=5.故选:C .【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.6.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.7.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +, 根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.8.李师傅去年开了一家商店,将每个月的盈亏情况都作了记录.今年1月份开始盈利,2月份盈利2000元,4月份盈利恰好2880元,若每月盈利的平均增长率都相同,这个平均增长率是( )A .20%B .22%C .25%D .44%【答案】A【解析】【分析】设这个平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设这个平均增长率为x ,根据题意得:2000(1+x )2=2880,解得:x 1=20%,x 2=-2.2(舍去).答:这个平均增长率为20%.故选A .【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-,难度一般.9.某型号手机原来销售单价是4000元,经过两次降价促销,现在的销售单价是2560元,若两次降价的百分率相同,则平均每次降价( )A .10%B .15%C .20%D .25%【答案】C【解析】【分析】根据原来售价是4000元,经过两次降价且降价百分率相同后销售单价为2560元,设两次降价的百分率为x ,一次降价为()40001x -,两次降价为()240001x -得出 ()240001x -=2560,算出x .【详解】解:设两次降价的百分率为x ,由题意得:4000(1﹣x )2=2560∴(1﹣x )2=256400∴1﹣x =±0.8∴x 1=1.8(舍),x 2=0.2=20%故选:C .【点睛】熟悉一元二次方程的增长率和下降率的相关题型,注意分析是一次增长(下降),还是二次增长(下降)问题.10.设α,β是方程2x 9x 10++=的两根,则()()22α2009α1β2009β1++++的值是( )A .0B .1C .2000D .4000000 【答案】D【解析】【分析】由已知方程的系数可得两根的关系(根据韦达定理或者叫根与系数的关系),再将所求代数式变形可求得代数式结果.【详解】解:∵α,β是方程2x 9x 10++=的两个实数根∴2211,910,9101αβααββ==++=++=g ∴()()()()2222α2009α1β2009β1α9α12000β9β120002000200040000004000000αβαβαβ++++=++++++===g 故选D.【点睛】(1)将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.(2)二次函数为2ax x 0(0)b c a ++=不等于的两个不同实数根:α,β满足=,b c a aαβαβ+-=g . 11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x ,则下面所列方程中正确的是( )A .22251196x (﹣)=B .21961225x (﹣)=C .22251196x (﹣)= D .21961225x (﹣)=【答案】A【解析】【分析】 可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.【详解】第一次降价后的价格为225×(1﹣x ),第二次降价后的价格为225×(1﹣x )×(1﹣x ),则225(1﹣x )2=196.故选A .【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.13.关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,那么a的取值范围是( ) A.a>1 B.a=1 C.a<1 D.a<1且a≠0【答案】D【解析】【分析】由于原方程是一元二次方程,首先应该确定的是a≠0;然后再根据原方程根的情况,利用根的判别式建立关于a的不等式,求出a的取值范围.【详解】解:由于原方程是二次方程,所以a≠0;∵原方程有两个不相等的实数根,∴△=b2-4ac=4-4a>0,解得a<1;综上,可得a≠0,且a<1;故选D.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.某种植基地2016年蔬菜产量为100吨,2017年比2016年产量增长8.1%,2018年比2017年产量的增长率为x,2018年底产量达到144吨,则x满足()A.100(1+x)2=144 B.100(1+8.1%)(1﹣x)=144C.100(1+8.1%)+x=144 D.100(1+8.1%)(1+x)=144【答案】D【解析】【分析】由题意知,2017年蔬菜产量为:100(1+8.1%),2018年蔬菜产量为:100(1+8.1%)(1+x),然后根据2018年底产量达到144吨列方程即可.【详解】解:∵某种植基地2016年蔬菜产量为100吨,2017年比2016年产量增长8.1%,∴2017年蔬菜产量为:100(1+8.1%),∵2018年比2017年产量的增长率为x,2018年底产量达到144吨,∴2018年蔬菜产量为:100(1+8.1%)(1+x)=144,故选D.【点睛】本题主要考查了由实际问题抽象出一元一次方程的应用,熟练掌握这些知识是解题的关键.15.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定【答案】B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.16.已知关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是( ) A .2B .﹣1C .2或﹣1D .不存在 【答案】A【解析】【分析】先由二次项系数非零及根的判别式△>0,得出关于m 的不等式组,解之得出m 的取值范围,再根据根与系数的关系可得出x 1+x 2=2m m +,x 1x 2=14,结合1211+x x =4m ,即可求出m 的值.【详解】∵关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩, 解得:m >﹣1且m≠0,∵x 1、x 2是方程mx 2﹣(m+2)x+4m =0的两个实数根, ∴x 1+x 2=2m m +,x 1x 2=14, ∵1211+x x =4m ,∴214m m +=4m , ∴m=2或﹣1,∵m >﹣1,∴m=2,故选A .【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:根据二次项系数非零及根的判别式△>0,找出关于m 的不等式组;牢记两根之和等于﹣b a 、两根之积等于c a.17.已知关于x 的一元二次方程20ax bx c ++=的根为2和3,则关于x 的一元二次方程20ax bx c --=的根为( ).A .2,3--B .6,1-C .2,3-D .1,6-【答案】B【解析】【分析】由2,3是一元二次方程ax 2+bx+c=0的两个实数根,可以得到如下四个等式: 2+3=-b a=-5,2×3=c a =6;再根据问题的需要,灵活变形. 【详解】 因为2和3是方程ax 2+bx+c=0的根,所以2+3=-b a ,2×3=c a ; 故一元二次方程ax 2-bx-c=0的根满足x 1x 2=-c a =-6①,x 1+x 2=-b =ab a -=5②; 将A 、B 、C 、D 的值代入①②式中,只有B 项满足.故答案选B.18.我校图书馆三月份借出图书70本,计划四、五月份共借出图书220本,设四、五月份借出的图书每月平均增长率为x ,则根据题意列出的方程是( )A .70(1+x )2=220B .70(1+x )+70(1+x )2=220C .70(1﹣x )2=220D .70+70(1+x )+70(1+x )2=220【答案】B【解析】【分析】根据题意,找出等量关系,列出方程即可.【详解】三月份借出图书70本四月份共借出图书量为70×(1+x )五月份共借出图书量为70×(1+x )2则70(1+x )+70(1+x )2=220.故选:B .【点睛】本题考查一元二次方程的应用,分析题干,列出方程是解题关键.19.关于x 的一元二次方程220x ax --=的根的情况( )A .有两个实数根B .有两个不相等的实数根C .没有实数根D .由a 的取值确定 【答案】B【解析】【分析】计算出方程的判别式为△=a 2+8,可知其大于0,可判断出方程根的情况.【详解】方程220x ax --=的判别式为280a ∆=+>,所以该方程有两个不相等的实数根, 故选:B .【点睛】本题主要考查一元二次方程根的判别式,掌握根的判别式与方程根的情况是解题的关键.20.以3和4为根的一元二次方程是( )A .27120x x -+=B .27120x x ++=C .27120x x +-=D .27120x x --=【答案】A【解析】【分析】分别求出各个选项中一元二次方程的两根之和与两根之积,进行判断即可.【详解】A 、在x 2﹣7x+12=0中,x 1+x 2=7,x 1x 2=12,此选项正确;B 、在x 2+7x+12=0中,x 1+x 2=﹣7,x 1x 2=12,此选项不正确;C 、在x 2+7x ﹣12=0中,x 1+x 2=7,x 1x 2=﹣12,此选项不正确;D、在x2﹣7x﹣12=0中,x1+x2=﹣7,x1x2=﹣12,此选项不正确;故选:A.【点睛】本题主要考查了根与系数的关系的知识,解答本题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba,x1•x2=ca.。

一元二次方程易错题(Word版 含答案)

一元二次方程易错题(Word版 含答案)

一元二次方程易错题(Word 版 含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒25OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析 【解析】 【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=结合图形分情况讨论即可得出符合条件的时长. 【详解】(1)由题意,A(0,2),B(-4,0),C(4,0), 设直线AC 的函数解析式为y=kx+b , 将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =-+, 当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1), 将点H 代入122y x =-+,得: 11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =. 根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4, 设直线AB 的函数解析式为y=mx+n , 将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =+, 当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3), 当点H 落在AB 边上时,将点H 代入122y x =+,得: 13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=, ∵169﹤9136,∴133﹤t ﹤5, 如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+, 解得:x=2t-10, ∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-, ∴点T 1(3,(7))2t t --, ∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -, 211(7)24BET S BE ET t ∆==-, 21(5)2ASGS AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-, 由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去), ∴143t =;(3)可能,35≤t≤1或t=4. ∵点D 为AC 的中点,且OA=2,OC=4, ∴点D (2,1),AC=255 易知M 点在水平方向以每秒是4个单位的速度运动; 当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇; 当12﹤t ﹤1时, 12+12÷(1+4)=35秒, ∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤; 当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处; 当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤ 当t=2时,点M 运动返回到点O 处停止运动,当 t=3时,点E 运动返回到点O 处, 当 t=4时,点F 运动返回到点O 处, 当35t ≤≤时,点M 都在正方形EFGH 内(含边界), 综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.2.如图,在矩形ABCD 中,6AB cm =,8AD cm =,点P 从点A 出发沿AD 向点D 匀速运动,速度是1/cm s ,过点P 作PE AC ∥交DC 于点E ,同时,点Q 从点C 出发沿CB 方向,在射线CB 上匀速运动,速度是2/cm s ,连接PQ 、QE ,PQ 与AC 交与点F ,设运动时间为()(08)<<t s t .(1)当t 为何值时,四边形PFCE 是平行四边形;(2)设PQE 的面积为2()s cm ,求s 与t 的函数关系式;(3)是否存在某一时刻t ,使得PQE 的面积为矩形ABCD 面积的932; (4)是否存在某一时刻t ,使得点E 在线段PQ 的垂直平分线上.【答案】(1)83t =;(2)S =299(08)8t t t -+<<;(3)当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932;(4)当57325-=t 时,点E 在线段PQ 的垂直平分线上 【解析】 【分析】(1)由四边形PFCE 是平行四边形,可得,PF CE ∥由PD QC 得四边形CDPQ 为平行四边形,即PD CQ =,列式82t t -=,计算可解. (2)由PE AC ∥,得=DP DE DA DC ,代入时间t ,得886-=t DE 解得364=-DE t ,34CE t =再通过S S =梯形CDPQ PDE CEQ S S --△△构建联系,可列函数式299(08)8S t t t =-+<<.(3)由PQE 的面积为矩形ABCD 面积的932得299986832S t t =-+=⨯⨯,可解 当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932. (4)当点E 在线段PQ 的垂直平分线上时,=EQ PE ,得22=EQ PE ,由Rt CEQ 与△Rt PDE 可得,222+=CE CQ EQ ,222PD DE PE +=,即2222+=+CE CQ PD DE ,代入364=-DE t ,34CE t =,2CQ t =,8PD t =-可得222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t ,计算验证可解.【详解】(1)当四边形PFCE 是平行四边形时,∥PF CE , 又∵PD QC ,∴四边形CDPQ 为平行四边形, ∴PD CQ =,即82t t -=, ∴83t =(2)∵PE AC ∥,∴=DP DEDA DC , 即886-=t DE, ∴364=-DE t ,∴336644=-+=CE t t , ∴21133(8)66242248⎛⎫=⋅=--=-+ ⎪⎝⎭△PDE S PD DE t t t t , 2113322244=⋅=⨯⨯=△CEQ S CE CQ t t t ,S 梯形11()(28)632422=+⋅=+-⋅=+CDPQ QC PD CD t t t ,∴S S =梯形299(08)8--=-+<<△△CDPQ PDE CEQ S S t t t (3)由题意,299986832-+=⨯⨯t t 解得12t =,26t =所以当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932. (4)当点E 在线段PQ 的垂直平分线上时,=EQ PE , ∴22=EQ PE ,在Rt CEQ 中,222+=CE CQ EQ ,在△Rt PDE 中,222PD DE PE +=, ∴2222+=+CE CQ PD DE ,即222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t解得1256-=t ,2256+=-t (舍)所以当256-=t 时,点E 在线段PQ 的垂直平分线上. 【点睛】本题考查的是一次函数与几何图形的实际应用,勾股定理,平行线的性质,解一元二次方程,需要注意的是在解一元二次方程的实际应用中经常会涉及到解的验证,不可忽略.3.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011年初起每年新增汽车数量最多不超过多少万辆.【答案】解:(1)2008年底至2010年底该市汽车拥有量的年平均增长率是20%(2)从2011年初起每年新增汽车数量最多不超过20万辆【解析】【分析】(1)设年平均增长率x,根据等量关系“2008年底汽车拥有量×(1+年平均增长率)×(1+年平均增长率)”列出一元二次方程求得.(2)设从2011年初起每年新增汽车的数量y,根据已知得出2011年报废的车辆是2010年底拥有量×10%,推出2011年底汽车拥有量是2010年底拥有量-2011年报废的车辆=2010年拥有量×(1-10%),得出等量关系是: 2010年拥有量×(1-10%)+新增汽车数量]×(1-10%)+新增汽车数量”,列出一元一次不等式求得.【详解】解:(1)设该市汽车拥有量的年平均增长率为x.根据题意,得75(1+x)2=108,则1+x=±1.2解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市汽车拥有量的年平均增长率为20%.(2)设全市每年新增汽车数量为y万辆,则2010年底全市的汽车拥有量为(108×90%+y)万辆,2011年底全市的汽车拥有量为[(108×90%+y)×90%+y]万辆.根据题意得(108×90%+y)×90%+y≤125.48,解得y≤20.答:该市每年新增汽车数量最多不能超过20万辆.4.如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t 秒.(1)当 t 为何值时,△PBQ的面积等于 35cm2?(2)当 t 为何值时,PQ的长度等82cm?(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?【答案】(1)t为5或7;(2)t为45或4;(3)t为4或16【解析】【分析】(1)分别用含t的代数式表示PB,BQ的长,利用面积公式列方程求解即可.(2)分别用含t的代数式表示PB,BQ的长,利用勾股定理列方程求解即可.(3)分段要清楚,,P,Q都没有返回,表示好PB,CQ的长,用面积公式列方程,,P不返回,Q返回,表示好PB,CQ的长,用面积公式列方程,,两点都返回,表示好PB,CQ的长,用面积公式列方程即可得到答案.【详解】解:(1),.根据三角形的面积公式,得,即,整理,得,解得,.故当为5或7时,的面积等于35.(2)根据勾股定理,得,整理,得,解得,.故当为或4时,的长度等于.(3)①当时,,,由题意,得,解得:,(舍去).②当时,,,由题意,得,次方程无解.③当时,,, 由题意,得,解得:(舍去),.综上所述,当为4或16时,的面积等于.【点睛】本题考查的是在运动过程中应用一元二次方程解决实际问题,建立正确情境下的几何模型是解决问题的关键,特别是最后一问,关键是弄懂分段的时间界点,才能正确的表示PB ,CQ 的长.5.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.6.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 【答案】(1)2018;(2)m=4 【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -)=2221111x x x x -+÷-- =()()22111x x x x x +-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根, ∴△=(﹣2)2﹣4×1×(m ﹣3)=0, 解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.7.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC 和△DEF ,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF的斜边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合). (1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC ,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.8.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=7(BQ﹣OP),求此时直线PQ的解析式.【答案】(1)k32)当0<t<12时,S=12•OQ•P y=12(1﹣2t3=﹣323.当t >12时,S =12OQ •P y =12(2t ﹣1)•32t =32t 2﹣34t .(3)直线PQ 的解析式为y =﹣3x +53. 【解析】 【分析】(1)求出点B 的坐标即可解决问题;(2)分两种情形①当0<t <12时,②当t >12时,根据S =12OQ •P y ,分别求解即可;(3)根据已知条件构建方程求出t ,推出点P ,Q 的坐标即可解决问题. 【详解】解:(1)对于直线y =kx +k ,令y =0,可得x =﹣1, ∴A (﹣1,0), ∴OA =1,∵AB =2, ∴OB =223AB OA -=∴k =3. (2)如图,∵tan ∠BAO =3OBOA= ∴∠BAO =60°, ∵PQ ⊥AB , ∴∠APQ =90°, ∴∠AQP =30°, ∴AQ =2AP =2t , 当0<t <12时,S =12•OQ •P y =12(1﹣2t 3323. 当t >12时,S =12OQ •P y =12(2t ﹣1)•32t =32t 2﹣34t . (3)∵OQ +AB 7(BQ ﹣OP ),∴2t ﹣1+2∴2t +121t t -+∴4t 2+4t +1=7t 2﹣7t +7, ∴3t 2﹣11t +6=0, 解得t =3或23(舍弃), ∴P (12Q (5,0), 设直线PQ 的解析式为y =kx +b ,则有1250k b k b ⎧+=⎪⎨⎪+=⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线PQ的解析式为33y x =-+. 【点睛】本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题.9.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和 (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.10.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.。

一元二次方程易错题(有答案)教师用

一元二次方程易错题(有答案)教师用

一元二次方程易错题一、填空题:1、关于x 的方程02)1()1(22=--+-x m x m ,当m 1≠± 时,它是一元二次方程,当m= 1- 时,它是一元一次方程,2、方程x x =2的解是 方程x x -=2的根是3 、若412+-mx x 是一个完全平方式,则m 为 1± 4、关于x 的一元二次方程05.12=+-x kx 有两个不相等的实数根,则k 的取值范围 k <16且k≠0 5、配方:=++c bx ax 26、 已知:方程0122=+x ,那么判别式的值为 -87、关于x 的一元二次方程mx 2+m 2=x 2_2x+1的一个根为0,那么m 的值为 ﹣1 .8、已知a 是方程x 2﹣x ﹣1=0的一个根,则a 4﹣3a ﹣2的值为 0 .9、当m = -6 时,方程250x x m ++=的两根之差是710、若二次三项式432++x ax 在实数范围内不能因数分解,那么a 的取值范围是 二、选择题11、若方程(m ﹣2)x |m|+x ﹣1=0是关于x 的一元二次方程,则m 的值为( C )A 、±2B 、2C 、﹣2D 、不能确定12、把一元二次方程2x (x ﹣1)=(x ﹣3)+4化成一般式之后,其二次项系数与一次项分别是( C )A 、2,﹣3B 、﹣2,﹣3C 、2,﹣3xD 、﹣2,﹣3x13、已知(x 2+y 2)2﹣(x 2+y 2)﹣12=0,则(x 2+y 2)的值是( B )A 、﹣3B 、4C 、﹣3或4D 、3或﹣414、关于x 的方程(m ﹣2)x 2﹣2x+1=0有实数解,那么m 的取值范围是( B )A 、m≠2B 、m≤3C 、m≥3D 、m≤3且m≠215、下列命题正确的是( B )A 方程2x =c -一定无实数解B 方程),0(02≠=+a c ax 若a,c 同号,此方程没有实数根 C 方程1162-=xx 是一元二次方程 D 方程02222=+-x x 没有数学根 16、若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( B )A 、k >﹣1B 、k >﹣1且k≠0C 、k <1D 、k <1且k≠017、下列一元二次方程中,两根之和为2的是( D )A 、x 2﹣x+2=0B 、x 2﹣2x+2=0C 、x 2﹣x ﹣2=0D 、2x 2﹣4x+1=018、关于x 的一元二次方程(m+1)x 2+x+m 2﹣2m ﹣3=0有一根是0,则m 的值是( D )A 、m=3或m=﹣1B 、m=﹣3或m=1C 、m=﹣1D 、m=319、关于未知数x 的方程ax 2+4x ﹣1=0只有正实数根,则a 的取值范围为 ( A )A 、﹣4≤a≤0B 、﹣4≤a <0C 、﹣4<a≤0D 、﹣4<a <020、已知a 、β是方程x 2﹣2x ﹣4=0的两个实数根,则a 3+8β+6的值为 ( D )A 、﹣1B 、2C 、22D 、3021、某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x ,根据题意列出的方程是(B )A 、100(1+x )2=280B 、100(1+x )+100(1+x )2=280C 、100(1﹣x )2=280D 、100+100(1+x )+100(1+x )2=280三、解方程1、09)23(42=-+x2、 22)13()12(-=+x3、22350x x --=4、06322=--x x5、x x 9)23(2=-6、 2)1()3(22=-++x x四、解答题1、证明:无论买m 取何值,方程08)5(2=-+-+m x m x 一定有两个不同的实数根。

【数学】数学 一元二次方程的专项 培优易错试卷练习题含答案解析

【数学】数学 一元二次方程的专项 培优易错试卷练习题含答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m %,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m 元,购买数量在原计划基础上增加15m %,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m %,求出m 的值. 【答案】(1)120;(2)20.试题分析:(1)本题介绍两种解法:解法一:设标价为x 元,列不等式为0.8x •80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在“大众点评”网上的购买实际消费总额:120a (1﹣25%)(1+52m %),在“美团”网上的购买实际消费总额:a [120(1﹣25%)﹣920m ](1+15m %);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m %”列方程解出即可. 试题解析:(1)解:解法一:设标价为x 元,列不等式为0.8x •80≤7680,x ≤120; 解法二:7680÷80÷0.8=96÷0.8=120(元). 答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120×0.8a (1﹣25%)(1+52m %)+a [120×0.8(1﹣25%)﹣920m ](1+15m %)=120×0.8a(1﹣25%)×2(1+ 152m %),即72a (1+ 52m %)+a (72﹣ 920m )(1+15m %)=144a (1+152m %),整理得:0.0675m 2﹣1.35m =0,m 2﹣20m =0,解得:m 1=0(舍),m 2=20.答:m 的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.3.已知关于x 的一元二次方程()220x m x m -++=(m 为常数)(1)求证:不论m 为何值,方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值及方程的另一个根. 【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0. 【解析】 【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根; (2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.(1)证明:△=(m+2)2−4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即△>0,所以无论m为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t,()220x m x m-++=根据题意得2+t=21m+,2t=m,解得t=0,所以m=0,即m的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元. 【解析】 【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论. 【详解】(1)设每个月生产成本的下降率为x , 根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%; (2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.6.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值. 【答案】(1)详见解析;(2)p=±1. 【解析】 【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解. 【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0, x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2, ∵无论p 取何值时,总有4p 2≥0, ∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根; (2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2, ∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.7.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3==-+=a b k c k24∆=-b ac∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.8.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【答案】(1)换元,降次;(2)x1=﹣3,x2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.9.关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.【答案】(1)证明见解析;(2)x1=﹣,x2=﹣1或【解析】试题分析:(1)根据一元二次方程的判别式△=b2﹣4ac的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-ba,x1•x2=ca,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣35)2+365,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2=ca=﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣x2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x210.若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对“x牵手函数”,这个交点为“x牵手点”.(1)一次函数y=x﹣1与x轴的交点坐标为;一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,则a=;(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为(12-,0)或(12,0).【解析】【分析】(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.【详解】解:(1)当y=0时,即x﹣1=0,所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,所以0=a+2,解得a=﹣2;(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”∴11a b-=,∴a+b=0.∵a,b为x2﹣kx+k﹣4=0的两根∴a+b=k=0,∴x2﹣4=0,∴x1=2,x2=﹣2.①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为1,02⎛⎫- ⎪⎝⎭;②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为(12,0 )∴综上所述,“x牵手点”为1,02⎛⎫- ⎪⎝⎭或(12,0)【点睛】本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.。

一元二次方程难题、易错题

一元二次方程难题、易错题

一元二次方程已知:关于x 的方程23(1)230mx m x m --+-=.()032132=-+--m x m mx 求证:m 取任何实数时,方程总有实数根;(2010年广东省广州市)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。

2.(2009年广东中山)已知:关于x 的方程2210x kx +-=(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求另一个根及k 值.3.(2009年重庆江津区)已知a、b、c分别是△ABC 的三边,其中a=1,c=4,且关于x 的方程042=+-b x x 有两个相等的实数根,试判断△ABC 的形状.例1.当a 为何值时,关于x 的一元二次方程01)12(22=+-+x a x a 有两个实数根.例 3.已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根,求k 的取值范围.例4.关于x 的方程0132=-+x kx 有实数根,则k 的取值范围是( ) (A)49-≤k (B)049≠-≥k k 且 (C)49-≥k (D)049≠->k k 且 例:222()5()60x x x x ---+=,求x 的值例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx xm m 是关于x 的一元二次方程,则m 的值为 。

★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1例1、已知322-+y y 的值为2,则1242++y y 的值为 。

一元二次方程易错题

一元二次方程易错题

一元二次方程易错题一、概念理解类1. 方程(m - 1)x^2+3x - 1=0是关于x的一元二次方程,则m的取值范围是()- 题目解析:- 对于一元二次方程的一般形式ax^2+bx + c = 0(a≠0)。

在方程(m - 1)x^2+3x - 1 = 0中,要使其为一元二次方程,二次项系数不能为0,即m - 1≠0,解得m≠1。

2. 下列方程中,是一元二次方程的是()- ①x^2+(1)/(x^2)=0;②ax^2+bx + c = 0;③(x - 1)(x + 2)=x^2-1;④3x^2-2xy - 5y^2=0;⑤x^2=0- 题目解析:- ①x^2+(1)/(x^2) = 0是分式方程,因为方程中含有分式(1)/(x^2),不符合一元二次方程整式方程的要求。

- ②ax^2+bx + c = 0,当a = 0时,它就不是一元二次方程,所以该方程不一定是一元二次方程。

- ③将(x - 1)(x + 2)=x^2-1展开得x^2+x - 2=x^2-1,化简后为x - 1 = 0,是一元一次方程,不是一元二次方程。

- ④3x^2-2xy - 5y^2=0含有两个未知数x和y,是二元二次方程,不是一元二次方程。

- ⑤x^2=0符合一元二次方程的定义ax^2+bx + c = 0(a≠0),这里a = 1,b = 0,c = 0,所以它是一元二次方程。

二、解方程类1. 解方程x^2-2x - 3 = 0- 题目解析:- 对于一元二次方程ax^2+bx + c = 0,这里a = 1,b=-2,c = - 3。

- 可以使用求根公式x=frac{-b±√(b^2)-4ac}{2a}。

- 先计算判别式Δ=b^2-4ac=<=ft(-2)^2-4×1×<=ft(-3)=4 + 12 = 16。

- 然后将其代入求根公式,x=(2±√(16))/(2)=(2±4)/(2),得到x_1=(2 +4)/(2)=3,x_2=(2-4)/(2)=-1。

一元二次方程易错题

一元二次方程易错题

一元二次方程难题易错题一、选择题1、若对于 x 的一元二次方程 (m-1)x 2+5x+m 2-3m+2=0 有一个根为0,则 m 的值等于()A 、1B 、2 C、1或 2 D 、02、巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45 万吨提升到50 万吨,设从前年到今年我市的粮油产量年平均增添率为x ,则可列方程为()A.45 2x 50 B .45(1 x) 2 50 C.50(1 x) 2 45 D .45(1 2x) 503、已知a,b是对于x的一元二次方程x2 nx 1 0 的两实数根,则式子 b a的值是a b()A .n2 2B .n2 2 C.n2 2 D .n2 24、已知 a、 b、 c 分别是三角形的三边,则方程(a + b)x 2 + 2cx + (a + b) = 0 的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5、已知m, n是方程 x 2 2x 1 0 的两根,且(7m2 14m a)(3n 2 6n 7)8,则 a 的值等于()A.- 56、已知方程x2bx a有一个根是a( a0),则以下代数式的值恒为常数的是()aA .abB.bC.a bD .a b7、 x2 2x 2 0的一较小根为x1,下面对x1 的预计正确的选项是()A . 2 x1 1 B.1x1C.0x1 1 D.1x1 28 、关于x的一元二次方程x2 mx 2m 1 0 的两个实数根分别是x1、x2,且x12 x22 7,则( x1 x2 )2 的值是()A . 1 B.12 C.13 D.259、中江县 2011 年初中毕业生诊疗考试)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张表示纪念,全班共送了2450 张相片,若是全班有x 名学生,依照题意,列出方程为 ( )A、 x( x 1) 2450B、 x(x 1) 2450C、 2x( x 1) 2450x( x 1)2450 D、 210、若对于 x 的一元二次方程k1 x2 x k 2的一个根为 1,则 k的值为 ()A .- 1B .C . 1D .0或111、设a , b是方程x 2x 2009的两个实数根,则 a 22a b的值为()A . 2006B . 2007C . 2008D . 200912、对于一元二次方程 ax2+bx+c=O(a ≠ 0),以下说法: ①若 a+c=0,方程 ax2+bx+c=O 必有实数根;②若 b2+4ac<0,则方程 ax2+bx+c=O 必然有实数根;③若 a-b+c=0,则方程 ax2+bx+c=O 必然有两个不等实数根;④若方程 ax2+bx+c=O 有两个实数根,则方程 cx2+bx+a=0 必然有两个实数根.其中正确的选项是 ( )A .①②B .①③C .②③D .①③④二、填空题1、若一元二次方程 x2- (a+2)x+2a=0 的两个实数根分别是 3、 b ,则 a+b=_______ .2、设 x1 、x2 是一元二次方程 x2+4x -3=0 的两个根,2x1(x22+5x2 - 3)+a =2 ,则 a= _______.3、方程( x ﹣ 1)( x + 2) = 2 ( x + 2)的根是 _______ .4 、 已 知 关 于 x 的 一 元 二 次 方 程ax 2bx 1 0( a 0)有 两 个 相 等 的 实 数 根 , 求ab 2(a 2)2b24的值为 __________ .5 、 在 等 腰 △ ABC 中 , 三 边 分 别 为 a 、 b 、 c, 其 中a5, 若 关 于x的 方 程x 2b 2 x 6 b 0有两个相等的实数根,则△ABC 的周长为 __________.6、已知对于 x的一元二次方程x 26x k2( k为常数).12为方程的两个实数根,且 x 1 2x 2 14,则 K 的值为 __________ .设 x, x7、已知m 、 n 是 方 程 x22 0 0 x32 0 0 4 的0两 根 , 则 (n 22004n2005) 与(m 2 2004m 2005) 的积是.三、简答题x 3 x 25x23x1 0 的实数 根,求代数式:3x 26x x 2已知 x 是一元二次方程的值.2、已知对于x2 2m 1 x m2 0有两个实数根x1和x2。

中考一元二次方程组易错题50题含答案

中考一元二次方程组易错题50题含答案

中考一元二次方程组易错题50题含答案解析一、单选题1.将一元二次方程2314x x -=-化成一般形式后,常数项为1,则二次项系数和一次项系数分别是( ) A .3、-4B .3-、-4C .3、4D .3-、42.用配方法解一元二次方程3x 2+8x ﹣3=0时,原方程可变形为( )A .242539x ⎛⎫+= ⎪⎝⎭B .24733x ⎛⎫+= ⎪⎝⎭C .289139x ⎛⎫+= ⎪⎝⎭D .2433x ⎛⎫+= ⎪⎝⎭ 3.根据关于x 的一元二次方程20x px q ++=,可列表如下:则方程20x px q ++=的一个根的范围是( )A .1.2 1.3x << B .1.1 1.2x <<C .0.51x <<D .00.5x <<4.若1x ,2x 是一元二次方程2560x x -+=的两个根,则12x x +,12x x 的值分别是( ) A .1和6B .5和6-C .5-和6D .5和65.下列方程是一元二次方程的是( ) A .21x = B .212x xy +=C .213x x+=D .21xy =6.若m 是方程的根,则式子的值为( )A .2007B .2008C .2009D .20107.已知ABC 的三边长分别为a ,b ,c ,且关于x 的一元二次方程2()20c b x ax c b +-+-=有两个相等的实数根,若2|5|(5)0a b -+-=,则ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰直角三角形8.某小区原有一块长为50米,宽为40米的矩形健身场地,现计划在场内沿四周铺一圈宽度相等的小路,使小路所占的面积是原面积的110,设这条小路的宽度为x 米,则所列方程正确的是( )A .12(5040)504010x x +=⨯⨯B .1(50)(40)5040110x x ⎛⎫--=⨯⨯- ⎪⎝⎭C .1(502)(402)5040110x x ⎛⎫++=⨯⨯+ ⎪⎝⎭D .1(502)(402)5040110x x ⎛⎫--=⨯⨯- ⎪⎝⎭9.已知关于x 的一元二次方程:220x x m -+=有两个不相等的实数根1x ,2x ,则( ) A .120x x +<B .120x x <C .121x x >-D .121x x <10.有1人患了流感,经过两轮传染后共有81人患了流感,设每轮传染中每人传染x 人,其中20%的人因自身抵抗力强而未患流感,则根据题意可列方程为( ) A .0.2(1+x )2=81 B .(1+0.2x )2=81 C .0.8(1+x )2=81D .(1+0.8x )2=8111.若方程290x mx -+=的左边是一个完全平方式,则m 等于( ) A .3B .6C .3±D .6±12.若一元二次方程x (kx +1)﹣x 2+3=0无实数根,则k 的最小整数值是( ) A .2B .1C .0D .﹣113.随着国内新冠疫情逐步得到控制,人们的口罩储备逐渐充足,市场的口罩需求量在逐渐减少,某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到64万只,则该厂七八月份的口罩产量的月平均减少率为( ) A .18%B .20%C .36%D .40%14.下列命题正确的是( ) A .方程210x +=没有实数根 B .方程2410mx x -+=是一元二次方程 C .方程2212x x+=是一元二次方程 D .方程()10x x -=的根为115.如果2||-2-x-6x x =0,则x 等于( ) A .±2 B .-2 C .2D .316.若关于x 的一元二次方程2500=()ax bx a ++≠的一个解是=1x -,则2013a b -+的值是( )A .2012B .2014C .2016D .201817.如果一元二次方程x 2+(m+1)x+m=0的两个根是互为相反数,那么有( ) A .m=0 B .m=﹣1C .m=1D .以上结论都不对18.若方程x 2﹣3x ﹣1=0的两根也是方程x 4+ax 2+bx +c =0的根,则a +b ﹣2c 的值为( ) A .﹣13B .﹣9C .6D .019.某工厂一月份利润1万元,二月份、三月份平均每月增长10%,那么第一季度的总利润是______万元. A .()2110%+ B .()3110%+C .()()2110%110%⎡⎤+++⎣⎦D .()()21110%110%⎡⎤++++⎣⎦20.下列方程一定有实数根的是( ) A .2x 10+=B .(2x+1)2+3=0C .(x-1)2=0D .21(x a)a 2-=二、填空题21.一元二次方程230x x +=的二次项系数是______. 22.方程2832x x -=-的一般形式为________.23.若m 是方程22310x x -+=的根,则2692019m m ++-的值为__________. 24.关于x 的方程220x mx n ++=的两个根是﹣2和1,则nm 的值为_____. 25.一元二次方程220x x +-=的解是1x =________,2x =________.26.若关于x 的一元二次方程()211x k +=有实数根,则实数k 的取值范围是______. 27.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有_____家公司参加了这次会议.28.一个三角形的两边长分别为4cm 和7cm ,第三边长是一元二次方程x 2﹣10x+21=0的实数根,则三角形的周长是____cm .29.方程(5)(21)3x x --=的根的判别式24b ac -= ____30.已知3是关于x 的方程x 2﹣2x ﹣n =0的一个根,则n 的值为_____.31.某种植物主干长出若干数目的分支,每个分支长出相同数目的小分支,若主干、分支、小分支的总数为31,则每个分支长出小分支的数目为 _____.32.在实数范围内定义一种运算“*”,其规则为a *b =a 2-b 2,根据这个规则,方程(x +2)*3=0的解为__________33.已知关于x 的方程230x x m --=的一个根是1,则m =___________.34.若关于x 的一元二次方程()22141102a x a x ⎛⎫+--+= ⎪⎝⎭的一次项系数为0,则a 的值为_____.35.如图是一张长8cm ,宽7cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形(阴影部分),剩余部分可制成底面积是15cm 2的有盖的长方体铁盒.设剪去的正方形的边长为x cm . 则列出的方程是____________36.新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调查,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童装应降价x 元,可列方程为__________.37.已知1x ,2x 是一元二次方程240x x m -+=的两根,若11x =,则1212x x x x +-=______.38.已知关于x 的方程210ax bx ++=的两根为1和2,则方程()2(1)110a xb x -+-+=的两根分别______.39.在实数范围内分解因式:2345x x --=_____________________40.已知在长方形纸片ABCD 中,6AB =,5AD =,现将两个边长分别为a 和b 的正方形纸片按图1、图2两种方式放置(图1、图2中两张正方形纸片中均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ;若213-=S S 时,则b =_________;若再在边长为a 大正方形的左上角摆放一个边长为b 的小正方形(如图3),当18S =时,则图3中阴影部分的面积3S =_________.三、解答题 41.按要求作答(1)解方程2320x x --+=;(2)计算)(111. 42.解方程: (1)260x x +-= (2)()32142x x x +=+ 43.解方程: (1)232x x -=- (2)2610x x +-=44.某农户要利用一面25m 长的墙建一个长方形的养鸡场,一边靠墙,另三边用木栅栏围成,木栅栏长40m .(1)鸡场的面积能达到2200m 吗?如果能,求出与墙平行的边的长; (2)鸡场的面积能达到2210m 吗?为什么? 45.解方程:()213123x -=. 46.2(1)69x x +=-;(2) 3x2+6x-4=047.江苏是全国首个自然村“村村通宽带”省份.我市某村为了将当地农产品外销,建立了淘宝网店.该网店于今年7月底以每袋25元的成本价收购一批农产品.当商品售价为每袋40元时,8月份销售256袋.9、10月该商品十分畅销.销售量持续走高.在售价不变的基础上,10月份的销售量达到400袋.设9、10这两个月月平均增长率不变.(1)求9、10这两个月的月平均增长率;(2)为迎接双“十一”,11月份起,该网店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价1元/每袋,销售量就增加5袋,当农产品每袋降价多少元时,该淘宝网店11月份获利4250元? 48.用适当的方法解下列方程: (1)(2x+1)2=(x ﹣1)2 (2).49.已知函数24)1(2m m y m x +-++=是关于x 的二次函数. (1)满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值是多少?这时当x 为何值时,y 随x 的增大而减小?50.如图,矩形ABCD 的边BC 在x 轴上,AD 与y 轴交于点E ,线段OB 、OC 的长是方程28150x x -+=的两根()OC OB <且tan 2EBO ∠=.(1)求点A 的坐标;(2)直线BE 从点B 出发,以每秒一个单位长度的速度沿x 轴正方向平移,设移动时间为()08t t ≤≤秒,直线BE 扫过四边形EBCD 的面积为S ,求S 关于t 的函数解析式; (3)平面内是否存在点P ,使得以B 、E 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出P 点坐标,若不存在,请说明理由.参考答案:1.B【分析】先化为一般形式,再解答.【详解】解:∵一元二次方程2314x x -=-化成一般形式后,常数项为1,则:23410x x --+=,∵二次项系数和一次项系数分别为3-、-4, 故选B .【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax 2+bx +c =0(a ≠0).其中a 是二次项系数,b 是一次项系数,c 是常数项,解题关键是掌握一元二次方程的一般形式. 2.A【分析】根据完全平方公式,配方即可. 【详解】解:3x 2+8x ﹣3=0, x 2+83x ﹣1=0,x 2+83x +(43)2=1+(43)2242539x ⎛⎫+= ⎪⎝⎭.故选:A .【点睛】此题考查的是解一元二次方程:配方法,掌握完全平方公式的特征是解决此题的关键. 3.B【分析】根据二次函数的增减性可得答案.【详解】由x=1.1时,x 2+px+q−1=−0.59;x=1.2时,x 2+px+q−1=0.84, 由函数的增减性,得x 2+px+q=1的正数解满足1.1 1.2x <<, 故选B.【点睛】本题考查估算一元二次方程的近似解,解题的关键是掌握估算一元二次方程的近似解的方法. 4.D【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵1x ,2x 是一元二次方程2560x x -+=的两个根, ∵x 1+x 2=5,x 1x 2=6, 故选:D .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=ca.5.A【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A .21x =是一元二次方程,故此选项符合题意;B .212x xy +=是二元二次方程,不是一元二次方程,故此选项不符合题意;C .213x x+=是分式方程,不是整式方程,不是一元二次方程,故此选项不符合题意; D .21xy =是二元二次方程,不是一元二次方程,故此选项不符合题意. 故选:A .【点睛】本题考查一元二次方程的定义.只含有一个未知数,并且所含末知数的项的最高次数是2的整式方程,叫一元二次方程.理解和掌握一元二次方程的定义是解题的关键. 6.C【详解】试题分析:把m 代入x 2+x ﹣1=0得到m 2+m ﹣1=0,即m 2+m=1,把m 2+m=1代入式子,再将式子变形为23()2006m m ++的形式,即可求出式子的值为2009.故选C .考点:一元二次方程的解. 7.D【分析】先根据根的判别式以及勾股定理的逆定理求得ABC 为直角三角形;由2|5|(5)0a b -+-=得55a b ==,,从而可得ABC 为等腰直角三角形.【详解】解:∵一元二次方程2()20c b x ax c b +-+-=有两个相等的实数根,∵2(2)4()()0a c b c b ∆=--+-=,即222+=a b c , ∵ABC 为直角三角形, 又2|5|(5)0a b -+-=, ∵55a b ==,,∵ABC 为等腰直角三角形, 故选:D .【点睛】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的两个实数根;当Δ0=时,方程有两个相等的两个实数根;当Δ0<时,方程无实数根.也考查了勾股定理的逆定理及等腰三角形的判定、非负数的应用. 8.D【分析】由小路的宽度可得出小路围起来的部分是长为(50-2x )米、宽为(40-2x )米的矩形,再利用矩形的面积计算公式,即可得出关于x 的一元二次方程,此题得解. 【详解】解:∵这条小路的宽度为x 米,∵小路围起来的部分是长为(50-2x )米、宽为(40-2x )米的矩形. 依题意得:(50-2x )(40-2x )=50×40×(1110-). 故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 9.D【分析】根据题意及一元二次方程根的判别式可得440m ->,然后再根据一元二次方程根与系数的关系可进行求解.【详解】解:∵关于x 的一元二次方程:220x x m -+=有两个不相等的实数根1x ,2x , ∵440m ->,解得:1m <, ∵由韦达定理可得:121220,1b cx x x x m a a+=-=>==<, ∵只有D 选项正确; 故选D .【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键. 10.D【分析】由于每轮传染中平均一个人传染的人数是x 人,其中20%的人因自身抵抗力强而未患流感,那么经过第一轮后有(1+0.8x )人患了流感,经过第二轮后有(1+0.8x )2人患了流感,再根据经过两轮传染后共有81人患了流感即可列出方程.【详解】解:依题意得(1+0.8x )2=81, 故选:D .【点睛】本题考查了一元二次方程的运用,解此类题关键是根据题意分别列出不同阶段患了流感的人数. 11.D【分析】根据配方法计算即可;【详解】∵方程290x mx -+=的左边是一个完全平方式, ∵()22293x mx x mx -+=-+±,∵()236m =⨯±=±, 故答案选D .【点睛】本题主要考查了配方法的应用,准确计算是解题的关键. 12.A【分析】由根的判别式与方程根的情况,可得△<0,从而求出k 的取值范围,再确定k 的最小整数,同时要保证二次项系数不为0.【详解】∵一元二次方程x (kx +1)﹣x 2+3=0,即(k ﹣1)x 2+x +3=0无实数根, ∵∵=b 2﹣4ac =1﹣4×(k ﹣1)×3<0且k ﹣1≠0, 解得k >1312. ∵k 的最小整数值是2. 故选:A .【点睛】本题主要考查了一元二次方程的概念和根的判别式,熟练掌握根据一元二次方程根的情况列出不等式是解题的关键. 13.B【分析】设该厂七八月份的口罩产量的月平均减少率为x ,利用等量关系:八月份的产量=六月份的产量×(1-产量的月平均减少率2),即可得出关于x 的一元二次方程,解方程取其合适的值即可得出结论.【详解】解:设该厂七八月份的口罩产量的月平均减少率为x , 依题意得:2100(1)64x -=,解得:10.220%==x ,2 1.8x =(不符合题意,舍去),∵该厂七八月份的口罩产量的月平均减少率为20%.故选:B .【点睛】本题考查了一元二次方程的应用,理解题意,找准等量关系,正确列出一元二次方程是解题的关键.14.A【分析】根据一元二次方程的判别式、一元二次方程的定义和一元二次方程的解,对选项一一进行分析,即可得出答案.【详解】解:A 、对方程210x +=,∵40∆=-<,∵方程没有实数根,故原说法正确; B 、对方程2410mx x -+=,当0m =时,是一元一次方程,故原说法错误;C 、方程2212x x+=是分式方程,故原说法错误; D 、方程()10x x -=的根为0或1,故原说法错误.故选:A【点睛】本题考查了一元二次方程的判别式、一元二次方程的定义和一元二次方程的解,解本题的关键在熟练掌握相关一元二次方程的知识点.15.C【分析】根据“当分式的分子为0,且分母不为0时,分式的值为0”得到|x|-2=0,且x 2-x-6≠0,解之即可得到答案.【详解】解:由题意可得22060x x x ⎧-=⎨--≠⎩解得x=2故选C .【点睛】本题考查了分式的值为0的条件.当分式的分子为0,且分母不为0时,分式的值为0.16.D【分析】将=1x -代入2500=()ax bx a ++≠可得5a b -=-,然后将所求式子变形,再将a b -的值代入,即可解答本题.【详解】解:∵关于x 的一元二次方程2500=()ax bx a ++≠的一个解是=1x -,∵50a b -+=,∵5a b -=-,∵()()20132013201352018a b a b -+=--=--=.故选D .【点睛】本题考查一元二次方程的解和代数式求值,解题的关键是明确一元二次方程的解的含义.17.B【详解】试题解析:设该一元二次方程的两个根分别是12x x 、,则根据题意知()1210x x m +=-+=, 即10m +=,解得, 1.m =-故选B .点睛:一元二次方程20ax bx c ++=的两根分别是12,.x x 则1212,.b c x x x x a a+=-⋅= 18.A【分析】设m 是方程x 2﹣3x ﹣1=0的一个根.根据方程解的意义知,m 既满足方程x 2﹣3x ﹣1=0,也满足方程x 4+ax 2+bx +c =0,将m 代入这两个方程,并整理,得(9+a )m 2+(6+b )m +c +1=0.从而可知:方程x 2﹣3x ﹣1=0的两根也是方程(9+a )x 2+(6+b )x +c +1=0的根,这两个方程实质上应该是同一个一元二次方程,然后根据同一个一元二次方程的定义找出相对应的系数间的关系即可.【详解】解:设m 是方程x 2﹣3x ﹣1=0的一个根,则m 2﹣3m ﹣1=0,所以m 2=3m +1.由题意,m 也是方程x 4+ax 2+bx +c =0的根,∵m 4+am 2+bm +c =0,把m 2=3m +1代入此式,得:(3m +1)2+am 2+bm +c =0,整理得:(9+a )m 2+(6+b )m +c +1=0.∵方程x 2﹣3x ﹣1=0的两根也是方程(9+a )x 2+(6+b )x +c +1=0的根,这两个方程实质上应该是同一个一元二次方程,从而有(9+a )x 2+(6+b )x +c +1=k (x 2﹣3x ﹣1)(其中k 为常数),∵b =﹣3a ﹣33,c =﹣a ﹣10.∵a +b ﹣2c =a +(﹣3a ﹣33)﹣2(﹣a ﹣10)=﹣13.故选A .【点睛】本题主要考查了一元二次方程的解.该题难度比较大,在解题时,采用了“转化法”,即将所求转化为求(9+a )x 2+(6+b )x +c +1=k (x 2﹣3x ﹣1)(其中k 为常数)的相应的系数间的关系.19.D【分析】首先表示出二月份的利润:一月份的利润()110%⨯+,再表示三月份的利润:二月份的利润()110%⨯+,即三月份的利润=一月份的利润()2110%⨯+,最后第一季度的总利润为前三个月份的利润相加起来即可. 【详解】解:一月份的利润为1万元∴二月份的利润为()1110%⨯+万元,即()110%+万元三月份的利润为()21110%⨯+万元,即()2110%+万元,∴第一季度的总利润为()()21110%110%⎡⎤++++⎣⎦万元 故选择D.【点睛】此题主要考查了一元二次方程的应用——增长率问题,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b +=,得到前三月份的量总和的等量关系是解决本题的关键.20.C【分析】根据非负数的性质可判断A 、B 中的方程没有实数解,方程D 中只有a≥0时,方程有实数解.【详解】A. 2x =−1 ,方程没有实数解,所以 A 选项错误;B. 将方程移项得:2(2x 1)3+=-,该方程没有实数解,故B 选项错误;C. x−1=0, 则 1x =2x =1 ,所以 C 选项正确;D. 当 a<0 时,方程没有实数解,所以 D 选项错误.故选C.【点睛】本题主要考查用配方法解一元二次方程,熟悉掌握是关键.21.1【分析】根据一元二次方程的一般形式直接填空即可.【详解】一元二次方程230x x +=,二次项系数为1.故答案为1.【点睛】一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.22.23820x x +-=【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件,根据一元二次方程的一般形式将2832x x -=-变形为23820x x +-=即可得到答案.【详解】根据一元二次方程的一般形式将2832x x -=-变形为23820x x +-=,则答案为23820x x +-=.【点睛】本题考查一元二次方程的一般形式,解题的关键是掌握一元二次方程的一般形式.23.2022【分析】根据一元二次方程的解的定义即可求出答案.【详解】由题意可知:2m 2−3m+1=0,∵2m 2−3m =-1∵原式=-3(2m 2−3m )+2019=2022.故答案为:2022.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.24.﹣8【分析】由方程的两根结合根与系数的关系可求出m 、n 的值,将其代入nm 中即可求出结论.【详解】解:∵关于x 的方程220x mx n ++=的两个根是﹣2和1, ∵1,222m n -=-=-, ∵m =2,n =﹣4,∵()428nm ⨯=﹣=﹣. 故答案为:﹣8.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.25. 1 -2【分析】根据因式分解法进行求解一元二次方程即可.【详解】解:220x x +-=()()120x x -+=∵10x -=或20x +=解得:121,2x x ==-;故答案为1;-2.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.26.0k ≥##0k ≤【分析】根据平方的非负性可得结果.【详解】解:∵关于x 的一元二次方程()211x k +=有实数根,而()2110x +≥,∵0k ≥.故答案为:0k ≥.【点睛】本题考查了一元二次方程的解,掌握平方的非负性是解决此题的关键. 27.8【分析】每家公司都与其他公司鉴定了一份合同,设有x 家公司参加,则每个公司要签()1x -份合同,签订合同共有()112x x -份. 【详解】设共有x 家公司参加了这次会议, 根据题意,得:12x (x ﹣1)=28, 整理,得: x 2﹣x ﹣56=0,解得:x 1=8,x 2=﹣7(不合题意,舍去) ,答:共有8家公司参加了这次会议.故答案是:8.【点睛】考查了一元二次方程的应用,甲乙之间互签合同,只能算一份,本题属于不重复记数问题,类似于若干个人,每两个人之间都握手,握手总次数.解答中注意舍去不符合题意的解.28.18.【详解】试题分析:由方程x2﹣10x+21=0,利用分解因式得:(x﹣3)(x﹣7)=0,解得:x=3或x=7,当x=3时,三角形三边分别为3cm,4cm,7cm,3+4=7,不合题意,舍去;当x=7时,三角形三边为4cm,7cm,7cm,此时周长为4+7+7=18cm,考点:1、解一元二次方程-因式分解法;2、三角形三边关系29.105【详解】解:方程(x-5)(2x-1)=3化为一元二次方程的一般形式为:2x2-11x+2=0,∵∵=b2-4ac=(-11)2-4×2×2=105.故答案为:105.30.3【分析】根据一元二次方程的定义,把x=3代入x2﹣2x﹣n=0中得到关于n的方程,然后关于n的方程即可.【详解】解:把x=3代入x2﹣2x﹣n=0得9﹣6﹣n=0,解得n=3.故答案为3【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.31.5【分析】先设每个分支长出小分支的数目为x,再根据题意列出一元二次方程进行求解即可.【详解】解:设每个分支长出小分支的数目为x,依题意得:2++=,x x131整理得:2300+-=,x x解得:1x =5,2x =﹣6(不合题意,舍去).故答案为:5.【点睛】本题考查了一元二次方程的实际应用,解决本题的关键是列出正确的方程进行求解.32.1或-5【详解】直接根据定义的这种运算的规则求解.解:∵a ﹡b=a 2-b 2,∵(x+2)﹡3=(x+2)2-32,解方程(x+2)2-32=0,(x+2+3)(x+2-3)=0,∵x 1=1,x 2=-5.33.2-【分析】已知1x =是方程的根,把1x =代入原方程即可得到关于m 的方程,即可求得m 的值.【详解】解:∵关于x 的方程230x x m --=的一个根是1,∵21310m -⨯-=,解得 2m =-.故答案为:2-.【点睛】本题主要考查了一元二次方程的解的定义,把方程的解代回原方程是解决本题的关键.34.12【分析】利用一元二次方程定义进行计算即可.【详解】解:由题意得:-(4a 2-1)=0,且a+12≠0,解得:a=12, 故答案为:12.【点睛】此题主要考查了一元二次方程,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.35.(4-x )(7-2x )=15【分析】根据矩形铁皮的长与宽,以及底面面积列出三组等式解方程组,整理即可得出结果.【详解】设长方体铁盒底面长为acm ,宽为bcm正方形边长为xcm由题意得:2()82715x b a x ab +=⎧⎪+=⎨⎪=⎩①②③ 由②得72a x =-,由①得4b x =-,代入③中得:()()47215x x --=故答案为:()()47215x x --=【点睛】本题考查一元二次方程的应用,三元方程组解法,关键在于设多个未知数,利用代数表示列出方程.36.(40﹣x )(20+2x )=1200.【详解】试题分析:设每件童装应降价x 元,可列方程为:(40﹣x )(20+2x )=1200.故答案为(40﹣x )(20+2x )=1200.考点:1.由实际问题抽象出一元二次方程;2.销售问题.37.1【分析】将11x =代入240x x m -+=求得一元二次方程的一般式,再利用根与系数的关系求解即可.【详解】解:将11x =代入240x x m -+=中21410m -⋅+=解得:3m =∵2430x x -+=∵12x x ,是一元二次方程2430x x -+=的两根,∵124x x +=,123x x =,∵1212431x x x x +-=-=.故答案为:1.【点睛】本题考查了一元二次方程的根与系数的关系,若12x x 、是方程20ax bx c ++=(0a ≠)的两根,则12b x x a+=-,12c x x a =,掌握相关知识是解题的关键.38.2、3【分析】观察给出的两个方程,得到1、2也是关于()x 1-的方程()2a(x 1)b x 110-+-+=的两个根,求出x 即可.【详解】两个方程的系数、结构相同,所以1、2也是关于()x 1-的方程()2a(x 1)b x 110-+-+=的两个根,x 11∴-=或x 12-=,x 2∴=或x 3=.故答案为2、3.【点睛】本题考查了一元二次方程的根的意义.解决本题的关键是:根据给出的方程特点,得到给出的两个方程的解相同.39.3x x ⎛ ⎝⎭⎝⎭【分析】令23450x x --=,求出方程的两个解,再写成因式分解性质即可.【详解】令23450x x --=解方程得:12x x ==∵2345x x --=3(x x故答案为3x x ⎛ ⎝⎭⎝⎭【点睛】本题考查实属范围内的因式分解,利用一元二次方程求解可以很容易解决此类问题,熟练掌握一元二次方程求解是解题关键.40. 3 6.5##132【分析】先将1S ,2S ,3S 用用a ,b 表示,再分别根据213-=S S 与18S =,211S =计算即可.【详解】解:在图1中,根据题意得:1ABCD S S S S S =--+长方形小正方形大正方形大小正方形重叠部分,∵()2122656630a b a b b a ab S b =⨯--++-=-+-+,同理在图2中,2ABCD S S S S S =--+长方形小正方形大正方形大小正方形重叠部分,∵()2222655530a b a b b a ab S b =⨯--++-=-+-+∵()()2221530630S a ab b a ab b S b -=-+-+--+-+=, 又∵213-=S S ,∵3b =.又∵18S =,即26308a ab b -+-+=,将3b =代入方程26308a ab b -+-+=中得:2363308a a -+-⨯+=解得:124,1a a ==-(舍去),∵4a =.在图3中,3S S S S S =+--小正方形大正方形左上空白大直角三角形右下空白小直角三角形 ∵()2222232211111111134343222222222a b a b b a a b ab S =+-+-=+-=⨯+⨯-⨯⨯= 故答案为:3;132. 【点睛】本题考查列代数式,整式的混合运算,解一元二次方程,掌握相关知识和技巧是解题的关键.本题难度较大,所列式子较复杂,需要较强的阅读理解能力和对数学思想的运用能力.41.(1) 12x x ==(2) 3 【分析】(1)本题是一元二次方程,解答该方程可选择直接用公式法解答.(2)本题为实数的运算,首先把两个乘法先运算出来,第一个乘法式可以由平方差公式计算,第二个乘法可先把根式化为最简根式再进行约分,最后加减时,注意合并同类根式.【详解】(1)解:原方程中a=-1,b=-3,c=2首先用根的判别式24b ac =-△判断该二元一次方程是否有解得:224(3)4(1)2170b ac =-=--⨯-⨯=>,所以该方程有解由公式x =可得:x =即解得12x x ==(2)原式=211-511=-3=故答案为(1) 12x x == (2) 3 【点睛】本题考查了一元二次方程的解法和实数的混合运算,需要注意的是一元二次方程解答直接首先用根的判别式判断是否有解,在实数运算过程中,先算乘除与乘方后算加减,有括号的先算括号里面的.涉及到根式运算时,务必要化简根式与合并同类根式 42.(1)13x =-,22x =; (2)123x =,212x =-.【分析】(1)利用因式分解法求解即可;(2)移项,利用因式分解法求解即可.【详解】(1)解:260x x +-=则()()320x x +-=解得13x =-,22x =(2)解:()32142x x x +=+()()3212210x x x +-+=,即()()32210x x -+=, 解得123x =,212x =-. 【点睛】此题考查了一元二次方程的求解,解题的关键是掌握一元二次方程的求解方法. 43.(1)11x =,22x =(2)13x =-23x =-【分析】(1)根据因式分解法解一元二次方程;(2)根据配方法解一元二次方程即可求解.【详解】(1)解:232x x -=-,移项得,2320x x -+=,即(1)(2)0x x --=,∵10x -=或20x -=,解得:11x =,22x =;(2)解:2610x x +-=,移项得,261x x +=,配方得,26910x x ++=,即2(3)10x +=,∵3x +=,解得:13x =-23x =-【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 44.(1)面积能达到2200m ,此时与墙平行的边的长是20米(2)不能,理由见解析【分析】(1) 设鸡场的一边为x m ,另外两边均为402x -m ,根据矩形的面积公式建立方程求出其解即可;(2)根据题意得出方程, 求出其解的情况就可以得出结论;(1)设与墙平行的边的长是x 米,则()402200x x -÷=,整理得x 2-40x +400=0,解得:x 1=x 2=20,解得2025x =<,即面积能达到2200m ,此时与墙平行的边的长是20米.(2)由()402210x x -÷=得2404200x x -+=,此时Δ0<,所以面积不能达到2210m .【点睛】本题考查了运用矩形的面积公式建立一元二次方程求解的运用,一元二次方程根的判别式的运用,解答时根据矩形的面积公式建立一元二次方程是关键.45.129,3x x ==-【分析】先去分母,然后利用直接开平方法进行求解即可. 【详解】解:()213123x -= ()2336x -=,36x -=±,解得:129,3x x ==-.【点睛】本题主要考查直接开平方法,熟练掌握一元二次方程的解法是解题的关键.46.(1)123x x ==-;(2)12x x ==【详解】试题分析:(1)移项后把方程的左边分解因式得到即(x +3)2=0,求出方程的解即可;(2)首先求出b2-4ac 的值,代入公式 试题解析:(1)2 69x x +=-,移项得:2x 690x ++=,即(x +3)2=0,解得:x 1=x 2=-3,∵原方程的解是123x x ==-.(2)2=b 43648840ac ∆-=+=>,所以方程有两个不相等的实数根,x =所以12x x == 47.(1)、25%;(2)、5元.【分析】(1)设9、10这两个月的月平均增长率为x,根据题意列出方程,从而求出x的值得出答案;(2)设当每袋降价m元时,根据题意列出方程,求出m的值得出答案.【详解】(1)设9、10这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=14,x2=-94(不合题意舍去).答:9、10这两个月的月平均增长率为25%;(2)设当每袋降价m元时,根据题意可得:(40-25-m)(400+5m)=4250,解得:m1=5,m2=-70(不合题意舍去).答:当每袋降价5元时,获利4250元考点:一元二次方程的应用48.(1)x1=0,x2=2;(2)x1=﹣10,x2=8【详解】试题分析:(1)先移项得到(2x+1)2﹣(x﹣1)2=0,然后利用因式分解法解方程;(2)先把方程化为整式方程x2+2x﹣80=0,再解整式方程,然后进行检验确定原方程的解.解:(1)(2x+1)2﹣(x﹣1)2=0,(2x+1+x﹣1)(2x+1﹣x+1)=0,2x+1+x﹣1=0或2x+1﹣x+1=0,所以x1=0,x2=2;(2)去分母得120(x+2)﹣120x=3x(x+2),整理得x2+2x﹣80=0,(x+10)(x﹣8)=0,解得x1=﹣10,x2=8,检验:当x=﹣10,x(x+2)≠0;当x=8,x(x+2)≠0,则x1=﹣10,x2=8是原方程的解,所以原方程的解为x1=﹣10,x2=8.考点:解一元二次方程-因式分解法;解分式方程.49.(1)m1=2,m2=﹣3;(2)当m=2时,抛物线有最低点,最低点为:(0,1),当x>0时,y随x的增大而增大;(3)当m=﹣3时,函数有最大值,最大值为1,当x>0时,y 随x的增大而减小【分析】(1)利用二次函数的定义得出关于m的等式,解方程即可得出答案;。

一元二次方程易错题

一元二次方程易错题

一元二次方程1、解下列一元二次方程(1)-3X2-2x+4=0 (2)(3x-4)2=3-2(4-3x)(3)4(x-3)2=9(x-2)22 、已知关于x的方程X2-(k+2)x+2k=0.(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰三角形ABC的一边a=3,另两边b,c恰好是这个方程的两根,求 ABC3、已知关于x的方程X2-(k-1)x+k+1=0的两实数根的平方和等于11.(1)求k的值;(2)利用根与系数的关系作一个一元二次方程,使它的一个根是原方程的两个根的和,另一个根底原方程两根差的平方。

4、已知关于x的方程kX2+3x-1=0有实数根,则k的取值范围是多少?5、若ɑ、ß是方程X2+2x-2015=0的两个实数根,则ɑ2+3ɑ+ß的值是多少?6、已知方程X2+ax+b=0,有一个根是b(b≠0)求a+b的值。

7、已知一元二次方程X2-6x+6=0的两个根分别是两个正方形的边长,则这两个正方形面积和是多少?8、已知x2-5xy+6y2=0,则y:x=_________。

9、已知关于x的一元二次方程(m-1)X2+x+1=0有实数根,则m的取值范围是多少?10、设a、b是一个直角三角形两直角边的长,且(a2+b2)(a2+b2+1)=30,则这个直角三角形的斜边长是多少?11、水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,经调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售,张阿姨若想每天盈利300元,需将每斤的售价降低多少元?12、某商场以每件300元的价格购进一批衣服,当每件售价为350元时,每天可销售30件,为了尽快减少库存,商场决定采取降价措施,每件降价1元,平均每天可多售出2件,问:(1)降价前,该商场每天的利润是多少元?(2)每件商品降价多少元时,商场的日盈利可达到2100元?。

一元二次方程易错题

一元二次方程易错题

一元二次方程易错题班级__________________ 姓名__________________ 成绩__________________1.把(x+3)(2x+5)-x(3x-1)=15化成一般形式为_________________,a=______,b=______,c=______.2.把关于x的一元二次方程(2-n)x2-n(3-x)+1=0化为一般形式为_________________,二次项系数为____________,一次项系数为______,常数项为______.3.一元二次方程(2x+1)2-(x-3)(2x-1)=3x中的二次项系数是______,一次项系数是______,常数项是______.4.关于x的方程(m2-9)x2+(m+3)x+5m-1=0,当m=______时,方程为一元一次方程;当m______时,方程为一元二次方程.5.若关于x的一元二次方程(m-1)x2+2mx+m+3=0有两个不相等的实数根,则m的取值范围是_______________三、解答题(用配方法解一元二次方程)6.x2-2x-1=0.7.y2-6y+6=0.8.已知关于x的一元二次方程2++-=有实数根,k为正整数,求k的值.2410x x k9.已知关于x的一元二次方程2410-+-=有两个相等的实数根,求m的值及方程的根.x x m8.若关于x 的一元二次方程(m -1)x +2mx +m +3=0有两个不相等的实数根,求m 的取值范围.9.求证:不论m 取任何实数,方程02)1(2=++-m x m x 都有两个不相等的实数根.10.已知关于x 的一元二次方程x 2+mx +2=mx 2+3x (m ≠1)的根都是整数,求整数m 的值.11.已知关于x 的一元二次方程22-+-m mx x 的根都是整数,求整数m 的值;。

中考一元二次方程组易错题50题含答案解析

中考一元二次方程组易错题50题含答案解析

中考一元二次方程组易错题50题含答案解析一、单选题1.方程2560x x --=的两根之和为( ) A .6-B .5C .5-D .12.已知2是关于x 的方程230x mx m +-=的一个根,则这个方程的另一个根为( ) A .6-B .6C .3-D .33.以﹣2和3为两根的一元二次方程是( ) A .x 2+x ﹣6=0 B .x 2﹣x ﹣6=0 C .x 2+6x ﹣1=0D .x 2﹣6x+1=04.关于x 的一元二次方程2(2)10a x x -+-=,则a 的条件是( ) A .4a ≠B .3a ≠C .2a ≠D .1a ≠5.下列一元二次方程中,没有实数根的是( ) A .2210x x -+= B .2210x x -+= C .2210x x --=D .220x x -=6.下列方程中,属于一元二次方程是 ( ) A .2x 2﹣y ﹣1=0B .x 2=1C .x 2﹣x (x+7)=0D .211x = 7.一元二次方程220x px +-=的一个根为2,则p 的值以及另一个根为( ) A .1,-1B .1,1C .-1,-1D .-1,18.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是248cm ,则原来的正方形铁皮的面积是( ) A .28cmB .29cmC .264cmD .268cm9.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +m )(x +n ) =x 2-5x +4,则m +n 的值为( )A .-5B .5C .-4D .410.关于x 的一元二次方程x 2+mx+m 2﹣7=0的一个根是﹣2,则m 的值可以是( )A .﹣1B .3C .﹣1或3D .﹣3或111.下列各式中是一元二次方程的是( ) A .x 2+1=1xB .x (x+1)=x 2﹣3C .2x 2+3x ﹣1D .﹣x 2+3x ﹣1=12.若方程()23630m x x --+=有解,则m 的取值范围是( )A .6m <B .6m ≤C .6m ≤且3m ≠D .6m <且3m ≠13.某商品原价300元,连续两次降价a%后售价为260元,下面所列方程正确的是( )A .300(1+a%)2=260B .300(1﹣a 2%)=260C .300(1﹣2a%)=260D .300(1﹣a%)2=26014.方程x 2+x ﹣6=0的两个根为( ) A .x 1=﹣3,x 2=﹣2 B .x 1=﹣3,x 2=2 C .x 1=﹣2,x 2=3D .x 1=2,x 2=3 15.下列方程中是一元二次方程的是( )①ax 2+bx +c =0;①231223x x --=;①(x ﹣2)(2x ﹣1)=0;①2120x x --=;①21y =;①x 2=8.A .①①①①B .①C .①①①①①①D .①①①16.若关于x 的一元二次方程2(2)40x a x --+=有两个相等的实数根,则实数a 的值为( ) A .2B .-2C .-2或6D .-6或217.下列方程中是一元二次方程的有( )①2320ax x -+= ①(1)(1)y y x x -=+ ① 2244x x = ①22226x y y x -+=+A .①①B .①①C .①D .①①①18.若关于x 的一元二次方程x 2﹣4x+c=0有两个相等的实数根,则常数c 的值为( ) A .±4B .4C .±16D .1619.已知方程22610x x +-=的两个实数根为12,x x ,则1211+x x 的值为( ) A .-3B .3C .6D .-6二、填空题20.已知x =1是一元二次方程x 2﹣mx+1=0的一个解,则m 的值是_____. 21.方程22021x x =的解是 _____.22.已知m 是一元二次方程2250x x --=的一个根,则223-+=m m _________; 23.一元二次方程210x 的解__________.24.2017年生产1吨某种商品的成本是3000元,由于原料价格上涨,两年后,2019年生产1吨该商品的成本是5000元,求该种商品成本的年平均增长率.设年平均增长率为x ,则所列的方程应为_______(不增加其它未知数). 25.请写出一个以1、2为根的一元二次方程________26-3为根,且二次项系数为1的一元二次方程为_______. 27.一元二次方程223x +=中,=a _______,b =________,c =________. 28.若m 是方程2310x x -+=的一个根,则2262021m m -+的值为_____.29.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有_____人.30.方程22430x x +-=和2230x x -+=的所有的根的和等于____.31.若1x ,2x 是方程2x x 20160--=的两个实数根,则312x 2017x 2016+-=______. 32.在等腰ABC 中,顶角36A =︒,点D 在一腰AC 上,连接BD ,线段BD 与底边BC 的长相等.若6BC =.则AD =________;若6AB =,则AD =________.33.如果关于x 的方程x 2-5x + a = 0有两个相等的实数根,那么a=_____. 34.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为x 1,x 2,那么2017120182x x 的值为________________. 35.已知等腰三角形的每条边长都是一元二次方程27100x x -+=的根,则这个三角形的周长为_______________;36.下面这首诗生动的刻画出了周瑜的一生: 大江东去浪淘尽,千古风流数人物; 而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符.(注:而立之年表示人到了30岁) 聪明的同学,你一定能算得出周瑜去世时的年龄是__________岁. 37.已知一元二次方程22510x x --=的两根为1x ,2x ,则12x x +=___38.已知关于x 的方程mx 2+2x +5m =0有两个不相等的实数根12,x x ,且122x x <<,则实数m 的取值范围为________.39.如果a 、b 、c 为互不相等的实数,且满足关系式b 2+c 2=2a 2+16a+14与bc =a 2﹣4a ﹣5,那么a 的取值范围是_____.三、解答题40.随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,某省2018年公共充电桩的数量为2万个,2020年公共充电桩的数量为2.88万个.(1)求2018年至2020年该省公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计2021年该省将新增多少万个公共充电桩?41.解下列方程:2104x --=. 42.据统计,某市2018年某种品牌汽车的年产量为64万辆,到2020年,该品牌汽车的年产量达到100万辆.若该品牌汽车年产量的年平均增长率从2018年开始五年内保持不变.(1)求年平均增长率;(2)求该品牌汽车2021年的年产量为多少万辆?43.如图,利用一面墙(墙长20米),用总长度43米的篱笆(图中实线部分)围成一个矩形鸡舍ABCD ,且中间共留两个1米的小门,设篱笆BC 长为x 米.(1)AB=________米(用含x 的代数式表示);(2)若矩形鸡舍ABCD 面积为150平方米,求篱笆BC 的长;(3)矩形鸡舍ABCD 面积是否有可能达到210平方米?若有可能,求出相应x 的值;若不可能,则说明理由. 44.解分式方程21211x x x -=++ 45.关于x 的一元二次方程2220x x m ++=有两个不相等的实数根. (1)求m 的取值范围;(2)若1x ,2x 是一元二次方程2220x x m ++=的两个根,且22128x x +=,求m 的值.46.材料阅读:材料1:符号“1212a ab b ”称为二阶行列式,规定它的运算法则为12122112a a a b a b b b =-.如525(4)2(3)1434=⨯--⨯-=---.材料2:我们已经学习过求解一元一次方程、二元一次方程组、分式方程等方程的解法,虽然各类方程的解法不尽相同,但是蕴含了相同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,还可以解一些新的方程.例如,求解部分一元二次方程20(0)ax bx c a ++=≠时,我们可以利用因式分解把它转化为一元一次方程来求解.如解方程:2320x x ++=.①232(1)(2)x x x x ++=++①(1)(2)0x x ++=.故10x +=或20x +=.因此原方程的解是11x =-,22x =-.根据材料回答以下问题: (1)二阶行列式3642=___________;二阶行列式3321x x =中x 的值为__________. (2)求解241214x x x -=+中x 的值.(3)结合材料,若31x x m x-=,618x n -=,且0m n -<,求x 的取值范围.47.某地特产槟榔芋深受欢迎,某商场以7元/千克收购了3 000千克优质槟榔芋,若现在马上出售,每千克可获得利润3元.根据市场调查发现,近段时间内槟榔芋的售价每天上涨0.2元/千克,为了获得更大利润,商家决定先贮藏一段时间后再出售.根据以往经验,这批槟榔芋的贮藏时间不宜超过100天,在贮藏过程中平均每天损耗约10千克.(1)若商家将这批槟榔芋贮藏x 天后一次性出售,请完成下列表格:(2)将这批槟榔芋贮藏多少天后一次性出售最终可获得总利润29 000元? 48.综合与探究如图,抛物线2y ax x c =++与x 轴交于A ,()4,0B 两点(点A 在点B 的左侧).与y 轴交于点()0,4C ,直线BC 经过B ,C 两点,点Р是第一象限内抛物线上的一个动点,连接PB ,PC .(1)求抛物线的函数表达式;(2)设点P 的横坐标为n ,四边形OBPC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)在(2)的条件下,当S 取最大值时,在PC 的垂直平分线上是否存在一点M ,使BPM △是等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.49.已知:如图,△ABC 是边长为4cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm /s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间t (s ),解答下列各问题: (1)求ABC ∆的面积;(2)当t 为何值是,△PBQ 是直角三角形?(3)探究:是否存在某一时刻t ,使四边形APQC 的面积是ABC ∆面积的八分之五?如果存在,求出t 的值;不存在请说明理由.参考答案:1.B【分析】根据一元二次方程根与系数的关系求解. 【详解】解:由一元二次方程根与系数的关系可得: 一元二次方程的两根之和为:551--=, 故选B .【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程根与系数的关系是解题关键. 2.A【分析】把2x =代入方程230x mx m +-=中,得出22230m m +-=,解得4m =,再解一元二次方程即可.【详解】解:把2x =代入方程230x mx m +-=中, 得出:22230m m +-=, 解得:4m =,①关于x 的方程为:24120x x +-=, ①12x =,26x =-,①这个方程的另一个根为6-, 故选:A .【点睛】此题考查了一元二次方程的解,因式分解法解一元二次方程,得出该方程是解题的关键. 3.B【分析】由一元二次方程根与系数关系,设该方程一般形式中a=1,1x +2x =1=-b;1x 2x = -6 = c,即可得出答案.【详解】解:将1x =2, 2x =-3代入公式,可得到x 2-(2-3)x+2⨯(-3)=0,即x 2﹣x ﹣6=0, 所以B 选项是正确的.【点睛】本题考查了根与系数的关系.解题时熟记一元二次方程的根与系数的关系: 1x +2x =ba-,1x 2x =c a.4.C【分析】根据一元二次方程的定义求解即可.【详解】解:①2(2)10a x x -+-=是关于x 的一元二次方程, ①20a -≠, 即2a ≠, 故选:C .【点睛】本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,象这样的方程叫做一元二次方程. 5.A【分析】根据一元二次方程根的判别式24b ac ∆=- 逐个求解即可.【详解】A 、224(1)42170b ac ∆=-=--⨯⨯=-<,没有实数根,故A 正确; B 、224(2)4110b ac ∆=-=--⨯⨯=,有两个相等的实数根,故B 不正确;C 、224(1)42(1)90b ac ∆=-=--⨯⨯-=>,有两个不相等的实数根,故C 不正确;D 、224(2)41040b ac ∆=-=--⨯⨯=>,有两个不相等的实数根,故D 不正确. 故选:A .【点睛】本题主要考查了一元二次方程根的判别式24b ac ∆=-,解题的关键是熟练运用一元二次方程根的判别式判断一元二次方程根的情况. 6.B【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、含有2个未知数,故选项错误;B 、含有1个未知数,并且未知数的最高次数是2,是一元二次方程,故选项正确;C 、化简后未知数的最高次数是1,故选项错误;D 、是分式方程,故选项错误. 故选B .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.7.C【分析】先设方程的另一个根为t ,再由根与系数的关系得出关于t 、p 的方程组,求解即可得到答案.【详解】设方程的另一个根为t ,由题意得 222t p t +=-⎧⎨=-⎩ 解得11t p =-⎧⎨=-⎩ ∴ p 的值以及另一个根分别为-1,1.故选:C .【点睛】本题考查了一元二次方程根与系数的关系,即设一元二次方程20(0)ax bx c a ++=≠ 的两个实数根为12,x x ,则1212·b x x ac x x a ⎧+=-⎪⎪⎨⎪=⎪⎩,熟练掌握知识点是解题的关键. 8.C【分析】设原来的正方形铁皮的边长为cm x ,则截去2cm 宽的一条长方形的长为()2cm x -,根据长方形面积公式列方程求出正方形的边长,再用正方形面积公式求解.【详解】解:原来的正方形铁皮的边长为cm x ,则截去2cm 宽的一条长方形的长为()2cm x -,根据题意,得()2=48x x -,解得:18x =,26x =-(不符合题意,舍去),①原来的正方形铁皮的面积()222864cm x ===,故选:C .【点睛】本题考查一元二次方程的应用,理解题意,设恰当未知数,找等量关系,列出方程是解是的关键. 9.A【分析】从题例两个多项式相乘的运算过程中发现规律,利用规律求出m 、n 的值再求和.【详解】解:根据题意得,m+n=-5,mn =4故选:A.【点睛】本题考查多项式乘以多项式,理解例题中的运算过程并发现规律是解题关键.10.C【分析】先把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,然后解关于m的方程即可.【详解】解:把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,解得m=﹣1或3.故选:C.【点睛】本题主要考查一元一次方程的解及根与系数的关系,解题关键是熟练掌握计算法则.11.D【详解】只含有一个未知数并且未知数的最高次数是2的整式方程为一元二次方程,根据这一定义可以对各选项作出相应的判断.A选项:该方程中含有1x,不是整式方程,故A选项不符合题意.B选项:该方程整理后为x=-3. 整理后的方程为一元一次方程,故B选项不符合题意.C选项:因为本选项的式子不是等式,所以该式子不是方程. 故C选项不符合题意.D选项:在该方程中,等号两侧均为整式,只有x一个未知数且x的最高次数为2,符合一元二次方程的定义,故D选项符合题意.故本题应选D.点睛:本题考查了一元二次方程的相关概念. 在判断一个方程是否是一元二次方程的时候,首先应该判断该方程是否是整式方程,如果不是整式方程,则一定不是一元二次方程. 如果原方程是整式方程,则应对原方程进行必要的整理,利用整理后的方程进行判断. 另外,方程是含有未知数的等式. 不是等式的式子一定不是方程,也不可能是一元二次方程.12.B【分析】直接分方程为一次方程和二次方程时分别讨论即可.【详解】当方程为一次方程时,30m-=,解得3m=,当方程为二次方程时,此时30m -≠,即3m =,①方程()23630m x x --+=有解,①()264330m ∆=--⨯≥,解得6m ≤,①6m ≤且3m =,综上所述,m 的取值范围是6m ≤,故选B .【点睛】本题考查了根的判别式,解题时注意不要忘记方程为一次方程的情况. 13.D【分析】根据降价后的价格=原价(1﹣降低的百分率),本题可先表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【详解】解:当商品第一次降价a%时,其售价为300(1﹣a%),当商品第二次降价a%后,其售价为300(1﹣a%)2.故所列方程为:300(1﹣a%)2=260,故选:D .【点睛】本题主要考查一元二次方程的应用,找出合适的等量关系是解题的关键. 14.B【分析】利用因式解法即可求解.【详解】原方程因式分解得:()()320x x +-=,①1232x x =-=,.故选:B .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握一元二次方程的解法是解题的关键.15.D【分析】分析:根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.【详解】解:①当a =0时,ax 2+bx +c =0不是一元二次方程; ①231223x x --=是一元二次方程;①(x ﹣2)(2x ﹣1)=0是一元二次方程; ①2120x x--=是分式方程;①21y =不是一元二次方程;①x 2=8是一元二次方程.①是一元二次方程的是①①①.故选:D .【点睛】本题考查了一元二次方程的定义,解题时,要注意两个方面:1、一元二次方程包括三点:①是整式方程,①只含有一个未知数,①所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax 2+bx +c =0(a ≠0).16.C【分析】根据一元二次方程有两个相等的实数根,得到根的判别式等于0,求出a 的值即可. 【详解】关于x 的一元二次方程2(2)40x a x --+=有两个相等的实数根,∴∆2(2)160a =--=,即2(2)16a -=,开方得:24a -=或24a ,解得:6a =或2-.故选:C .【点睛】此题考查了根的判别式,熟练掌握一元二次方程根的判别式的意义是解本题的关键.17.C【分析】根据一元二次方程满足的条件:一个未知数、未知数的最高次数为2、二次项系数不为0、整式方程对每小题分析判断即可求解.【详解】①、当a≠0时是一元二次方程,当a=0时是一元一次方程,不符合题意; ①、有两个未知数,不是一元二次方程,不符合题意;①、是分式方程,不是整式方程,不符合题意①、整理方程为:2260y y -=+,是一元二次方程,符合题意,只有①是一元二次方程,故选:C .【点睛】本题考查了一元二次方程的概念,熟知一元二次方程满足的条件是解答的关键,对于一般式20(0)ax bx c a ++=≠,特别要注意a≠0这一条件,这是做题过程中容易忽视的知识点.18.B【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】①方程x 2-4x+c=0有两个相等的实数根,①①=(-4)2-4×1×c=16-4c=0,解得:c=4.故选B .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.19.C【分析】根据一元二次方程根与系数关系得出123x x +=-,1212x x =-,将1211+x x 通分,代入数值即可求解.【详解】①方程2610x x +-=的两个实数根为12,x x ,①123x x +=-,1212x x =-,①121212113612x x x x x x +-+===-, 故选:C .【点睛】本题考查了一元二次方程根与系数关系、分式的化简求值,熟练掌握根与系数关系是解答的关键.20.2【分析】把x =1代入一元二次方程x 2﹣mx+1=0,可得110,m -+=再解方程可得答案.【详解】解: x =1是一元二次方程x 2﹣mx+1=0的一个解,110,m ∴-+=2.m ∴=故答案为:2.【点睛】本题考查的是一元二次方程的解,掌握方程的解的含义是解题的关键. 21.1202021x x ==,【分析】根据因式分解法解该一元二次方程即可.【详解】解:22021x x =220210x x -=(20021)x x -=①0x =或20210x -=①1202021x x ==,故答案为:1202021x x ==,.【点睛】本题考查解一元二次方程,掌握因式分解法解一元二次方程的步骤是解题关键. 22.8【分析】把x m =代入原方程可得:225,m m -= 从而可得答案. 【详解】解: m 是一元二次方程2250x x --=的一个根,2250,m m ∴--=225,m m ∴-=2238.m m ∴-+=故答案为:8.【点睛】本题考查的是一元二次方程的解的含义,求代数式的值,掌握方程的解使方程的左右两边相等是解题的关键.23.1x =±【分析】利用直接开平方法求解可得.【详解】解:①x 2-1=0,①x 2=1,则x=±1.故答案为x=±1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.()2300015000x +=.【分析】设这种商品的年平均增长率为x ,根据题意列方程即可.【详解】解:设这种商品的年平均增长率为x ,由题意得:()2300015000x +=,故答案为:()2300015000x +=.【点睛】本题考查增长率问题,解题的关键是明确题意,根据等量关系列出方程. 25.2320x x --=【详解】试题分析:以1、2为根的一元二次方程是(1)(2)0x x --=,即2320x x --=. 考点:一元二次方程的解26.(230x x +--3的和与积,然后根据根与系数的关系求出满足条件的一元二次方程.【详解】解:①33,3--①以-31的一元二次方程为(230x x +-.故答案为:(230x x +-.【点睛】本题考查了一元二次方程根与系数的关系,熟记两根之和与两根之积是解题的关键.27. 2 -3【分析】先移项把一元二次方程化为一般形式,然后进行求解即可【详解】解:①223x +=,①2230x -=,①2a =,b =3c =-,故答案为:23-.【点睛】本题主要考查了一元二次方程的一般形式,解题的关键在于能够熟练掌握一元二次方程的一般形式为()200ax bx c a ++=≠.【分析】由已知可得2310m m -+=,即有231m m -=-,整体代入易求得2262021m m -+的值.【详解】①m 是方程2310x x -+=的一个根,①2310m m -+=,即231m m -=-,①222620212(3)20212(1)20212019m m m m -+=-+=⨯-+=,故答案为:2019.【点睛】本题考查了一元二次方程的解,求代数式的值,用整体思想求值更简便. 29.10【分析】设该群一共有x 人,则每人收到(x ﹣1)个红包,根据群内所有人共收到90个红包,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该群一共有x 人,则每人收到(x ﹣1)个红包,依题意,得:x (x ﹣1)=90,解得:x 1=10,x 2=﹣9(舍去).故答案为10.【点睛】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.30.-2.【分析】先利用根的判别式求出根的情况,再利用两根和的公式计算即可得到答案.【详解】在方程22430x x +-=中2442(3)400∆=-⨯⨯-=>,①方程22430x x +-=有两个不相等的实数根;在方程2230x x -+=中2(2)41380∆=--⨯⨯=-<,①方程2230x x -+=没有实数根.设方程22430x x +-=的两个实数根分别为m 、n ,则有422m n +=-=-. 故答案为:-2【点睛】此题考查一元二次方程根的判别式公式,根与系数的关系公式,正确掌握计算公式是解题的关键.【分析】先根据一元二次方程的解的定义得到x12=x1+2016,再计算x13=x12+2016x1=2017x1+2016,则原式可化简为2017(x1+x2),然后利用根与系数的关系求解.【详解】①x1是方程x2-x-2016=0的两实数根,①x12=x1+2016,①x13=x12+2016x1=x1+2016+2016x1=2017x1+2016,①原式=2017x1+2016+2017x2-2016=2017(x1+x2),①x1,x2是方程x2-x-2016=0的两实数根,①x1+x2=1,①原式=2017.故答案为2017.【点睛】本题主要考查了根与系数的关系,根据已知将原式化简,利用根与系数的关系是解答此题的关键.32.63-+【分析】根据等边对等角和外角的性质证明①ABD=①A,得到AD=BD=BC=6;设AD=x,再证明①ABC①①BDC,得到AB BCBD DC=,解之即可.【详解】解:①①A=36°,AB=AC,①①ABC=①C=(180°-36°)÷2=72°,①BD=BC,①①BDC=①C=72°,①①BDC=①A+①ABD,①①ABD=72°-36°=36°,①①ABD=①A,①AD=BD,①BD=BC=6,①AD=6;若AB=AC=6,设AD=x,则BD=BC=x,①①BDC =①ABC =72°,①C =①C ,①①ABC ①①BDC , ①AB BC BD DC=,即66x x x =-,解得:x =3-+或3--(负值舍去),经检验:x =3-+①AD =3-+,故答案为:6,3-+【点睛】本题考查了等腰三角形的判定和性质,相似三角形的判定和性质,外角的性质,解分式方程和一元二次方程,解题的关键是灵活运用等边对等角,从而证明三角形相似. 33.254【分析】若一元二次方程有两个相等的实数根,则方程的根的判别式等于0,由此可列出关于a 的等式,求出a 的值.【详解】①关于x 的方程x 2-5x+a=0有两个相等的实数根,①①=25-4a=0,即a=254. 故答案为:254. 【点睛】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.34.23- 【分析】由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k 的不等式,利用非负数的性质得到k 的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.【详解】①方程x 2+kx+239342k k -+=0有两个实数根, ①b 2-4ac=k 2-4(34k 2-3k+92)=-2k 2+12k-18=-2(k-3)2≥0, ①k=3, 代入方程得:x 2+3x+94=(x+32)2=0, 解得:x 1=x 2=-32, 则2017120182x x =-23. 故答案为-23.【点睛】此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k 的值是本题的突破点.35.6或12或15【分析】先利用因式分解的方法解方程得到x 1=2,x 2=5,根据题意讨论:当腰为2,底边为5时;当腰为5,底边为2时,然后分别计算出等腰三角形的周长.【详解】①x 2-7x +10=0,①(x -2)(x -5)=0,①x -2=0或x -5=0,①x 1=2,x 2=5,当腰为2,底边为5时,2+2=4<5,不能构成三角形;当腰为5,底边为2时,等腰三角形的周长为2+5+5=12;当腰为2,底边为2时,等腰三角形的周长为2+2+2=6,当腰为5,底边为5时,等腰三角形的周长为5+5+5=15.故答案为6或12或15.【点睛】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.36.36【分析】这是一道数字问题的应用题,等量关系隐于诗词中,及周瑜去世时年龄为两位数,十位数字比个位数字小3,个位数字的平方等于这两个数,于是可以设个位数字为x ,列出一元二次方程求解.【详解】设周瑜去世时的年龄的个位数字为x ,则十位数字为x -3,由题意,得 x 2=10(x -3)+x ,即x 2-11x +30=0,解得x 1=5,x 2=6,当x =5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x =6时,周瑜的年龄36岁,符合题意,故答案为36.【点睛】本题考查了一元二次方程的应用,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.37.52【详解】根据韦达定理,可得,12x x +=5238.−49<m <0 【分析】根据关于x 的方程mx 2+2x +5m =0有两个不相等的实数根x 1,x 2,可以得到m 的取值范围,再根据x 1<2<x 2和一元二次方程和二次函数的关系,可以利用分类讨论的方法求出m 的取值范围,本题得以解决.【详解】解:①关于x 的方程mx 2+2x +5m =0有两个不相等的实数根x 1,x 2,①2024?50m m m ≠⎧⎨-⎩>,解得,m <0或0<m ①x 1<2<x 2,①当m <0时,m ×22+2×2+5m >0, 解得−49<m <0;当0<m m ×22+2×2+5m <0, 解得m 无解;故答案为:−49<m <0. 【点睛】本题考查抛物线与x 轴的交点、根的判别式、一元二次方程与二次函数的关系,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.39.a >﹣1且a≠﹣56且a≠﹣78 【详解】试题解析:222221614,45b c a a bc a a +=++=--,22222()216142(45)4844(1)b c a a a a a a a ∴+=+++--=++=+,即有2(1).b c a +=±+又245bc a a =--,所以b ,c 可作为一元二次方程222(1)450x a x a a ±++--=①的两个不相等实数根,故224(1)4(45)24240a a a a =+---=+>,解得a >−1.若当a =b 时,那么a 也是方程①的解,222(1)450a a a a a ∴±++--=,即24250a a --=或650a --=,解得,a =或5.6a =- 当a =b =c 时,16140450a a +=--=,, 解得75,84a a =-=- (舍去),所以a 的取值范围为1a >-且56a ≠-且a ≠7.8a ≠-故答案为1a >-且56a ≠- 且a ≠7.8a ≠- 40.(1)2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)预计2021年该省将新增0.576万个公共充电桩.【分析】(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x ,根据该省2018年及2020年公共充电桩,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据该省2021年公共充电桩数量=该省2020年公共充电桩数量×增长率,即可求出结论.【详解】解:(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x , 依题意得:2(1+x )2=2.88,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)2.88×20%=0.576(万个).答:预计2021年该省将新增0.576万个公共充电桩.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.41.11x =,21x =- 【分析】利用公式法解一元二次方程,注意解题规范.【详解】解:1a =,b =14c =-. (221Δ441404b ac ⎛⎫=-=-⨯⨯-=> ⎪⎝⎭, 方程有两个不相等的实数根,(21x -===⨯即11x =+,21x =. 【点睛】本题考查公式法解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.42.(1)25%;(2)125万辆.【分析】(1)设年平均增长率为x ,根据“该品牌汽车2018年和2020年的产量”列出关于x 的一元二次方程,最后求解即可;(2)根据“该品牌汽车2021年的年产量=2020年的年产量×(1+增长率)”计算即可.【详解】解:(1)设年平均增长率为x ,依题意,得:64(1+x )2=100,解得:x 1=0.25=25%,x 2=﹣2.25(不合题意,舍去).答:年平均增长率为25%;(2)100×(1+25%)=125(万辆).答:该品牌汽车2021年的年产量为125万辆.【点睛】本题主要考查了一元二次方程的应用,审清题意、找准等量关系、列出关于x的一元二次方程成为解答本题的关键.43.(1)(45−3x)(2)篱笆BC的长为10米(3)不可能,理由见解析【分析】(1)设篱笆BC长为x米,根据篱笆的全长结合中间共留2个1米的小门,即可用含x的代数式表示出AB的长;(2)根据矩形鸡舍ABCD面积为150平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(3)根据矩形鸡舍ABCD面积为210平方米,即可得出关于x的一元二次方程,由根的判别式Δ=-55<0,可得出该方程没有实数根,进而可得出矩形鸡舍ABCD面积不可能达到210平方米.【详解】(1)解:设篱笆BC长为x米,①篱笆的全长为43米,且中间共留两个1米的小门,①AB=43+2−3x=45−3x(米).故答案为:(45−3x).(2)解:依题意,得:(45−3x)x=150,整理,得:x2−15x+50=0,解得:x1=5,x2=10.当x=5时,AB=45−3x=30>20,不合题意,舍去;当x=10时,AB=45−3x=15,符合题意.答:篱笆BC的长为10米.(3)解:不可能,理由如下:依题意,得:(45−3x)x=210,整理得:x2−15x+70=0,①Δ=(−15)2−4×1×70=−55<0,①方程没有实数根,。

九年级数学一元二次方程易错题(Word版 含答案)

九年级数学一元二次方程易错题(Word版 含答案)

九年级数学一元二次方程易错题(Word 版 含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts .(1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值;(2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.【答案】(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析【解析】【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等;②AP BD ⊥,90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒,BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=,即54t -=,1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =, DN CD ∴<,∴点N 在点C 、D 之间,1.54AM t ==,4CD =,AM CD ∴=,如图②中,连接AC 交MD 于O ,90ABC BCD ∠=∠=︒,180ABC BCD ∴∠+∠=︒,//AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠,在AOM 和COD △中,AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=,ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-,ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.3.(1)课本情境:如图,已知矩形AOBC,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q之间的距离是10cm;(2)逆向发散:当运动时间为2s时,P,Q两点的距离为多少?当运动时间为4s时,P,Q 两点的距离为多少?(3)拓展应用:若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12cm2?【答案】(1)85s或245s(2)62cm;213cm(3)4s或6s【解析】【分析】(1)过点P作PE⊥BC于E,得到AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,利用勾股定理得到方程,故可求解;(2)根据运动时间求出EQ、PE,利用勾股定理即可求解;(3) 分当点P在AO上时,当点P在OC上时和当点P在CB上时,根据三角形的面积公式列出方程即可求解.【详解】解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10 cm,∴62+(16﹣5t)2=100,解得t1=85,t2=245,∴t=85s或245s.故答案为85s或245s(2)t=2时,由运动知AP=3×2=6 cm,CQ=2×2=4 cm,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得PQ=2262PE EQ +=,∴当t =2 s 时,P ,Q 两点的距离为62 cm ;当t =4 s 时,由运动知AP =3×4=12 cm ,CQ =2×4=8cm , ∴四边形APEB 是矩形,∴PE =AB =6,BQ =8,CE=OP=4∴EQ =BC ﹣CE ﹣BQ =16﹣4﹣8=4,根据勾股定理得PQ=22213PE EQ +=,P ,Q 两点的距离为213cm .(3)点Q 从C 点移动到B 点所花的时间为16÷2=8s ,当点P 在AO 上时,S △POQ =2PO CO ⋅=(163)62t -⋅=12, 解得t =4.当点P 在OC 上时,S △POQ =2PO CQ ⋅=(316)22t t -⋅=12, 解得t =6或﹣23(舍弃). 当点P 在CB 上时,S △POQ =2PQ CO ⋅=(2223)62t t +-⨯=12, 解得t =18>8(不符合题意舍弃),综上所述,经过4 s 或6 s 时,△POQ 的面积为12 cm 2.【点睛】此题主要考查勾股定理的应用、一元二次方程与动点问题,解题的关键是熟知勾股定理的应用,根据三角形的面积公式找到等量关系列出方程求解.4.阅读以下材料,并解决相应问题:材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在求解某些特殊方程时,利用换元法常常可以达到转化的目的,例如在求解一元四次方程42210x x -+=,就可以令21x =,则原方程就被换元成2210t t -+=,解得 t = 1,即21x =,从而得到原方程的解是 x = ±1材料二:杨辉三角形是中国数学上一个伟大成就,在中国南宋数学家杨辉 1261 年所著的《详解九章算法》一书中出现,它呈现了某些特定系数在三角形中的一种有规律的几何排列,下图为杨辉三角形:……………………………………(1)利用换元法解方程:()()222312313+-++-=x x x x(2)在杨辉三角形中,按照自上而下、从左往右的顺序观察, an 表示第 n 行第 2 个数(其中 n≥4),bn 表示第 n 行第 3 个数,n c 表示第(n )1-行第 3 个数,请用换元法因式分解:()41-⋅+n n n b a c【答案】(1)3172x -+=或3172x -= 或x=-1或x=-2;(2)()41-⋅+n n n b a c =(n 2-5n+5)2【解析】【分析】(1)设t=x 2+3x-1,则原方程可化为:t 2+2t=3,求得t 的值再代回可求得方程的解; (2)根据杨辉三角形的特点得出a n ,b n ,c n ,然后代入4(b n -a n )•c n +1再因式分解即可.【详解】(1)解:令t=x 2+3x-1则原方程为:t 2+2t=3解得:t=1 或者 t=-3当t=1时,x 2+3x-1=1 解得:3172x -+= 或3172x -= 当t=-3时,x 2+3x-1=-3解得:x=-1或x=-2 ∴方程的解为:3172x -+= 或3172x -= 或x=-1或x=-2 (2)解:根据杨辉三角形的特点得出:a n =n-1(1)(2)2n n n b --= (2)(3)2n n n c --= ∴4(b n -a n )•c n +1=(n-1)(n-4)(n-2)(n-3)+1=(n 2-5n+4)(n 2-5n+6)+1=(n2-5n+4)2+2(n2-5n+4)+1=(n2-5n+5)2【点睛】本题主要考查因式分解的应用.解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.5.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题6.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%.①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg );(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x 千克,则x{1﹣[60%+1.6%(90﹣x )]}=12,整理得:x 2﹣65x ﹣750=0,(x ﹣75)(x+10)=0,解得:x 1=75,x 2=﹣10(舍去),60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用7.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣18.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】【分析】(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.9.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P2﹣1,2);②P(﹣32,154)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为1x=-即可得到抛物线的解析式;(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x的值即可求得点P的坐标;②ΔOBCΔAPDABCP C=PDOS S S S++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c=++与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为1x=-,∴{312a b ccba++==-=-,解得:1{23abc=-=-=,∴二次函数的解析式为223y x x=--+=2(1)4x-++,∴顶点坐标为(﹣1,4);(2)令2230y x x=--+=,解得3x=-或1x=,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在223y x x=--+上,∴设点P(x,223x x--+),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即2232y x x=--+=,解得21(舍去)或x=21-,∴点P(21-,2);②设P(x,y),则223y x x=--+,∵ΔOBCΔAPDABCP C=PDOS S S S++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x⨯⨯⨯+++-=333222x y-+=2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.10.已知:如图,在平面直角坐标系中,矩形AOBC 的顶点C 的坐标是(6,4),动点P 从点A 出发,以每秒1个单位的速度沿线段AC 运动,同时动点Q 从点B 出发,以每秒2个单位的速度沿线段BO 运动,当Q 到达O 点时,P ,Q 同时停止运动,运动时间是t 秒(t >0).(1)如图1,当时间t = 秒时,四边形APQO 是矩形;(2)如图2,在P ,Q 运动过程中,当PQ =5时,时间t 等于 秒;(3)如图3,当P ,Q 运动到图中位置时,将矩形沿PQ 折叠,点A ,O 的对应点分别是D ,E ,连接OP ,OE ,此时∠POE =45°,连接PE ,求直线OE 的函数表达式.【答案】(1)t =2;(2)1或3;(3)y =12x . 【解析】【分析】 先根据题意用t 表示AP 、BQ 、PC 、OQ 的长.(1)由四边形APQO 是矩形可得AP =OQ ,列得方程即可求出t .(2)过点P 作x 轴的垂线PH ,构造直角△PQH ,求得HQ 的值.由点H 、Q 位置不同分两种情况讨论用t 表示HQ ,即列得方程求出t .根据t 的取值范围考虑t 的合理性. (3)由轴对称性质,对称轴PQ 垂直平分对应点连线OC ,得OP =PE ,QE =OQ .由∠POE =45°可得△OPE 是等腰直角三角形,∠OPE =90°,即点E 在矩形AOBC 内部,无须分类讨论.要求点E坐标故过点E作x轴垂线MN,易证△MPE≌△AOP,由对应边相等可用t表示EN,QN.在直角△ENQ中利用勾股定理为等量关系列方程即求出t.【详解】∵矩形AOBC中,C(6,4)∴OB=AC=6,BC=OA=4依题意得:AP=t,BQ=2t(0<t≤3)∴PC=AC﹣AP=6﹣t,OQ=OB﹣BQ=6﹣2t(1)∵四边形APQO是矩形∴AP=OQ∴t=6﹣2t解得:t=2故答案为2.(2)过点P作PH⊥x轴于点H∴四边形APHO是矩形∴PH=OA=4,OH=AP=t,∠PHQ=90°∵PQ=5=∴HQ3①如图1,若点H在点Q左侧,则HQ=OQ﹣OH=6﹣3t∴6﹣3t=3解得:t=1②如图2,若点H在点Q右侧,则HQ=OH﹣OQ=3t﹣6∴3t﹣6=3解得:t=3故答案为1或3.(3)过点E作MN⊥x轴于点N,交AC于点M∴四边形AMNO是矩形∴MN=OA=4,ON=AM∵矩形沿PQ折叠,点A,O的对应点分别是D,E∴PQ垂直平分OE∴EQ=OQ=6﹣2t,PO=PE∵∠POE=45°∴∠PEO=∠POE=45°∴∠OPE=90°,点E在矩形AOBC内部∴∠APO+∠MPE=∠APO+∠AOP=90°∴∠MPE=∠AOP在△MPE与△AOP中PME OAP90 MPE AOPPE0P︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△MPE≌△AOP(AAS)∴PM=OA=4,ME=AP=t∴ON=AM=AP+PM=t+4,EN=MN﹣ME=4﹣t∴QN=ON﹣OQ=t+4﹣(6﹣2t)=3t﹣2∵在Rt△ENQ中,EN2+QN2=EQ2∴(4﹣t)2+(3t﹣2)2=(6﹣2t)2解得:t1=﹣2(舍去),t2=43∴AM=43+4=163,EN=4﹣43=83∴点E坐标为(163,83)∴直线OE的函数表达式为y=12x.【点睛】本题考查了矩形的判定和性质,勾股定理,轴对称的性质,全等三角形的判定和性质,解一元一次和一元二次方程.在动点题中要求运动时间t的值,常规做法是用t表示相关线段,再利用线段相等或勾股定理作为等量关系列方程求值.要注意根据t的取值范围考虑方程的解的合理性.。

中考数学复习一元二次方程专项易错题含详细答案

中考数学复习一元二次方程专项易错题含详细答案
【答案】(1)当 且 时,方程有两个不相等的实数根;(2) , .
【解析】
【分析】
(1)方程有两个不相等的实数根, ,代入求m取值范围即可,注意二次项系数≠0;
(2)将 代入原方程,求解即可.
【详解】
(1)由题意得: = ,解得 .
因为 ,即当 且 时,方程有两个不相等的实数根.
(2)把 带入得 ,解得 , .
试题解析:(1)∵Δ=4(k-1)2-4k2≥0,∴-8k+4≥0,∴k≤ ;
(2)∵x1+x2=2(k-1),x1x2=k2,∴2(k-1)=1-k2,
∴k1=1,k2=-3.
∵k≤ ,∴k=-3.
2.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?
由方程②得,(x+n-1)[x-2(n+1)]=0,
①若4n2+3n+2=-n+1,解得n=- ,但1-n= 不是整数,舍.
②若4n2+3n+2=2(n+2),解得n=0或n=- (舍),综上所述 Nhomakorabean=0.
5.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.
(1)求m的取值范围;
(2)两正方形面积之和为48时, , ,∵ ,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.
考点:1.一元二次方程的应用;2.几何图形问题.
3.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.

4.易错专题:一元二次方程中的易错题

4.易错专题:一元二次方程中的易错题

易错专题:一元二次方程中的易错题◆类型一 用方程或其解的定义求待定系数时忽略a ≠01.若关于x 的一元二次方程(m -1)x 2-x +m 2-m =0的常数项为0,则m 的值为( )A .m =1B .m =0C .m =1或m =0D .m =0或m =-12.已知关于x 的一元二次方程(m -1)x 2+(m +3)x +m 2-1=0有一根为0,则m 的值为( )A .m =-2或m =0B .m =-1或m =1C .m =0D .m =-13.方程(m -1)xm 2+1+2mx -3=0是关于x 的一元二次方程,则m 的值是____________. ◆类型二 利用判别式求字母的值或取值范围时忽略a ≠0及a 中a ≥04.关于x 的一元二次方程(m -2)x 2+2x +1=0有实数根,则m 的取值范围是( )A .m ≤3B .m <3C .m <3且m ≠2D .m ≤3且m ≠25.已知关于x 的方程(k -1)x 2+2k x +3=0有实数根,则k 的取值范围是____________.【易错5】6.已知关于x 的一元二次方程12mx 2+mx +m -1=0有两个相等的实数根. (1)求m 的值;(2)解原方程.◆类型三 利用根与系数关系求值时忽略Δ≥07.关于x 的一元二次方程x 2-mx +2m -1=0的两个实数根分别是x 1、x 2,且x 21+x 22=7,则(x 1-x 2)2的值是【易错4】( )A .1B .12C .13D .258.已知关于x 的方程( m 2-1) x 2-(m +1) x +1=0 的两实数根互为倒数,求m 的值.【易错4】9.关于x 的一元二次方程x 2+(2k +1)x +k 2+1=0有两个不等实根x 1、x 2.(1)求实数k 的取值范围;(2)若方程两实根x 1、x 2满足|x 1|+|x 2|= x 1x 2,求k 的值.【易错4】◆类型四 与其他问题结合时忘记取舍10.已知x =2是关于x 的方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( )A .10B .14C .10或14D .8或1011.★如果x 2-x -1=(x +1)0,那么x 的值为( )A .2或-1B .0或1C .2D .-1易错专题:一元二次方程中的易错题1.B 2.D 3.-1 4.D 5.0≤k ≤656.解:(1)∵关于x 的一元二次方程12mx 2+mx +m -1=0有两个相等的实数根,∴Δ=m 2-4×12m ×(m -1)=0,且m ≠0,解得m =2; (2)由(1)知m =2,则原方程为x 2+2x +1=0,即(x +1)2=0,解得x 1=x 2=-1.7.C8.解:∵方程的两根互为倒数,由根与系数的关系知1m 2-1=1,解得m =±2.当m =-2时,方程为x 2-(1-2)x +1=0,Δ=3-22-4<0,此时方程无实数根;当m =2时,方程为x 2-(2+1)x +1=0,故Δ=22-1>0,此时方程有解.因此m 的值是 2.9.解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k +1)2-4(k 2+1)=4k 2+4k +1-4k 2-4=4k -3>0,解得k >34; (2)∵k >34,∴x 1+x 2=-(2k +1)<0.∵x 1x 2=k 2+1>0,∴x 1<0,x 2<0,∴|x 1|+|x 2|=-x 1-x 2=-(x 1+x 2)=2k +1.∵|x 1|+|x 2|=x 1·x 2,∴k 2+1=2k +1,∴k =0或2.∵k >34,∴k =2. 10.B11.C 解析:依题意得x 2-x -1=1且x +1≠0,解得x =2.故选C.。

一元二次方程易错题

一元二次方程易错题

y
A
D MB
OC
x
y PB A
O E
F x
y PB A
O Eo
F x
图1 (图)
图2
其它类型应用题:
4.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有 两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s 的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终 点C移动,其中一点到终点,另一点也随之停止。连结PQ。 设动点运动时间为x秒。
忽视对方程 分类讨论
案例3:
已知实数x满足 (x2 2x)2 2x2 4x 15
求:代数式 x2 2x的值。
解:∵(x2 2x)2 2(x2 2x) 15 0
(x2 2x 5,)(x2 2x 3) 0

∴ x2 2x 5 或 x2 2x 3
又∵ x2 2x 5 无实根,
分类讨论思想
A
t 7 或 t 16
2
3
B
PD QC
∴ x2 2x 3
忽视根的 存在条件!
案例4:
已知关于x的一元二次方程
x2 2 k 1x 1 有0两个实根,求k的取值范围

解:由△≥0,可得
(2 k 1)2 4 0
解得 k≥ - 2 又∵k+1≥0, ∴k≥—1 ∴k 的取值范围是k≥—1
忽视系数中 的隐含条件
案例5:
说一说
已知 x1 x2 是方程 2x2 5x 1 0
1当x 1 0,即x 1时,x2 x 11 0, x2 x 0 2当x 1 0,即x 1时,x2 x 11 0, x2 x 2 0
解得x1 ( 0 不合题设,舍去),x2 1 解得x1 (1 不合题设,舍去),x2 2 综上所述,原方程的解是x 1或x 2 仿照上例解法,解方程x2 2 x 2 4 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程易错题
案例1:
关于x的方程 (k 1) x 2kx k 0 有两个不相等的实数根, 求k的取值范围。 解:∵△>0 2 ∴ (2k ) 4k (k 1) >0 解得k>0 忽视二次项 系数不为0 又∵k-1≠0 ∴k>0且k≠1
2
案例2 当K为何值时,解关于x的方
由△= —4a+1≥0得
1 ∴ 0a 4
1 a ,由 4
x1 x2 1 2a 0 得 a

0。 a 取整数 。
1 2
案例7:
在Rt△ABC中,∠C= 90 ,斜边c=5, 2 两直角边的长a、b是 x mx 2m 2 0 的两根,求m的值 。 忽视实 解:在Rt△ABC中, 2 2 2 ∵∠C= 900 ∴ a b c 际意义! 2 2 2 ∵ a b 25 ∴(a b) 2ab 25 ∴ m 2 4m 21 0 ∴ m1 7, m2 3 检验:当 m1 7, m2 3 时,△都大于0
解:由△≥0,可得
(2 k 1) 4 0
2
解得 k≥ - 2 又∵k+1≥0, ∴k≥—1 ∴k 的取值范围是k≥—1
忽视系数中 的隐含条件
案例5:
已知 x1
说一说
x2 是方程 2x 5x 1 0
2

的两根,求 x x x x 的值。 x x
2 1 1 2 1 2
1 解: ∵ x1 x 2 2
1当x 1 0,即x 1时,x 2 x 1 1 0, x 2 x 0 2 2 2当x 1 0,即x 1时,x x 1 1 0, x x 2 0
解得x1 (不合题设,舍去), 0 x2 1 解得x1 (不合题设,舍去), 1 x2 2 综上所述,原方程的解 是x 1或x 2 仿照上例解法,解方程 x 2x2 4 0
0
又因为直角边a,b的长均为正所以m 的值只有7。
理一理
说一说
一元二次方程中几个容易忽视问题:
重视对方程分类讨论; 系数 重视二次项系数不为0; 重视系数中的隐含条件; 重视根的存在条件△≥0 ; 根 重视讨论两根的符号; 重视根要符合实际意义。
求下列各式的最值(最小值或最大值):
1 3 5 7
7 16 或t t 2 3
B
Q C
(x 2 x 5)( x 2 x 3) 0
2

2
∴ x 2x 5 或 x 2x 3 2 又∵ x 2 x 5 无实根, 忽视根的 存在条件! 2 ∴ x 2x 3
2

2
案例4:
已知关于x的一元二次方程 2 x 2 k 1x 1 0 有两个实根,求k的 取值范围。
x 6x 9
2
2 x 6 x 10 2 2 2 x 7 x 9 4 2 x 5 x 2 2 x 6 x 9 6 x 6 x 9 2 2 2 x 10x 8 3x 10x 9
2
阅读题例,解答下题:
例:解方程x 2 x 1 1 0 解:


3kx (3 k ) x k 0有实数根.
2 2
忽视对方程 分类讨论
案例3:
(x 2 x) 2 x 4 x 15 已知实数x满足 2 求:代数式 x 2 x 的值。 2 2 2 解:∵ (x 2 x) 2( x 2 x) 15 0
2 2 2
其它类型应用题:
5.在直角梯形ABCD中,AD∥BC,∠C=90°, BC=16,AD=21,DC=12,动点P从点D出发,沿 线段DA方向以每秒2个单位长度的速度运动, 动点Q从点C出发,沿线段CB 以每秒1个单位 长度的速度向点B运动. 点P、Q分别从点D、C 同时出发,当点P运动到点A时,点Q随之停止 运动,设运动时间为t秒. 问:当t为何值时,△BPQ是等腰三角形? P D A 分类讨论思想
x x2 x1
忽视讨论两 根的符号!
x2 x1 x2 x2 1 2 x1 x2 2 2 2
∴x1 x2 x2 x1 x1 x1 x2
案例6:

已知方程 a(2 x a) x(1 x) 的两个实根为 x1 x2 ,设 S x1 x2 ,求: a 取什么 整数时S的值为1. 2 2 解:原方程整理 x (2a 1) x a 0 2 1 x2 a ∵ x1 x2 1 2a , x 2 ∵ S x1 x2 ∴ S x1 x2 2 x1 x2 2 2 ∴ 1 2a 2 a =1 ∴ a a 忽视系数中的 隐含条件与 ∴ a0 判别式
2
y A M
D O
B
x
C
P A
E
y B B
F
O E o
图 2
x
(图)
其它类型应用题:
4.如图,Rt△ABC中,∠B=90°,AC=10cm, BC=6cm,现有两个动点P、Q分别从点A和点B同 时出发,其中点P以2cm/s的速度,沿AB向终点 B移动;点Q以1cm/s的速度沿BC向终点C移动, 其中一点到终点,另一点也随之停止。连结PQ。 A 设动点运动时间为x秒。 (1 3)用含 )是否存在 x的值,使得四 ( x 的代数式表 ( 2 )当为何值时, 2?若 P 边形 APQC 的面积等于 20cm 示 、 PB的长度; △BQ PBQ 为等腰三角形; 存在,请求出此时x的值;若不 存在,请说明理由。 B Q C
相关文档
最新文档