精馏塔---课程设计

合集下载

苯和氯苯精馏塔课程设计

苯和氯苯精馏塔课程设计

苯和氯苯精馏塔课程设计一、引言苯和氯苯是常见的有机化合物,它们在工业生产中有广泛的应用。

苯和氯苯精馏塔是一种有效的分离方法,可以将两者分离出来。

本课程设计旨在探究苯和氯苯精馏塔的原理、设计方法、操作技巧和安全注意事项。

二、原理1. 精馏塔原理精馏是一种利用液体混合物中各组分沸点差异进行分离的物理过程。

精馏塔是一种基于精馏原理设计的设备,通常由填料层和板层组成。

填料层通常由多孔性材料制成,可增加液体与气体之间的接触面积,促进挥发性组分从液相向气相转移;板层则通过板孔将液体和气体分开,使得液体在不同板层之间反复蒸发和凝结,从而实现组分之间的分离。

2. 苯和氯苯之间的沸点差异苯(C6H5)的沸点为80.1℃,而氯苯(C6H5Cl)的沸点为131℃。

因此,在适当温度下,苯和氯苯可以通过精馏塔进行分离。

三、设计方法1. 精馏塔的选择根据物料性质和生产要求,选择合适的精馏塔类型。

常见的精馏塔类型有平板式、填料式、螺旋板式等。

2. 填料的选择填料是影响精馏效果的重要因素之一。

常用的填料有金属网、陶瓷球、聚合物球等。

填料的选取应考虑到其表面积、孔径大小、耐腐蚀性和可再生性等因素。

3. 操作参数的控制在操作过程中,应根据实际情况控制温度、压力和进出料量等参数。

通常情况下,应将温度控制在苯和氯苯沸点之间,并适当增加进出料量以提高分离效率。

4. 填充率的控制填充率是指填料所占据空间与总容积之比。

填充率过高会导致液体无法顺畅流动,从而影响分离效果;而填充率过低则会导致液体在塔内停留时间不足,也会影响分离效果。

一般来说,填充率应控制在50%~70%之间。

四、操作技巧1. 开始操作前应检查设备是否正常运转,并进行必要的维护保养。

2. 在进料前,应先将塔内空气排出,以避免氧化反应和爆炸事故。

3. 操作过程中应注意控制温度、压力和进出料量等参数,并及时调整。

4. 如果发现液位过高或过低,应及时采取措施调整液位。

5. 操作结束后,应清洗设备并进行必要的维护保养。

甲醇水精馏塔化工原理课程设计

甲醇水精馏塔化工原理课程设计

甲醇水精馏塔化工原理课程设计本文将介绍一门关于“甲醇水精馏塔化工原理课程设计”的学习内容,该课程设计将涉及到许多重要的化工原理和技术应用方面。

本文将主要从以下几个方面进行介绍:一、课程设计背景甲醇和水是常见的有机溶剂和溶媒,广泛应用于化学工业、食品工业、医药工业等诸多领域。

但甲醇和水的相互溶解度较低,难以用简单的混合物方法来进行分离。

因此,需要采用精馏技术对甲醇水混合物进行分离与提纯,而甲醇水精馏塔就是典型的精馏设备。

本课程设计就是为了让学生深入了解甲醇水精馏塔的化工原理和工艺操作,并掌握甲醇水分离的关键技术。

二、课程设计内容本课程设计的主要内容包括理论学习和实验操作两部分。

具体来说,理论学习将介绍甲醇水混合物的化学性质、相图、相平衡、相接触、塔、节流和板面效应等理论基础知识,并通过相应的实验操作来加深学生的理解。

实验操作将包括设备组装、实验前检查、实验过程控制和实验后数据处理等环节,以培养学生的实验技能和实际操作能力。

三、课程设计任务本课程设计的主要任务是让学生了解甲醇水精馏塔的化工原理和工艺操作,在此基础上能够独立设计和操作精馏设备,实现甲醇和水混合物的高效分离和提纯。

具体而言,学生需要完成以下任务:1. 研究甲醇水混合物的相图,掌握不同温度下甲醇和水的相互溶解度和相变情况;2. 根据甲醇水混合物的相平衡数据,设计合适的塔板数和塔壳直径,以实现甲醇和水的有效分离;3. 设计甲醇水精馏塔的流程图和操作流程,确保操作步骤合理且安全;4. 根据实验数据,计算塔效和塔效影响因素,并分析其影响和解决方法;5. 总结课程设计过程中遇到的问题和方法,撰写相关实验报告和课程设计论文。

四、课程设计意义本课程设计不仅能够深入学习甲醇和水的化学性质和相互关系,也可以了解甲醇水精馏塔的精细操作技术和机理原理,从而加深对化工实践的理解和认识。

同时,学生还可以在实验操作中培养实际能力和团队配合能力,为今后从事化工实践和科研工作奠定坚实基础。

课程设计--精馏塔分离苯-甲苯混合物

课程设计--精馏塔分离苯-甲苯混合物

课程设计--精馏塔分离苯-甲苯混合物目录摘要 (II)Abstract (III)引言 (1)第一章概述 (1)1.1精馏塔设计任务 (2)1.2精馏塔设计方案的选定 (2)第二章精馏塔设计计算 (3)2.1精馏塔物料衡算 (3)2.2塔板的确定 (4)2.3精馏塔的工艺条件及有关物性数据的计算 (5)2.4精馏塔的塔体工艺尺度计算 (10)第三章塔附属设备选型及计算 (29)3.1接管 (29)3.2塔体总高度 (30)3.3辅助设备 (32)第四章设计结果汇总 (35)设计小结与体会 (37)符号说明 (38)参考文献 (40)摘要化工生产中所处理的物料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质,生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离较纯净或几乎纯态的物质。

精馏是分离液体混合物最常用的一种单元操作, 利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。

实现原料混合物中各组成分离该过程是同时进行传质传热的过程。

本设计任务为精馏塔分离苯-甲苯混合物。

对于二元混合物的分离,采用连续精馏过程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸气采用全器冷凝,冷凝液在泡点温度下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,最小回流比较小,所以在设计中把操作回流比取最小回流比的1.7倍。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

本设计说明书以通过物料衡算,热量衡算,工艺计算,结构设计和校核等一系列工作来设计一个具有可行性的合理的筛板塔以及相关辅助设备的计算。

绘制了精馏塔装配图,精馏工艺流程图。

关键词:筛板塔;苯;甲苯AbstractIn the chemical production processes the material, the intermediary product, the primary product, nearly is the mixture which is composed of certain components, moreover majority is the homogeneous phase material, in the production to satisfy the storage, the transportation, the processing and the use need, often needs these mixture separation for pure or nearly the pure state material.Separation of distillation is the most commonly used liquid mixture of a unit operation, using liquid mixture of all the different points of the volatile, volatile components from liquid to gas transfer, difficult volatile components from gas to liquid transfer. Mixture of raw materials to achieve the various components of the separation process is at the same time heat and mass transfer process.The design task is to separate the benzene - toluene mixture using the distillation tower. For the separation of binary mixtures, we can use a continuous distillation process. In the design, we feed the raw material in the bubble point ,using preheater where the liquid can be heated up to the bubble point and then give it away to the distillation tower. Up top of the tower ,there is a total condenser which can condense the steam. Part of the condensed steam return to the tower in the bubble point, and the rest product is sent to the tank through the total condenser. It is so easy to isolate material system using this system. the minimum return is relatively small, so we take the minimum reflux ratio of 1.7 times of the operating reflux ratio in our design. Tower reacter is heated with indirect steam and the tower bottom product is sent to storage tanks after cooling.The design specification through the material balance, energy balance, technology, structural design and verification and a series of work to design a reasonable possibility of the sieve tower that should use the relation selective evaporation flow,and drawing assemble diagram of distillation tower and PID of distillation.Keywords:Distillation;Sieve tower;Benzene引言化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的。

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。

一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。

精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

第一章绪论1.1精馏的特点与分类精馏是分离液体混合物的典型单元操作。

它是通过加热造成气液两相物系,利利用物系中各组分挥发度的不同的特性来实现分离的。

按精馏方式分为简单精馏、平衡精馏、精馏和特殊精馏。

1.1.1蒸馏分离具有以下特点(1)通过蒸馏分离,可以直接获得所需要的产品。

(2)适用范围广,可分离液态、气态或固态混合物。

(3)蒸馏过程适用于各种浓度混合物的分离。

(4)蒸馏操作耗能较大,节能是个值得重视的问题。

1.1.2平衡蒸馏将混合液在压力p1下加热,然后通过减压阀使压力降低至p2后进入分离器。

过热液体混合物在分离器中部分汽化,将平衡的气、液两相分别从分离器的顶部、底部引出,即实现了混合液的初步分离。

1.1.3简单蒸馏原料液在蒸馏釜中通过间接加热使之部分汽化,产生的蒸气进入冷凝器中冷凝,冷凝液作为馏出液产品排入接受器中。

在一批操作中,馏出液可分段收集,以得到不同组成的馏出液。

1.1.4连续精馏操作流程化工生产以连续精馏为主。

操作时,原料液连续地加入精馏塔内,连续地从再沸器取出部分液体作为塔底产品(称为釜残液);部分液体被汽化,产生上升蒸气,依次通过各层塔板。

塔顶蒸气进入冷凝器被全部冷凝,将部分冷凝液用泵(或借重力作用)送回塔顶作为回流液体,其余部分作为塔顶产品(称为馏出液)采出。

1-精馏塔 2-全凝器3-储槽 4-冷却器5-回流液泵 6-再沸器 7-原料液预热器图1连续精馏装置示意图1.2精馏塔的踏板分类1.2.1塔板的结构形式1.泡罩塔板泡罩塔板是工业上应用最早的塔板,它由升气管与泡罩构成。

泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。

泡罩有φ80mm、φ100mm和φ150mm三种尺寸,可根据塔径大小选择。

泡罩下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。

泡罩在塔板上为正三角形排列。

它的优点是操作弹性适中塔板不易堵塞。

缺点是生产能力与板效率较低结构复杂、造价高。

图2泡罩塔板(a)操作示意图 (b)塔板平面图 (c)圆形泡罩2.筛孔塔板筛孔塔板简称筛板,其结构特点是在塔板上开有许多均匀小孔,孔径一般为3~8mm。

化工原理课程设计精馏塔

化工原理课程设计精馏塔

化工原理课程设计精馏塔
在化工原理课程设计中,精馏塔是一个非常重要的主题。

精馏塔是化工生产中
用来进行精馏分离的装置,其原理和设计对于化工工程师来说至关重要。

本文将对精馏塔的原理、结构和设计进行详细介绍,希望能对化工原理课程设计有所帮助。

首先,我们来介绍一下精馏塔的原理。

精馏塔利用不同组分的沸点差异来进行
分离,通过在塔内加热并在塔顶冷凝,使得液体沸腾蒸发,然后在塔顶冷凝成液体,从而实现组分的分离。

在精馏塔内,通常会设置填料或塔板,增加塔内表面积,促进传质和传热,提高分离效率。

其次,我们将介绍精馏塔的结构。

精馏塔通常由塔底、塔体和塔顶三部分组成。

塔底主要用来加热液体,使其蒸发;塔体内设置填料或塔板,用来增加接触面积;塔顶则用来冷凝蒸发的液体,使其凝结成液体。

此外,精馏塔还包括进料口、顶部产品出口和底部残液出口等部件。

最后,我们将讨论精馏塔的设计。

精馏塔的设计需要考虑诸多因素,如进料组分、产品要求、操作压力和温度等。

在设计精馏塔时,需要进行热力学计算和传质计算,确定塔板或填料的高度和类型,保证塔内的传热和传质效果。

此外,还需要考虑塔底加热方式、塔顶冷凝方式以及塔内液体分布等问题,确保精馏塔能够稳定、高效地进行分离操作。

总之,精馏塔作为化工生产中常用的分离设备,其原理、结构和设计都是化工
工程师需要掌握的重要知识。

通过本文的介绍,相信读者对精馏塔有了更深入的了解,希望能够对化工原理课程设计有所帮助。

化工原理 课程设计 精馏塔

化工原理 课程设计 精馏塔

化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。

该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。

乙醇的浓度要求为95%(质量分数),水含量要求低于5%。

二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。

同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。

3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。

4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。

三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。

2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。

3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。

4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。

5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。

6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。

浮阀式精馏塔课程设计

浮阀式精馏塔课程设计

浮阀式精馏塔课程设计
一、设计任务和要求
1.设计一个浮阀式精馏塔,以满足给定的分离要求。

2.根据给定的进料条件、产品要求和操作条件,确定合适的操作方式和工艺参数。

3.使用适当的设计软件进行模拟和优化,以确定最佳塔体尺寸和分离效果。

4.编写设计报告,包括塔体尺寸、分离流程、操作条件、经济效益等方面的分析。

二、设计步骤
1.确定设计任务和要求,明确进料条件、产品要求和操作条件。

2.进行物性分析和热力学分析,选择合适的精馏分离流程。

3.根据流程图和工艺参数,使用设计软件建立浮阀式精馏塔的模型。

4.进行模拟计算,优化塔体尺寸和分离效果。

5.根据模拟结果,确定塔体尺寸、填料和附件等参数。

6.编写设计报告,包括流程图、模拟结果、塔体尺寸、经济效益等方面的分析。

7.准备答辩材料,向老师和同学展示设计成果。

三、注意事项
1.在设计过程中,应充分考虑安全、环保和经济效益等方面的因素。

2.注意数据的准确性和可靠性,以确保设计的可行性和可靠性。

3.在答辩过程中,应注意表达清晰、逻辑严谨,回答问题时要准确、全面。

四、总结
本课程设计通过模拟和优化浮阀式精馏塔,使我们更深入地了解了精馏分离的原理和工艺参数,提高了我们的工程设计能力和实际操作能力。

同时,也使我们认识到了工程实践中的复杂性和多样性,培养了我们的创新思维和实践能力。

在未来的学习和工作中,我们将不断积累经验,提高自己的综合素质和能力水平。

板式精馏塔课程设计

板式精馏塔课程设计

板式精馏塔课程设计板式精馏塔是一种多室及多功能的化工设备,可以进行一维或多维的分离和精制。

它大大降低了当今世界化学工业中相关分离工作的难度和成本。

本课程的主要目的是介绍板式精馏塔的基本理论,掌握其使用的方法和技术,以及对常见工艺过程的分析和设计,最终掌握板式精馏塔的运行、检修、维护和安全操作的基本规范。

本课程的主要内容1.式精馏塔基本原理:介绍板式精馏塔的结构、工作原理及各种影响气液相平衡的因素,以及板式精馏塔本身在生产中的不稳定性和调节。

2.艺参数的选择:讨论板式精馏塔的工作范围,以及如何根据实际的物料性质来选择合理的工艺参数,并要求学生通过实验来调整选择的参数,以达到合理的工作状态。

3.见工艺分析与设计:讨论常见工艺过程,包括顶部分离、底部萃取,以及二室及多室精馏塔的设计要求,以及它们对精馏结果的影响。

4.作技术及安全操作:讨论板式精馏塔的操作技术,如参数的设置、调节,以及安全操作的程序,指导学生在实验室或实践中完成。

本课程的目标是培养学生能够应用板式精馏塔技术的实际能力,掌握其基本理论和技术,实现各种常见工艺要求,以及安全操作。

为了实现以上目标,本课程将采取以下方式:从理论讲授、实验模拟和项目实践等多种形式,包括:1)室内讲授:介绍板式精馏塔的基本原理及其在工艺作业中的应用;2)实验模拟:使用模拟设备,进行各种条件下的调试及精制工艺的实验模拟;3)课后习题:设计常见的生产过程,以引导学生掌握板式精馏塔的基本原理及其工程应用;4)实践项目:在实践中,训练学生如何设计和操作板式精馏塔,以及如何解决一般问题。

本课程将定期做好统计和考核,让学生对自己所学知识作出全面、正确的评估,并不断完善自我,以达到课程设计的培养目标。

总之,本课程是一门综合性的课程,旨在深入系统地掌握板式精馏塔的基本原理和技术,以及如何运用它们来解决实际的生产问题。

化工原理课程设计--丙酮水连续精馏塔的设计

化工原理课程设计--丙酮水连续精馏塔的设计

07 安全环保措施与节能优化 建议
安全防护措施考虑
防火防爆措施
采用防爆电器、设置可燃气体检 测报警装置、确保塔内压力稳定 等,以防止火灾和爆炸事故的发 生。
操作安全
制定严格的操作规程,对操作人 员进行专业培训,确保他们熟悉 设备的操作和维护,减少人为操 作失误。
设备安全
选用高质量的材料和可靠的制造 工艺,确保设备的稳定性和安全 性;对关键设备进行定期检查和 维护,及时发现并处理潜在的安 全隐患。
根据冷却水温度、冷却水量、蒸汽量等条件,计算冷凝器传热面积 、冷却水流速等参数。
再沸器
根据加热蒸汽量、加热温度等条件,计算再沸器传热面积、加热蒸 汽流速等参数。
辅助系统(如冷凝器、再沸器等)设计
冷凝器设计
选择合适的冷凝器类型(如列管式、板式等),确定冷却 水进出口温度、冷却水量等参数,进行传热计算和结构设 计。
产品收集
塔顶蒸出的丙酮经过冷凝器冷凝 后收集,塔底排出的水经过处理
后排放或回收利用。
操作条件选择
操作压力
根据丙酮和水的性质及工艺要求 ,选择合适的操作压力。一般来
说,常压精馏可以满足要求。
操作温度
根据丙酮和水的沸点及传质传热要 求,选择合适的操作温度。通常, 操作温度略高于丙酮的沸点。
回流比
回流比对精馏塔的分离效果和能耗 有重要影响。在保证分离效果的前 提下,应尽量降低回流比以减少能 耗。
THANKS FOR WATCHING
感谢您的观看
对设计结果进行仿真验证,分析 设计方案的可行性和经济性。
02 精馏塔工艺设计
工艺流程确定
原料预处理
将丙酮和水按一定比例混合,经 过预热器加热至适宜温度,进入

精馏塔控制系统课程设计

精馏塔控制系统课程设计

精馏塔控制系统课程设计精馏塔控制系统课程设计一、概述精馏塔是化学工业中重要的分离设备之一,广泛应用于化工、石油、食品等领域。

精馏塔的主要功能是将混合液进行分离,得到高纯度的产品。

在生产过程中,精馏塔的控制系统对于保证产品质量、降低能耗、提高生产效率等方面具有重要作用。

因此,本课程设计旨在设计一个精馏塔的控制系统,以实现对混合液的分离过程进行精确控制。

二、设计要求1.了解精馏塔的工作原理及流程;2.分析精馏塔的工艺参数和控制要求;3.设计精馏塔的控制系统方案;4.选择合适的控制仪表和设备;5.完成控制系统的硬件和软件设计;6.进行系统调试和性能评估。

三、工作原理及流程精馏塔是一种基于蒸馏原理的分离设备。

在蒸馏过程中,混合液在精馏塔内被加热和冷却,使得不同成分的液体在特定温度下达到气液平衡状态。

通过这种方式,高纯度的产品可以从混合液中分离出来。

精馏塔的主要组成部分包括:原料液进料口、蒸汽加热器、分离器、冷凝器、产品收集器等。

四、工艺参数和控制要求精馏塔的主要工艺参数包括:进料流量、蒸汽流量、回流比、塔顶温度、塔底温度等。

控制要求包括:1.稳定进料流量,以保证原料液的供应;2.控制蒸汽流量,以维持所需的加热温度;3.调节回流比,以改变产品的纯度和产量;4.控制塔顶和塔底温度,以保证产品的质量和分离效果。

五、控制系统方案设计根据工艺参数和控制要求,可以采用以下控制系统方案:1.进料流量控制:采用流量计测量进料流量,通过调节阀控制进料流量;2.蒸汽流量控制:采用蒸汽压力传感器测量蒸汽压力,通过调节阀控制蒸汽流量;3.回流比控制:采用流量计测量回流比,通过调节阀控制回流比;4.塔顶温度控制:采用温度传感器测量塔顶温度,通过调节阀控制蒸汽流量,以维持温度稳定;5.塔底温度控制:采用温度传感器测量塔底温度,通过调节阀控制加热器的加热功率,以维持温度稳定。

六、控制仪表和设备选择根据控制系统方案,可以选择以下控制仪表和设备:1.流量计:用于测量进料流量和回流比;2.压力传感器:用于测量蒸汽压力;3.温度传感器:用于测量塔顶和塔底温度;4.调节阀:用于控制进料流量、蒸汽流量和回流比;5.加热器:用于加热原料液;6.PLC控制器:用于实现控制逻辑和数据处理。

甲醇水连续精馏塔课程设计

甲醇水连续精馏塔课程设计

甲醇水连续精馏塔课程设计
甲醇水连续精馏塔课程设计需要依据具体的设计要求和实验条件进行设计和实验。

以下是一个可能的课程设计方案,供参考:
实验目的:
通过甲醇水连续精馏塔的设计和实验,掌握连续精馏的基本原理和方法,了解塔内操作和控制,熟悉实验操作和数据处理方法。

实验仪器和设备:
甲醇水连续精馏塔、加热器、冷却器、计量泵、温度传感器、压力传感器等。

实验步骤:
(1)进行塔的预热和准备工作,包括塔的清洗和检查、加热器和冷却器的设置等。

(2)调整塔的进料和出料流量、温度和压力等操作参数,开始实验。

(3)收集塔内物料的流量、温度和压力等数据,根据实验数据进行分析和处理。

(4)根据实验结果,进行调整和优化塔的操作参数和流程,改善塔的性能和效果。

实验要点:
(1)注意安全,遵守实验操作规程,避免发生事故和危险。

(2)严格控制塔内的操作参数,保证塔的稳定和可控。

(3)采用适当的数据采集和处理方法,对实验结果进行分析和评估。

(4)根据实验结果,进行调整和优化,改善塔的性能和效果。

实验结果:
根据实验数据和分析结果,可以得到塔内物料的分离效果和效率,评估塔的性能和优化方案。

以上是一个简要的甲醇水连续精馏塔课程设计方案,具体实验操作和数据处理方法需要根据实验条件和要求进行设计和调整。

在进行实验时,需要注意安全和质量,遵守实验规程和操作要求,保证实验的稳定和可控。

精馏塔课程设计

精馏塔课程设计

精馏塔课程设计第一章概述高径比很大的设备称为塔器。

用于蒸馏(精馏)和吸收的塔器分别称为蒸馏塔和吸收塔。

塔设备是化工、石油化工、生物、制药等生产过程中广泛采用的气液传质设备。

蒸馏和吸收作为分离过程,虽基于不同的物理化学原理,但均属于气液两相间的传质过程,有着共同特点,可在同样的设备中进行操作。

一、塔设备的基本功能和性能评价指标为获得最大的传质速率,塔设备应该满足两条基本原则:(1)使气液两相充分接触,适当湍动,以提供尽可能大的传质面积和传质系数,接触后两相又能及时完善分离;(2)在塔内使气液两相有最大限度的接近逆流, 以提供最大的传质推动力。

板式塔的各种结构设计、新型高效填料的开发,均是以这两条原则的体现和展示。

从工程目的出发,塔设备性能的评价指标如下:(1)通量-----单位塔截面的生产能力,表征塔设备的处理能力和允许空塔气速;(2)分离效率-----单位压降塔的分离效果,对板式塔以板效率表示,对填料塔以等板高度表示;(3)适应能力-----操作弹性,表现为对物料的适应性及对负荷的适应性。

塔设备在兼顾通量大、效率高、适应行强的前提下,还应该满足流动阻力低、结构简单、金属耗量少、造价低、易于操作控制等要求。

一般来说,通量、效率和压强是互相影响甚至是互相矛盾的。

对于工业大规模生产来说,应该在保持高通量前提下,争取效率不过与降低;对于精密分离来说,应优先考虑高效率,而通量和压强则放在第二位。

二、塔设备的类型根据塔内气液接触部件的结构型式,可分为板式塔和填料塔两大类。

按塔内气液接触方式,有逐级接触式和微分(连续)接触式之分。

板式塔内设置一定数量的塔板,气体以鼓泡状、蜂窝状、泡沫状或喷射形式穿过板上的液层,进行传质与传热。

在正常操作下,气相为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

工业生产中,一般当理物料量较大时多采用板式塔,当要求塔径在0.8m以下时多采用填料塔。

现在这种局面已有所改变,直径在30m以上的填料塔已在工业生产中运行。

化工单元过程及设备课程设计-- 精馏

化工单元过程及设备课程设计-- 精馏

化工单元过程及设备课程设计-- 精馏化工单元过程及设备课程设计目录前言 (2)第一章任务书 (3)第二章精馏过程工艺及设备概述 (4)第三章精馏塔工艺设计 (6)第四章再沸器的设计 (18)第五章辅助设备的设计 (26)第六章管路设计 (32)第七章塔计算结果表 (33)第八章控制方案 (33)总结 (34)参考资料 (35)前言本课程设计说明书包括概述、流程简介、精馏塔、再沸器、辅助设备、管路设计和控制方案共七章。

说明书中对精馏塔的设计计算做了详细的阐述,对于再沸器、辅助设备和管路的设计也做了说明。

鉴于设计者经验有限,本设计中还存在许多错误,希望各位老师给予指正。

感谢老师的指导和参阅!第一章概述精馏是分离过程中的重要单元操作之一,所用设备主要包括精馏塔及再沸器和冷凝器。

1.1精馏塔精馏塔是一圆形筒体,塔内装有多层塔板或填料,塔中部适宜位置设有进料板。

两相在塔板上相互接触时,液相被加热,液相中易挥发组分向气相中转移;气相被部分冷凝,气相中难挥发组分向液相中转移,从而使混合物中的组分得到高程度的分离。

简单精馏中,只有一股进料,进料位置将塔分为精馏段和提馏段,而在塔顶和塔底分别引出一股产品。

精馏塔内,气、液两相的温度和压力自上而下逐渐增加,塔顶最低,塔底最高。

本设计为筛板塔,筛板的突出优点是结构简单、造价低、塔板阻力小且效率高。

但易漏液,易堵塞。

然而经长期研究发现其尚能满足生产要求,目前应用较为广泛。

1.2再沸器作用:用以将塔底液体部分汽化后送回精馏塔,使塔内气液两相间的接触传质得以进行。

本设计采用立式热虹吸式再沸器,它是一垂直放置的管壳式换热器。

液体在自下而上通过换热器管程时部分汽化,由在壳程内的载热体供热。

立式热虹吸特点:1.循环推动力:釜液和换热器传热管气液混合物的密度差。

2.结构紧凑、占地面积小、传热系数高。

3.壳程不能机械清洗,不适宜高粘度、或脏的传热介质。

4.塔釜提供气液分离空间和缓冲区。

化工原理课程设计精馏塔

化工原理课程设计精馏塔

化工原理课程设计精馏塔
精馏塔是化工原理课程设计中的重要内容,它是一种用于分离液体混合物的设备,广泛应用于石油化工、化工制药等领域。

精馏塔的设计和操作对于提高产品纯度、降低能耗、优化生产工艺具有重要意义。

首先,精馏塔的结构通常包括进料口、塔板、塔顶、冷凝器和回流器等部分。

进料液体在塔顶进入塔板,经过塔板上的填料或者气液分布器,与上升的蒸汽进行接触和传质,从而实现组分的分离。

冷凝器用于将顶部的蒸汽冷凝成液体,回流器则用于控制塔内液体的回流比例,保证塔内的稳定操作。

其次,精馏塔的操作原理是利用不同组分在塔内的汽液平衡特性,通过多级塔
板的作用,将混合物中的各组分逐级分离。

在精馏过程中,液体在塔板上停留时间较长,与上升的蒸汽进行充分接触,从而实现组分的分离。

较轻的组分在顶部得到富集,而较重的组分则在底部得到富集,通过塔顶和塔底的出口分别收集这两部分液体,从而实现分离。

在进行精馏塔的设计时,需要考虑原料的性质、产品的要求、能耗的控制等因素。

通过合理地选择填料类型、确定塔板数目、优化冷凝器和回流器的设计,可以实现精馏塔的高效运行。

此外,还需考虑操作条件的控制,如进料流量、回流比例、塔顶温度等参数的调节,以保证塔内的稳定操作。

总的来说,精馏塔在化工原理课程设计中具有重要的地位,它不仅是理论知识
的应用,更是对学生综合运用化工原理、热力学、传质动力学等知识进行工程设计和操作的重要实践。

通过对精馏塔的学习和设计,不仅可以加深对化工原理的理解,更可以培养学生的工程实践能力和创新思维,为将来的工程实践打下坚实的基础。

精馏塔课程设计说明书

精馏塔课程设计说明书

精馏塔课程设计说明书精馏塔课程设计说明书一、课程设计目的本次课程设计旨在让学生深入了解精馏塔的工作原理、设计方法和工程应用,掌握精馏塔的设计步骤和技巧,提高学生的实践能力和创新能力。

二、课程设计内容本次课程设计的主要内容包括:1. 精馏塔工作原理和流程分析;2. 精馏塔设计计算方法;3. 精馏塔设备选型和结构设计;4. 精馏塔的模拟和优化。

三、课程设计流程1. 前期准备:学生需要收集有关精馏塔的文献和资料,了解精馏塔的基本原理和设计方法,并进行市场调研,了解市场需求和行业发展状况。

2. 中期报告:学生需要根据课程设计的具体要求,撰写精馏塔设计分析报告,包括精馏塔工作原理、流程分析、设计计算方法、设备选型和结构设计等内容。

3. 课程设计答辩:学生需要根据中期报告的内容,进行精馏塔设计答辩,回答评委老师的提问和质疑,展示自己的设计思路和创新能力。

四、课程设计成果通过本次课程设计,学生需要最终实现以下成果:1. 熟练掌握精馏塔的工作原理和设计方法;2. 能够独立完成精馏塔的设计和计算;3. 具备良好的团队合作和沟通能力,能够参与实际的工程设计和项目开发。

五、课程设计拓展1. 精馏塔的设计计算主要包括以下步骤:(1) 确定精馏塔的流程和分离要求;(2) 计算精馏塔的尺寸和负荷;(3) 选择精馏塔的设备型号和材料;(4) 进行精馏塔的模拟和优化。

2. 精馏塔的选型和结构设计需要考虑的因素包括:(1) 分离目标和分离效率;(2) 设备材质和耐腐蚀性能;(3) 设备制造工艺和安装要求;(4) 设备效率和节能降耗。

3. 精馏塔的应用领域广泛,涉及到化工、石油、医药、食品等多个领域。

在设计精馏塔时,需要考虑市场需求和行业发展趋势,以便更好地满足行业需求和用户体验。

化工原理课程设计-精馏塔

化工原理课程设计-精馏塔

化工原理课程设计任务书(一)设计题目在抗生素类药物生产过程中,需要用甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。

为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶液进行精馏,得到含水量≤0.3%(质量分数)的甲醇溶液。

设计要求废甲醇溶液的处理量为 3.6万吨/年,塔底废水中甲醇含量≤0.5%(质量分数)。

(二)操作条件1)操作压力常压2)进料热状态自选3)回流比自选4)塔底加热蒸汽压力 0.3Mpa(表压)(三)填料类型因废甲醇溶液中含有少量的药物固体微粒,应选用金属散装填料,以便于定期拆卸和清洗。

填料类型和规格自选。

(四)工作日每年工作日为300天,每天24小时连续运行。

(五)设计内容1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)填料层压降的计算;6)液体分布器简要设计;7)精馏塔接管尺寸计算;8)对设计过程的评述和有关问题的讨论。

摘要甲醇最早由木材和木质素干馏制的,故俗称木醇,这是最简单的饱和脂肪组醇类的代表物。

无色、透明、高度挥发、易燃液体。

略有酒精气味。

近年来,世界甲醇的生产能力发展速度较快。

甲醇工业的迅速发展,是由于甲醇是多种有机产品的基本原料和重要的溶剂,广泛用于有机合成、染料、医药、涂料和国防等工业。

由甲醇转化为汽油方法的研究成果,从而开辟了由煤转换为汽车燃料的途径。

近年来碳化学工业的发展,甲醇制乙醇、乙烯、乙二醇、甲苯、二甲苯、醋酸乙烯、醋酐、甲酸甲酯和氧分解性能好的甲醇树脂等产品,正在研究开发和工业化中。

甲醇化工已成为化学工业中一个重要的领域。

目前,我国的甲醇市场随着国际市场的原油价格在变化,总体的趋势是走高。

随着原油价格的进一步提升,作为有机化工基础原料——甲醇的价格还会稳步提高。

国内又有一批甲醇项目在筹建。

这样,选择最好的工艺利设备,同时选用最合适的操作方法就成为投资者关注的重点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章绪论1.1课程设计的目的(1)把化工工艺与化工机械设计结合起来,巩固和强化有关机械课程的基本理论和知识基本知识。

(2)培养对化工工程设计上基本技能以及独立分析问题、解决问题的能力。

(3)培养识图、制图、运算、编写设计说明书的能力。

1.2课程设计的要求(1)树立正确的设计思想。

(2)具有积极主动的学习态度和进取精神。

(3)学会正确使用标准和规范,使设计有法可依、有章可循。

(4)学会正确的设计方法,统筹兼顾,抓主要矛盾。

(5)在设计中处理好尺寸的圆整。

(6)在设计中处理好计算与结构设计的关系。

1.3课程设计的内容对二氯乙烷精馏塔的机械设计。

DN=1800mm P N=1.2MPa1.4课程设计的步骤(1)全面考虑按压力大小、温度高低、腐蚀性大小等因素来选材。

(2)选用零部件。

(3)计算外载荷,包括内压、外压、设备自重,零部件的偏载、风载、地震载荷等。

(4)强度、刚度、稳定性设计和校核计算(5)传动设备的选型、计算。

(6)绘制设备总装配图。

第2章 塔体的机械计算2.1 按计算压力计算塔体和封头厚度2.1.1 塔体厚度的计算(1)计算压力 MPa Pc 2.1= (2)塔体计算厚度 mm Pc t PcDi 8.72.185.0170218002.1]δ[2δ=×××==(3)塔体设计厚度 mm 8.9δc δ=+=c (4)塔体名义厚度 n δ=12mm (5)塔体有效厚度 mm c n e 10δδ==2.1.2 封头厚度计算(1)计算厚度 mm Pc t PcDi 5.72.15.085.0170218002.15.0][2=⨯-⨯⨯⨯=⨯-=ϕδδ(2)设计厚度 mm c 5.9c =+=δδ (3)名义厚度 mm n 12=δ (3)有效厚度 mm c n e 10=-=δδ2.2 塔设备质量载荷计算2.2.1 筒体圆筒、封头、裙座质量 m 01(1)圆筒质量 m 1=4.1971979.36536=×Kg (2)封头质量 m 2=8.67624.338=×Kg (3)裙座质量 m 3=2.164006.3536=×Kg 说明:1 塔体圆筒总高度为36.79m ;2查得DN1800mm ,厚度10mm 的圆筒质量为536Kg/m ;3 查得 DN1800mm ,厚度10mm 的椭圆形封头质量为338.4Kg/m ;4 裙座高度3060mm 。

m 01=m 1+m 2+m 3=22036.4Kg2.2.2 塔内构件质量 m 02m 02=6.1335970758.1785.070754π22=×××=××Di Kg浮阀塔盘质量75Kg/m 22.2.3 保温层质量 m 03'03220]2)2(2)22[(785.0m 03m H n Di n Di ++-++⨯=ρδδδ300)83.013.1(230079.36])824.1()024.2[(785.022⨯-⨯+⨯⨯-⨯==6851Kg'03m 为封头保温层质量 2.2.4 平台与扶梯质量 04mm 04=FF p n n H q nq Di B Di ⨯+⨯++-+++⨯21])22()222[(785.022δδδδ394015085.0])1.02012.028.1()9.021.02012.028.1[(785.022⨯+⨯⨯⨯⨯+⨯+-⨯+⨯+⨯+= =6520Kg说明:平台质量q p =150Kg/m 2;笼式扶梯质量F q =40Kg/m ;笼式扶梯高度H F =39m ,平台数n=82.2.5 操作时物料质量05mKgV h N h Di m f w 291861257827.01257)8.1701.0(8.1785.0)(42110205=⨯+⨯+⨯⨯=++=ρρπ说明:物料密度31/800m Kg =ρ,封头容积35864.0m V f =。

塔釜圆筒部分深度8.10=h ,塔板层数N=70,塔板上液层高度m h w 1.0=2.2.6 附件质量a m按经验取附件质量 Kg m m a 1.550925.001==2.2.7 充水质量w mKgV H Di m w f w w 952731000827.02100079.368.1785.024202=⨯⨯+⨯⨯⨯=+=ρρπ其中3/1000m Kg w =ρ2.2.8 各种载荷质量汇总表2-1质量汇总塔段0~1 1~2 2~3 3~4 4~5 5~顶 合计 塔段长度/mm 1000 2000 7000 10000 10000 10000 40000 人孔与平台数 0 0 1 3 2 2 8 塔板数0 0 9 22 22 17 70 1i o m 536 1410.4 3752 5360 5360 5618 22036.4 2i o m - - 1717 4198 4198 3247 13360 3i o m- 90 1269 1813 1813 1866 6851 4i o m 40 80 900 2260 1640 1600 6520 5i o m - 1039 8633.5 7031 7031 5451 29185.5 iam 134 352.6 938 1340 1340 1404.5 5509.1 i w m - 827 17804 25434 25434 25774 95273 i e m - 2800 5200 - - - 8000 i om 710 4733 12402.4 11012.6 10992.6 11137.9 51588.5 各塔段最小质量/kg 710577222409.5220022138219186.591462全塔操作质量/kg 9146205040302010=++++++=a e m m m m m m m m 全塔最小质量/kg 5.515882.004030201min =+++++=e a m m m m m m m 水压试验时最大质量/kg5.15754904030201max =++++++=e w a m m m m m m m m第3章 风载荷与风弯矩的计算3.1.1 风载荷计算2—3段计算风载荷3P222.100.111.072.080.211323323=⨯⨯+=Φ+=f v k ξ,其中3ν0.72=,23φ0.11=,3 1.0f =。

a K K s D oi D 34323e +++=δb δδps d o K s D D e 2432oi 3++++= 取3400mm K =,432A 219001000257mm l 7000K ⨯⨯⨯===∑s3ps δ=δ=100mma K K s D oi D 34323e +++=δ=2677b δδps d o K s D D e 2432oi 3++++==2877 取mm D e 26773=,N D l f q k k P e 68901028777000140022.17.0106633302313=⨯⨯⨯⨯⨯⨯=⨯=--3.1.2 风弯矩的计算截面0—0mm N l l l P l l l P ll P l P M w ⋅⨯=⨯+⨯+⨯+⨯+⨯+⨯=++++++++++=-9621632132121100100814.23288035000245852500017906150006890650011672000500481)2...(....)()2(2截面1—1mmN l l l P l l P l P M w ⋅⨯=⨯+⨯+⨯+⨯+⨯=+++++++=-963263232211109978.13288034000245852400017906140006890550011671000)2...(....)2(2 截面2—2mmN ll l P l P M w ⋅⨯=⨯+⨯+⨯+⨯=+++++=-96436332210832.132880320002458522000179061200068903500)2...(. (2)3.2 地震弯矩计算取第一振型脉动增大系数10.02ζ=,则衰减指数110.05-ζ0.9+0.950.5+5ζγ==,S T 07.21=,地震设防烈度9度,故取max 0.32α=。

查得0.40g T =,023.09/)02.005.0(02.09/)05.0(02.011=-+=-+=ζη319.102.07.106.002.005.017.106.005.01112=⨯+-+=+-+=ζζη,092.01=∂,等直径等厚度的塔,152.221800/40000/>==i D H 按下列方法计算地震弯矩。

截面0—0mm N gH m M E⋅⨯=⨯⨯⨯⨯=⨯=-901'00105.14000081.991462095.035163516α mmN M M EE⋅⨯=⨯⨯==--99'0000109.1105.125.125.1截面1—1mmN h h H H Hg m M E ⋅⨯=⨯+⨯⨯-⨯⨯⨯⨯⨯=+-=-95.35.25.35.25.35.25.35.201'111044.1)10004100040000144000010(4000017581.9914628095.08)41410(1758α mm N M M E E ⋅⨯=⨯⨯==--99'1111108.11044.125.125.1截面2—2mmN h h H H Hgm M E ⋅⨯=⨯+⨯⨯-⨯⨯⨯⨯⨯=+-=-95.35.25.35.25.35.25.35.201'221034.1)30004300040000144000010(4000017581.991462092.08)41410(1758α mm N M M E E ⋅⨯==--9'22221067.125.1。

3.3 偏心弯矩的计算偏心质量 Kg m e 8000= 偏心距mm e 2000=偏心弯矩 mm N ge m M e e ⋅⨯=⨯⨯==81057.1200081.980003.4 各种载荷引起的轴向应力3.4.1 计算压力引起的轴向应力MPa e PcDi 5410418002.241=⨯⨯==δδ 其中 mm c n e 10212=-=-=δδ3.4.2 操作质量引起的轴向压应力2δ截面0—0 MPa Di g m ei 87.1510180014.381.991462000002=⨯⨯⨯==--δπδ截面1—1 MPa Di g m ei 76.1410180014.381.991462110112=⨯⨯⨯==--δπδ其中Kg m 9075283891462110=-=-截面2—2 MPa Di g m ei 76.1410180014.381.991462220222=⨯⨯⨯==--δπδ其中Kg m 85030576683891462220=--=-3.4.3 最大弯矩引起的轴向应力3δ截面0—0 MPa Di M ei 94.99101800785.010542.2429200max 003=⨯⨯⨯==--δπδ截面1—1 MPa Di M ei 02.8812160014.310436.24429222max 223=⨯⨯⨯⨯==--δπδ截面2—2 MPa ei Di M 83.8912160014.310253.24max 4292223=⨯⨯⨯⨯==-δπδ3.5 塔体和裙座危险截面的强度与稳定校核3.5.1 截面的最大组合轴向拉应力校核截面2-2塔体的最大组合轴向拉应力发生在正常操作时的2—2截面上,其中,[]a 170Mp tσ=,0.85φ=, 1.2K =,[]a 1.21700.85173.4Mp tK σφ=⨯⨯=MPa 78.13083.8905.1354223222122max =+-=+-=---δδδδMPa K MPa t 4.173][78.13022max =<=-φδδ 满足要求3.5.2 塔体与裙座的稳定性校核截面2-2塔体2—2截面上的最大做和轴向压应力MPa 88.10283.8905.1322322222max =+=+=---δδδMPa K KB MPa t Cr 4.140}204,4.140m in{}][,m in{][88.10222max ===<=-δδδ满足要求 其中00104.090010094.0094.0=⨯==Ri ei A δ 查图5-9得MPa MPa B MnR t 170][,117)200,16(==δ, K=1.2 截面1-1塔体1—1截面上的最打组合轴向压应力MPa 96.10378.8818.1511311211max =+=+=---δδδMPa K KB MPa t Cr 132}6.135,132m in{}][,m in{][96.10311max ===<=-δδδ满足要求 其中 00104.090010094.0094.0=⨯==Ri A ei δ查图5-8得(Q235-B ,200) B=110MPa MPa t113][=δ K=1.2截面 0-0塔体0—0截面上的最大组合轴向应力MPa 81.11594.9978.1500300200max =+=+=---δδδMPa K KB MPa t Cr 132}6.135,132m in{}][,m in{][81.11500max ===<=-δδδ满足要求其中MPa B 110= MPa t113][=δ K=1.2各危险截面强度校核汇总3.6塔体水压试验和吊装时代应力校核3.6.1水压试验时各种载荷引起的应力(1)试验压力和液柱静压力引起的环向应力MPa ei Di P ei T T 95.171102)101800)(4.05.1(2))((=⨯++=++=δδδ液柱静压力MPa P P i T 5.11701702.125.1][][25.1=⨯⨯==δδ 液柱静压力=4.081.9/40000001.081.9/=⨯=rH (2)试验压力引起的轴向拉应力 MPa Di P e T T 5.6710418005.141=⨯⨯==δδ (3)最大质量引起的轴向压应力 MPa e Di g m T T 32.2710180014.381.9157550222=⨯⨯⨯==-δπδ (4)弯矩引起的轴向应力 MPa Di Me M eW T 76.2710180014.3)1057.110832.13.0(4)3.0(42892223=⨯⨯⨯+⨯⨯⨯=+=-δπδ 3.6.2 水压试验时应力校核(1)筒体环向应力校核MPa s 9.2639.0=ϕδ MPa MPa T 9.26395.171<=δ 满足要求 (2)最大组合轴向应力校核MPa T T T 78.130321=+-δδδ液压试验时 MPa K MPa s T T T 9.2639.078.130321=<=+-ϕδδδδ 满足要求(3)最大组合轴向压应力校核MPa KB MPa s Cr T T 4.140}5.310,4.140m in{}9.0,m in{][88.10293.2727.1932===<=+=+σδδδ 满足要求。

相关文档
最新文档